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Representing and integrating continuous variables is a fundamental
capability of the brain, often relying on ring attractor circuits that
maintain a persistent bump of activity. To investigate how such structures
can self-organize, we trained a recurrent neural network (RNN) on a ring-
based path integration task using population-coded velocity inputs.
The network autonomously developed a modular architecture: one
subpopulation formed a stable ring attractor to maintain the integrated
position, while a second, distinct subpopulation organized into a
dissipative control unit that translates velocity into directional signals.
Furthermore, systematic perturbations revealed that the precise
topological alignment between these modules is essential for reliable
integration. Our findings illustrate how functional specialization and
biologically plausible representations can emerge from a general learning
objective, offering insights into neural self-organization and providing a
framework for designing more interpretable and robust neuromorphic
systems for navigation and control.
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1 Introduction

A central challenge in physiology is to uncover how complex neural and physiological
systems achieve robust, flexible information processing through the structured interaction
of distributed components—a phenomenon deeply rooted in the principles of self-
organization. In recent years, the rapidly growing field of network physiology has
emphasized understanding the coordinated dynamics and functional connectivity
within and across distinct subsystems, with the goal of elucidating mechanisms
underlying adaptive behavior, resilience, and nonequilibrium phase transitions in living
systems (Bartsch et al., 2015; Ivanov and Bartsch, 2014). Neural networks, in particular,
serve as canonical models of such emergent dynamics, in which collective
behaviors—ranging from oscillations to discrete or continuous attractor states—arise
from recurring patterns of connectivity and population-level coding (Vladimirovich
Maslennikov et al., 2022).
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Within this framework, population coding and attractor
dynamics have been recognized as fundamental organizing
principles that underpin neural computation (Haken, 1983).
Paradigmatic examples include bump and ring attractor
networks, which enable the representation and integration of
continuous variables. These networks are not confined to a single
species or brain region but represent a species-agnostic neural
motif for computation, found in contexts ranging from spatial
orientation in mammals (Zhang, , 1996; Moser et al., 2008) to the
internal compass of insects like the fruit fly (Kim et al.,, 2017),
birds (Ben-Yishay et al., 2021), and even fish (Vinepinsky et al.,
2020). This evolutionary convergence implies that by studying
these motifs, we can gain insight into the general physiological
principles of brain function across diverse species (Khona and
Fiete, 2022; Basu et al., 2024). These distributed representations
also exemplify physiological robustness, permitting reliable
encoding in the presence of noise and fluctuating inputs
(Averbeck et al, 2006; 2000). In the
hippocampal-entorhinal circuit, for instance, place and grid
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cells collectively generate a dynamic map of the environment
(Hafting et al., 2005; McNaughton et al., 2006). Theoretically,
such 2D spatial representations can be constructed by combining
multiple 1D ring attractors, each encoding orientation along a
different axis, highlighting the role of the ring attractor as a
fundamental building block (Bush and
Burgess, 2014).

Crucially, network-based models such as ring attractors not only

computational

capture these population-level coding schemes, but also provide a
theoretical framework—rooted in the self-organization of collective
variables—for understanding how internal states can be flexibly
updated, maintained, and read out by downstream systems (Skaggs
et al., 1994; Fiete et al., 2008; Secholzer et al., 2019). In head direction
systems and cortical integration circuits, the spontaneous emergence
of ring attractors as solutions to path integration and spatial memory
tasks exemplifies how nonequilibrium transitions and bifurcations
in network structure give rise to functionally specialized modules
(Georgopoulos et al., 1986; Salinas and Abbott, 1994; Ganguli and
Sompolinsky, 2012; Knierim et al., 1995; Heinze et al., 2018). Such
processes underscore a general principle, highlighted in the
Synergetics tradition: physiological networks can self-organize
connectivity patterns and explicit coding strategies to achieve
both adaptive
functional subunits.

specialization ~ and coordination ~ among

Despite considerable progress, a central open question in both
physiology and artificial intelligence remains: How can such modular,
interpretable architectures—capable of robust continuous integration
and flexibly dealing with circular variables—arise autonomously
through

“autonomously” to describe the emergence of structured connectivity

learning mechanisms? Here, we wuse the term
and dynamics driven by a high-level functional objective, rather than
through handcrafted design. And how do the emergent patterns of
organization constrain or enhance physiological function? Building
bridges between biological plausibility and artificial network design
is thus essential for advancing our theoretical understanding and for
informing translational neuromorphic engineering (Banino et al., 2018;
Izz0 et al,, 2023; Ganguli and Sompolinsky, 2012).

Motivated by these themes, and inspired by the pioneering
insights of Hermann Haken, we here examine how a recurrent
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neural network trained with explicit population coding can self-
organize into functional, physiologically congruent subpopulations
that support robust, interpretable continuous variable integration.
By dissecting the network’s emergent architecture, dynamical
coding strategies, and the response to systematic perturbations,
we aim to illuminate general organizing principles that underlie
both neural computation and the broader dynamics of self-
organized physiological networks.

2 Materials and methods

We address the problem of continuous navigation on a ring—a
canonical task in theoretical and systems neuroscience—where an
agent receives, at each timestep t, a velocity signal v, € [-1,1] as
input and must integrate it over time to estimate its angular position
x; € [0,2) on the ring. The velocity input v is generated
synthetically using a diverse range of motion profiles, which
ensures robust training and testing of the network’s ability to
perform under both stochastic and structured input conditions.
Specifically, v; is drawn from both smoothed random walks v, and
deterministic regimes 1, such as linear ramps and fixed-velocity
intervals. The full v; is constructed as:

Vel = VetV + Uy (1)

- .« _
Vo1 = 0.8, + - (n, + B¥)s (2)

where

n, ~U(=1,1),a ~ U(0,2),m ~ U(10,625), B ~ U (0.05,0.45) with
v; values clipped to [-1,1] to preserve realistic, bounded motion
dynamics. This mixture of inputs produces rich and biologically
plausible trajectories, challenging the neural network to generalize
continuous integration across varied conditions.

To mimic the manner in which biological circuits represent
continuous variables, we employ population coding for the input:
the scalar velocity v; is encoded as a distributed neural activation
pattern I, € R”, with each neuron having a Gaussian tuning curve
centered on a specific preferred velocity value. As illustrated in
Figure 1, this encoding transforms a dynamic, time-varying scalar
signal into a spatiotemporal pattern of activity across the input
population, which then serves as the input to the recurrent network:

P: v, > 1, eR". (3)

Such population codes enable robust integration and flexible
transformation of noisy or ambiguous sensory signals, paralleling
mechanisms observed in the brain’s sensory and motor systems.
Notably, our input population encodes only velocity, not angular
position, which differs from some biological head-direction
systems where conjunctive coding is observed (Yoder et al,
2015). This choice allows us to specifically investigate how a
network can autonomously learn to transform a pure velocity
signal into a stable angular representation through its
recurrent dynamics.

The target coordinate at time ¢, denoted x;, reflects the agent’s

true angular position as obtained by integrating the velocity input:

X = <J't v, d‘r> mod 27. (4)
0
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Population coding of a dynamic input signal. Panel (a) shows an example of a time-varying velocity signal, here one period of a sinusoid, presented to
the network over time. Panel (b) illustrates how this scalar profile is encoded as a spatiotemporal activity pattern across the input neuron population. Each
neuron (y-axis) is tuned to a preferred velocity. As the input velocity changes over time (x-axis), the peak of the activity bump shifts across the population,

creating a dynamic representation of the signal shown in (a).

FIGURE 2

Schematic of the ring navigation task and network architecture. The model performs path integration by processing a time-varying velocity profile,

V (t), as input (left panel). The network architecture (middle panel) consists of a recurrent layer with two functionally distinct populations: an input
population that encodes the incoming velocity and an output population that integrates this signal to produce an activity pattern representing the angular
coordinate. Both populations are coupled through the recurrent weight matrix, Wx,. The output neurons represent a circular coordinate space, x
(right panel). During training, the network learns to align its activity with a target coordinate. The parameter d represents the minimal angular distance
between the preferred positions of adjacent neurons, defining the spatial resolution of the population code

In our discrete-time simulation, this integral is approximated
using a second-order Euler method. During training, this serves as
the supervisory signal. The “target neuron” refers to the output
neuron whose preferred position X, is closest to x; at each step, a
construct central to defining the network loss. We acknowledge that
the use of an external, ground-truth supervisory signal is a
simplification. In a biological context, such a signal would not be
explicitly available. However, it can be interpreted as an abstraction
of learning guided by other sensory modalities (e.g., visual
landmarks) or by corrective feedback loops during development
and exploration (Yoder et al., 2015; Levenstein et al., 2024). This
supervised framework, also used in similar computational studies
(Cueva and Wei, 2018), allows us to efficiently probe the types of
network architectures and dynamics that are effective solutions for
the task, revealing principles of self-organization that may be
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achieved through more implicit, biologically plausible learning
mechanisms.

We arrange the neurons of the input and output populations to
uniformly tile the relevant ranges, [-1,1] and [0, 27) respectively,
defining each neuron’s preferred value by Xx. Population codes
prevent the angular discontinuity that would otherwise occur at
the 27 boundary, providing continuity for the network’s internal
representations—a property essential for handling
circular variables.

The overall task and network architecture, which consists of
functionally distinct input and output populations coupled through
a recurrent weight matrix, is schematized in Figure 2. The artificial

recurrent neural network we trained evolves according to:

hy,; = ReLU (Wb, + 1), (5)
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where Wy, is the recurrent weight matrix. We employ the ReLU
activation function due to its computational efficiency and
2025). While
our model utilizes non-spiking neurons to maintain computational

qualitative biological plausibility (Andreevic et al,

tractability, its emergent dynamics offer insights into the functional
organization that may be implemented by more biophysically
detailed, spiking networks (Song and Wang, 2005). Network
stability is supported by orthogonal initialization, gradient
clipping, and a curriculum learning protocol that increases trial
length over training. The weights are optimized with Adam gradient
descent using a population-based error function (loss)
described below.

Our loss function is designed to reflect the graded, population-
level readout present in biological codes. The neuron nearest to the
target coordinate is treated as the “class” with the correct label, with

adjacent neurons given smaller weights:

T N 1 « N2
[':)’t:l nzlht,n—f;(l"' ) Zwtnotru (6)
with
h
o, = log<M> )
Yot exp ()
and

exp (d;)
ijf:l exp (dt,n’),

where d;, is the minimal circular distance between the target

(8)

W =

position x; and the preferred position x, of the n-th output
neuron. The hyperparameter « accentuates the importance of
accurate integration later in the trial, while y regularizes total
network activity.

To prevent units in the output population from becoming
permanently silent (a common issue in ReLU networks), we
implemented a simple homeostatic mechanism. In addition to
adding a small, loss-adaptive noise to the gradients during each
training step, we also periodically reinitialized inactive neurons. At
the end of several batches, any neuron whose activity remained
below a small threshold (e = 107°) for the entire trial duration was
considered inactive. The weights of these inactive neurons are
periodically reinitialized (using the average of their neighbors’
weights) and their optimizer state reset. This is analogous to
homeostatic regulation in biological circuits and ensures all
computational resources are utilized.'

3 Results

We designed our network with a pre-defined modular structure
to investigate functional specialization. The total population of N =
800 neurons was partitioned into two equally sized groups: the first
400 neurons were designated as the “output population” and
received no direct external while the

input, remaining

1 The code used to generate the results in this study is available at https://

github.com/pOmik13/PopulCoding_RingNavigationTask_F.
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400 neurons were the “input population” and received the
external velocity signal. Both populations were uniformly tiled
over their respective domains, creating a structured basis for
analysis of functional specialization and connectivity.

To dissect the computational dynamics, we express the
network’s full state at time ¢ as the concatenation of input and

output population activities:
_ |
h, = [ b ] ©)

with h} and h? denoting the activities of input and output

populations. The recurrent weight matrix Wy, naturally
decomposes as:
Woo Woi
Wi = ( W, W, ) (10)

corresponding to intra-population (diagonal blocks W,,, W;;) and
inter-population (off-diagonal blocks W,;, Wj,) connectivity.
The evolution of each sub-population is governed by:
h;+1

ho

t+1

= ReLU (W;h} + W,,h! +1,)
= ReLU(W,,h{ + W, h’)

(11)
(12)

which capture the continuous integration, stabilization, and
transformation of sensory input in a modular, population-
based format.

A successfully trained network exhibits clear functional
specialization, as shown in Figure 3. While the input population
activity directly mirrors the incoming velocity signal (Figure 3a), the
output population integrates this signal to maintain a stable, localized
bump of activity representing the agent’s angular position (Figure 3b).
This functional division is a direct result of the self-organized
recurrent connectivity matrix (Figure 3c), where the output-to-
output block (W,,) develops a robust ring-shaped attractor
structure along its diagonal, which enables stable representations of
position. We use the term ‘attractor’ to describe the functional
behavior of the network, which creates quasi-stable states that are
robust to noise and persist over timescales relevant for the task, even if
they are not attractors in the strict mathematical sense of having
infinite stability. In contrast, the input population’s recurrent weights
(W;;) show a more localized structure. These learned weights
facilitate, respectively, the persistence of spatial memory and the
rapid encoding of transient velocity inputs.

To further probe the specialization of network modules, we
simulated the autonomous activity of the input and output
populations in the absence of inter-population coupling. Here,
each population was initialized with Gaussian bumps at multiple,
distinct positions. This setup allows us to differentiate persistent
from transient attractor dynamlcs In this isolated condition, the
activity of the input (h) and output (") populations evolves

b, = ReLU(W,-,»Bi)

h . = ReLU(WD,,h )

according to:

(13)
(14)

t+1

The results of these autonomous simulations, shown in Figure 4,
confirm the functional roles of the two modules. The output

frontiersin.org
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FIGURE 3

Self-organized network structure and dynamics during path integration. The network consists of an input population (neurons 1-400) and an output
population (neurons 401-800). (a) Spatiotemporal activity of the population-coded input signal (/¢) fed to the network, with the original scalar velocity
profile superimposed (purple curve). (b) The resulting spatiotemporal activity (h;) of the fully trained recurrent network, with the decoded output
coordinate superimposed (red curve). The output population (top half) maintains a persistent bump of activity that integrates the input, while the
input population (bottom half) dynamically reflects the signal shown in (a). () The learned recurrent weight matrix (Wpp) from the fully trained network
The matrix reveals a clear self-organized modular structure, where the output-to-output block (W, top-left) has formed a ring attractor with strong
weights along the main diagonal. (d) The learned recurrent weight matrix (W) from a network that was trained with the feedback block from output to
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input (Wijo) permanently nullified.

population sustains the initial activity bumps for an extended period
(Figure 4a), demonstrating a memory-like capability. By contrast,
the input population shows rapid decay (Figure 4b), consistent with
its role as a transient encoder. We note that the specific network
instance visualized here shows some heterogeneity in its response,
with stronger activity in one region of the ring. This is a feature of
this particular trained network, as the effect varies across different
training runs and is not a systematic bias of the model. The central
finding demonstrated here—the clear functional contrast between
the persistent output and dissipative input populations—is a robust
result observed consistently across all successful networks.

To investigate the role of modular connectivity, we selectively
ablated the feedback pathway (Wj,) from the output to the input
population. This manipulation tests the importance of top-down
signals for stabilizing network dynamics. We observed that while the
purely feedforward architecture could still perform integration to
some degree, the activity in the output population became less stable
and exhibited significant drift over time, leading to a rapid
degradation in positional accuracy.

The underlying reason for this instability is revealed by
comparing the autonomous dynamics of the two networks in
Figure 4. The output module from the network trained without
feedback is intrinsically less stable, showing a much faster decay of
activity (Figure 4c) compared to its counterpart from the fully
connected network (Figure 4a). This highlights that the network
learns to sustain activity for a prolonged but finite duration, a
property we term transient persistence. This suggests that in the
full network, the feedback pathway allows the input population to
participate in a larger recurrent circuit that actively stabilizes the

Frontiers in Network Physiology

activity bump on the output ring. Without this top-down
connection, the entire burden of maintaining persistent activity
falls solely upon the internal recurrence of the output population
(Wyo), rendering the memory trace more susceptible to decay and
noise. This demonstrates the critical role of the complete recurrent
structure, including feedback loops, for robust memory
maintenance.

We then explored the mapping and transfer of control signals by
delivering a velocity input that increased linearly from -1 to 1. The
signal propagation from input to output was visualized and further
tested by permuting the ordering of output neurons (breaking the
topological alignment between population code and ring structure).

As illustrated in Figure 5b, a properly trained network
successfully integrates the velocity ramp (Figure 5a). However,
network performance collapses when the population code-to-ring
mapping is disrupted by permuting the output neurons (Figure 5¢),
confirming that the encoded structure and network topology must
remain aligned for successful integration. The output population in
the unperturbed circuit receives a smoothly propagating population
control signal, but this signal can no longer synchronize correctly
with a shuffled arrangement, revealing the codependency of circuitry
and coding motif.

Further analysis of the feedforward control signal (Woih;)
provides a key insight into the network’s modular strategy. As
shown in Figures 5d-g, while the raw control signal appears
noisy (Figures 5d,f), sorting the output neurons by their peak
response velocity reveals a highly organized diagonal structure in
both the full network (Figure 5¢) and the feedforward-only network

(Figure 5g). The remarkable similarity between these two sorted
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Autonomous dynamics reveal functional specialization of input and output populations. To test the intrinsic properties of the learned modules, we
simulated their autonomous activity driven only by their internal recurrent connections (i.e., without external input or inter-population signals). Each
population was initialized with five distinct Gaussian bumps of activity. (a,c) The output populations exhibit transiently persistent activity, maintaining the
bumps for an extended period before eventually decaying to the zero state. This demonstrates a clear memory-like capability, essential for
integration. Notably, the persistence in the fully connected network (a) is significantly more robust, sustaining the localized activity much longer than in
the feedforward-only network (c). (b,d) In sharp contrast, the input populations from both the fully connected network (b) and the feedforward-only
network (d) show dissipative dynamics, where the initial activity bumps decay rapidly. These simulations correspond to evolving the activity according to

(Pouget et al,, 2000; Hafting et al., 2005).

signals strongly suggests that the fundamental mechanism for
converting velocity into a directional “push” on the output
population is implemented by the feedforward pathway (W,;).
This confirms that the role of the feedback pathway (Wj,) is not
to shape the control signal itself, but rather to contribute to the
overall dynamic stability of the network, a conclusion consistent
with the autonomous dynamics shown in Figure 4.

Taken together, these analyses show that population-coded
recurrent networks can naturally self-organize into specialized
modules for fast encoding and persistent memory. Faithful
function relies not only on the learned synaptic weights, but also

Frontiers in Network Physiology

on the precise and consistent internal mapping between neural
populations and their target representations. These features are
hallmarks of modular, robust physiological computation as
observed in biological navigation and memory systems.

4 Discussion and conclusion

In this study, we demonstrated that a recurrent neural network
trained on a continuous integration task can autonomously self-
organize into a modular architecture with functionally distinct and
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FIGURE 5

Topological alignment of control signals is critical for integration. We probed the network’s integration mechanism using a linearly increasing
velocity input. (a) The input velocity ramp from -1 to 1 over the trial. (b) The activity of the fully trained network (Wpnh¢) shows successful integration,
evidenced by the smoothly moving bump in the output population (neurons 1-400). (c) However, randomly permuting the order of neurons within the
output population disrupts the learned topological mapping. This single change completely abolishes integration, resulting in chaotic network
activity. (d—g) Visualization of the feedforward control signal (W;h}) from the input to the output population, plotted as a function of the input velocity.
(d) For the fully trained network, the raw control signal appears unstructured. (e) However, when the output neurons are sorted by their peak response
velocity, a highly structured diagonal pattern emerges, revealing a precise, topographically organized ‘push’ that systematically drives the activity
bump. (f,g) Remarkably, the same analysis for the network trained without feedback reveals a nearly identical underlying control structure (g) when
sorted. This striking similarity demonstrates that the dynamic mechanism for controlling the coordinate is learned via the feedforward pathway in both
networks. This supports the hypothesis that the feedforward projection (W) is responsible for driving the movement of the representation, while the
recurrent connections within the output population (W) are primarily responsible for stabilizing it.

physiologically congruent subpopulations. Here, self-organization
refers to the emergence of structured connectivity as a result of a
supervised learning process, rather than arising from unsupervised,
local update rules in the physical sense. Our findings contribute to
bridging the gap between the dynamics of artificial neural networks
the principles
biological systems.
Our central finding is the emergent division of labor within
the network. The output subpopulation develops a ring attractor,

and of neural computation observed in

a canonical structure for encoding circular variables like head
direction and spatial orientation (Zhang, , 1996; Kim et al,
2017). This structure supports persistent, localized activity,
enabling it to function as a robust memory module for the
integrated position. Concurrently, the input subpopulation
forms a dissipative, segment-like architecture that acts as a
transient control unit, transforming velocity signals into
directional commands that drive the movement of the activity
bump on the ring. This modular separation—separating memory
from control—is a key organizational principle in the brain,
allowing for flexible and robust computation (Salinas and
Abbott, 1994; Ganguli and Sompolinsky, 2012). Unlike models
where ring connectivity is hardwired, here it emerges solely from
the learning objective, suggesting that attractor dynamics are a
efficient solution for continuous variable

natural and

integration.

Frontiers in Network Physiology

07

A key distinction of our work, however, is the demonstration of
the critical importance of topological alignment between these
emergent modules. As shown in our permutation experiment
(Figures 5a—c), the network’s function is not merely a product of
its component parts but depends fundamentally on the learned,
ordered mapping between the control signals from the input
population and the spatial layout of the output ring attractor.
This highlights that for distributed neural codes to be
computationally effective, the wiring” must respect the coding”.
Disruptions to this alignment, analogous to developmental disorders
or brain injury, can lead to a catastrophic failure of function, even if
the individual modules remain intact. Our perturbation analyses
thus underscore the role of feedback and precise inter-module
connectivity, echoing experimental findings where disrupting
specific pathways compromises memory and integration
(Seeholzer et al., 2019; McNaughton et al., 2006; Bonnevie
et al.,, 2013).

Our results also inform the broader field of network physiology
by providing a concrete computational example of how specialized
subsystems can arise and coordinate within a larger, interconnected
system. The balance between the persistent dynamics of the memory
module and the dissipative dynamics of the control module
illustrates how networks can achieve both stability and
adaptability. This emergent coordination within a complex neural
network serves as a key example of physiological resilience and the
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principles of system-level self-organization that are central to the
study of network physiology (Bartsch et al, 2015; Ivanov and
Bartsch, 2014; Ivanov, 2021).

4.1 Limitations and future directions

We acknowledge several limitations that open avenues for future
research. First, our model employs non-spiking neurons and a
supervised, gradient-based learning rule. While this framework is
computationally powerful, future work should explore how these
functional architectures could emerge using more biologically
plausible spiking neurons and local, Hebbian-like learning rules
(Song and Wang, 2005; Levenstein et al., 2024; Pugavko et al., 2023;
Maslennikov et al., 2024). Second, the supervisory signal, while
justifiable as an abstraction, could be replaced with reinforcement
learning or unsupervised learning objectives to better model
autonomous discovery in biological agents (Banino et al., 2018;
Ivanov et al., 2025). Furthermore, training the network on more
complex and physiologically grounded velocity profiles, such as
those derived from animal tracking data (Sargolini et al., 2006),
could reveal how network solutions are shaped by naturalistic input
statistics. Exploring the network’s resilience to transient
perturbations, such as temporary loss of connectivity between
modules (Cooper and Mizumori, 2001), would also provide
deeper insights into the robustness of these self-organized circuits.

On a translational level, our work illustrates how interpretable,
modular architectures can be learned rather than handcrafted,
offering a path toward more explainable AI and robust
systems. This is particularly

neuromorphic engineering and robotics, where many existing

autonomous relevant  for
applications of ring attractors rely on hand-crafted weights
(Rivero-Ortega et al., 2023). Our approach, where functional
weights are learned, offers a promising route to developing more
adaptive and flexible controllers. For mobile and field robotics, key
considerations include not only robustness and interpretability but
also low power consumption, a primary goal of neuromorphic
systems (Izzo et al, 2023; Robin et al,, 2022). Furthermore, the
ring attractor motif is not limited to 1D orientation but serves as a
foundational component for more complex spatial representations,
such as modeling the 2D planar motion of a robot, linking back to
the principles of grid cell computation (Knowles et al., 2023). The
increasing availability of specialized neuromorphic hardware, such
as Intel’s Loihi processors (Davies et al, 2018), and associated
software frameworks like LAVA (Lava Framework Authors,
2022), makes these brain-inspired models increasingly viable for
real-world, embedded applications where online learning and
energy efficiency are paramount.

4.2 Conclusion

In summary, we have shown that explicit population coding
guides a recurrent network to self-organize into a modular system
comprising a ring attractor for memory and a dissipative controller
for input processing. This emergent structure, highly reminiscent of
biological circuits for navigation, depends critically on the precise
topological alignment between its functional modules. Our findings
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underscore how general learning principles can give rise to
specialized, interpretable, and physiologically plausible neural
computations, advancing our understanding of both natural and
artificial intelligence.
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