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Introduction: Real-world networks possess complex, higher-order structures
that are not captured by traditional pairwise analysis methods. Q-analysis
provides a powerful mathematical framework based on simplicial complexes
to uncover and quantify thesemulti-node interactions. However, its adoption has
been limited by a lack of accessible software tools.
Methods: We introduce a comprehensive Python package that implements the
core methodology of Q-analysis. The package enables the construction of
simplicial complexes from graphs or simplex lists and computes a suite of
descriptive metrics, including structure vectors (FSV, SSV, TSV) and topological
entropy. It features high-performance routines, integration with scikit-learn for
machine learning workflows, and tools for statistical inference, such as
permutation tests.
Results: We demonstrate the package’s capabilities through a simulation study,
revealing distinct higher-order topological signatures in scale-free versus
configurational networks despite identical degree distributions. Application to
the DBLP co-authorship dataset uncovered the evolution of collaborative
structures over three decades, showing increased collaboration scale and
shifts in higher-order connectivity patterns. Finally, in a network physiology
application, the package identified significant disruptions in the higher-order
organization of fMRI-derived brain networks in Major Depressive Disorder (MDD),
characterized by a loss of high-dimensional functional components and
increased fragmentation.
Discussion: The developed package makes Q-analysis accessible to a broad
research audience, facilitating the exploration of higher-order interactions in
complex systems. The presented applications validate its utility across diverse
domains, from social networks to neuroscience. By providing an open-source
tool, this work bridges a gap in network science, enabling quantitative analysis of
the intricate, multi-node structures that define real-world networks.
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1 Introduction

Network analysis has become an indispensable tool in the
contemporary data-driven world (Boccaletti et al., 2006; Zanin
et al., 2016). It facilitates our comprehension of complex systems
across diverse domains, from the intricate workings of various
physiological systems (Berner et al., 2022; Günther et al., 2022),
including the brain (Stam and Reijneveld, 2007; Yeo et al., 2011;
Papo et al., 2014; Pisarchik and Hramov, 2023), to the analysis of
social media connections (Zanin et al., 2012). As the volume of
network data grows, the need for sophisticated methods to analyze
the intricate connections and relationships within these network
systems becomes increasingly critical.

Traditionally, complex network analysis has focused primarily
on dyadic connections between pairs of nodes, represented by
simple classical graphs (van der Vlag et al., 2022). This approach,
commonly referred to as pairwise analysis, has provided important
insights into the flow of information within networks and the
formation of communities (Wang et al., 2010). In brain research,
for example, it has elucidated communication pathways between
different brain regions (Gross et al., 2021; Khorev et al., 2024) and
has allowed the construction of a multigraph-based hierarchical
model of consciousness impairment, where core large-scale
functional network disruptions interact with state-dependent
compensatory mechanisms (Kurkin et al., 2025).

However, scientists have recognized that studying solely
pairwise connections often fails to capture the full complexity of
real-world systems. Many such networks exhibit interactions that
involve three or more components simultaneously, resulting in
“group interactions” among the nodes of the network (Scagliarini
et al., 2024; Yang et al., 2025). In social networks, for example,
individuals often interact in groups rather than just in pairs.
Similarly, in the brain, multiple regions often work together to
perform specific tasks (Bishal et al., 2022; Scagliarini et al., 2024).
Simple graphs lack the ability to adequately represent these group
interactions, thereby limiting our understanding of complex
network systems (Giusti et al., 2016).

Projecting multi-entity interactions onto a pairwise graph for
analysis with traditional network methods leads to two fundamental
problems. First is the loss of information: the original group nature
of the interaction is irreversibly lost (Battiston et al., 2020). For
example, a 3-clique (a triangle) in a graph could represent a single
three-body interaction or three independent dyadic interactions; the
pairwise representation makes these scenarios indistinguishable.
Second is the ambiguity of higher-order structures. Consequently,
any clique of size four or more in a pairwise graph has an ambiguous
origin. Traditional edge-centric methods cannot adequately assess
such structures, viewing them merely as dense clusters of pairwise
links. To properly study them, a simplicial complex is first
constructed from the graph (e.g., using the clique complex
method), and Q-analysis is then applied. This two-step approach
provides quantitative tools for investigating higher-order topology
that are unavailable to standard pairwise methods.

This realization has spurred a growing interest in what is known
as “higher-order” network analysis (Boccaletti et al., 2023). This
approach attempts to capture and analyze these more complex
interactions involving multiple nodes simultaneously. While
higher-order analysis is not a novel concept, with roots going

back several decades, its recent prominence is undeniable. This
surge in popularity can be attributed to advancements in data
collection methods, computational power, and analytical
techniques. These developments have enabled the application of
these methods to large-scale, real-world networks, including those
that arise when solving physiological problems (Bick et al., 2021).

There are two primary approaches to representing and analyzing
higher-order interactions in networks: hypergraphs and simplicial
complexes. Hypergraphs extend the concept of classical graphs by
allowing links, called “hyperedges”, to connect any number of nodes,
not just pairs. This feature is particularly useful for modeling group
interactions. For example, in a social network, a hyperedge could
represent a group chat involving multiple participants (Boccaletti
et al., 2023). In a brain physiological network, the hyperedges are the
connected components in an absolute-valued brain functional
connectivity network (Pisarchik and Hramov, 2023). Simplicial
complexes, on the other hand, represent higher-order interactions
as the geometric shapes. These shapes can be conceptualized as the
higher-dimensional counterparts of nodes and edges. For example, a
triangle in a simplicial complex could represent a three-way
interaction. This approach originates from the field of algebraic
topology (Sizemore et al., 2018). By using either hypergraphs or
simplicial complexes, researchers can delve into the intricate
interplay of multiple nodes within a network, providing deeper
insights into the dynamics of complex systems.

While both hypergraphs and simplicial complexes provide
frameworks for representing higher-order interactions in
networks, they differ significantly in their structure and analytical
capabilities. Hypergraphs, with their flexible representation of group
interactions, provide an intuitive approach. However, they lack
certain mathematical properties inherent to simplicial complexes.
Simplicial complexes, by virtue of their geometric representation,
allow for the exploration of network shape and structure in multiple
dimensions. This enables the application of powerful mathematical
tools, such as those from algebraic topology, to identify patterns that
may elude traditional network analysis methods (Tadić et al., 2019).
Given these distinct advantages, the remainder of this paper will
focus exclusively on the analysis of higher-order interactions
through the lens of simplicial complexes. This focus will leverage
the inherent mathematical richness of this approach to uncover
deeper insights into complex networks with different topologies,
such as scale-free networks, random networks, and small-
world networks.

A particularly insightful method for analyzing simplicial
complexes is Q-analysis, originally proposed by R.H. Atkin in the
1970s (Atkin, 1974; Atkin, 1980). This method provides a systematic
framework for examining the structure of simplicial complexes and
quantifying their higher-order connectivity patterns. Despite its
potential, Q-analysis has not gained widespread acceptance in
network science, primarily due to the lack of readily available
tools for its implementation.

At its core, Q-analysis offers a framework for understanding the
multilevel structure of simplicial complexes. This approach
introduces several key concepts:

• Q-connectivity: This basic concept defines two simplices as “q-
near” if they share a q-dimensional face. This notion extends
to “q-connectedness”, where simplices are considered

Frontiers in Network Physiology frontiersin.org02

Smirnov et al. 10.3389/fnetp.2025.1691159

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1691159


q-connected if there exists a chain of simplices between them,
with each pair in the chain being at least q-near. This property
allows the grouping of simplices into q-connected
components, revealing the structure of the complex at
different dimensional levels.

• First structure vector (Q-vector): This central tool in
Q-analysis is an integer vector where each entry, Qq,
represents the number of q-connected components in the
complex. The Q-vector provides a means to visualize the
graded substructures of the simplicial complex at different
connectivity levels.

• Additional structure vectors: Q-analysis also introduces other
structure vectors, such as the second structure vector
(counting simplices at each dimensional level) and the third
structure vector (quantifying the degree of connectedness).
These vectors provide different perspectives on the topology of
the complex, allowing for a multifaceted analysis.

By applying these concepts, Q-analysis enables us to study the
hierarchical, multilevel, and multidimensional organization of
simplicial complexes. It reveals how simplices are connected at
different dimensional levels, uncovering structural patterns that
might not be apparent from a simpler analysis. In essence,
Q-analysis provides a comprehensive approach to exploring the
intricate structure of simplicial complexes, offering valuable insights
into the topology and connectivity patterns of higher-order
interactions in networks.

In social network analysis, Q-analysis has been used to study the
structure of friendship networks (Freeman, 1980), the formation of
scientific specialties (Hummon and Carley, 1993), and multiplexity
in entrepreneurial networks (Bliemel et al., 2014). The method has
proven particularly useful in revealing hidden multidimensional
social structures (Maletić and Zhao, 2018) and modeling consensus
formation in opinion dynamics (Maletić and Rajković, 2014). These
applications demonstrate the power of Q-analysis in uncovering
complex patterns of social interactions beyond simple dyadic
relationships.

However, the potential of Q-analysis extends far beyond the
social sciences. In neuroscience, for example, Q-analysis could
provide valuable insights into the higher-order structure of brain
networks (Kurkin et al., 2024; Andjelk et al., 2020). While current
research in this area often relies on graph theory and pairwise
connectivity measures (Wang et al., 2021; Motlaghian et al., 2022),
Q-analysis provides a framework for capturing more complex,
multidimensional interactions between brain regions. This
approach may be particularly relevant given the growing
recognition of the importance of higher-order connectivity in
brain function (Giusti et al., 2016; Hindriks et al., 2024). There
are a few pioneering studies that have applied Q-analysis in
neuroscience, such as the investigation of brain-to-brain
coordination networks (Tadić et al., 2019) and the analysis of
human brain networks through order statistics (Das et al., 2023).
These rare examples demonstrate the potential of Q-analysis to
reveal novel insights into brain structure and function, but also
highlight the current underutilization of this method in the field.

In other fields where complex systems exhibit higher-order
interactions, the potential of Q-analysis remains largely
unexplored. For example, in systems biology, physiology, ecology,

or climate science, where intricate relationships between multiple
components are common, Q-analysis could provide a novel
perspective on system dynamics and structure. The ability of the
method to quantify connectivity at different dimensional levels
makes it well suited to analyzing hierarchical and multi-scale
phenomena in these fields.

A notable exception outside the social sciences is the application
of Q-analysis to evaluate the performance of distribution systems
(Duckstein, 1983). This study demonstrated how Q-analysis can be
used to identify potential bottlenecks and improve operational
characteristics in complex networks, suggesting its potential
utility in areas such as logistics, supply chain management, and
infrastructure planning.

The limited adoption of Q-analysis beyond the social sciences
can be attributed to several factors, including the lack of readily
available computational tools and the perceived complexity of the
method compared to traditional network analysis techniques.
However, with the burgeoning interdisciplinary research
landscape and the growing demand for tools to analyze higher-
order interactions, Q-analysis represents a promising avenue for
researchers in different scientific fields to gain deeper insights into
complex networks. Q-analysis is an exploratory framework for
analyzing higher-order network structures. Its primary outputs
are a set of descriptive metrics, such as structure vectors and
topological entropy, which serve as quantitative summaries of
network topology across different dimensional levels. These
parameters characterize the underlying organization of a complex
system, providing a basis for comparison across networks and for
generating new hypotheses about their structure.

Despite its conceptual utility, the practical application of
Q-analysis has been infrequent, partly due to a lack of available
and maintained software. The contribution of this work is to help
address this gap by providing q-analysis, a Python package that
implements the core methodology. The package is intended to make
the tools of Q-analysis more accessible, thereby facilitating the study
of higher-order network structures within the scientific
Python ecosystem.

The structure of the paper is as follows. Section 2.1 lays out the
mathematical framework of Q-analysis, including the concepts of
simplicial complexes and Q-analysis metrics. Section 2.2 introduces
the developed Python package, detailing its core functionality and its
integration into the wider scientific computing ecosystem. Section
3.1 showcases the package’s capabilities through a simulation study,
comparing Q-analysis metrics across different network types.
Section 3.2 demonstrates the package’s utility on a real-world co-
authorship dataset, analyzing its structural evolution over time.
Finally, Section 3.3 provides an example of using the package to
study disruptions in the fMRI-derived brain network caused by
major depressive disorder.

2 Materials and methods

2.1 Mathematical background

In this section we will briefly lay out the basic definitions of
simplicial topology and Q-analysis. In Section 2.1.1 we will explain
what simplices are. In Section 2.1.2 we will discuss the main terms of
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Q-analysis. Section 2.1.3 introduces the concept of graded parameter
sets. Sections 2.1.4, 2.1.5 formally define structure vectors and other
Q-analysis metrics.

2.1.1 Simplicial complexes
A simplicial complex serves as the foundational mathematical

structure for Q-analysis (Atkin, 1980). Unlike traditional network
analysis, which focuses on dyadic (pairwise) relationships, simplicial
complexes capture multi-node interactions and hierarchical
structures.

Let V be a finite set whose elements are called vertices. A
p-simplex σ is an ordered subset of V containing p + 1 vertices,
written as σ � 〈v0, v1, . . . , vp〉 (Johnson, 2014). The dimension of
simplex σ, denoted as dim(σ), is defined as:

dim σ( ) � |σ| − 1 � p,

where |σ| represents the number of vertices in σ.
A simplicial complex K is a collection of simplices satisfying the

property that if σ ∈ K and σ′ ⊂ σ (i.e., σ′ is a face of σ), then σ′ ∈ K
(Johnson, 2014). In other words, a simplicial complex includes all
faces of its simplices.

A simplex σ′ is a face of simplex σ if σ′ ⊂ σ (Johnson, 2014). We
denote this relationship as σ′ ⪯ σ. The dimension of a face σ′ is less
than or equal to the dimension of σ.

A simplicial complex with m simplices and n vertices can be
represented by an incidence matrix Λ which is an m × n
matrix where:

Λij � 1, if vertex j belongs to simplex i,
0, otherwise.

{
Thus, the incidence matrix Λ is a binary matrix that encodes the
relationship between simplices and vertices, with each row
corresponding to a simplex and each column corresponding to a
vertex. An example of such a matrix is shown in Figure 1 (top).

Using the incidence matrix, we can compute the connectivity matrix
Π which encodes the q-nearness between simplices, similar to
how the adjacency matrix of a graph encodes the adjacency
between nodes.

Π � Λ · ΛT −Ω, (1)
where Ω is an all-ones matrix. The Ω term is used to adjust the face
dimension calculation, as q-nearness is defined by the dimension of
shared faces (number of shared vertices minus one). Without this
subtraction, the matrix product would give the number of shared
vertices rather than the dimension of the shared face. Figure 1
(bottom) shows an example of a connectivity matrix.

2.1.2 Q-analysis fundamentals
Two simplices σ and σ′ are q-near if they share a common face of

dimension at least q, meaning there exists a simplex τ such that:

τ ⪯ σ and τ ⪯ σ′with dim τ( )≥ q.

Here, τ ⪯ σ indicates that τ is a face of σ. This concept is illustrated
in Figure 1, where simplices σ1 and σ2 are 2-near as they share a 2-
dimensional face, while σ1 and σ3 are only 0-near as they share just
one vertex (V6). In the connectivity matrix Π, the q-nearness
between two simplices can be directly read from the
corresponding entry: Πij ≥ q indicates that simplices i and j
are q-near.

Extending this concept, simplices σ and σ′ are q-connected if
there exists a sequence of simplices σ1, σ2, . . . , σn with σ1 � σ,
σn � σ′, and σ i is q-near to σ i+1 for i � 1, 2, . . . , n − 1. This
sequence forms a chain of q-connection between σ and σ′.

Thus we can define a q-connected component as a maximal
q-connected subset of simplices. A single simplex of order q can
form a q-connected component by itself if it is not q-near to any
other simplex. For example, in Figure 1, simplices σ1, σ2, and σ3
form a 1-connected component because σ1 and σ2 share a

FIGURE 1
Matrix representation of a simplicial complex and q-nearness visualization. Top: IncidencematrixΛ showing relationships between simplices (σ1-σ4)
and vertices (V1-V7). Each row represents a simplex, with 1’s indicating included vertices. Bottom: Connectivity matrix Π � Λ · ΛT −Ω with diagonal
elements showing simplex dimensions (e.g., Π11 � 3 means σ1 is a 3-simplex) and off-diagonal elements showing shared face dimensions (e.g., Π12 � 2
indicates σ1 and σ2 share a 2-dimensional face). Right: Geometric representation of the simplicial complex with colored regions showing higher-
dimensional simplices. Note that σ1 and σ3 are 0-near (sharing only V6), while σ1 and σ2 are 2-near (sharing face {V1 ,V5 ,V6}).
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2-dimensional face (which makes them at least 1-near), and σ2 and
σ3 share a 1-dimensional face. This creates a chain of 1-nearness
from σ1 to σ3 through σ2. For q � 2, there are two 2-connected
components: one containing σ1 and σ2 (which share a 2-
dimensional face) and another containing only σ3 (which is itself
a 2-simplex but does not share any 2-dimensional face with other
simplices). The parameter q thus acts as a resolution parameter:
lower values of q impose a weaker connectivity condition, resulting
in fewer, larger components, while higher values of q impose a
stricter condition, leading to a more fragmented structure.

2.1.3 Graded parameter sets
Q-analysis employs a variety of metrics to quantify the structural

and topological properties of simplicial complexes. In this paper, we
focus on a specific category of metrics that we refer to as graded
parameter sets.

A graded parameter set, a notion introduced by Atkin (1980), is a
collection of values graded by the dimensional level q of the
simplicial complex, where q acts as the independent variable.
This category includes the structure vectors, which will be
defined in the following section. Other metrics, such as
topological entropy, also fall into this category. These graded
parameter sets provide a dimensional perspective on the

complex’s topology, complementing other metrics in Q-analysis
that will be introduced in subsequent sections.

2.1.4 Q-analysis structure vectors
Q-analysis employs various structure vectors to quantify

the connectivity patterns and topological features of
simplicial complexes.

The First Structure Vector (FSV), denoted as Q, captures the
number of q-connected components for each dimensional level q.
For a simplicial complex of dimension d, the FSV is

Q � Qd,Qd−1, . . . , Q1, Q0[ ],
where Qq represents the number of distinct q-connected
components at dimension q (Atkin, 1980). In other words, Qq

is the number of q-connected components in the simplicial
complex. We can understand Qq conceptually as counting the
number of groups of simplices that are connected through chains
of q-nearness relations. This is analogous to finding connected
components in a graph, but instead of using adjacency, we use the
q-nearness relation (where two simplices are connected if they
share a face of dimension at least q). This relation is captured in
the connectivity matrix Π from Equation 1, where an entry

FIGURE 2
Q-analysis process for the FSV, illustrated through the q-connected components identification. This figure demonstrates the analysis of the
simplicial complex from Figure 1. Each column (with its thresholded matrix and graphical representation) represents a separate connected component.
Rows show connected components of order q, starting from the highest q (3 in this case). Simplices comprising a connected component are colored
yellow, while others of the same order are grey. Thresholding refers to comparing values of connectivity matrix Π with corresponding q
value—entries greater than or equal to q are replacedwith 1, otherwise 0. By thresholdingΠ from Figure 1 at each q and applying a connected component
search algorithm (interpreting the thresholded matrix as an adjacency matrix), we find: for q = 3, two components; for q = 2, two components; for q = 1,
two components; and for q = 0, one component. These counts form the First Structure Vector Q � [2; 2; 2; 1].

Frontiers in Network Physiology frontiersin.org05

Smirnov et al. 10.3389/fnetp.2025.1691159

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1691159


Πij ≥ q indicates that simplices i and j are q-near. Figure 2
illustrates this component identification process for different
values of q.

The Second Structure Vector (SSV), denoted as n, counts the
number of simplices at each dimensional level:

n � nd, nd−1, . . . , n1, n0[ ],
where nq is the count of simplices with dimension greater than or
equal to q (Atkin, 1980). Formally, for a simplicial complex K:

nq � | σ ∈ K: dim σ( )≥ q{ }|,
where | · | denotes the cardinality of the set.

The use of a cumulative count (≥ q) makes the SSV
monotonically non-increasing, which is a prerequisite for its use
in normalizing the Third Structure Vector.

The Third Structure Vector (TSV), denoted as �Q, quantifies the
degree of connectedness at each dimensional level:

�Qq � 1 − Qq

nq
.

TSV provides a normalized measure of connectivity, with values
closer to one indicating higher connectivity. This is because if there
are fewer q-connected components than simplices, it means that the
simplices are more connected. Mathematically, when Qq ≪ nq, then
Qq

nq
≈ 0, resulting in �Qq ≈ 1 (high connectivity). Conversely, if the

number of q-connected components is equal to the number of
simplices (i.e., Qq � nq), then �Qq � 1 − nq/nq � 0, indicating that the
simplices are not connected at all (each simplex is a separate
q-connected component).

For a concrete example, consider a system represented by two 2-
simplices, σ1 � 〈v1, v2, v3〉 and σ2 � 〈v2, v3, v4〉. The maximum
dimension is d � 2. The structure vectors are computed for this
set of two simplices as follows:

• Second Structure Vector (n): For any q ∈ {0, 1, 2}, both
simplices have dimension ≥ q. Thus, n2 � 2, n1 � 2, and
n0 � 2, giving n � [2, 2, 2].

• First Structure Vector (Q):
• For q � 2, the simplices are not 2-near, as their shared face
〈v2, v3〉 has dimension 1. They form two separate 2-connected
components, so Q2 � 2.

• For q � 1, the simplices are 1-near because their shared face has
dimension 1≥ 1. They form a single 1-connected component,
so Q1 � 1.

• For q � 0, they are also 0-near, forming one component, so
Q0 � 1.
This results in the vector Q � [2, 1, 1].

• Third Structure Vector (�Q): Using �Qq � 1 − Qq/nq:
• �Q2 � 1 − 2/2 � 0.
• �Q1 � 1 − 1/2 � 0.5.
• �Q0 � 1 − 1/2 � 0.5.

This gives the vector �Q � [0, 0.5, 0.5].

2.1.5 Other Q-analysis metrics
Q-analysis methodology has been extended with additional

metrics by subsequent researchers. One such metric is topological
entropy, introduced by Andjelkovic et al. (Andjelković et al., 2015),
which quantifies the diversity of simplicial participation at each
dimensional level:

SQ q( ) � −∑
i

pq
i logp

q
i

logMq
,

where

pq
i � Qq

i∑iQ
q
i

represents the normalized participation of vertex i in q-dimensional
simplices, Qq

i is the number of q-dimensional simplices containing
vertex i,Mq � ∑i(1 − δQq

i ,0
) counts vertices with non-zero participation

at level q, and δQq
i ,0

is the Kronecker delta function. Due to its definition,
this measure can be considered a graded parameter set.

Topological entropy provides an information-theoretic
perspective on the distribution of vertex participation in
simplices of dimension q. It measures how evenly vertices
participate in the higher-order structures of the network. High
q-topological entropy value (close to 1) indicate that vertices
participate relatively evenly in q-dimensional simplices. This
suggests a decentralized structure where interactions are well-
distributed across the network, with no single vertex dominating
the higher-order connectivity. On the other hand, low q-topological
entropy values (close to 0) indicate that participation in

TABLE 1 Core methods of the SimplicialComplex class.

Method Description

__init__(simplices) Constructs a complex from a list of simplices. Each simplex is a list or set of vertex indices

from_adjacency_matrix (adj) Creates a complex from a graph’s adjacency matrix by finding all maximal cliques

graded_parameters (desired_vectors) Computes specified Q-analysis vectors (e.g., FSV, SSV) across all relevant dimensions and returns them
in a GradedParameters container

q_connected_components(q) Returns the number of q-connected components for a specific level q

q_connected_components_labeled(q) Returns the q-connected components, with each simplex labeled by its component ID.

topological_dimensionality () Computes the number of simplices each vertex belongs to, returned as a NodeParameterSet.

eccentricity (simplex_a, simplex_b) Computes the eccentricity of one simplex relative to another

family_eccentricity (simplex,...) Computes the minimum eccentricity of a simplex relative to a family of other simplices
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q-dimensional simplices is concentrated among a few vertices. This
suggests a more centralized structure with hub-like vertices that
dominate the higher-order interactions.

The eccentricity of a simplex σ with respect to another simplex σ′
quantifies their topological distance (Johnson, 2014):

ecc σ|σ′( ) � |σ\σ′|
|σ| � number of vertices in σ not shared with σ′

number of vertices in σ

The family eccentricity of a simplex σ with respect to a family of
simplices F is (Johnson, 2014):

ecc σ|F( ) � min ecc σ|σ′( )|σ′ ∈ F{ }
The topological dimensionality is another important metric in
Q-analysis introduced by Andjelković et al. (2015) that
characterizes the participation of vertices in the simplicial
complex. For a vertex v ∈ V, its topological dimensionality d(v)
is formally defined as:

D v( ) � ∑d
q�0

Qq
v

whereQq
v represents the number of q-dimensional simplices containing

vertex v, and d is the highest simplex dimension in the complex.
The topological dimensionality can be expressed in terms of the

incidence matrix Λ of the simplicial complex. Specifically, for all
vertices, the topological dimensionality vector d is given by:

d � diag ΛT · Λ( ),
where diag(·) extracts the diagonal elements of a matrix. This metric
extends the concept of vertex degree from graph theory to the
higher-dimensional setting of simplicial complexes. While the
degree of a vertex in a graph counts only its pairwise
connections, topological dimensionality accounts for participation
in multi-node interactions across all dimensions. Vertices with high
topological dimensionality function as hubs in the complex,
participating in numerous higher-order structures.

2.2 Package description

The q-analysis package provides a Python implementation
of tools for simplicial complex analysis, designed for studying
higher-order interactions in complex systems. It offers data

structures for representing simplicial complexes, methods for
computing Q-analysis metrics, and tools for integrating these
metrics into machine learning and statistical analysis workflows.

2.2.1 Core components
The central class in the package is SimplicialComplex,

which represents a simplicial complex as a collection of simplices. A
complex can be instantiated in two primary ways: directly from a list
of simplices, or from a graph’s adjacency matrix using the from_
adjacency_matrix () static method. The latter approach identifies the
maximal cliques of the graph, treating each as a simplex. This allows
for the application of Q-analysis to traditional graph structures.

The core methods of the SimplicialComplex class are
summarized in Table 1.

The package uses several data container classes to organize results.
Methods like graded_parameters () return a GradedParameters

object, which holds multiple GradedParameterSet instances–one
for each computed vector (e.g., FSV, SSV). This container provides
methods to access individual vector sets. Similarly, topological_
dimensionality () returns a NodeParameterSet, which stores
per-vertex values. All these container objects provide a to_dataframe
() method to export the data into a pandas DataFrame in a tidy
format, suitable for analysis and visualization.

2.2.1.1 Object instantiation
A SimplicialComplex is created by passing a list of

simplices to its constructor.

>>> SimplicialComplex(simplices)

Where simplices is a list of lists/sets, e.g., [[0, 1, 2],

[1, 2, 3]].
Alternatively, it can be created from a NumPy adjacency matrix.

The method uses networkx to find cliques.

SimplicialComplex.from_adjacency_matrix(adj_

matrix)

2.2.1.2 Computing Q-analysis vectors
The primary method for computing graded parameters is

graded_parameters ().

>>> graded_parameters(desired_vectors=None)

TABLE 2 Q-analysis transformers for use with scikit-learn.

Class Description

GradedParametersTransformer Computes Q-analysis structure vectors for a collection of graphs. Takes an iterable of adjacency
matrices, converts each to a simplicial complex via maximal cliques, and returns their corresponding
structure vectors

QConnectedComponents Computes q-connected component labels for a collection of simplicial complexes. Takes an iterable
of simplex lists

GraphCliqueFilter A transformer that filters a graph by keeping only edges that belong to cliques of at least a specified
dimension q. It internally builds a simplicial complex and uses the SimplexProjection transformer

SimplexProjection Projects a simplicial complex to a graph representation. Edges connect vertices that co-occur in
simplices. Edges can be weighted by the number of co-occurrences
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The desired_vectors argument is a list of strings specifying
which vectors to compute (e.g., [’FSV’, ’SSV’, ’TSV’]).
By default, it computes all available vectors. The method returns
a GradedParameters object, which bundles the results into
GradedParameterSet objects for each vector. This structure
facilitates easy access and conversion to pandas DataFrames for
further analysis.

2.2.1.3 Connected components
The number of q-connected components is a key metric for the

First Structure Vector (FSV). While the Python method for
retrieving this count takes a specific integer q, the underlying
calculation is optimized.

q_connected_components(q)

FIGURE 3
Comparison ofQ-analysismedian structure vectors across scale-free and configurational networks with identical degree distributions. Bluemarkers
represent scale-free networks, while orangemarkers represent configurational networks. The plot shows the FSV, SSV, TSV, topological entropy, number
of simplices, and number of shared faces (y-axis) at each q value (x-axis).
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Upon first call, the package computes the components for all
possible q-levels at once using a backend implemented in Rust for
efficiency. This approach operates directly on the list of simplices
and caches the results. Subsequent calls for different q values access
the cached data without re-computation.

For a more detailed analysis that identifies which component
each simplex belongs to, the following method can be used:

q_connected_components_labeled(q)

This method returns a list of sets, where each set contains the
indices of simplices belonging to one component.

2.2.1.4 Vertex-level metrics
The package computes vertex-level metrics such as topological

dimensionality and eccentricity.
The topological_dimensionality () method calculates the

number of simplices that each vertex is a part of. The result is
returned as a NodeParameterSet object. If node_names are
provided, they are used to label the vertices in the output.

topological_dimensionality(node_names=None)

The eccentricity of a simplex with respect to another can be
computed using the eccentricity method.

eccentricity(simplex_a, simplex_b)

Where simplex_a and simplex_b can be specified as either
integer indices or sets of vertices. The method calculates the
proportion of vertices in simplex_a that are not in simplex_b.

For broader comparisons, the family_eccentricity method
computes the minimum eccentricity of a given simplex relative to
an entire family of other simplices in the complex.

family_eccentricity(simplex)

By default, it compares the simplex against all other simplices in
the complex.

2.2.2 Integration with scikit-learn
The package includes several classes that follow the scikit-

learn transformer API, allowing for the integration of Q-analysis
into machine learning pipelines (similar to the approach in
giotto-tda). These transformers operate on collections of
graphs or simplicial complexes. The main transformers are listed
in Table 2.

For example, the GradedParametersTransformer can
be used to extract features from a set of networks for a subsequent
classification or regression task.

2.2.3 Downstream integration for
statistical inference

The package provides functions to format Q-analysis outputs for
use with standard statistical libraries, bridging descriptive metrics
and formal inference. These helper functions, located in the q_
analysis.utils and q_analysis.stat modules, facilitate the use of
outputs with libraries like scipy.stats.

2.2.3.1 Permutation testing
The package supports permutation testing by providing data

preparation utilities. Functions such as pad_structure_vectors () and
adj_matrices_to_q_analysis_vectors () from the q_analysis.utils and q_
analysis.stat modules generate uniformly-sized NumPy arrays of
Q-analysis vectors from networks of varying sizes. These arrays can
be used directly with functions like scipy.stats.permutation_test to assess
the statistical significance of differences between two groups of networks.

2.2.3.2 Consensus network-based permutation test
For group-level comparisons, the consensus_statistic function offers

a consensus-based testing approach. Thismethod first constructs a single
consensus network for each group (Pisarchik et al., 2023), representing
the shared topological structure. Q-analysis vectors are then computed
for these consensus networks, and the test statistic is then estimated. The
null distribution is generated by permuting group labels, re-computing
consensus networks, and calculating the statistic for each permutation.
This is useful for identifying systematic structural differences between
populations of networks.

2.2.4 Implementation and performance
Performance-critical routines are compiledmethods written in Rust

with memory preallocation logic, which are accessed from Python. The
algorithm for finding q-connected components operates directly on the
list of simplices. The time complexity of this hierarchical algorithm is
sensitive to the complex’s structure; in the worst case, it approaches
O(dmax · smax ·m2), where dmax is the maximum dimension of the
complex,smax is the maximum simplex size, and m is the number of
simplices. Thememory footprint scales primarily with the total number
of vertices across all simplices, O(∑m

i�1|si|), and the storage of the
resulting components. Computational limits are a consideration for
large simplicial complexes; on standard consumer hardware (e.g., a
laptop with 16 GB of RAM), the package can handle complexes with up
to several hundred thousand simplices, though the exact limit depends
on their average size and connectivity.

2.2.5 Input validation and robustness
The package provides basic input robustness. Degenerate simplices

containing repeated vertices are handled by casting each simplex to a
‘set’ during SimplicialComplex instantiation, which implicitly
removes duplicates. When creating a complex from an adjacency
matrix, input validation is delegated to the networkx library.

2.2.6 Computational details
The results in this paper were obtained using Python 3.10 with

numpy 1.23.5 (Harris et al., 2020), scipy 1.10.1 (Virtanen et al.,
2020), networkx 3.1, statannotations 0.7.1 (Charlier et al.,
2023) and matplotlib 3.7.1 (Virtanen et al., 2020) packages.

3 Results

3.1 A showcase of the package on a
simulation study: scale-free networks versus
configurational networks with the same
degree distribution

In this section, we showcase the package’s capabilities through a
simulation study comparing Q-analysis metrics across different
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network types. We compare scale-free networks with configurational
networks with same degree distribution. We start by generating a set of
scale-free networks with fixed amount of nodes N � 50. We use the
Barabási-Albert model (Albert and Barabási, 2002) to generate the
scale-free networks, with M � 10. For each scale-free network, we
generate a configurational network with same degree distribution. A
configurational networks is generated using Havel-Hakimi algorithm
(Havel, 1955; Hakimi, 1962). We generate 100 scale-free networks and
100 configurational networks. This data can be generated using the
following code:

>>> from q_analysis.examples.scale_free_

configurational import generate_networks

>>> import numpy as np

>>> N_SAMPLES, N_NODES, M_PARAMETER = 100,

100, 8

>>> scale_free_networks, configurational_

networks = generate_networks(

. . . N_NODES,

. . . M_PARAMETER,

. . . N_SAMPLES,

. . . )

>>> networks = np.concatenate([scale_free_

networks, configurational_networks])

Method generate_networks uses seeded generation for
reproducibility. Resulting variables scale_free_networks and
configurational_networks are lists of adjacency matrices in the
form of numpy arrays.

We may then compute Q-analysis metrics for both network
types. There are several ways to do this using the package. In this
example, we will use the most straightforward approach by first
building a simplicial complex from the adjacency matrix and then
computing q-analysis metrics from the simplicial complexes.

>>> from q_analysis.simplicial_complex

import SimplicialComplex

>>> from itertools import product

>>> index = product([’Scale free’,

’Configurational’], range(N_SAMPLES))

>>> simplicial_complex_metrics = [

. . . SimplicialComplex

. . . .from_adjacency_matrix(network)

. . . .graded_parameters()

. . . .to_dataframe()

. . . .assign(Network=net_type,

Sample=sample_id)

. . . for network, (net_type, sample_id) in

zip(networks, index)

. . . ]

We can then concatenate those datasets and visualize them:

>>> import pandas as pd

>>> from matplotlib import pyplot as plt

>>> from q_analysis.viz import plot_q_

analysis_vectors

>>> structure_vectors_df = pd.concat(

simplicial_complex_metrics,

ignore_index=True

)

>>> plot_q_analysis_vectors(

. . . structure_vectors_df,

. . . hue=“Network”,

. . . height=3,

. . . col_wrap=2,

. . . legend_out=False

. . . )

>>> plt.show()

This will give us the plot shown in Figure 3. The results show that
scale-free networks concentrate connectivity in lower-dimensional
structures with pronounced drop-offs at higher orders, whereas
configurational networks distribute connectivity more evenly across
dimensions. TSV shows that configurational networks maintain higher
connectivity at intermediate and higher q values, suggesting less
fragmentation in their higher-order structures. Similarly, topological
entropy measurements indicate more uniform vertex participation in
higher-order structures in configurational networks compared to scale-
free networks, which display noticeable entropy dips at middle q values.
These topological differences can be visually understood by examining
Figures 4, 5, which illustrates how connected components evolve across
different q values for both network types. This visual representation
reveals how the organizational principles governing these
networks—preferential attachment in scale-free networks versus the
degree-preserving reconfiguration in configurational networks—produce
fundamentally different higher-order structures despite identical
degree sequences.

There is also a possibility to compute consensus networks and
their corresponding q-analysis metrics. For the case of modeled
networks this is of limited value—since the nodes do not bear any
semantic meaning and are not shared between generated networks.
However, this process can be useful for real networks, where
different networks have the same nodes, e.g., different brain
regions in different subjects. Such analysis is presented in work
of Kurkin et al. (2024). The consensus-based permutation test and
its results visualization can be computed using the code below. We
can start by computing consensus networks:

>>> from q_analysis.stat import calculate_

consensus_adjacency_matrix

>>> from q_analysis.transformers import

GradedParametersTransformer

>>> consensus_scale_free_vectors,

consensus_configurational_vectors = (

. . .

GradedParametersTransformer().fit_transform(

. . . [

. . . calculate_consensus_

adjacency_matrix(scale_free_networks),

. . . calculate_consensus_

adjacency_matrix

(configurational_networks),

. . . ]

. . . )

. . . )

Frontiers in Network Physiology frontiersin.org10

Smirnov et al. 10.3389/fnetp.2025.1691159

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1691159


FIGURE 4
Comparison of Q-analysis connected components decomposition for scale-free (left) and configurational (right) networks. Each row represents
graph of simplices of order q and higher, with coordinates calculated as mean of simplex’s node coordinates. Original graphs are plotted using
NetworkX’s generated spring layout. Colored nodes represent simplices involved in a component with more than one simplex, black nodes represent
simplices involved in 1-simplex component. NC is the overall number of components, NNon−trivial

C is the number of components with more than
one simplex.
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Then we can compute the permutation test.We use the consensus_
statistic () function to compute the test statistic.We computemaximum
order of consensus simplicial complexes beforehand so that computed
statistics arrays have the same size. We use the scipy’s permutation_
test () function to compute the p-values.

>>> from scipy import stats

>>> from q_analysis.stat import

consensus_statistic

>>> max_order = len(consensus_scale_

free_vectors)

>>> stats_res = stats.permutation_test(

. . . [scale_free_networks, configurational_

networks],

. . . statistic=lambda a, b, axis:

consensus_statistic(

. . . a, b, max_order=max_order, edge_

inclusion_threshold=0.95

. . . ),

. . . n_resamples=10000,

. . . vectorized=True,

. . . batch=100,

. . . axis=1,

. . . )

Then we make a dataframe from the p-values and visualize the
results, what can be done using the same method as in the
previous example:

>>> from q_analysis.simplicial_complex

import GradedParameters

>>> p_values_df =

GradedParameters.from_numpy

(stats_res.pvalue).to_dataframe()

>>> consensus_vectors_df = pd.concat([

. . . GradedParameters.from_numpy

(consensus_vector)

. . . .to_dataframe()

. . . .assign(Network=network)

. . . for network, consensus_vector in zip(

FIGURE 5
Decomposition of higher-order components for the configurational network forq> 5. The corresponding scale-free network has no components at these levels.
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. . . [’Scale free’, ’Configurational’],

. . . [consensus_scale_free_vectors,

consensus_configurational_vectors]

. . . )

. . . ], ignore_index=True)

>>> plot_q_analysis_vectors(

. . . consensus_vectors_df,

. . . pvalues_df=p_values_df,

. . . hue=’Network’,

. . . height=3,

. . . col_wrap=2,

. . . legend_out=False

FIGURE 6
Comparison of Q-analysis consensus structure vectors across scale-free and configurational networks with identical degree distributions. Blue
markers represent scale-free consensus network q-analysis metrics, while orange markers represent configurational consensus network q-analysis
metrics. The plot shows the FSV, SSV, TSV, topological entropy, number of simplices, and number of shared faces (y-axis) at each q value (x-axis). P-values
are computed using the consensus network-based permutation test and significant comparisons are marked with ‘*’.
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. . . )

>>> plt.show()

The resulting plot is shown in Figure 6. We can see that the
consensus networks differ from the individual networks by having
less higher-order structures. This is expected since the consensus
networks have less edges and thus less higher-order structures.

It is also possible to get the plot for topological dimensionality:

>>> import seaborn as sns

>>> topological_dimensionality_df

= pd.concat([

. . . SimplicialComplex

. . . .from_adjacency_matrix(network)

. . . .topological_dimensionality()

. . . .to_dataframe()

. . . .assign(Network=net_type)

. . . .set_index([’Network’,’Node’])

. . . for network, net_type in zip(

. . . [scale_free_networks

[0],configurational_networks[0]],

. . . [’Scale free’,’Configurational’]

. . . )

. . . ])

>>> sns.barplot(

. . . data=topological_dimensionality_df,

. . . x=“Node”,

. . . y=“Topological Dimensionality”,

. . . hue=“Network”,

. . . )

>>> plt.xticks(plt.xticks()[0][::10])

>>> plt.show()

The resulting plot is shown in Figure 7. This snippet
demonstrates how to compute and visualize topological
dimensionality for a pair of networks. Since networks are
generated, there is no strict order of nodes and thus it is
unreasonable to compute median topological dimensionality for
each node. Though such aggregation is possible in case of real
networks, where nodes have some sort of ordering (for example,
anatomical nodes in the brain), we can compute median topological
dimensionality for each network type.

3.2 Application of Q-analysis to the DBLP
dataset of co-authors

To illustrate how Q-analysis can reveal temporal shifts in
collaborative structures, this section examines the Coauthors DBLP
(Digital Bibliography and Library Project) co-authorship network
across three distinct years: 1987, 2002, and 2017 (Benson et al., 2018).
In this dataset, publications and their authors form simplices, with
authors as vertices. The analysis uses a reduced version of the dataset,
excluding simplices with more than 25 coauthors.

We begin by computing the core Q-analysis graded parameters for
each year’s co-authorship network. Figure 8 visualizes these sets, offering
an initial exploratory view of the evolving topological characteristics of
academic collaboration. The following code demonstrates how to generate
this data. It involves creating aSimplicialComplex for each year and
calling the graded_parameters method. The method returns a
GradedParameters object, which can be converted to a pandas
DataFrame using its to_dataframe () method. The resulting DataFrame
is suitable for direct use with standard Python visualization libraries.

>>> from q_analysis import SimplicialComplex

FIGURE 7
Comparison of topological dimensionality across scale-free and configurational networks with identical degree distributions. Blue bars represent
scale-free networks, while orange bars represent configurational networks. x-axis represents nodes, y-axis—topological dimensionality.
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>>> from q_analysis.datasets import

load_dataset

>>> import pandas as pd

>>> simplices_by_year = load_

dataset(“coauthors”)

>>> years = [2017, 2002, 1987]

>>> df = pd.concat([

. . . SimplicialComplex(simplices_by_

year[year])

. . . .graded_parameters(

. . . desired_vectors=[’fsv’, ’ssv’,

’tsv’, ’entropy’]

. . . )

. . . .to_dataframe()

. . . .assign(Year=year)

. . . for year in years

. . . ], ignore_index=True)

The code computes a reduced set of graded parameters, omitting
simplex and shared face counts. These results are visualized in
Figure 8 using matplotlib and seaborn.

The analysis shows an increase in both the total number of
simplices (papers) and their connected component sizes from
1987 to 2017, reflecting expected growth in research output and
collaboration. Analysis of the Third Structure Vector (TSV) reveals
distinct temporal dynamics in higher-order connectivity. TSV
values for 1987 are generally lower across most q-levels
compared to 2002 and 2017, indicating a more fragmented co-
authorship landscape in the earlier period. The relative stability
and higher values of TSV for 2002 and 2017 suggest a more mature
and interconnected network structure. The output highlights
features such as minor connectivity peaks in the 2002 TSV
profile at q-orders 12 and 14. These patterns suggest specific
collaboration structures (chains of 12- or 14-near authors) that
were less prevalent in 2017.

The graded_parameters function also computes topological
entropy (SQ), visualized in Figure 8. The observed shift of the SQ
minimum to higher orders from 1987 to 2017 suggests an increased
tendency for author groups to collaborate on multiple papers,
indicating greater participation diversity. A local minimum in
topological entropy for q � 14 in 2002 points to the presence of
researcher communities of approximately 15 authors (q + 1)

FIGURE 8
Q-analysis graded parameters of Co-authorship Networks by Year. The plot shows the values of the First Structure Vector (FSV,Q), Second Structure
Vector (SSV, n), Third Structure Vector (TSV, �Q), and Topological Entropy (SQ) for the years 1987, 2002, and 2017.
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participating in a few papers simultaneously, a pattern that invites
further investigation into the nature of these collaborations.

To explore individual author engagement in the co-authorship
structures, topological dimensionality was computed using the
topological_dimensionality () method from the
SimplicialComplex class. This method returns a
NodeParameterSet object containing per-node (author)
values, which can be converted to a DataFrame for aggregation
and distributional analysis, as shown in Figure 9.

>>> from q_analysis.simplicial_complex

import SimplicialComplex

>>> from q_analysis.datasets import

load_dataset

>>> import pandas as pd

>>> dataset = load_dataset(“coauthors”)

>>> years = [1987, 2002, 2017]

>>> topological_dimensionality_by_year

= pd.concat([

. . . SimplicialComplex(dataset[year])

. . . .topological_dimensionality()

. . . .to_dataframe()

. . . .assign(Year=year)

. . . for year in years

. . . ]).groupby([“Topological

Dimensionality”, “Year”])\

. . . .count()\

. . . .reset_index()

The distributions in Figure 9 reveal a power-law trend, a
common observation in networks. Since topological
dimensionality counts the number of simplices a node
participates in, this metric is analogous to the graph-based

concept of node degree. However, the two metrics measure
different aspects of network structure. To compare them directly,
node degrees can be computed from the simplicial complexes. This
involves projecting the complex into a graph representation using
the SimplexProjection transformer, as shown in the code
below, and then calculating the degree for each node in the
resulting graph.

>>> simplicial_complexes_by_year = [

. . . SimplicialComplex(dataset[year])

. . . for year in years

. . . ]

>>> graph_projector =

SimplexProjection(q=0, weighted=True)

>>> projected_complexes = graph_

projector.transform(

. . . simplicial_complexes_by_year

. . . )

The resulting array holds sparse adjacency matrices. Figure 10
shows the difference between the node degree and topological
dimensionality distributions.

3.3 Application of Q-analysis to a network
physiology: uncovering higher-order brain
network disruptions in major
depressive disorder

To demonstrate the practical utility of the q-analysis

package, we highlight its application in one of our recent studies
investigating higher-order brain connectivity in Major Depressive
Disorder (MDD) using fMRI data (Kurkin et al., 2024). While

FIGURE 9
Topological Dimensionality distribution of Co-authorship Networks by Year. The plot shows the count of authors (y-axis, log scale) for each
topological dimensionality value (x-axis) for the years 1987, 2002, and 2017.
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traditional analysis focuses on pairwise interactions, this approach
often fails to capture the complex, multi-region coordination that
underlies brain function. Our package provides the necessary tools
to explore these higher-order structures.

In that study, we analyzed fMRI-based ROI-to-ROI functional
brain networks from MDD patients (n � 70) and healthy controls
(HC, n � 94), reconstructed using Pearson correlation. The ROIs
were defined using the AAL3 anatomical brain atlas (Rolls et al.,
2020), resulting in 165 × 165 functional connectivity matrix. For
more details, see (Kurkin et al., 2024; Pitsik et al., 2023). Using the
q-analysis package, these networks were converted into
SimplicialComplex objects by treating maximal cliques as
simplices. The graded_parameters method was then employed to
compute key Q-analysis metrics, which serve as topological
“fingerprints” of the networks.

The computation of structure vectors, such as the First Structure
Vector (FSV) and Third Structure Vector (TSV), revealed significant
topological differences (Figure 11).

As seen in Figure 11, the FSV for the MDD group was
significantly higher at q � 2, indicating greater fragmentation
(more isolated components) at the level of simple pairwise
links. Conversely, the HC group’s network retained connectivity
at much higher dimensional levels (q � 10 and q � 11), a feature
entirely absent in the MDD networks. The TSV plot reinforces this,
showing higher connectivity for the HC group at these
advanced q-levels.

These quantitative differences motivated a deeper, qualitative
exploration of the network structure at high q-levels. To visualize the
underlying structures driving these differences, we used the package
to identify and analyze the q-connected components for q≥ 9. The
results are depicted in Figure 12.

The HC network decomposes into multiple, distinct higher-
order components at q � 10 and q � 11, reflecting a rich and diverse
topological organization. The MDD network, however, contains no
structures beyond q � 9, where it consists of only a single, isolated
component. This illustrates a profound disruption in the brain’s

FIGURE 10
Topological Dimensionality vs. Node Degree Distribution by Year. The plot shows the count of authors (y-axis, log scale) for each topological
dimensionality value (x-axis) for the years 1987, 2002, and 2017.
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ability to form highly integrated higher-order functional
assemblies in MDD.

This application demonstrates a workflow for analyzing higher-
order network structures in the brain. First, the package is used to
compute quantitative metrics like structure vectors, which identify
topological differences between groups (Figure 11). Subsequently,
the specific q-connected components underlying these differences
are extracted for qualitative analysis and visualization (Figure 12).

The findings suggest the potential of Q-analysis metrics as
candidate biomarkers for MDD. Traditional graph theory
analyzes pairwise connections, whereas Q-analysis quantifies
the integrity of multi-region functional assemblies. This
approach complements standard methods by linking local
connectivity deficits to changes in large-scale network
organization, providing a different perspective on brain
topology in disease.

FIGURE 11
Comparison of the First Structure Vector (FSV, left) and Third Structure Vector (TSV, right) for healthy control (HC, orange) andMDD (blue) consensus
networks. The y-axis for FSV is on a logarithmic scale. Shaded areas represent the standard deviation from permutation testing, and asterisks denote
statistically significant differences. These vectors were computed using the graded_parameters functionality of the package. Adapted from Kurkin
et al. (2024).

FIGURE 12
Multilayer decomposition of higher-order network structures. The healthy control (HC) network contains distinct q-connected components at
q � 10 and q � 11, representing complex, multi-region functional hubs. In contrast, the MDD network has no components beyond q � 9, indicating a loss
of these higher-order integrative structures. Adapted from Kurkin et al. (2024).
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4 Summary and discussion

This paper introduces q-analysis, a Python package for
performing Q-analysis on complex networks. We present the
mathematical background of Q-analysis and detail the package’s
implementation of its core metrics, such as structure vectors and
topological entropy. The package provides tools for constructing
simplicial complexes and computing a suite of measures that serve as
quantitative summaries of higher-order network structure. By
making these metrics accessible and formatting them in standard
data structures, the package facilitates the characterization and
comparison of network topologies, bridging the gap between the
theoretical framework of Q-analysis and practical data analysis
workflows. Core computational routines are implemented in Rust
for high performance.

The package’s utility is demonstrated through a simulation
study comparing scale-free networks to configurational networks
with identical degree distributions. The results show how Q-analysis
metrics reveal significant differences in higher-order topology that
are not apparent from degree distributions alone. Scale-free
networks exhibit connectivity concentrated in lower-dimensional
structures, whereas configurational networks show more evenly
distributed connectivity across dimensions.

Furthermore, we applied the package to a real-world DBLP co-
authorship dataset, analyzing the evolution of its collaborative
structures over 3 decades (1987, 2002, and 2017). This analysis
uncovered temporal shifts in research collaboration, including an
increase in the number and size of connected components, changes
in higher-order connectivity patterns revealed by the Third
Structure Vector, and evolving author participation diversity
measured by topological entropy. We also found that topological
dimensionality, a higher-order analogue to node degree, follows a
power-law distribution, and we demonstrated how it provides a
different perspective on node importance compared to traditional
degree centrality.

Finally, we demonstrated how to use the package to study a
physiological problem by identifying disruptions in the fMRI-
derived brain network caused by major depressive disorder. Our
analysis revealed significant alterations in the topology of brain
networks in MDD patients, characterized by a lower maximum
topology level and an increased prevalence of isolated edges and
chains at the pairwise interaction level. Additionally, we
identified significant disruptions in the higher-order
organizational structures of the brain, characterized by
reduced topological diversity and complexity, fewer and less
connected cliques, and altered involvement of key brain
regions in MDD.

While Q-analysis was originally designed for naturally occurring
simplicial complexes, it can also be applied to analyze higher-order
structures (cliques) within traditional graphs. Interpreting cliques as
simplices offers a different perspective on network topology. The
package handles both naturally occurring simplicial complexes and
those derived from graph clique decompositions. The Q-analysis
metrics, such as structure vectors and topological entropy, provide a
concise representation of network structure. They capture
topological features that allow for analysis and comparison across
different networks.

In neuroscience, for instance, Q-analysis could be applied to
several open problems. It could be used to track the dynamic
reconfiguration of multi-region functional assemblies during
cognitive tasks, or to characterize topological changes in brain
networks across the lifespan. By quantifying the structure of
these complex interactions, the framework offers a path toward
developing more sensitive biomarkers for neurological and
psychiatric disorders, moving beyond pairwise connectivity to
capture the collective behavior of brain circuits.

The Q-analysis framework, as implemented in this Python
package, has potential for future extensions. Further development
could explore the new metrics, algorithms, and visualization
techniques, potentially leading to additional insights into complex
systems. The open-source nature of the package is intended to
encourage contributions and further development.
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