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Cardiac dynamics is governed by complex electrical wave patterns, with
disruptions leading to pathological conditions like atrial or ventricular
fibrillation. Experimentally electrical excitation waves can be made visible by
optical mapping using fluorescent dyes. While this imaging technique has
enabled detailed studies of cardiac wave dynamics, the manual analysis of
activation and phase maps often limits the ability to systematically identify and
quantify wave patterns. This study employs a wave tracking algorithm that
constructs a graph-based representation of wave dynamics. With that the
algorithm detects key events such as wave emergence, splitting, and merging.
Applied to both simulated cardiac tissue and experimental data from cell cultures,
the algorithm identifies and quantifies wave patterns as wave event networks.
Initial results demonstrate its utility in filtering for and focusing on dominant
dynamics, providing a robust tool for analyzing cardiac wave patterns. This
approach offers potential applications, e.g., to study the effects of external
stimuli on cardiac excitation patterns and to better understand the
mechanisms involved.

KEYWORDS
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1 Introduction

Cardiovascular diseases, including atrial and ventricular fibrillation, exact a significant
death toll worldwide, underscoring the critical need for accurate methods to track and
analyse cardiac dynamics Gray et al. (1998). The heart’s rhythmic contractions are governed
by regular electrical waves, orchestrating its synchronized motion. However, disturbances in
this harmony can lead to the formation of spiral waves or scroll waves in the cardiomyocard,
eventually culminating in fibrillation. Detecting and monitoring these aberrant waves is a
pivotal step towards understanding the mechanisms behind this condition and developing
effective interventions Luther et al. (2011); Lilienkamp and Parlitz (2020); Rappel et al.
(2022); Lilienkamp et al. (2022); Buran et al. (2023); Steyer et al. (2023); Suth et al. (2024);
Garzén and Grigoriev (2024); Aron et al. (2025).

The complexity of wave patterns in cardiomyocyte monolayers observed through
optical voltage mapping is often quantified by manually analyzing datasets (Maizels
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et al., 2024). The computation of activation or phase maps can aid
this process, making it easier to identify rotors for example, by
locating phase singularities. These can then be quantified and
tracked over time (Iyer and Gray, 2001; Kiseleva et al, 2024;
Portero et al.,, 2024; Bingen et al., 2014). However, this approach
cannot be applied to wave patterns that do not include phase
singularities, such as leading-circle reentries around fibrotic cores.
Alternatively, a line scan analysis can allow researchers to monitor
complex activity over time. However, it only takes into consideration
the activity along a line, ignoring the rest of the two-dimensional
recording (Feola et al., 2017; Bingen et al., 2013). Recently, progress
has been made in the automatic detection of specific wave patterns,
e.g., reentry circuits, through the construction of directional graphs
that describe the directions of wave propagation using cross-
correlation analyses Bezerra et al. (2025).

In this article, we present and evaluate a wave tracking algorithm
for analyzing cardiac dynamics. The concept is similar to the method
presented in Rogers (2004) where tracking wave fronts is used in
combination with phase singularity analysis. The approach we
describe in this article offers a different perspective on tracking
cardiac dynamics than phase singularity analysis: it binarizes the
tissue into active and inactive zones and classifies connected parts as
waves. By comparing consecutive points in time one can obtain low-
dimensional meta data like location and time of emerging waves or
numbers and locations of mergers and splits of interacting waves.

We apply this algorithm to simulations of cardiac tissue,
generated using the Fenton-Karma model Fenton et al. (2002).
Furthermore, we use optical mapping data of cardiac monolayers
to evaluate the application of the algorithm to experimental data.
The algorithm is expected to offer particular advantages when the
heart tissue exhibits high focal activity, such as spontaneous calcium
releases Voigt et al. (2012). Another possible application of this
method is to automatically quantify how agents that modulate
sarcoplasmic-reticulum Ca** release (e.g., high-dose caffeine) alter
the incidence and such

spatiotemporal  organization of

spontaneous events.

2 Methods

In this section the concept and implementation of the wave
tracking algorithm will be introduced. Furthermore, we describe the
simulations that were used to generate test data.

2.1 Wave tracking algorithm

We will refer to our approach to describing and tracking cardiac
dynamics as the “wave tracking algorithm”. Figure 1 shows a flow-
chart of the main processing steps. The algorithm can essentially be
devided into three distinct parts:

o Binarization (Thresholding): Connected parts of the tissue
where the membrane potential over a certain threshold is
defined as a wave and identified by the algorithm.

o Frame-wise detection of waves: Frame-wise wave objects are
created for each frame by analysing the relation between
connected components in successive frames.
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« Spatiotemporal wave objects: The frame-wise wave objects are
connected to spatiotemporal wave objects by analysing their
interactions.

The spatiotemporal wave objects created in the last step of the
algorithm provide access to time-independent information about
the waves which are relevant for subsequent analysis:

» Time and location of wave emergence

o Development of the wave size over time

 Times and locations of interactions with other waves: Splits
and mergers

» Time and location of the disappearance of the wave

In the following subsections the algorithm is described more
in detail.

2.1.1 Spatial tracking

To differentiate in the raw data between wave and non-wave
pixels (binarize the data, differentiating between excited wave pixels
and non-wave pixels) a threshold is applied to the variable
corresponding to the voltage. Theoretically, there exists always a
well-defined threshold of excitation of the excitable medium. In
practice, the determination of the threshold may not always be a
straight-forward task as it may depend on the properties of the
excitable medium and the experimental conditions (e.g., sensor
noise, exposure times, etc.). However, in the considered cases a
reasonable threshold that separates excited pixels from non-excited
pixels could easily be found by hand. For more complex scenarios
and experimental data the threshold has to be chosen more carefully.
Other methods to empirically determine the threshold include e.g.,
Otsu’s algorithm Otsu (1979) and minimizing Gini impurity
Breiman et al. (1984). An example for binarization can be seen
in Figure 2.

In experimental settings the parameter value of the threshold
can have a huge impact on the outcome of the wave-tracking
procedure: Low values typically lead to larger connected areas
and therefore to a lower number of waves. Setting too low values
for the threshold will therefore not lead to meaningful information
as the algorithm will be unable to detect wave interactions, but only
detect a single big wave. In difficult situations the threshold
parameter can be determined using a parameter scan. By
comparing the output of the algorithm with a manually
determined number of waves the parameter can be fine-tuned.

Within the binarized data connected parts are labeled either with
nearest neighbor search or with one or more iterations of binary
dilation in combination with a labelling of connected components.
This behavior can be seen in every frame of Figure 3. As especially
for noisy or experimental data strict connectedness might not be a
suitable criterion it is possible to set a radius within which active
pixels are still considered connected.

Using the information which pixels at which time constitute a
connected part, wave objects are created and saved by the
implemented wave tracking algorithm, for each wave one object,
and filled with information about the location and size of the wave at
one point in time. To be able to sensibly deal with high noise or
otherwise impaired input data where wave parts may have a small
gap between them, the implementation of the wave tracking
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FIGURE 1
Schematic overview over the algorithm for generating wave event netw:
Schlemmer (2025)

algorithm allows for wave parts within a certain radius to be
considered as one wave if there is a gap in the binarized data
smaller than the set radius parameter.

2.1.2 Temporal tracking

After the waves are spatially connected they need to be
connected temporally. For this to be achieved, waves at time
t (potential successors) and waves at time t—1 (potential
predecessors) are considered.
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orks. Further details of its implementation can be found in the code

For each wave at time ¢ potential predecessors are identified
using nearest neighbour search. Starting with the smallest wave it is
checked whether there is exactly one predecessor candidate for this
successor and one successor candidate for this predecessor. In this
case it is easily determined that the incoming predecessor wave
travels forth as the successor wave without any interactions with
other waves.

If there is one predecessor candidate and there are multiple
successor candidates for this potential predecessor the predecessor
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This figure shows the binarized wave parts in five exemplary frames of a Fenton-Karma simulation with spontaneous excitations every five frames
and with wave pixels (pixels above a certain threshold, 0.4 in this case) being shown in black and non-wave pixels being shown in white.
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FIGURE 3

This figure shows connected wave parts in different colors for the same simulation as in Figure 2. As waves are tracked throughout the simulation,

their colors stay constant over time.

candidate of this wave will be removed temporarily from the list of
predecessor candidates. The wave will be incorporated into a list of
waves, that could not be directly classified. This order of solving the
uncertainties in assignment is supposed to favor larger waves as
those will be dealt with later on when the amount of waves with
multiple successor candidates is lower due to them being removed
temporarily. Later on this wave will be reconsidered and also
potentially classified as a split of waves, if it turns out that both
successors originate from the same predecessor.

If there are multiple predecessor candidates and only one
successor for every one of them (that also is no successor
candidate for any other wave) the waves are merged into that
one successor.

In the case that there are multiple predecessor candidates and
multiple successor candidates the wave will be reappended at the end
of the list of waves at t and put into the list of not directly classifiable
waves but only if it isn’t already in this list. Otherwise it will use just
one of the possible predecessors as the predecessor.

If there are no predecessor candidates at all a new wave is
created. This may however become the product of a split as the
predecessor candidate may have been removed if there were
multiple successors.

2.2 Datasets
2.2.1 Fenton-Karma model simulations

The dataset that is referred to as the ‘simulated data’ within this
paper was generated using the MediaSim tool Bittihn (2014) and
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the Fenton-Karma model with the set of parameters shown in
Table 1 on a 100 x 100 grid with dx =dy = 0.8, a diffusion
coefficient of D =0.15 and no-flux boundary conditions. The
Fenton-Karma model, originally introduced in Fenton and
Karma (1998), is a three variable model to simulate cardiac
dynamics. It is used because of its straight forward set up of
pacings in the action potential while still ensuring suitable
cardiac-like behaviour of the voltage-like variable V that is used
for further analysis in this paper.

The governing equations of the Fenton-Karma model can be
written, following the nomenclature of Fenton et al. (2002), as an
equation for the transmembrane potential V (x,y,t) € [0,1]
coupled to two gate variables v,w € [0, 1]:

Iﬁ (V) V) + Iso (V) + Isi(V> ‘LU)

V=V (DVV)- -

+ Istim (X, y, t))

together with the gate ODEs specified below.
The three currents in the Fenton-Karma model are

I (V,¥) = =g 3 v (V) (V= uo) (1= V),
Ly V=S 8¢

To T,
_w Sz (V)

si

I si (V) w) =
where

Sl (V) = Hk (V - uc)s
S3 (V) = sz (V - uv)s

SZ (V) = Hk (V - ucsi)>

are given by a smooth approximation of the Heaviside function
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TABLE 1 Parameters of the Fenton-Karma simulation based on set 8 from Fenton et al. (2002).

10.3389/fnetp.2025.1674919

Parameter Value Parameter Value Parameter Value
Con 1 13.03 | 1, 19.6
T, 1,250 | 7, 800 7,
gsi 2222 | 1, 3325 | 14
k 10 | ue 0.85 | u, 0.13
u, 0.04 | k, 500 | 7o 125
Frame 30 Frame 35 Frame 40 Frame 45 Frame 50
100 100
1
50 50 0o 3
)
-1
0
0 50 100
X

FIGURE 4
Here normalized and filtered experimental data is displayed for multiple frames. After these preprocessing steps the data is fed into the wave
tracking algorithm.

Hy (§) = 5 (1+ tanh (£)

with parameters k and k, (Table 1) setting the steepness.
The v-gate uses a mixed recovery time constant

7,(V)=Q-S V)1, +S(V)1,.
The gate ODEs are:

=180 S-S0 L
b= (1-8) Y52
T, [

The simulations used a finite-difference solver with explicit time
stepping and a timestep of At = 0.05. Every 10th simulation time
unit the variables were saved as a simulation frame.

To simulate the spontaneous emissions mentioned in the
introduction, spikes of activity were paced at a random spot on the
tissue every 5 frames. The turbulent behaviour starts around frame 49,
as soon as one pacing happens to occur sufficiently close to the last one.

2.2.2 Experimental data

To show the applicability of the algorithm for real data the wave
tracking algorithm was also applied to experimental data. For this
purpose human induced pluripotent stem cell derived atrial
cardiomyocytes were generated using previously established
protocols (Kleinsorge and Cyganek, 2020; Seibertz et al, 2023).
Cardiomyocytes were then plated onto a glass coverslip with a
diameter of 22 mm that was coated with Matrigel. The cells were
cultured for 7 days, allowing them to form a confluent monolayer. To
study action potential duration and conduction properties, the
monolayer was incubated with the voltage-sensitive dye Di-4-
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Anepps (35 y M) (D1199, Invitrogen) for 7 min at 37 “C. Imaging
was performed using a complementary metal-oxide semiconductor
(CMOS) camera (Micam Ultima 10 x 10 mm? sensor, Brainvision/
Sci-Media). The recordings were taken at a frame rate of 500 fps.
During the experiment, the monolayer was maintained at 37 °Cin a
HEPES-buffered bath solution containing: 140 mM NaCl, 16 mM
KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 10 mM glucose,
pH 7.4. The monolayer was electrically point-stimulated close to the
edge at the bottom right at a stimulation frequency of 2 Hz using a
custom-built platinum/iridium bipolar electrode. The voltage
indicator was excited with peak wavelengths of 531 nm using an
LED (LEX3 illumination system, Sci-Media), and emission was passed
through a 600 nm long-pass filter.

Making the raw input data usable for the algorithm requires a
few key preprocessing steps:

First, to differentiate between pixels that resemble tissue and
those that do not (as the monolayer sits in a circular form on the
coverslip with an overlapping electrode, which creates borders in the
recording that lack tissue), the variance of each pixel over the time
series is calculated. By distinguishing between high-variance and
low-variance pixels (in this case a clearly bimodal distribution), a
mask of tissue pixels can be created.

The tissue data is then normalized by subtracting the mean and
dividing by the standard deviation. Additionally, a small Gaussian filter is
applied to reduce noise and improve runtime efficiency. In the displayed
figures (e.g., in Figure 4), this filter has a kernel with a standard deviation
of one frame taken into account by the wave tracking algorithm in the
temporal dimension (encompassing multiple raw frames due to
unnecessarily high temporal resolution of the raw data, a
downsampling of 10 times was used after the preprocessing and
before applying the wave tracking algorithm) and one pixel in both x
and y directions. This filter helps optimize the algorithm’s performance

frontiersin.org
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FIGURE 5

This figure shows an excerpt of the same simulation as Figure 3 but instead of single frames it displays the graph with the colored nodes
corresponding to the colored waves. The horizontal arrows show continuing waves and the diagonal ones show splits and mergers of waves. One can
see, for example, the regular pacings without any interactions with other waves in frames 31 and 36 and the turquoise wave (ID 9) merging into the orange
one (ID 13) on frame 51. Additionally, one can see, that due to the evolution of the wave patterns and the threshold used, the violet wave (ID 7) is not

recognized as the source of the orange wave (ID 13).

by reducing the number of spatially and temporally close waves, which
otherwise would negatively impact runtime. It also enhances algorithmic
robustness, as a high local density of potential predecessors and
successors could increase the likelihood of misattribution.

This preprocessing makes the data suitable for binarization and
the subsequent wave tracking algorithm. In this case the radius
parameter discussed in Section 2.1.1 was set to 3 px.

3 Results

We applied the algorithm to the simulated (see Section 2.2.1)
dataset and to the experimental dataset (Section. 2.2.2). For getting
an overview of the waves detected by the procedure we show for each
dataset a special visualization that we refer to as the “Wave Event
Network”. An example can be seen in Figure 5. The horizontal axis
of this plot displays the time in frames measured since the start of the
recording. On the vertical axis the “Wave ID”, which is assigned to
individual waves by the algorithm, is shown. For better visual
identification, the visualization method assigns a random color to
each “Wave ID”. Each filled circle in the plot corresponds to a
distinct wave event which can be one of the following:

wave creation
wave annihilation
wave merger
wave split

Wave events are connected by black arrows. If two waves merge,
there is a wave event displayed for the last frame that contains the

Frontiers in Network Physiology

merged wave and another wave event in the next frame where both
waves are combined into a single one. An arrow is drawn indicating
the direction of the merger. Similarly, a split is indicated by two
events and an arrow pointing to the event of the newly created wave.

Videos showing the full scenarios used within this paper and the
respective representation using the wave tracking algorithm can be
found in the supplementary materials.

3.1 Simulated data

The results of the wave tracking algorithm applied to simulated
data can be seen in Figures 3, 5. Figure 3 shows the spatial distribution
of waves with their wave ID indicated by a color. Figure 5 shows the
corresponding wave event network with the same color code.

By comparing both figures, the interpretation of the wave event
network becomes clearer: E.g., in frame 59 four distinct waves can
be spotted:

ID 11: green color
ID 12: purple color
ID 13: orange color
ID 14: lilac color

Wave ID 11 is about to be merged with wave ID 14 in frame 60.
The result can be seen in Figure 3 where only three of the
waves remain.

A similar transition can be observed from frames 49 to 54:
Several minor events fall into this interval, but the effective
transition is a merger of two bigger waves (wave IDs 9 and 13).
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FIGURE 6
The graph over 150 frames of the experimental video, binarized at a threshold of 0.2, shows a large number of waves with very short lifetimes. The
analysed excerpt was captured at 500 frames per second and downsampled 10 times, hence the 150 frames correspond to 3 s of real time.
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FIGURE 7
This figure shows an unfiltered excerpt from the experimental graph along with a few example frames from the experimental data. While some of the

many waves visible in the frames and at the wave event network may grow into significant waves on the tissue, others are likely artifacts caused by noise or
other unwanted effects at the border.

3.2 Experimental data

heterogeneities inherent to experimental data lead to a much higher
number of waves and a cluttered visualization. The plot indicates that
the lifetime of detected waves is on average much shorter than in the
numerical case and broader structures are difficult to identify by eye.

When applied to the experimental dataset, the wave tracking
algorithm provides the result shown in Figure 6. Noise and
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In contrast to Figure 7, this figure displays the section of experimental data, but with waves filtered to exclude those with a lifetime of only one frame
and a maximum size of fewer than 20 pixels. Most small artifacts have been effectively removed, the wave event network now contains essentially only
waves showing the relevant dynamics. The violet wave in the top right corner of frame 30 is considered as one wave object due to the used radius

parameter of 3 px.
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Both wave sizes and wave lifetimes for the experimental video are displayed at a logarithmic scale. Especially for the wave sizes it is clear, that a large
number of very small waves are observed which are in many cases insignificant for the actual dynamics.

Zooming into the plot, which was done in Figure 7, reveals more
structure: In addition to the high number of small waves, some
structures that are stable over a longer period of time become visible
in the light green (wave ID 58) and teal (wave ID 68) wave event
markers. In Figure 7, some panels displaying spatial snapshots of the
data were extracted from frames 30, 35, 40 and 45 (also highlighted
with dashed red lines in the upper panel). Here, indeed, it can be
seen that there are at any shown time step one or two dominant
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waves that are accompanied by tiny speckle patterns, especially at
the Petri dish borders.

By filtering out waves with a lifetime of one frame or less and a
maximum size of fewer than 20 pixels, as shown in Figure 8, the number of
wave objects considered reduces from nearly 400 to fewer than 50. The
remaining waves more accurately represent the dominant dynamics on the
tissue. The histogram of wave sizes and wave lifetimes for this video is
displayed in Figure 9 and justifies filtering for small wave sizes and lifetimes.
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3.3 Detection errors

There are several error types which may cause differences
between expected and actual results.

One error type is related to the thresholding step: if there is
activity spreading with a peak excitation lower than the threshold
this excitation will not be considered as a wave during binarization.
A similar problem appears if there are spurious holes within one
wave that split the wave into multiple.

Another possible error is the misattribution of predecessors or
successors. Especially if there are many different candidates and a
comparatively coarse frame rate the heuristics in the
implementation of the algorithm (e.g., assigning largest waves
first) might break down.

The last error to be discussed here is perceived behaviour at the
edge of the domain. One example of that is shown in Figure 5, where
between frame 54 and 55 a wave splits up. Looking at Figure 3 it is
clear, that there is no actual split of the wave, instead the wave hits

the boundary of the domain.

4 Conclusion

In this article we presented an algorithm that is able to track
wave dynamics in cardiac tissue and represent it as a wave event
network. The algorithm is capable of automatically detecting wave
structures in numerical and experimental datasets observed in
excitable media. The method is straight-forward and closely
resembles manual inspection of wave-structures which is
employed in many scientific studies Maizels et al. (2024); Oscar
et al. (2021); Askar et al. (2012); Harlaar et al. (2022); Bingen et al.
(2015) and which might be inefficient and not systematically
reproducible Wilson et al. (2014). The method, we present here,
generates overview of the wave dynamics which can be used to guide
interpretation. The unique advantages include the independence
from phase singularities and the ability to gather high-level wave
features and process them in a graph. Furthermore, this graph can by
used in different ways to deal with numerical noise and other
artifacts. Furthermore, it is possible to extract features from the
computed wave objects (like wave lifetimes, locations and time
periods of wave events, wave sizes) that can be the input to
subsequent data analysis procedures Datseris and Zelko (2024).
This will allow to make use of wave properties in studies
comparing different datasets of excitable media in large
quantities efficiently.

One special feature of the algorithm is that it can be used to filter
data using abstract properties (like the size of waves or the lifetime)
as it was demonstrated for the experimental dataset. In contrast to
image processing methods like kernel smoothing, this approach is
much more specific to the properties of the excitable system and
might be able to achieve a higher precision when looking for
important characteristics of the medium.

As for any other method, this procedure includes some
parameters that can highly influence the results. Apart from a
possible pre-processing of the image data (e.g., kernel smoothing)
the most relevant parameter is the threshold of the binarization
procedure. We found that by plotting the histogram of the image

data, it is in most cases possible to identify a broader, stable range of
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threshold values that lead to a good separation between non-excited
and excited areas of the tissue. Another possibility is to run the full
algorithm on a smaller sample of the data set and tune the threshold
parameter to a value that leads to the expected number of waves.

In general, we observed that the algorithm is very robust
regarding the pre-processing of the image data and can, in
principle, also be applied to unfiltered data.

5 Outlook

The approach presented here was designed with a focus on a
quantitative investigation of wave properties. In this study,
however, only a limited number of quantities that can in
procedure
investigated. As the algorithm provides access to many

principle be extracted from the have been
quantities, like the positions of specific wave events and time-
resolved numbers of individual wave sizes and shapes, many
possibilities exist for further automatic processing. These
applications include supervised or unsupervised machine
learning applications or statistical comparisons of different
biomedical conditions studied in specific experiments. The tool
can thus be considered a complement to prevalent methods for
analyzing cardiac dynamics, like phase singularity analysis,

dominant frequency maps or activation maps.
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