AUTHOR=Garcia-Retortillo Sergi , Abenza Óscar , Thiamwong Ladda , Xie Rui , Gordon Michelle , Ivanov Plamen Ch. , Brinkley Tina E. TITLE=Case Report: network physiology markers of inter-muscular interactions indicate reversal of age decline with exercise training JOURNAL=Frontiers in Network Physiology VOLUME=Volume 5 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/network-physiology/articles/10.3389/fnetp.2025.1686723 DOI=10.3389/fnetp.2025.1686723 ISSN=2674-0109 ABSTRACT=Aging is associated with a decline in inter-muscular coordination and overall functional capacity. While the benefits of exercise on individual physiological systems are well established, it remains unclear whether regular training can also enhance inter-muscular network interactions and counteract age-related decline. Using a Network Physiology approach, this Case Report investigates the effects of a home-based exercise program on inter-muscular coordination in two older adults. Two older adults (aged 69 and 73) completed a 12-week program that included twice-weekly virtual group sessions, and one weekly session of moderate-intensity aerobic exercise (30 min). Before and after the intervention, participants underwent a maximal cardiopulmonary exercise test (CPET) on a motorized treadmill. During the CPET, surface electromyography (EMG) was recorded from the left and right rectus femoris and biceps femoris. Inter-muscular coordination was quantified using the Amplitude-Amplitude Cross-Frequency Coupling (ACFC) method. Ten time series of EMG band power were extracted for each muscle, representing distinct neuromuscular processes. Pearson’s cross-correlation was then computed for each pair of EMG band power time series across all muscles. Pre-Intervention, both participants showed low overall link strength across all sub-networks. Post-Intervention, there was a pronounced (∼400%) increase in average link strength across all sub-networks in both participants, primarily reflecting enhanced synchronization between distinct frequency bands across the rectus femoris and biceps femoris. These preliminary findings suggest that structured exercise may enhance inter-muscular network coordination in older adults. ACFC-derived network measures offer a promising tool for detecting early age-related decline and evaluating neuromuscular adaptations to exercise interventions.