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In this perspective, we introduce the Precision Principle as a unifying theoretical
framework to explain self-organization across biological systems. Drawing from
neurobiology, systems theory, and computational modeling, we propose that
precision, understood as constraint-driven coherence, is the key force shaping
the architecture, function, and evolution of nervous systems. We identify three
interrelated domains: Structural Precision (efficient, modular wiring), Functional
Precision (adaptive, context-sensitive circuit deployment), and Evolutionary
Precision (selection-guided architectural refinement). Each domain is
grounded in local operations such as spatial and temporal averaging,
multiplicative co-activation, and threshold gating, which enable biological
systems to achieve robust organization without centralized control. Within this
framework, we introduce the Precision Coefficient, P(z) = C(z) - aR(z), which
formalizes the balance between network coherence and resource cost and
serves as a simple quantitative outline of the principle. Conceptually, this
formalism aligns with  established learning mechanisms: Hebbian
reinforcement provides the local substrate for weight changes, while winner-
take-all and k-winners competition selectively eliminates weaker synapses,
together increasing C(z) and reducing redundancy within R(z). Rather than
framing the theory in opposition to existing models, we aim to establish the
Precision Principle as an original, integrative lens for understanding how systems
sustain efficiency, flexibility, and resilience. We hope the framework inspires new
research into neural plasticity, development, and artificial systems, by centering
internal coherence, not prediction or control, as the primary driver of self-
organizing intelligence.

KEYWORDS

self-organization, brain, evolution, neural circuits, neural learning, precision,
plasticity, networks

1 Introduction

When most people think of a nervous system, they imagine vast webs of interconnected
neurons shooting signals back and forth. This assumption raises an intriguing question: Do
single-celled organisms have nervous systems?

If we define a nervous system by its ability to connect an organism to its external
environment, allowing it to respond, adapt, and survive, then unicellular organisms
arguably qualify. Certain bacteria and unicellular eukaryotes navigate their environment
using molecular structures like flagella and microvilli (Lynch, 2024). Through chemical and
physical sensors such as gated ion channels, these structures interact with the environment
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FIGURE 1

Conceptual landscape of self-organization across biological and artificial systems.

and initiate changes in the organism’s movement (Saimi et al., 1988).
Rather than being directed by a central command, such reactions
emerge from dynamic interactions between internal structures and
external cues. Even single-celled life exhibits primitive forms of
organization, sense integration, and environmental adaptation;
these underlying mechanisms, rooted in life preservation and
stimulus response, represent the early blueprint of nervous
systems in complex organisms.

From this foundation, the principle of minimal, self-evoked
structure scales upwards (Dresp-Langley, 2024). As organisms
evolved nervous systems, their purpose remained constant, even
as complexity increased; here, chaos gives rise to order. They
integrate, prioritize, and represent the world (Wan et al., 2024)
while adhering to the same logic: organisms self-organize not
because they are told to, but because their survival demands it.
In this perspective, we call this internal drive the Precision Principle,
a field-unifying theory of constraint-driven coherence that governs
how nervous systems organize, adapt, and endure across scales. We
express this logic with a simple quantitative form, the Precision
Coefficient, P(z) = C(z) — aR(z), where P(z) balances network
coherence against resource cost and a>0 tunes their relative
weight. The coefficient provides a concise quantitative outline
that links these domains without reducing them to a rigid
optimization scheme, and the conceptual definitions that guide
each domain follow.

To underscore the scope and centrality of self-organization
across disciplines, we propose Figure 1 above, which depicts a
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global co-occurrence network of key concepts extracted from
1,810 peer-reviewed articles on biological and artificial systems.
Node size scales with term frequency and edge thickness with co-
occurrence strength. At the heart of the network, “self-organization”
exhibits the highest centrality and forms dense connections with a
vast array of topics spanning thermodynamics, developmental
biology, neural information processing, machine learning,
robotics, and cognitive dynamics. Such prominence highlights
how self-organization functions as a unifying principle, observed
across physical, biological, and computational disciplines, to
coordinate pattern formation, information flow, and adaptive
behavior in systems characterized by Precision in the face of
variability, the proper interpretation of which will be presented

in the following section.

1.1 Entropy

The concept of entropy describes how isolated systems tend to
evolve toward more probable states, which have a greater number of
possible micro-configurations. This causes an increase in disorder or
uncertainty. While the natural trend is for disorder to grow, living
organisms keep their internal organization by exporting entropy to
the outside environment, meaning they convert ordered energy into
less useful, degraded energy.

Within a world that accelerates towards this effect under the 2"
law of thermodynamics, we consider self-organizing forces in living
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systems, under the drive of evolution towards functional stability, as
designed to counteract entropy. Self-organization allows for the
creation of our nervous system and brain, coordinating billions of
cells to interact with reality. In this paper, we propose that the brain’s
capacity for self-organization and multimodular plasticity is guided
by a fundamental internal drive towards what we term Precision.

1.2 Precision

Precision in this context may be seen as an emergent, constraint-
driven optimization criterion that governs both the architecture of
brain circuits and their functional dynamics, sculpting their
structure and activity in ways that maximize efficiency while
preserving internal coherence. In what follows, “precision” refers
to emergent coherence under constraint rather than to fine-tuning
or generic optimization, and we use the Precision Principle as a
unifying framework to organize the levels of analysis developed here.
Just as intermolecular forces (i.e., London Dispersion Effect)
determine how molecules settle into stable configurations under
physical constraints, biological systems similarly exploit such
principles to drive toward precision in structure, functionality,
and evolution.

Drawing on and expanding ideas from Hebbian Law, memory
consolidation, cross-modal plasticity, and predictive coding, the
Precision Principle offers an adjusted perspective from theories
like the Free Energy Principle (FEP). While both the FEP and
Precision Principle yield similar outcomes, namely, pattern
recognition and internal coherence, the underlying mechanisms
differ fundamentally.

The FEP characterizes cognition as a predictive engine
constantly questioning “what’s next?”, inherently driven by
minimizing surprise through alignment with external reality
(Friston, 2010). A closely related account, Bayesian brain theory,
likewise portrays cognition as probabilistic inference, combining
prior beliefs with sensory likelihoods in a precision-weighted
manner to produce posterior estimates (Knill and Pouget, 2004;
Yuille and Kersten, 2006). However, such personification, whether
of a brain that minimizes free energy or one that optimally updates
posteriors, misrepresents biological reality; the biological brain and
conscious mind are distinct entities acting in tight conjunction
(D’Angiulli and Sidhu, 2025).

The Precision Principle challenges the centrality of surprise
minimization (and ideal Bayesian optimality), proposing instead
that cognitive coherence and pattern recognition emerge primarily
from internal, self-organizing neurobiological processes. In this
framing, cognition arises through intrinsic molecular interactions

10.3389/fnetp.2025.1678473

and neural dynamics rather than an external alignment. Indeed,
surprise minimization itself can be considered an emergent property
within our consciousness resulting from deeper biological
tendencies toward efficiency and equilibrium within an ever-
changing environment. But precision, not merely prediction,
organizes the brain’s structural and molecular logic. Adding
surprise minimization to intrinsic neural dynamics is analogous
to projecting human morality onto the animal kingdom, such as
rooting for a gazelle escaping from a lion; these moral narratives
have no intrinsic validity outside human consciousness. Similarly,
cognitive coherence is fundamentally a product of internal neural
organization, which, while grounded in environment, is not
constrained by it.

2 Precision-driven self-organization: a
three-part classification

While differentiation delineates how neurons acquire distinct
molecular and functional identities and specialization describes their
progressive narrowing to a single computational role, Precision
imposes an orthogonal constraint: circuits must not only exist
but justify their persistence in the network’s economy. Thus,
building on the foundational notion of Precision as constraint-
driven structure, we propose that it manifests in three interwoven
domains:  Structural ~ Precision, Functional  Precision, and
Evolutionary Precision.

Beyond its impact on individual circuits, Precision operates as
a unifying principle across multiple timescales. Unlike theological
or metaphysical invocations of design, this usage refers to
biologically grounded rules (e.g., energy efficiency, redundancy
metabolic optimization) that shape neural

architecture through interaction, pruning and constraint, rather

minimization,

than the current status quo relating to foresight and or intention.
Structurally, it generates compact, high-efficiency modules with
minimal functionally, it on-the-fly
redeployment and robust buffering of circuits via gated short-

term memory traces; and evolutionarily, it determines which

redundancy; governs

functionally validated configurations become encoded in the
genome under selective pressure. By embedding the same core
rules across developmental, operational, and phylogenetic
contexts, Precision offers a single, mechanistic framework
explaining how the brain perpetually balances stability
against adaptability in service of resilient, energy-efficient
computation. This framework is further clarified in Table 1,
which with  their

reinterpretation under Precision.

contrasts  traditional  definitions

TABLE 1 Common definitions in the study of cell organization, and their key differences from precision.

Traditional Definition

How precision differs

Differentiation Process by which cells or neurons become

specialized

Specialization Narrowing of functional role

Prediction Anticipation of external input
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Precision requires that differentiated circuits justify continued inclusion in the network

Precision accounts for whether that function is retained, deployed, or pruned based on internal system

efficiency

Precision reframes prediction as an outcome of internally optimized coherence, not a primary directive
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2.1 Structural Precision: from local synapses
to global network design

As previously stated, Structural Precision shapes modular
architectures that minimize redundancy by promoting tight local
clustering among co-activated neurons. It also establishes long-
range pathways for distributed integration, an emergent pattern
of modular connectivity grounded in unsupervised, activity-
dependent learning (Dresp-Langley, 2020). Through long-range
links, modules exchange information so that specialized circuits
can operate independently while still integrating seamlessly into
global computations. In such self-organizing networks, these circuit
interactions are mirrored at the molecular scale, where structural
modifications accumulate as long-term memory (LTM) traces along
synaptic pathways (Milano et al., 2023). This coupling of local
change and global coordination arises through unsupervised
Hebbian learning: each synapse adjusts its weight solely from the
timing of pre- and post-synaptic activity, without an external
2020). In this
microstructure and global topology evolve together in a tightly

supervisor (Dresp-Langley, way, synaptic
coupled process. As Grossberg (1993) showed in his additive
formulation below, (Equation 1), each LTM trace can be
described by a differential equation with a selective gated-decay
term that restricts plasticity to periods of significant postsynaptic

activation:

dzji _

dt hj(zj)(_Kjizji +Ljifi(zi)) (1)

where the gating function hj(z;), a thresholder sigmoid, ensures that
only sufficiently strong postsynaptic responses permit plasticity,
thereby capturing the balance between Hebbian growth and
synaptic decay. Here, z; is the persistent component of synaptic
strength from neuron j to neuron i, reflecting the accumulated
history of neural interactions. The decay constant Kj; eliminates
spurious potentiation, while the Hebbian term Ljfi(zi) reinforces
synapses in proportion to presynaptic activation f; (z;) (Grossberg,
1993). Because the same decay-gating—potentiation rule applies
across scales, tiny synaptic tweaks propagate outward to create
from-local-to-global organization, where distant nodes link into
coherent functional motifs (Dresp-Langley, 2020). At its core,
circular causality, where local changes shape global structure,
which in turn biases future local activity, underpins the brain’s
ability to form scale-free hubs without centralized control.

Over developmental and evolutionary timescales, these same
multiplicative co-activation and threshold-gating rules also govern
how the network’s wiring diagram evolves (Knoblauch, 2017).
that
environmental inputs accumulate LTM weight, forming densely

Synaptic ~ pathways repeatedly ~ co-activate  across
interconnected modules that mirror the statistical “shape” of those
inputs, while weakly used connections decay and are pruned. For
example, we can imagine a network repeatedly exposed to vertical
edges in natural scenes: each time two neurons co-fire on a vertical
contour, their connecting weight z;; gets a tiny boost, but only if
the postsynaptic cell itself was “engaged” thanks to the gating
function hj(zj). Across thousands of such episodes, clusters of
vertical-edge detectors self-assemble into densely wired modules
analogous to cortical columns, while all other, less-used cross-links

atrophy away, yielding an architecture so well-tuned to vertical
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features that it functions like a biologically evolved edge detector,
analogous to orientation columns in visual cortex. A continual cycle
of selective potentiation and pruning exemplifies dynamic system
growth, allowing a fixed-size network to explore an exponential
repertoire of functional states without adding neurons (Dresp-
Langley, 2020). By valorizing only connections that improve
system fitness and suppressing the rest, the brain dynamically
reallocates resources to emerging computational niches. This
balance between strengthening coherence and reducing
redundancy directly anticipates the variables of the Precision
Coefficient, P(z), which we develop more fully later in this section.

By enforcing the identical LTM update rule on every outgoing
synapse, a local symmetry axis in which all synapses update
identically based on local activity, the network not only
converges stably, but it also gains the ability to incorporate new
patterns without biasing older ones (Pena and Cerqueira, 2017). In
practical terms, when novel inputs arrive (say, learning a new
texture), Structural Precision machinery carves out fresh modules
in parallel to existing ones, without corrupting or destabilizing
existing feature maps. This symmetry-enforced balance between
plasticity and stability stands as a hallmark of cortical development
and underlies phenomena like map reorganization after sensory
deprivation or injury, where the same constraint-driven coherence
quietly shapes both adaptation and learning (Rabinowitch and
Bai, 2016).

Therefore, Structural Precision is encoded in the very equations
of LTM, where selective reinforcement and decay rules bias
networks toward coherence under constraint. Cultured neural
networks illustrate the same principle at a different scale: when
left to self-organize, they form compact architectures that minimize
metabolic cost while preserving representational power. Dense hubs
emerge around high-utility features, while less informative
connections recede into sparse links. These dynamics echo the
formation of cortical columns and the evolvable architectures of
sensory and motor maps across species. Thus, Structural Precision is
not an abstract labeling but an intrinsic outcome of the very rules
that govern synaptic change and network design.

2.2 Functional Precision: adaptive
reconfiguration without structural overhaul

Functional Precision describes how existing processing modules
are transiently redeployed in response to novel or missing inputs,
preserving latent computational mappings even as their active
functions shift. A critical mechanism underlying this flexibility is
the brain’s use of short-term memory (STM) traces, rapidly evolving
activation patterns that buffer contextual information without
altering long-term synaptic weights (Johnson et al., 2013). Within
this framework, each node’s STM trace dz;/dt evolves according to
the generalized additive model originally proposed by Grossberg
(1993) (Equation 2):

dz,»
Lz ;b,-msmzm +1;(t) )

Here, Functional Precision arises not from fixed architecture but
through the dynamic regulation of transient neural activity. In this
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context, the decay term —az; ensures that modules deactivate
without sustained input, minimizing interference. At the same
time, the co-activation term ), b;,Snz, enforces context-
sensitive recruitment: only when modulatory signals S, align
with upstream activity z,, do downstream traces respond.
Critically, this multiplicative interaction imposes a narrow
operational window, ensuring that modules activate only under
tightly tuned conditions, favoring relevant over spurious input. With
the final term I; (), representing direct external drive, shifting
demands can transiently repurpose circuits. A gated-trace
mechanism like this underlies the brain’s adaptive ability, flexibly
redeploying modules whenever inputs or modulatory cues shift
(Dresp-Langley, 2020). Through tuning the decay constant and
co-activation weights, the network can transiently amplify
relevant circuits without altering its core synaptic map.

Rather than requiring structural rewiring, this framework
supports conditional reuse: latent mappings are conserved,
expressed only when internal and external signals converge, and
decay naturally restores baseline functions once the drive subsides
(Gillary et al., 2017). Accordingly, the equation does not model
function directly, but rather the constraints that regulate functional
access, capturing a reversible, selectively gated precision that avoids
both rigidity and chaos. In this light, what emerges is the need for a
compact expression that captures how coherence rises under
constraint, with access tuned rather than prescribed. We later
formalized this logic in the Precision Coefficient.

Empirical work illustrates how such constraint-driven
coherence unfolds in real networks. In dissociated rat cortical
cultures devoid of structured external input, neurons self-
assemble into small-world functional networks within 4 weeks
in vitro. One longitudinal study using planar microelectrode
arrays reported a clustering coefficient that rose from
approximately 1.2 at Day In Vitro (DIV) 14 to 2.3 by DIV35,
while the small-world index surpassed 1.2 (p < 0.01), reflecting a
transition from segregated modules to integrated hub-and-spoke
architectures (Downes et al., 2012). According to transfer-entropy
by DIV21 exhibits

pronounced clustering and short path lengths characteristic of

reconstructions, effective  connectivity
small-world topology (Orlandi et al, 2014). At the same time,
spontaneous firing organizes into neuronal avalanches whose
event-size distributions follow a power law with exponent a
=~ -1.5 across four orders of magnitude, indicating critical
dynamics that maximize dynamic range and information
throughput (Beggs and Plenz, 2003). In addition, rich-club
analyses reveal the early emergence of highly connected hub
neurons by DIV14, which consolidate by DIV28 to coordinate
global network bursts (Hahn et al., 2010).

Crucially, functional reassignment depends on multiplicative
co-activation and biologically gated thresholds. Potentiation of
downstream targets via the term b;,,S,,z,, occurs only when both
pre- and postsynaptic STM traces exceed a biologically meaningful
threshold 0; subthreshold activations are effectively shunted,
preventing trivial fluctuations from triggering reassignment
(Sajikumar and Korte, 2011). In practice, this means that only
suprathreshold co-activations drive functional redeployment,
safeguarding the network against runaway or noisy rewiring.

Empirical studies in early-blind humans further provide
compelling support for this STM-trace gating model. Sustained
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auditory or tactile stimulation can transiently raise STM traces in
occipital areas, normally devoted to vision, above threshold,
allowing those modules to without any structural rewiring
(Rabinowitch and Bai, 2016; Kiling et al., 2025; van der Heijden
et al,, 2019). For example, pitch discrimination by blind listeners
activates V1 and surrounding cortex when prolonged auditory
stimulation maintains STM traces long enough for functional
recruitment (Pang et al., 2024), only to revert to baseline visual
mappings upon removal of the drive.

More broadly, simple stimuli reshape primary cortices (e.g., V1) only
when attention or task demands raise their STM traces above threshold,
whereas higher-order areas such as V5/MT, with broader receptive fields
and lower gating thresholds, can adopt new functions even during passive
stimulation (Lewis et al., 2010). A similar form of gating logic builds in
functional resiliency, as latent pathways can instantly compensate when
primary circuits falter, preserving core computations under perturbation
(Dresp-Langley, 2020). Since STM traces decay only when truly unused,
transient  disruptions never permanently silence the network’s
critical routes.

Thus, STM-mediated gating, multiplicative co-activation, and
threshold-gating jointly furnish Functional Precision’s reversible
substrate (Hansel & Yuste, 2024). When particular circuits are
repeatedly co-opted under stable demands, this reversible reuse
gives way to functional plasticity, whose pathways gain lasting
readiness without structural rewiring (Dresp-Langley, 2020).

This is further reinforced by the gradual lowering of gating
thresholds for frequently engaged modules ensures that familiar
tasks become ever more efficient yet remain reversible if contexts
shift again. Building on that adaptability, a reversible form of co-
option not only explains cross-modal plasticity in blindness but also
exemplifies a general mechanism by which the brain dynamically
allocates existing circuits to novel tasks, preserving latent
computational mappings and enabling rapid restoration of
original functions when the driving input subsides. Functional
Precision, therefore, constitutes the dynamic basis by which
neural networks sustain adaptability to shifting environments
while safeguarding the coherence of their architectural design.

2.3 Evolutionary Precision: selection as the
final editor of neural design

Across phylogenic timescales, Evolutionary Precision extends
self-organizing principles, showing how natural selection sculpts not
only survival-critical traits but also the internal efficiency of neural
architectures. One possible compelling example of Evolutionary
Precision under selective constraint is found in Eigenmannia
vicentespelea, a blind, cave-dwelling electric fish. When its
surface-dwelling ancestors became isolated in caves less than
20,000 vyears ago, the visual system quickly lost relevance
(Fortune et al., 2020). Yet instead of fading spontaneously, the
nervous system reorganized around a new sensory priority:
electrosensation. Over generations, natural selection favored fish
with stronger electric organ discharges (EODs), larger electric
organs, and more flexible signal patterns, traits that enhanced
electrolocation and electrocommunication in complete darkness.
Selection acted on inherited neural traits that maintained coherence
between sensory input and behavior under new environmental
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conditions. What began as functional re-weighting eventually
stabilized as inherited neural architecture (Fortune et al., 2020).
Such a process reflects evolutionary self-organization, where local
neural interactions converge on stable, adaptive configurations
without central control. Underlying rules filter out noise, reinforce
In E
electrosensory network did not emerge by chance; it arose via

consistency, and refine structure. vicentespelea, the
distributed adjustments that strengthened relevant pathways while
de-emphasizing unused ones (Soares et al., 2023). Reiterated across
generations, this consistent filtering produces a directional selection
pressure that shapes circuitry. This aligns with multimodular
plasticity: the nervous system reused and scaled pre-existing motor
and sensory modules rather than building new circuits. Vision
regressed not arbitrarily but because its computational role was no
longer useful, a form of Precision through removal.

Put simply, the cavefish’s brain did not become more complex; it
became more coherent. Precision acted as an organizing force, guiding
evolution toward efficient, modular reuse attuned to persistent darkness.
Crucially, this is not Lamarckian: use does not strengthen traits across
generations. Random mutation supplies variation, and non-random
selection in an aphotic environment favors variants that improve
nonvisual sensing, giving a long-run appearance of reinforcement.
Within-lifetime recalibration sets context, but only genetic changes
that support it are retained and, across many generations, encoded.
Though Evolutionary Precision unfolds on the longest timescales, it does
not stand above the others; it ultimately crystallizes what Structural and
Functional Precision continually generate. Processes like these
underscores the need for a general formalism capable of capturing
how coherence is preserved across structural, functional, and
evolutionary scales. Together, the three are truly co-emergent
expressions of a single logic, each shaping, constraining, and refining
the others in a recursive dance of adaptation and coherence.

2.4 The Precision Coefficient: a quantitative
outline of the Precision Principle

To make the Precision Principle more concrete without turning it
into a full optimization routine, we introduce a quantitative
This
coefficient balances network coherence against resource demands

expression that we call the Precision Coefficient, P(z).

in a simple, heuristic way. We present the coefficient as
anempirical balance that expresses the theory’s coherence. We
present the coefficient as an empirical balance that expresses the
theory’s coherence-versus-cost logic, not as an objective the brain is
presumed to optimize. Formally, we define it as follows Equation 3:

P(z) =C(2)-aR(z),a=0 (3)

This equation defines the Precision Coefficient, P(z), as a balance
between coherence and cost. Here, z represents the set of long-term
synaptic weights, and « is a trade-off parameter that determines how
strongly resource conservation is weighted. The coherence term is
written as, Equation 4:

C(z) = woQ(2) + wrE (2) + weCl(2) + wycHC (2) (4)

where Q(z) is modularity, E(z) is global efficiency, Cl(z) is
clustering, and HC(z) is hub centrality. Each factor is scaled by
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non-negative weights, w, with all weights summing to one, reflecting
their relative contributions to overall network coherence. The
resource term is written as, Equation 5:

R(2) = vwc WC(2) + Vreq Red (2) + Vprer Met (2) (5)

where WC(z) captures wiring cost, Red(z) captures structural
redundancy, and Met(z) reflects metabolic load. Each term is
scaled by a non-negative weight v, with all weights summing to
one. Taken together, the Precision Coefficient increases when the
network raises modularity, efficiency, clustering, and hub centrality
without incurring excess wiring, redundancy, or metabolic load.
Smaller values of « favor integration and complexity, whereas larger
values emphasize economy and conservation.

In practice, the coefficient can be read operationally as a driver of
learning. When activity updates tend to increase P(z), Hebbian
reinforcement informative

expands pathways,

dynamics suppress weaker ones, reinforcement consolidates high-

competitive

value structure, and top-down matching gates when updates occur
(Dresp-Langley, 2024). In this sense, P (z) serves as a compact ledger
of synaptic selection under constraint.

This interpretation is consistent with established neural learning
equations. Grossberg’s long-term memory rule (Equation 1) describes
how persistent synaptic weights z; evolve through selective
reinforcement and decay, providing a substrate for Structural
Precision, while short-term memory dynamics (Equation 2)
Functional

capture transient supports

Precision (Grossberg, 1993). The coefficient summarizes these

reconfiguration  that

mechanisms within a single coherence-cost balance. At the
network level, circuits conserve internal coherence by pruning
weaker links and strengthening effective ones while exporting
entropy to the environment. Together, these dynamics exemplify
what we call precision coding: the principle that neural systems
optimize representational efficiency by balancing coherence with
flexibility.

Conceptually, precision coding is an allocation rule on limited
representational capacity. Hebbian correlation makes candidate
features locally available; competition (winner-take-all or
k-winners) selects the active subset; and resonance or template
matching stabilizes categories when top-down and bottom-up
2024). in C(z)

correspond to sparser and more informative assemblies; decreases

signals agree (Dresp-Langley, Increases
in R(z) correspond to leaner codebooks and shorter, less redundant
routes. For a fixed trade-off parameter «, improvements in P(z)
should coincide with higher activity sparsity, sharper community
boundaries in connectivity, and a contraction of the effective
dimensionality of population responses (Dresp-Langley, 2024).
To make the role of the Precision Coefficient concrete, we
outline representative learning mechanisms that map changes in
synaptic strength, competition, and connectivity to C(z), R(z), and

their balance in P(z), as summarized in Table 2:

2.5 The core operations: a mechanistic basis
of precision

To illustrate the mechanistic basis of the Precision Principle, we
propose Figure 2. Therein, five core local operations are identified:
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TABLE 2 Summary of representative neural learning mechanisms and their effects on the Precision Coefficient (Dresp-Langley, 2024).

Mechanism

Hebbian LTP/LTD

Network effect

Strengthens consistently co-active synapses and weakens inconsistent ones,
improving the signal-to-noise ratio of pathways

Effect on (P(z))

Stabilization of reliable links increases C(z), pruning reduces R(z),
and together P(z) rises

k-winners/WTA
competition

Reinforcement learning
Modular connectivity
Plasticity and
reorganization

Receptive-field hierarchy

ART resonance and
matching

Enforces sparsity by allowing only the strongest responses to persist, forming
distinct codes and sharper module boundaries

Consolidates pathways associated with predictive or rewarding outcomes
while suppressing low-value alternatives

Builds small-world architecture with cohesive modules and targeted long-
range bridges, supported by hub formation

Remaps circuits under new inputs or tasks, trimming unused synapses and
scaling connections to maintain balance

Combines local features into progressively more integrated and invariant
representations across layers

Allows updates only when top-down templates match bottom-up input,
preventing drift and stabilizing learned categories

FIGURE 2
Panel (A) illustrates the overall recursive framework. At its center are five local operations, which both give rise to and are continuously shaped by
three parallel "precision” arenas (middle annuli): Structural Precision, Functional Precision, Evolutionary Precision. Together, these form the Precision
Principle. Panel (B) highlights these five core operations, spatial averaging, temporal averaging, multiplicative co-activation, threshold gating, and
canonical ordering. This depiction avoids hierarchy, as no single form of Precision contains the others, and it preserves recursion: local processes
generate Precision, precision generates self-organization, self-organization yields variation, and natural selection acts upon that variation which in turn

Temporal

Averaging . \

Multiplicative
Co-activation

Threshold /

Gating

More selective structure increases C(z)while redundant links are cut
from R(z), resulting in a higher P(z)

Selective reinforcement increases C(z), and with competition
reduces R(z), driving P(z) upward

Efficiency and integration increase C(z) without proportional
growth in wiring cost, elevating P(z)

Prevents R(z) from rising while preserving or restoring C(z), which
maintains or improves P(z)

Integration and clustering expand C(z) with modest increases in
R(z), producing gradual growth in P(z)

Learning is gated to conditions of high C(z) while limiting
unnecessary growth in R(z), which increases P(z)

Spatial
Averaging

—/

Five Local
Operations

Canonical
Ordering

influences the local rules over generations.

Spatial Averaging, Temporal Averaging, Multiplicative Co-activation,
Threshold Gating, and Canonical Ordering. These enable the
emergence of adaptive, cluster-rich network architectures.
Together, these five operations form the universal substrate across
Structural, Functional, and Evolutionary Precision.

According to the Free Energy Principle (FEP), the brain
functions as a surprise-minimizing engine: perception, action,
and learning are all directed toward reducing prediction error,
and any neural reconfiguration follows wherever free energy can

be lowered (Friston, 2010). Presenting a contrasting logic for brain

Frontiers in Network Physiology

self-organization, the Precision Principle suggests that the brain is
intrinsically compelled to preserve and refine its own circuitry.
Prediction errors serve as targeted prompts within this broader
structural refinement process rather than the sole guiding force. At
its core, the deeper imperative of the Precision Principle
is to maintain circuit coherence, an ongoing process that ensures
neural networks remain economical, modular, and easily reusable.

Underlying mechanisms of this intrinsic self-organization unfold
through molecular and developmental programs. Neuropeptide-gated
pruning during critical periods, time-locked growth and stabilization
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phases, and long-term consolidation dynamics all contribute to
actively streamlining connections and aligning network hubs to
patterns of input. Refinement driven by coherence proceeds even
when salient prediction errors are absent, allowing for elegant
microcircuits and hierarchical modules to emerge reliably across
individuals and species (Chatterjee and Zielinski, 2020).

Viewed from this perspective, behavior extends beyond mere
mismatch avoidance with the external world. It also reinforces
patterns that safeguard internal network integrity (D’Angiulli and
Roy, 2024). Actions that stabilize coherent mappings grow
increasingly valuable, further entrenching efficient architectures
(D’Angiulli and Roy, 2024). Centering intrinsic circuit coherence
as the key engine of self-organization,

not just surprise

minimization, the Precision Principle clarifies how rapid
adaptation, developmental sensitivity, and evolutionary stability

all arise from the brain’s internal structural logic.

3 Discussions and limitations

While the Precision Principle deliberately avoids conflating biological
self-organization with conscious intention, more work is needed to define
how it interacts with higher-order phenomena such as imagination,
reflection, and volitional planning. The proposed mechanism as
discussed in this paper, likely operates at multiple nested scales, from
local microcircuits up to large-scale brain networks, with each of the five
local operations tuned differently depending on the level of processing. In
the case of primary sensory areas, spatial and temporal averaging
windows may be narrow, sharpening feature detection, whereas in
associative and prefrontal regions, broader windows could support the
integration of diverse inputs over longer time spans, enabling sustained
deliberation and planning (Chaudhuri et al, 2015). Exploring how these
multi-scale precision parameters develop over childhood or become
altered in conditions such as autism or schizophrenia could yield new
biomarkers for cognitive flexibility and rigidity.

While the Precision Coefficient provides a compact expression of the
balance between coherence and cost, it should be regarded as a
generative lens rather than a closed optimization program. Its
strength lies in clarifying how different pressures interact, but its
limitations must also be explicit. The precise value of P(z) depends
on how coherence and cost are measured, and on the context-specific
choice of the trade-off parameter «. Different yet equally valid metrics
for modularity, efficiency, clustering, hub centrality, wiring cost,
redundancy, or metabolic load will shift numerical outcomes without
altering the principle itself. Moreover, any attempt to estimate P (z)
empirically will face issues of noise, non-identifiability, and sensitivity to
parameterization. These caveats do not weaken the framework; rather,
they emphasize that the coefficient is best understood as a unifying
measure of constraint-driven coherence across scales, not as evidence
that the brain is solving a single fixed optimization problem.
Accordingly, we call for a reproducible evaluation pipeline that varies
a and metric definitions, tests inference stability under realistic noise and
sampling regimes, and reports predictive accuracy against withheld data
so that acceptance or revision of the model is driven by prospective
performance rather than post hoc fit.

Another important condition concerns dissipation, since neural
circuits cannot sustain coherence without exporting entropy and
consuming energy. The resource term must therefore reflect not
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only structural wiring costs but also the metabolic expenditure
needed to maintain activity. In our formulation, dissipation falls
under the metabolic component of R (z), yet in practice it should be
tracked explicitly through physiological measures such as glucose
uptake, oxygen use, or hemodynamic response. This ensures that
increases in coherence that require disproportionate energy will
reduce P (z), keeping the coefficient grounded in biological feasibility
rather than abstract topology.

Building on this, models of perception should capitalize on
biologically grounded self-organization to reduce explicit structural
complexity while improving both Structural and Functional
Precision, letting robustness arise from the interaction of simple local
rules rather than from ever-deeper engineered architectures. For
example, the Digital Hormone Model (DHM) simulates how
uniform skin cells can self-organize into complex, biologically
accurate patterns such as feather buds, which are the early
developmental structures from which feathers grow in birds. These
buds emerge in precise spatial arrangements not through centralized
control, but via local hormone-like signaling between neighboring cells.
The model demonstrates how simple, biologically inspired rules can
generate functionally robust and structurally organized outcomes,
illustrating the power of self-organization over engineered complexity
(Shen and Chuong, 2002).

Additionally, while the five core local operations offer a useful
minimal scaffold, several cautions must be considered. Much of the
supporting evidence comes from in vitro preparations with limited
neuromodulation and constrained inputs, which can artificially inflate
apparent stability due to spatial and temporal averaging (Orlandi et al,,
2014; Shew et al,, 2009). Reports of modular, small-world, and near-
critical organization are sensitive to thresholding, temporal binning, and
finite-size effects, so parametric sweeps and surrogate-data tests are
needed to separate biology from analysis artefact (Gireesh and Plenz,
2008; Klaus et al., 2011). Coincidence-based potentiation and gating can
discard weak-but-predictive signals or sequence codes, and in vivo they
are likely tempered by state-dependent control and homeostatic
regulation (Mizraji and Lin, 2015; Shen and Loew, 2016; Elliott,
2024). Finally, a single canonical ordering may not capture laminar,
cell-type, or behavioural-state differences in decay/gating/potentiation
kinetics (Elliott, 2024). Overall, the operations remain a valuable
constraint set, but their boundary conditions should be explicit and
tested across states, timescales, and analysis choices.

As self-organization illustrates across disciplines, solutions
discovered in one context can inform another. This perspective
therefore aims to guide future work in perceptual research and
artificial
mechanisms with well-specified boundary conditions over highly
elaborate constructions whose functional resilience is uncertain, so

intelligence:  favor  parsimonious,  self-organizing

that complexity emerges from dynamics rather than design. Within
neural systems, this same logic is implemented by neuromodulators
that regulate when and how plasticity is expressed. For example,
transient bursts of acetylcholine or dopamine can lower the
threshold for potentiation and widen temporal averaging during
learning episodes, admitting novel patterns into the network, and
then restore stricter gating and faster decay during consolidation to
protect established assemblies (Zannone et al, 2018). Dynamic
modulation in this sense links precision to arousal, attention, and
motivation, and it predicts that pharmacological or optogenetic
manipulation of neuromodulators will shift the balance between
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plasticity and stability in systematic ways (Muir et al., 2024). Viewed
through the lens of the coefficient, such surges can be read as
temporary adjustments of the effective a, tilting the system between
integration and economy across learning, consolidation, and
arousal, thereby anchoring biochemical control to the
coherence-cost equilibrium formalized in this paper.

At a conceptual level, the mechanistic foundations of the Precision
Principle intersect with broader debates on the role of information not
only in neural systems but as the building blocks of reality, and this
framing sets the stage for how precision governs what gets connected and
kept. The “information-as-power” model is a naive view of information
as a linear route to truth and control, an objective and representative of
reality. In contrast, an enlightened perspective emphasizes information as
a connector valued for sustaining meaningful relationships within a
system (Harari, 2024), preparing the ground for a formal account of how
such relationships are weighted and updated.

Building on this relational view, embedding the Precision
Principle within active-inference frameworks recasts those five
local operations as implementations of confidence weighting in
predictive coding. Spatial averaging aggregates prediction errors
across feature channels (Sweeny et al, 2009), while temporal
averaging corresponds to the autocorrelation of error signals over
time (Stier et al., 2025). Volitional planning and reflective thought
can then be seen as top-down adjustments of these confidence
weights, selectively amplifying or dampening error signals to
guide belief updating toward desired goals. Empirical tests might
therefore pair electrophysiological markers of neural precision with
behavioral measures of decision confidence, leading directly to the
biological operations that realize these weighting processes.

At the biological level, reinforcement and pruning become the
concrete operations that determine when a synapse earns persistence.
Correlated spiking under permissive modulatory state consolidates a
subset of weights, while local inhibitory circuits and synaptic scaling
impose competition by normalizing total excitatory drive so that only
strongly supported pathways remain. Glial mechanisms contribute
further by removing low-utility spines when activity chronically falls
below threshold (Schafer et al.,, 2012). In the coefficient formalism,
these operations add positive change to coherence when they stabilize
paths that shorten communicability and strengthen integrative hubs,
and they subtract from resource cost when they reduce wiring length
and duplicate routes. Over-elimination can depress coherence even as
cost falls, so homeostatic rules restore the balance that keeps net
change in the coefficient non-negative under stable demands. The
outcome is a family of metastable, high-coherence configurations that
can be re-entered after perturbation, which provides the foundation
for a systems-level reinterpretation of brain function.

Viewed through this lens, the brain is better described as a
connection-maximizer than as a truth-maximizer. From  this
perspective, learning is not merely the correction of prediction errors
but a process of connective rebalancing. Information is therefore not
retained for external accuracy alone but because its incorporation actively
reinforces and reshapes the functional architecture of our brains.
Extending beyond neurobiology, one can imagine computational
models that evaluate incoming data not by reward signals alone but
by an “integration gain” metric, measuring how much each update
improves network topology (modularity, hub centrality, small-
worldness), thereby linking biological coherence to formal design
principles for artificial systems.
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Translating the Precision Principle into neuromorphic hardware
then becomes a natural step, using leaky integrator circuits for
temporal averaging, programmable comparators for threshold gating,
and coincidence-detecting synapses for multiplicative co-activation, all
cycling through ordered decay and potentiation phases (Indiveri et al,
2011; Davies et al., 2018; Prezioso et al., 2018). Embedded in silicon, these
processes could yield processors that self-organize into efficient, robust
architectures, capable of adapting under noisy conditions while
consuming minimal power. In this way, the hardware instantiates the
full pipeline from relational information to confidence weighting to
coherence-preserving plasticity, realizing the Precision Principle as a
principle of efficient and resilient self-organization.

Taken together, these considerations suggest that the Precision
Coefficient should be regarded not as a narrow formula but as an
expression of the Precision Principle’s role as a driver of neural
learning. It foregrounds the interplay of coherence, dissipation, and
selective elimination, showing how local mechanisms such as
Hebbian reinforcement, k-winners competitive selection, and the
elimination of weaker synaptic connections scale upward to organize
networks and, in due course, entire brains.

Ultimately, the Precision Principle as proposed in this paper
transcends mere wiring rules, emerging as a scale-invariant universal
force that sculpts coherence at all dimensions. By filtering, gating, and
temporally sculpting neural activity, the brain does not just record reality;
it architects its own structure, demanding that every spark of imagination,
every strategic plan, every reflective thought earn its place by reinforcing
the network’s integrity. In this light, precision is not passive order-taking
but the active crucible in which noise is forged into narratives,
randomness into reason, and fleeting sparks into enduring circuitry.
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