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Background: Severe mitral valve regurgitation requires comprehensive
evaluation for optimal treatment. Initial screening uses transthoracic
echocardiography (TTE), followed by transesophageal echocardiography (TEE)
to determine eligibility for adequate intervention. Mitral Transcatheter Edge-to-
Edge Repair (M-TEER) indications are based on detailed and quality valve and sub-
valvular apparatus assessment, including anatomy and regurgitation
pathophysiology.
Aim: To develop AI algorithms for standardizing M-TEER eligibility assessment
using TTE and TEE echocardiograms, supporting all stages of mitral valve
regurgitation evaluation to assist non-expert centers throughout the entire
process, from severe mitral valve regurgitation diagnostic to M-TEER procedure.
Methods: Three deep learning algorithms were developed using
echocardiographic data from M-TEER patients performed at Montreal Heart
Institute (2018–2025). 1. ECHO-PREP was trained to identify key diagnostic
views in TTE (n = 530) and diagnostic and procedural views in TEE (n = 2,222)
examinations to determine the level of quality images needed to do a M-TEER. 2.
4D TEE segmentation with automated mitral valve area (MVA) quantification (n =
221), and 3. 2D TEE scallop-level segmentation of leaflets and sub-valvular
structures (n = 992).
Results: Preliminary results on test sets showed 95.7% accuracy in TTE view
classification and 91% accuracy for TEE view classification. The 4D segmentation
module demonstrated excellent agreement with manual MVA measurements
(R = 0.84, p < 0.001), successfully discriminating patients undergoing M-TEER
from those referred for surgical replacement (p = 0.046 for AI predictions). The
2D scallop-level analysis achieved a mean Dice score of 0.534 across
11 anatomical structures, with better performance in commonly represented
configurations (e.g., A2-P2, P1-A2-P3).
Conclusion: ECHO-PREP demonstrates the feasibility of an integrated AI-
assisted workflow for MR assessment, combining quality control, dynamic 4D
valve quantification, and scallop-level anatomy interpretation. These results
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support the potential of AI to standardize M-TEER eligibility, reduce inter-observer
variability, and provide decision support across centers with different levels of
expertise.
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1 Introduction

Mitral regurgitation (MR) is a prevalent valvular heart disease,
affecting approximately 2% of the general population and up to 10%
of individuals over 75 years of age (Nkomo et al., 2006). In patients
with severe MR and high or prohibitive surgical risk, transcatheter
edge-to-edge repair (M-TEER) has emerged as an established
therapeutic option that can reduce symptoms, hospitalizations,
and improve quality of life (Stone et al., 2018; Maisano et al., 2013).

Successful M-TEER depends critically on detailed anatomic and
functional characterization of the mitral valve apparatus. This
complex apparatus is a dynamic interface between the left atrium
and ventricle, composed of two leaflets attached to a saddle-shaped
annulus and supported by a subvalvular network of chordae
tendineae and papillary muscles. Transesophageal
echocardiography (TEE) remains the cornerstone imaging
modality for pre-procedural assessment and intra-procedural
guidance (Zamorano et al., 2011), providing high-quality imaging
of cardiac structures in 2D and 3D, enabling real-time dynamic
assessment. In contrast, transthoracic echocardiography (TTE) is
typically reserved for initial screening and post-procedural follow-
up. Precise quantification of valvular morphology and kinematics
from these images can also feed into computational models, such as
finite element simulations, to replicate patient-specific biomechanics
(Votta et al., 2008). Deriving this level of detail, particularly a pixel-
wise annotation of valve substructures from 4D TEE data, is a
formidable task. The automation of mitral valve segmentation and
tracking is hindered by intrinsic challenges of echocardiography,
such as artifacts from patient motion, variable image quality, and
scarse availability of expertly annotated 4D datasets for training.
However, conventional clinical workflows rely heavily on expert
interpretation and manual measurements, which are time-
consuming and subject to inter- and intra-observer variability
(Hien et al., 2014; Thomas et al., 2008). Artificial intelligence
(AI), particularly deep learning, offers an opportunity to
overcome these limitations by providing rapid, reproducible, and
quantitative analysis of echocardiographic images.

Convolutional neural networks (CNNs), particularly encoder-
decoder architectures like U-Net and its 3D extensions, have
demonstrated remarkable success over the last decade in automating
tasks in cardiac ultrasound, including chamber segmentation,
functional analysis, and valvular assessment (Leclerc et al., 2019;
Ouyang et al., 2020). Clinical and technical precedents illustrate this
trajectory. Vendor-integrated solutions such as Anatomic Intelligence
in Ultrasound (AIUS) (Philips Healthcare) have implemented
automated recognition and measurement of cardiac structures,

showing the feasibility of integrating anatomy-aware algorithms into
daily workflows. Academic initiatives and challenges (e.g., the Mitral
Valve Segmentation challenge -MVSEG- at the International
Conference on Medical Image Computing and Computer Assisted
Intervention congress -MICCAI-) have provided standardized
benchmarks to accelerate innovation and compare algorithmic
performance. The winning model at MVSEG 2023 (Synapse, 2025),
often leveraging advanced architectures like nnU-Net or vision
transformers, achieved state-of-the-art Dice scores, showcasing an
unprecedented ability to accurately delineate the thin, dynamic
mitral leaflets and complex annular geometry.

Several research groups have contributed to this field. Costa et al.
(2019) developed a 2D CNN for leaflet segmentation in 2D TTE, while
Carnahan et al. (2021) and Aly et al. (2022) focused on 3D
segmentation from TEE using a 3D Residual UNet and nnUNet,
respectively. Chen et al. (2023) introduced a two-stage nnUNet
approach, initializing it with a classifier pre-trained to identify the
valve’s open and closed states. Munafò et al. (2024) created a Multi-
Decoder Residual UNet to segment the annulus and both leaflets
separately at end-systole from 3D TEE. A critical limitation of these
studies is their inability to perform frame-by-frame (4D) analysis of the
entire valve apparatus throughout the cardiac cycle. Previous 4D efforts
have been restricted to annulus-specific segmentation (Andreassen
et al., 2019; Andreassen et al., 2022) or tracking (Taskén et al.,
2023), or were confined to 2D imaging for leaflets and annulus, as
seen in the work of Wifstad et al. (2024), who used a UNet with
attention gates for 2D TTE. Recently, Munafò et al. (2025) proposed a
semi-supervised training strategy using pseudo-labeling for MV
segmentation in 4D TEE employing a Teacher-Student framework
to ensure reliable pseudo-label generation. The Student model
demonstrated reliable frame-by-frame MV segmentation on 120 4D
TEE recordings from 60 candidates forMV repair, accurately capturing
leaflet morphology and dynamics throughout the cardiac cycle, with a
significant reduction in inference time compared to the ensemble.
Despite these advances, several challenges persist. Generalizability
across vendors and imaging protocols is limited, and a fully
automated 4D MV segmentation with a scallop-level analysis, which
is also able to provide automated measurements in complex anatomies
to define theM-TEER eligibility, is difficult. The development of such a
method is highly challenged by the labor-intensive manual annotation
process needed to generate the extensive datasets required for the
supervised training of CNNs.

In this context, we developed an integrated deep learning
framework for the comprehensive pre-procedural assessment of
the mitral valve in patients with severe mitral regurgitation. Our
solution features a three-stage algorithmic pipeline designed to: 1.
assess the quality of available TTE and TEE images, 2. perform
segmentation of the mitral annulus, leaflets, and scallops, and 3.
automatically compute the mitral valve area (MVA) from 4D-TEE
volumes. By generating reproducible, clinically relevant
measurements, this approach has the potential to standardize

Abbreviations: AI, Artificial intelligence; MR, Mitral regurgitation; TTE,
Transthoracic Echocardiography; TEE, Transesophageal echocardiography;
M-TEER, Mitral transcatheter edge-to-edge repair; DL, Deep learning.
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feasibility assessment and support heart team decision-making in
transcatheter mitral interventions.

2 Methods

The proposed original multi-step workflow, called ECHO-
PREP, consisting of three sequential algorithms for image quality
assessment, mitral valve segmentation, including scallop-level
analysis, and automated measurements, is illustrated in Figure 1.

TTE and TEE pre-procedural images from M-TEER (Mitraclip)
and surgical mitral valve replacement (MVR) patients, performed at
theMontreal Heart Institute from 1 January 2018, to 1 January 2025,
were retrospectively collected. Both two-dimensional (2D) images,
three-dimensional (3D), and four-dimensional (4D) volume images
were used. 3D refers to single-volume acquisitions, whereas 4D
refers to multi-volume datasets spanning the entire cardiac cycle.
Our algorithm was primarily trained on 3D echo volumes to
establish accurate segmentation performance. Once optimized in
this setting, the model was subsequently extended and retrained to
analyze sequences of 3D volumes across the cardiac cycle, thereby
enabling full 4D assessment.

2.1 Automatic classification of 2D- TTE and
TEE images: quality views assessment

2.1.1 Dataset processing and splitting
TEE and TTE video images were processed through a systematic

pipeline. All frames were extracted from source videos using
OpenCV, with each frame inheriting its parent video’s label.
Multi-label annotations were transformed to single labels using
priority rules, removing technical artifacts such as ‘delivery_
system’ and ‘clip’ tags. Dataset splitting was performed at the
video level using instance_uid identifiers to prevent data leakage,
ensuring no video appeared in multiple splits. Videos were stratified

by label distribution and randomly assigned to training (50%),
validation (25%), and test (25%) sets. This video-level splitting
approach maintained temporal integrity while enabling robust
model evaluation.

2.1.2 Model architecture and training
We employed MobileNetV3-Large (Elaziz et al., 2023) as our

base architecture, initialized with pre-trained weights from
ImageNet (Figure 2). For both quality assessment (binary
classification) and view classification (multi-class single-label),
only the final classification layer was modified to match the
target classes, implementing a transfer learning approach.
Training images underwent augmentation, including random
horizontal and vertical flips, random rotation (+/−10°), resizing
to 256 × 256 pixels, and random cropping to 224 × 224 pixels.
Validation and test images underwent deterministic preprocessing,
which included resizing to 256 × 256 pixels and center cropping to
224 × 224 pixels. To accelerate training, entire datasets were loaded
into memory using a custom Dataset class. Models were trained
using the Adam optimizer with a learning rate of 1 × 10̂ (−4) and
cross-entropy loss for 100 epochs, with a batch size of 128. Training
utilized eight parallel data loading workers and CUDA acceleration.
Model selection was based on validation accuracy, with the best-
performing checkpoint saved for inference. Performance was
monitored using both accuracy and the area under the receiver
operating characteristic curve (AUROC). AUROC was computed
using one-vs-rest methodology for multi-class view classification.

2.2 4D-TEE-based automatic MV
segmentation and MVA measurements

2.2.1 Dataset and data preparation
This study utilized the MVSEG2023 public dataset (Synapse,

2025), a standardized collection of TEE volumes acquired using the
Philips EPIQ cardiac ultrasound system. The dataset contains

FIGURE 1
ECHO-PREP fully automatic clinical workflow for MV Assessment andM-TEER procedural planning. Grey boxes denote potential applications of the
available algorithms that are currently under development or have not yet been validated. 2D = two-dimensional; 3D = three-dimensional; M-TEER =
mitral transcatheter edge-to-edge repair; MV = mitral valve; TTE = transthoracic echocardiography; TEE = transesophageal echocardiography.
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segmentations for the anterior and posterior leaflets (Labels 1 and 2).
To enhance the dataset for comprehensive valve analysis, manual
annulus contour segmentations were added (Label 3).

2.2.1.1 Annulus annotation enhancement
Manual annulus contours were created using 3D Slicer by

placing control points along the mitral annulus in 3D space
using the SlicerHeart analysis module. These control points were
exported as JSON markup files containing world coordinates. To
convert these sparse control points into volumetric segmentations,
an automated spline-based approach was developed: 1. control
points were fitted with a smooth 3D B-spline using scipy’s
splprep function with zero smoothing factor, 2. the spline was
evaluated at 100 equally spaced parameter values to create a
dense point cloud, 3. a cylindrical tube with 1.5 mm radius was
generated around the spline using VTK libraries, and 4. the tube was
voxelized into the original image space using VTK’s
vtkPolyDataToImageStencil method.

To ensure anatomically consistent segmentations, we applied
morphological post-processing, including connected component
analysis, to retain only the most significant component with the
highest mean z-coordinate, effectively removing spurious
disconnected regions.

2.2.2 Deep learning model training
2.2.2.1 Architecture and framework

We employed MONAI’s Auto3DSeg framework, which
automatically generates and optimizes multiple 3D segmentation
architectures for medical imaging applications. The framework was
configured to use SegResNet as the primary architecture, a 3D
residual U-Net variant designed explicitly for volumetric medical
image segmentation.

2.2.2.2 Training configuration
The enhanced MVSEG2023 dataset was divided into 5-fold

cross-validation splits with random stratification (seed = 42).
Training data organization followed MONAI’s standard format.
The Auto3DSeg pipeline automatically handled data preprocessing,
augmentation strategies, and hyperparameter optimization. The
training was set up following the configuration of the
MVSEG2023 challenge winner, with the specified modality being
magnetic resonance imaging.

2.2.2.3 Model ensemble
The Auto3DSeg pipeline trains amodel for each fold and enables

ensemble prediction by averaging the outputs of all models, which
improves performance at the expense of longer inference time. For

FIGURE 2
MobileNetV3-Large architecture. Main diagram shows feature map progression from 224×224×3 input through inverted residual blocks to N-class
output. Blocks marked (*) use Squeeze-and-Excitation modules. Inset shows internal structure of an inverted residual block with skip connections.

Frontiers in Network Physiology frontiersin.org04

Corona et al. 10.3389/fnetp.2025.1701758

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1701758


prediction, models from all five folds were used to obtain the best
segmentation.

2.2.3 Cardiac phase detection and
temporal analysis
2.2.3.1 End-systole identification

To identify the optimal cardiac phase for valve area
measurement, an automated mid-diastole detection algorithm
based on temporal analysis of segmented structures was
developed. For each frame in the 4D TEE sequences, we
performed the following analysis pipeline:

a. Annulus Skeletonization: The segmented annulus (Label 3)
was skeletonized using 3D morphological thinning to extract
its centerline representation.

b. 3D Point Ordering: Skeleton points were spatially ordered
using a nearest-neighbor approach with orientation
constraints to prevent backtracking, ensuring anatomically
consistent point sequences along the annulus perimeter.

c. Plane Fitting: Principal Component Analysis (PCA) was
applied to the ordered annulus points to determine the
best-fitting plane, with the plane normal defined as the
eigenvector corresponding to the smallest eigenvalue.

d. Area Calculation: All segmented structures (leaflets and
annulus) were projected onto this optimal plane, and areas
were calculated using pixel-based methods with appropriate
spatial calibration.

2.2.3.2 Temporal peak detection
Mid-diastole was identified as the frame exhibiting maximum

effective valve area, corresponding to the point of maximum valve
opening during the cardiac cycle.

2.2.4 Geometric analysis and area quantification
2.2.4.1 Valve plane projection

The projection process involved: I. determination of the optimal
valve plane using PCA analysis of annulus centerline points, II.
orthogonal projection of all segmented voxels onto this plane, III.
conversion to 2D coordinates using orthonormal basis vectors
derived from the plane normal, and IV. creation of high-
resolution 2D images with pixel sizes calculated from the original
voxel spacing and projection angle.

2.2.4.2 Effective orifice area
Functional valve opening area was determined through

morphological analysis of the projected segmentation, using
flood-fill algorithms to identify the central opening region.

2.2.4.3 Spatial calibration
All measurements were performed in physical units (mm2) using

voxel spacing information extracted from DICOM headers. The
projection method accounted for oblique viewing angles by
adjusting pixel sizes based on the angle between the valve plane
and the image coordinate system.

2.2.5 Data selection process
4D TEE volumes from both M-TEER (Mitraclip) and surgical

MVR patients were included. Only TEE exams with available 3D

acquisition, performed at the Montreal Heart Institute starting from
1 March 2024, were used, as raw data extraction was only enabled at
the end of February 2024. Each TEE examination was assigned an
internal code corresponding to its specific exam type in the
institutional database. Only TEE exams performed within
12 months before the M-TEER or MVR were used, provided that
the physician’s clinical report with mitral valve analysis and MVA
measurement, as performed by a cardiologist, was available.
Intraprocedural TEE exams and exams from patients with prior
MV procedures were excluded.

2.2.6 Data extraction process
4D TEE volumes meeting the selection criteria were identified

through a series of internal SQL scripts executed across
complementary databases, including a report database and an
exam type database. The identified 4D TEE DICOMs were then
transferred to an internal research server using pydicom-batch
(https://github.com/MHI-AI-CoreLab/pydicom-batch).

2.2.7 Data cleaning process
An expert cardiologist performed a manual curation process to

identify TEE exams in which the mitral valve was acquired and
deemed suitable for analysis.

2.3 2D-TEE-based automatic MV
segmentation: scallop-level analysis

For this part, we chose a U-Net architecture (Ronneberger et al.,
2015), which is a fully convolutional network consisting of an
encoder and a decoder. The model accepts 3-channel ultrasound
images x ∈ R3 × 256 × 256 as input and outputs four results: a final
segmentation map ϕ(x) ∈ [0,1]11 × 256 × 256 and three deep
supervision outputs ψ1(x) ∈ [0,1]11 × 128 × 128, ψ2(x) ∈ [0,1]11 ×
64 × 64, and ψ3(x) ∈ [0,1]11 × 32 × 32. Each of the 11 output
channels corresponds to one of the following anatomical structures:
the six scallops of the mitral valve (A1, A2, A3 for the anterior leaflet,
matching P1, P2, P3 respectively for the posterior leaflet), the
anterior and posterior papillary muscles, the chordae, the
annulus, and the background. We modified the original U-Net
architecture to suit our task better, as shown in Figure 3.

2.3.1 Model architecture
2.3.1.1 Encoder

The original encoder has been replaced with a ResNet34-based
backbone (Kaiming et al., 2015). Three types of blocks were used: the
first is a wide convolution (7 × 7) followed by batch normalization
and a ReLU activation function; the second is a residual
downsampling block that reduces spatial resolution by a factor of
2 using a 3 × 3 convolution with stride 2; the third is a standard
residual block with 3 × 3 convolutions. Both residual block types use
skip connections to improve gradient flow during training.

2.3.1.2 Decoder
In the decoder, bilinear up-sampling was used instead of

transposed convolutions to reduce checkerboard artifacts (Odena
et al., 2016). The rest of the decoder followed the original U-Net
structure, with skip connections passed through attention gates,
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concatenated, and followed by two 3 × 3 convolutions, batch
normalization, and ReLU. Each decoder stage also includes a
final 1 × 1 convolution and a SoftMax activation to produce
intermediate outputs for deep supervision.

2.3.1.3 Attention gates
To improve the focus on the mitral valve and reduce the

segmentation of non-relevant muscular structures, we integrated
attention gates. These modules, introduced by Oktay et al.
(Schlemper et al., 2019), highlight specific regions of interest
during training. Each attention gate takes as input a skip
connection x from the encoder and a gating signal g from the
corresponding decoder stage and returns a refined feature map with
the same dimensionality as x (Supplementary Figure 1).

2.3.2 Loss functions
To optimize the segmentation network, we used a combination

of Dice loss and Focal loss, which are well-suited for highly
imbalanced multiclass segmentation tasks.

2.3.2.1 Dice loss
The generalized Dice loss is defined as follows:

LDice � 1 − 1

C′
∣∣∣∣

∣∣∣∣
∑
c∈C′

2∑N
i�1pi,c gi,c + ε

∑N
i�1pi,c + ∑N

i�1gi,c + ε

where C′ represents the set of classes present in the image, N is the
number of pixels in the image, pi,c is the predicted probability for

pixel i belonging to class c, gi,c is the corresponding ground truth
(one-hot encoded), and ε is a small constant to avoid
division by zero.

2.3.2.2 Focal loss
To further address class imbalance and focus training on hard-

to-classify pixels, we also employed the Focal loss (Lin et al., 2018),
defined as:

LFocal � − 1
N

∑
N

i�1
∑
c∈C

1 − pi,c( )γ gi,c log pi,c( )

where C denotes the set of all classes (not just those in the image),
and γ is the focusing parameter (set to 2 in this study) that decreases
the relative loss contribution of well-classified pixels.

2.3.2.3 Combined loss
The final training objective for a single output is a simple

combination of the two losses:

L � LDice + LFocal

2

2.3.3 Loss functions with deep supervision
The final loss is applied not only to the network’s final output

but also to intermediate outputs. This deep supervision strategy,
introduced in (Lee et al., 2014), encourages lower decoder layers to
focus on relevant regions early in the network.

FIGURE 3
U-Net modified architecture model used for the segmentation of mitral valve leaflets scallops.
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Let ϕ(x) ∈ [0,1]C×H×W be the final output, and {ψk(x)}
3
k=1 be the

three intermediate deep supervision outputs. The total loss is then
computed as:

Ltotal � L ϕ x( ), G( ) +∑
3

k�1
L ψk x( ), G k( )( )

Since the intermediate outputs from the decoder have lower
spatial resolution than the input image, the corresponding ground
truth masks need to be downsampled to match each output size
before calculating the loss.

Let G ∈ {0,1}C×H×W be the original one-hot encoded ground truth
mask. For each deep supervision output ψk(x) ∈ [0,1]C×Hk×Wk, the
ground truth is downsampled using nearest-neighbor interpolation:

G k( ) � Downsample G,Hk,Wk( )
where (Hk,Wk) are the height and width of the k-th intermediate
output. Nearest-neighbor interpolation preserves the discrete class
labels, ensuring accurate loss computation for each class. The total
loss is then computed by comparing each output ψk(x) to its
corresponding downsampled ground truth G(k).

2.3.4 Optimization and training
The network was trained with the Adam optimizer, starting with

a learning rate of 1 × 10−4 and a batch size of 24. To prevent
overfitting, a weight decay of 1 × 10−6 and dropout with a rate of
0.2 in the encoder layers were used. Data augmentation was
extensively employed to boost the diversity of the training set,
including random rotations (up to 45°), translations, and scaling
(between 0.75 and 1.25). These augmentations were applied during
training in real-time to improve the model’s ability to generalize.

2.3.5 Dataset and preprocessing
The dataset included 992 TEE images from 77 different patients

who underwent a Mitraclip procedure, focusing on the mitral valve,
with 11 segmentation classes representing various anatomical
structures, with corresponding labels (Table 1). Only 2D images
were analyzed. A total of 2,200 ground truth annotations were made

by a physician on the Labelbox platform. The data were split into
80% for training (N = 821) and 20% for validation (N = 171),
ensuring that all images from the same patient remained in the same
subset to prevent data leakage.

Before training, all images were normalized to have zero mean
and unit variance. Both images and their corresponding masks were
resized to 256 × 256 pixels when needed.

2.3.6 Evaluation
The segmentation performance was assessed using multiple

metrics, including Dice coefficient, precision, recall, and false
positive rate (Supplementary Figure 2).

The Dice score is a widely used metric to assess segmentation
performance by quantifying the spatial overlap between the
predicted segmentation and the ground truth. It is defined as:

Dice � 2 A ∩ B| |
A| | + B| |

where A represents the predicted segmentation and B the reference
segmentation.

A Dice score of 1 indicates perfect agreement, whereas a score of
0 indicates no overlap.

This metric is particularly well-suited for medical image analysis
because it remains robust to class imbalance (e.g., small anatomical
structures occupying only a fraction of the image) and has become a
standard benchmark for evaluating segmentation algorithms.

All experiments were conducted in PyTorch 2.6 and trained on
an NVIDIA RTX A600 GPU.

3 Results

3.1 Automatic classification of 2D- TTE and
TEE images: quality views assessment

ECHO-PREP first algorithm was trained to identify key diagnostic
views in TTE and diagnostic and procedural views in TEE examinations
(algorithm 1, Figure 1) to determine the level of image quality needed
for an M-TEER, based on a dataset of 530 TTE and 800 TEE pre-M-
TEER acquisitions, respectively. The total number of TTE and TEE
analyzed frames was 58.749 and 52.058, respectively. The dataset
distribution of TTE and TEE diagnostic views is shown in
Supplementary Tables 1, 2, respectively. The algorithm successfully
determined whether the TTE was of good quality with a frame-level
accuracy of 95.7% (Figure 4A) and performed well in view classification
(Figure 4B). For TEE, the algorithm produced similar results, accurately
identifying whether TEE views were of sufficient quality for patient
eligibility and procedural guidance of M-TEER in 91% of cases, with a
high overall accuracy for TEE view classifications, as demonstrated by
AUC values (Figure 5).

3.2 4D-TEE-based automatic MV
segmentation and MV area measurements

ECHO-PREP second algorithm was trained on a total of
135 TEE 4D volumes from the MVSEG2023 dataset, with a

TABLE 1 Legend of labels used for mitral valve leaflets scallops and sub-
apparatus structures annotations.

Anatomical structure Label

A1 a_1

A2 a_2

A3 a_3

P1 p_1

P2 p_2

P3 p_3

MV chordae Chordae

MV annulus Annulus

AL papillary muscle Papillary_anterior

PM papillary muscle Papillary_posterior

AL, anterolateral; MV, mitral valve; PM, posteromedial.
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FIGURE 4
Frame-Level ROC curves for TTE Quality Image assessment (A) and Views classification (B). TTE images are direct outputs from the algorithm to
illustrate the classification of “good” versus “bad” views. AUC = area under curve; av = aortic valve; mv = mitral valve; pm = papillary muscle; TTE =
transthoracic echocardiography; plax = parasternal long axis; psax = parasternal short axis; ROC = receiver operating characteristic curve.

FIGURE 5
Frame-Level ROC curves for TEE Quality Image assessment (A) and Views classification (B). TEE images are direct outputs from the algorithm to
illustrate the classification of “good” versus “bad” views. AUC = area under curve; av = aortic valve; me = mid-esophageal; mpr = multiplanar
reconstruction; rv = right ventricle; tg = transgastric; lvot = left ventricular outflow tract; 3_d = three-dimensional; TEE = transesophageal
echocardiography; ROC = receiver operating characteristic curve.
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70%–30% split for training and validation, respectively.
Segmentation of relevant anatomical features, including the
mitral anterior and posterior leaflets and annulus, was performed
using the MONAI Auto3DSeg software after identifying the mid-
diastole frame (Figure 6). A logical stepwise understanding from
anatomy to segmentation can be derived from Figure 7, which

effectively illustrates the use of a PCA-based optimal plane and
segmentation pipeline for valve analysis. The figure clearly contrasts
two cases (256466 vs. 381643) using 3D visualizations (on top) and
2D valve plane projections (below) at the peak frame. In Case
256466 (left panel), the effective area (EA) is much larger
(689 mm2), and the valve appears more symmetric and complete

FIGURE 6
Enhanced Annotation from MVSEG 2023: 10 representative cases. Rows (A) 2D sagittal slice showing original echocardiography with leaflet
segmentation overlay. (B) 3D superior view of MVSEG 2023 baseline dataset (leaflets only). (C) Manual annulus annotation with control points and
B-spline fitting. (D) Final enhanced dataset with complete mitral valve (leaflets + annulus). 2D = two-dimensional; 3D = three-dimensional.

FIGURE 7
PCA-Based Optimal Plane Projection for 3D Mitral Valve Quantification: 2 representative cases. Rows (A) 3D visualization of annulus skeleton points
(red) and their projection onto the PCA-derived optimal plane (green squares) from anterosuperior (A1) and posterosuperior (A2) viewpoints. The semi-
transparent blue plane represents the best-fitting 2D projection surface with a normal vector (purple). (B) Valve plane projection showing effective area
measurement from the peak cardiac frame with color-coded anatomical structures (posterior leaflet = red, anterior leaflet = blue, annulus = green,
functional area = light blue). 2D = two-dimensional; 3D = three-dimensional; PCA = Principal component analysis.
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in both 3D and projection views. Segmentation appears clean, with
well-demarcated leaflets. In case 381643 (right panel), the EA is
significantly smaller (36 mm2), indicating severe restriction. The 3D
views show distorted, irregular geometry, and the projection
and segmentation reveal significant leaflet malcoaptation or
incomplete opening. Combining 3D multi-angle views with 2D
projection and segmentation provides complementary
perspectives: the segmentation masks (original, inverted, final)
offer transparency into the algorithm’s steps and show good
alignment between the quantitative data (EA values) and visual
impression. The contrast with case 256466 (EA 689 mm2) highlights
the method’s robustness in capturing extreme phenotypes. The
added value of a comprehensive temporal analysis of mitral valve
dynamics is demonstrated in Figure 8. Instead of static geometry, it
captures the valve’s physiological motion and functional variability.
The top row shows 3D superior views at four timepoints across the
cardiac cycle (start-peak-mid-end), with valve structures clearly
delineated. It demonstrates valve opening dynamics, from partial
opening at Frame 0 to maximal separation at Frame 7. The middle
row shows 2D valve projections at the same key frames. Effective
orifice area (EA) values are: start: 303 mm2, peak: 689 mm2, mid:
317 mm2, end: 302 mm2. This visualization complements the 3D
view by quantifying leaflet separation. The bottom panel displays the
temporal analysis graph with EA plotted across all 32 frames: peak
EA occurs at Frame 7 (689 mm2). The cycle demonstrates typical
dynamic variation, with large fluctuations between systolic closure

and diastolic opening (mean EA: 198 mm2; range: 3–689 mm2). This
patient (case 256466) shows normal dynamic opening and closure
patterns, with a large peak EA, consistent with preservedmitral valve
function. The data highlights the algorithm’s ability to continuously
track valve dynamics throughout the cardiac cycle, not just at
isolated frames. The temporal profile offers a clear functional
fingerprint that could distinguish healthy from pathological valves.

The validation of the algorithm for quantifying the mitral EA
involved analyzing a total of 221 TEE 4D volumes performed at our
center as part of a pre-procedural assessment of mitral regurgitation.
Images were divided into two groups: those from patients who later
underwent M-TEER with Mitraclip (121 4D volumes from
30 patients) and those from patients who had surgical mitral
valve replacement (100 4D volumes from 18 patients). A
physician reviewed the available images from the center’s
database and preliminarily excluded videos with unsuitable views
for calculating the MVA, such as poor image quality, artifacts, or the
presence of a previous surgical prosthesis or valve ring. The
validation of the AI-predicted MVA quantification was
performed by comparing it to the gold standard of manual
measurements from physician clinical reports. In Figure 9A, the
scatter plot shows a strong positive correlation (Pearson’s R = 0.84)
between the MVA measurements from clinical reports and those
predicted by our algorithm. The correlation is statistically significant
(p < 0.001), demonstrating excellent agreement between the AI and
human expert measurements.

FIGURE 8
Temporal analysis showing valve geometry evolution across the cardiac cycle: representative case. Rows (A) 3D-views and (B) 2D-projections at
four time points (posterior leaflet = red, anterior leaflet = blue, annulus = green, functional area = light blue). (C) Effective area curve with peak detection
(red star) and frame markers (numbered circles). 2D = two-dimensional; 3D = three-dimensional.
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Further validation was conducted through group
discrimination. Since our center handles high volumes and
specializes in mitral repair with a high success rate across
various mitral regurgitation scenarios, it was assumed that
patients who ultimately underwent surgical MVR were more
likely to have a non-repairable valve due to factors like a stenotic
or restrictive valve with a smaller MVA, after excluding patients
with endocarditis or prior valve procedures. In Figure 9B, the
box plots compare the distribution of MVA measurements
between two patient groups: Mitraclip (red) and surgical
MVR (blue). As expected, the MVR group exhibits a
significantly smaller mitral valve area. The difference between

the two groups is statistically significant for both measurement
methods (clinical reports: Wilcoxon p = 0.033; AI predictions:
Wilcoxon p = 0.046). A Bland-Altman analysis was performed
to complement the correlation and illustrate agreement between
AI-derived and physician-reported mitral valve
area (Figure 9C).

Even with some limitations, this remains an important
validation step, showing that the algorithm not only aligns with
clinical reports on individual measurements but also keeps the
clinically relevant physiological differences between different
patient groups. The higher significance (p = 0.033) in the clinical
reports is expected, as they are the reference standard.

FIGURE 9
Validation of AI-Based Mitral Valve Area Quantification Against Clinical Reports. (A) Correlation between clinical reports and AI predictions showing
strong agreement (R = 0.84). (B) Distribution comparison between measurement methods for Mitraclip (red) and surgical MVR (blue) patient groups.
Wilcoxon tests show statistical significance of group differences. (C) Bland–Altman plot assessing agreement between clinical and AI-predicted mitral
valve area, stratified by median value (3.61 cm2). The overall mean difference was 0.806 cm2 (solid red line). Agreement was better in the low-value
group (mean difference 0.27 cm2, solid green line) compared to the high-value group (mean difference 1.34 cm2, solid orange line). Dashed blue lines
indicate the 95% limits of agreement (mean ± 1.96 SD). MVR = mitral valve replacement; SD = standard deviation.
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FIGURE 10
Dataset overview for 2D TEE SegmentationModel (Algorithm 3). Distribution of TEE angle views (A), anatomical MV structures (B), andMV annotation
patterns (C) from the analysed image dataset, divided into training and validation subsets. 2D = two-dimensional; MV = mitral valve; TEE =
transoesophageal echocardiography.

FIGURE 11
Global validation results for the 2D TEE Segmentation Model (Algorithm n.3). Mean Dice (A), Precision (B), and Recall (C) scores are displayed for all
MV labels. Annotation labels correspond to the respective MV structures as previously defined. 2D = two-dimensional; MV = mitral valve; TEE =
transoesophageal echocardiography.
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3.3 2D-TEE-based automatic MV
segmentation: scallop-level analysis

A dataset overview, showing the distribution of TEE angle views
and annotations of the MV structures during segmentation, is
presented in Figure 10. The most common anatomical patterns
were A1-P1, A2-P2, and A2-P1-P3 (Figure 10C). These were mainly
mid- esophageal (ME) five- (5C) and four-chamber (4C) views, ME
long axis, and ME commissural views, primarily used to evaluate the
MV, especially in pre-procedural M-TEER assessment. The overall
validation results are shown in Figure 11, with a mean Dice score of
0.534 across the entire validation dataset. Individual Dice scores for
each MV structure annotation are listed in Table 2. As expected,
performance is slightly lower in commissural regions such as A3 and
A1. When analyzing these results, it is essential to note that if the
segmentation involves a small anatomical structure, such as a short
or retracted posterior mitral leaflet, which is common in functional
mitral regurgitation, the metric results, particularly the Dice score,
may be misleading.

Generally, a Dice score above 0.7 is considered a good (visually)
result. Regarding leaflet scallop segmentation, the ME Long Axis
views and ME Commissural views are typically segmented very well
by the neural network, with the P3-A2-P1 sequences being highly
represented in the dataset. An example is illustrated in Figure 12.
However, the results are less accurate for other views. The poorer
outcomes mainly stem from the ME 4 C and ME 5 C views, which
often confuse the A2- P2 and A1- P1 sequences. The segmentation
of the annulus produces quite good results. It is important to note
that in 2D images, annulus annotation is very small and can be
biased when calcifications are absent, making the Dice score very
sensitive. Even in images without annulus annotations, the neural
network seems capable of detecting the annulus correctly. Since the
papillary muscles and mitral chordae are located within the ventricle
(mostly represented by dark pixels), the network is highly sensitive
to noise and bright areas within the ventricle, which can lead to
confusion with these structures. As a result, the outcomes for the
papillary muscles- and even more so for the chordae- are
not optimal.

4 Discussion

In this study, we present ECHO-PREP, an integrated multi-stage
deep learning framework for pre-procedural mitral valve assessment
in candidates for M-TEER procedure. Our approach encompasses
three complementary modules: automated quality assessment of
echocardiographic views, 4D segmentation with functional valve
area quantification, and 2D scallop-level analysis of valve anatomy.
Together, these components aim to address the current challenges of
variability, subjectivity, and inefficiency in echocardiographic
interpretation for M-TEER planning.

The first significant finding was the high performance of the
quality assessment algorithm for both TTE and TEE images,
achieving frame-level accuracies above 90%. This step, although
often overlooked, is clinically critical: poor-quality imaging is a
common reason for inconclusive evaluations and may delay
intervention. By introducing automation at this stage, our
framework could improve workflow efficiency and ensure that
downstream analyses are only performed on diagnostically valid
inputs. The second major result was the successful implementation
of 4D TEE-based segmentation with automated mitral valve area
(MVA) quantification. The algorithm showed strong correlation
with physicians’ clinical reports (R = 0.84, p < 0.001), confirming its
reliability for valve sizing and functional assessment. Notably, the
system not only reproduced static area measurements but also
captured temporal variations of valve opening and closure,
offering a dynamic fingerprint of valve physiology. This
longitudinal perspective may become a powerful discriminator
between repairable and non-repairable valves, as suggested by the
observed differences between patients undergoing M-TEER and
those treated with surgical valve replacement.

However, the validation of MVA quantification across patient
groups relied on the assumption that all surgically replaced valves
(MVR) were non-repairable. In our high-volume center, which has a
strong track record of surgical valve repair, it is reasonable to infer
that patients selected for MVR likely presented with severely
remodeled or rheumatic valves, resulting in significantly smaller
valve areas in this group. Nevertheless, even after applying strict

TABLE 2 Segmentation performance metrics for mitral valve structures annotations, as identified with their labels.

Label Dice Precision Recall FPR

a_1 0.289 ± 0.352 0.369 ± 0.432 0.253 ± 0.318 0.000 ± 0.001

a_2 0.640 ± 0.236 0.673 ± 0.233 0.671 ± 0.274 0.001 ± 0.001

a_3 0.034 ± 0.098 0.225 ± 0.414 0.021 ± 0.065 0.000 ± 0.000

Annulus 0.557 ± 0.162 0.520 ± 0.168 0.639 ± 0.193 0.002 ± 0.001

Chordae 0.342 ± 0.292 0.393 ± 0.313 0.344 ± 0.319 0.001 ± 0.001

p_1 0.548 ± 0.266 0.599 ± 0.272 0.566 ± 0.310 0.001 ± 0.001

p_2 0.550 ± 0.281 0.605 ± 0.287 0.583 ± 0.324 0.001 ± 0.001

p_3 0.607 ± 0.205 0.682 ± 0.186 0.609 ± 0.272 0.000 ± 0.001

Papillary anterior 0.546 ± 0.247 0.647 ± 0.295 0.526 ± 0.269 0.002 ± 0.002

Papillary posterior 0.492 ± 0.297 0.537 ± 0.329 0.514 ± 0.333 0.002 ± 0.003

Values are Mean ± Standard Deviation.

FPR, false positive risk.
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exclusion criteria, additional factors may have influenced the
decision to replace rather than repair, thereby weakening the
correlation between smaller MVA and surgical replacement. This
limitation reduces the ability of the AI model to correctly classify
MVR patients based solely on pre-procedural imaging. Moreover,
the retrospective design and the single-center context limit the
generalizability of our findings, particularly in centers with lower
surgical expertise in mitral valve repair.

Finally, the scallop-level analysis represents a novel and
ambitious contribution toward standardized, automated scallop
identification, a task that today relies heavily on operator
expertise. While segmentation of large structures (annulus,
anterior and posterior leaflets, central scallops) reached
acceptable accuracy, finer anatomical elements such as
commissural leaflet scallops or chordae tendinae were more
difficult to identify consistently. The mean Dice score of 0.53 on
the overall structures dataset reflects these challenges. Nonetheless,
the network correctly reproduced frequent anatomical
configurations (e.g., A2-P2, P1-A2-P3), especially in mid-
esophageal long-axis and commissural views, which are crucial
for procedural planning. This constitutes a meaningful step. One
important consideration in interpreting scallop-level results is the
potential role of overfitting. Our dataset, while curated and enriched
with physician annotations, remains limited in size compared to the
complexity of the task. Neural networks trained on relatively small,
homogeneous datasets are prone to overfitting, i.e., capturing
dataset-specific patterns rather than generalizable features. This
phenomenon may explain why performance was higher in

anatomical regions and views more frequently represented in the
training set (e.g., A2-P2 in long-axis views), while less common
configurations showed reduced accuracy. Overfitting risk is further
heightened by the high class imbalance inherent in scallop
annotation: commissural scallops, papillary muscles, and chordae
are both smaller in size and underrepresented, leading to
disproportionate errors in Dice score evaluation. Another factor
to consider is that Dice scores, while informative, may not fully
reflect clinical usability. For small structures, a low Dice value may
correspond to visually acceptable segmentation. Conversely, a
higher Dice in a large structure might still fail to capture
clinically relevant details such as leaflet clefts or tethering. This
highlights the need for evaluation metrics that combine geometric
accuracy with clinical relevance, possibly integrating expert
qualitative scoring.

Compared to earlier approaches, which focused on annulus-
only segmentation or static 3D models (Costa et al., 2019; Carnahan
et al., 2021; Aly et al., 2022; Chen et al., 2023; Munafò et al., 2024;
Andreassen et al., 2019; Andreassen et al., 2022), our
pipeline integrates quality control, 4D functional analysis, and
scallop-level anatomy into a unified framework. Recent semi-
supervised methods (Munafò et al., 2025) demonstrated
reliable 4D segmentation, but they did not extend to scallop
analysis or clinical validation against surgical and
percutaneous cohorts.

By validating our algorithm against both manual measurements
and group-level clinical outcomes, we provide an important
translational step toward clinical applicability.

FIGURE 12
Good performance segmentation example. ME 4C views at 0° (A) and ME commissural views at 63° (B) show good correlation between the ground
truth and the neural network predicted annotation for A2-P2 and P3-A2-P1 combinations, respectively. Tables (below) show the corresponding
performance metrics score for each label annotation. ME = mid-esophageal.
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4.1 Limitations and core challenges

Several limitations should be taken into account. Our datasets
are relatively modest and partially monocentric, raising concerns
about generalizability. Although validation against clinical reports is
encouraging, clinical measurements and annotations themselves are
subject to intra- and inter-operator variability, especially for
complex structures like scallops and pathology zones, which
could influence correlations. This is the concept of the noisy
ground truth: an AI model trained on one expert’s labels may
perform poorly when judged by another expert’s standards,
highlighting the inherent ambiguity in the task. Scallop-level
segmentation performance is limited and susceptible to
overfitting and to the “rare event” challenge: pathologies like
commissural lesions, complex Barlow’s disease with multiple
prolapses, or specific calcification patterns are less frequent than
standard A2/P2 pathologies. A deep learning model trained on an
imbalanced dataset will inherently be biased towards the more
common cases and will struggle with these rare but clinically
crucial edge cases. External validation on larger, more diverse
datasets will be essential to confirm robustness.

Finally, while our system successfully quantifies pre-procedural
imaging, its real-time intra-procedural utility remains untested. A
model can perfectly segment a valve and measure lengths, but
determining the feasibility and the clip strategy requires
synthesizing all that information into a clinical decision. This
involves tacit knowledge that cardiologists and cardiac surgeons
accumulate over years and that is rarely explicitly stated in the
annotations (e.g., “leaflet is too fragile,” “coaptation gap is too wide
for a single clip,” “the jet is too commissural for a safe grasp”).

4.2 Future perspectives

Moving forward, expanding annotated datasets, ideally through
multi-center collaborations and semi-automated labeling strategies,
will be crucial to mitigate overfitting and improve generalizability.
Incorporating advanced architectures (e.g., vision transformers or
hybrid CNN–transformer models) and uncertainty quantification
methods may further enhance reliability in challenging cases. Using
the STAPLE algorithm (Simultaneous Truth and Performance Level
Estimation) or similar statistical methods to generate a probabilistic
“consensus truth” from multiple annotations could also help in
building a more consolidated dataset for training. The use of
generative AI techniques like Generative Adversarial Networks
(GANs) or diffusion models could help to create realistic
synthetic examples of rare and challenging cases to balance
the training set. Furthermore, the segmentation of the valve
informs the pathology classification, which tells the feasibility
prediction. Design a single model that simultaneously learns to
segment, classify views, classify pathology, and detect calcifications
makes the model more robust and generalizable than a set of
separate models.

Dabiri et al. (2022) conducted a simulation study to assess how
the number and location of MitraClips influence residual MR and
valve hemodynamics. This study emphasizes that procedural success
depends not only on patient selection but also on real-time strategic
decisions regarding clip quantity and positioning.

In fact, beyond pre-procedural planning, a promising future
direction involves integrating DL into intra-procedural guidance.
Real-time segmentation and scallop identification could assist
operators during clip placement by continuously updating valve
anatomy and coaptation maps as the device interacts with the
leaflets. Automated tracking of leaflet grasping zones and
prediction of residual regurgitation jets could help reduce
procedure time, cut down on unnecessary clip deployments, and
improve procedural safety. Such integration would need further
optimization of inference speed, user-friendly visualization tools,
and compatibility with procedural echocardiography systems.
Ultimately, combining imaging-derived AI quantification with
biomechanical simulation could create a comprehensive decision-
support system, predicting both procedural feasibility and the
hemodynamic trade-offs of various clip strategies.

The most transformative future direction, however, involves a
core shift from a reconstructive to a predictive and simulative model.
Current models, including our own, analyze the pre-procedural
anatomy in a static way. One future use of our ECHO-PREP
workflow will be to train the model on paired data: pre-
procedural 3D TEE volumes and their corresponding post-
procedural 3D TEE volumes with the clip deployed and a good
result. Instead of just identifying what exists, the AI will learn what a
successful outcome looks like and apply that knowledge to guide the
pre-procedural plan, by understanding the mechanical changes
caused by clip implantation on the valve and the optimal
morphological features of a pre-procedural valve that lead to a
successful post-procedural result. This “backward-forward” AI
approach has the highest potential to truly standardize and
democratize M-TEER planning worldwide, allowing less
experienced centers to leverage the collective expertise embedded
in the AI from high-volume centers, all while using the standard
imaging equipment they already have. These analyses, together with
the integration of fluid-dynamics simulations, are envisioned as
central elements of a comprehensive multi-imaging simulation
platform for transcatheter procedures, which we are currently
advancing through our ongoing multicenter study, ENVISAGE
(NCT07213531).

If validated prospectively, this capability could transform
ECHO-PREP from a pre-procedural planning tool into a real-
time decision-support system integrated into the cath lab
workflow. We envision a future where the interventional
cardiologist is empowered not just with tools, but with foresight.
This is the true promise of AI: not to replace physicians, but to
enhance their capabilities, making their expertise more powerful,
precise, and accessible to every patient in need.
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