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Representing the brain as a complex network typically involves approximations of
both biological detail and network structure. Here, we discuss the sort of
biological detail that may improve network models of brain activity and,
conversely, how standard network structure may be refined to more directly
address additional neural properties. It is argued that generalised structures face
the same fundamental issues related to intrinsicality, universality and functional
meaningfulness of standard network models. Ultimately finding the appropriate
level of biological and network detail will require understanding how given
network structure can perform specific functions, but also a better
characterisation of neurophysiological stylised facts and of the structure-
dynamics-function relationship.
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1 Introduction

It is intuitive to represent brain anatomy and the activity that it produces as a network
structure, i.e., as a collection of nodes and connecting edges (Bullmore and Sporns, 2009),
and ultimately to study the role of this structure in brain dynamics and function (Papo et al.,
2014; Papo and Buldd, 2025b; ¢). A network structure provides a compact, inherently
multiscale, characterisation of multi-body systems, possibly preserving its intrinsic
properties and symmetries. Moreover, network structure can affect on network
dynamics and the processes unfolding on it (Boccaletti et al., 2006; Masuda et al., 2017)
and can interact in complex ways with local dynamics (Gross and Blasius, 2008). Thus,
network structure may to some extent explain brain dynamics and function, and may help
predicting the system’s behaviour, quantifying its evolvability, and, at least in principle,
controlling it (Liu and Barabdsi, 2016), or steering it to desired states (Gutiérrez et al.,
2012; 2020).

Complex network theory is a statistical mechanics approach to graph theory (Albert and
Barabdsi, 2002). In this approach, justified by the sheer number of components (Chow and
Karimipanah, 2020), the identity of nodes and links loses importance, at least prima facie, as
the network’s properties are statistical in nature. Implicit in a statistical mechanics’
approach is the fact that seemingly profoundly different physical systems may be
characterised by the same collective behaviour which can be grouped in universality
classes. The large scale behaviour of each class can be described in terms of simple
effective models specified in terms of an interaction network and a limited number of
control parameters, where only a small number of relevant features, viz. symmetries,
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dimensions, and conservation laws, turn out to be relevant, while
microscopic details can be disregarded. But, how universal are brain
network representations? To what extent and at what scales do brain
dynamics and function depend on the specific details of their nodes
and links?

We review aspects of neural activity that may be incorporated
into neural network modelling and somehow dually, network
models that may help representing brain structure, dynamics,
and function. We then address the following two-fold question:
what neural and network properties should be incorporated for a
network structure to reproduce known anatomical patterns and
dynamical phenomenology and to allow a faithful representation of
functional brain activity?

2 Ground level of brain
network modelling

In its most general form, a network is a structure N = (V,E),
where V is a finite set of nodes or verticesand E € V ® V a set of pairs
of links or edges V. The links can carry a weight, parametrising
interactions’ strength, and a direction. All the information in a
network structure is contained in the associated connectivity matrix.
Encoded into its combinatorial (Bollobds, 1986), topological, and
geometric properties (Boccaletti et al., 2006), and its symmetries
(Dobson et al., 2022) (See Supplementary Material Al).

In real space, the microscopic scale may be identified with
neurons, or neuronal masses at various scales, and may contain
more or less biological detail. Cortical columns are often treated as
cortical systems’s basic dynamical units, which are coupled through
sparse long-range cortical connectivity. Thus, at system-level,
neocortical activity is often modelled as an array of weakly-
coupled dynamical units, whose behaviour is represented by
dynamical attractors of various types (Breakspear and Terry,
2002) (See Supplementary Material A2). In its simplest form, the
system’s units are static. The system’s units can also be thought of as
dynamical systems (Golubitsky and Stewart, 2002), e.g., spiking
neurons and the resulting system is a discrete-space, continuous-
time dynamical system (DeVille and Lerman, 2015). Thus, overall, a
neural system can be thought of as a set of dynamical systems, whose
state variables evolve e.g., according to differential equations and
whose interactions are encoded by a graph (Bick et al,, 2023). The
state of a system can also be defined by the time-varying interplay
between its structure and the variable’s dynamics unfolding on it
(Ghavasieh and De Domenico, 2022).

Irrespective of the context and the space in which a network
structure is defined, the neurophysiology-network representation
map often involves drastic simplifications on both sides of the
map. For instance, a great number of studies, particularly at
macroscopic scales, are predicated upon a simple network
structure. A network is said to be simple if it has neither self
nor multiple edges between the same pair of nodes (in the same
direction for directed networks). In spite of its apparent
generality, some known anatomical and dynamical neural
stylised facts are not accommodated within the simplified
structure used in these studies and this may in principle limit
the ability to account for known phenomenology or to reveal as
yet unknown one.
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In the remainder, we consider a ground level of network
structure and use its underlying assumptions and corresponding
limitations to analyse on the one hand the neural aspects of brain
activity that are not easily accommodated by such a structure and,
on the other hand, the nature of the possible network structure that
could better reflect intrinsic properties of brain structure, dynamics,
and function.

3 Adding biological detail

Both
representations typically drastically simplify details of actual

theoretical and experimentally derived network
brain anatomical and dynamical structure at all scales, including
that of single cells. For instance, standard network representations
do not include features of neural activity such as hardware
heterogeneity, recurrence, or inhibition or, when modelling long-
distance inter-areal pathways, the laminar and anisotropic character
of the connections (Markov et al., 2013) in addition to their strength
and specificity or and the resistive nature of brain tissue. A number
of questions ensue: how much and what sort of detail should be
added and at what scales? How would refining neurophysiological
information change brain models?

3.1 Nodal properties

Various aspects of neural activity are in general thought of as
reducible to network nodes. The anatomo-functional criteria
allowing this reduction are scale-dependent, the most obvious
aspects being related to the cell-level structure of the brain. At
neuronal scales, such reduction typically involves various
simplifying assumptions on synaptic structure and physiology,
including assumptions on hardware, viz. on its homogeneity or,
more generally, on the physical units responsible for brain dynamics
and function homogeneity, but also on the way afferent information

is integrated to produce cell firing.

3.1.1 Defining meaningful neural units

A network representation requires identifying meaningful
neurophysiological units (Korhonen et al., 2021). Though prima
facie straightforward, this step is nonetheless non-trivial, even at the
single neuron scale. Indeed, activity at subneural scale can be related
to function at macroscopic scales (Li et al., 2024). Moreover,
achieving an appropriate characterisation that captures the
essence of neuron information processing activities requires
defining independent electrical processing units explaining its
overall input-output behaviour (Koch et al, 1982). Although
dendrite arborisations and axon terminals already present a
network structure carrying out computationally complex
operations (Gidon and Segev, 2012), single neurons are often
thought of as simple point-like units, where all synapses have an
equal opportunity to influence neuronal output, and the output
results from a linear weighted sum of all excitatory and inhibitory
synaptic inputs. However, pyramidal cells’ terminal branches of the
apical and basal trees constitute sets of independent non-linear
subunits (Hausser and Mel, 2003). In general, one can distinguish

separate functional compartments in the dendritic tree, the number
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of which depends on the considered aspect of dendritic function,
based on the effects that such compartments and their interactions
exert on the neuron’s computational power and synaptic plasticity.
The spatial extent of propagation of the dendritic spike will also
define the spatial range of plasticity. Functional compartments can
be defined at scales even finer than those of thin branches.
Specifically, the rules for induction of synaptic plasticity may
differ at proximal and distal synapses in a way that is defined by
the properties of their respective compartments.

The issue is replicated at coarser scales in real space as well as in
phase space, as finding meaningful criteria for separation and
discretisation becomes more challenging.

3.1.2 Hardware heterogeneity

Both excitatory and inhibitory neurons come in a large number
of different types which differentially affect cross-variability, both by
their specific connectivity and by their intrinsic properties
(Balasubramanian, 2015). However, at a given scale, particularly
when considering static network structure, all network nodes are
typically assumed to be essentially identical. This approximation
may be acceptable at certain scales, but perhaps not at others,
particularly at the whole system level, and may serve certain
e.g.
distribution, but may be misleading whenever function is not an

goals, estimating information transport via degree
emerging property of topology, e.g., at scales at which information
processing is done at nodal scales (Sterling and Laughlin, 2015).

An important question is how node heterogeneity, e.g., in
excitability or in coupling strength, may affect collective
dynamics. Heterogeneity in excitability across units may play a
double role: during states of low modulatory drive, it enriches the
system’s dynamical repertoire; on the other hand, it acts as an
effective homeostatic control mechanism by damping responses to
modulatory inputs and limiting firing rate correlations, ultimately
decreasing in a context-dependent way the system’s susceptibility to
critical dynamical transitions (Hutt et al., 2023; Balbinot et al., 2025).

Neural heterogeneity may also play a role in neural networks’
computations (Gast et al., 2024). If neural systems” information-
processing capabilities are related to the morphological diversity of
neurons, a reliable description of neuronal morphology should be
key to the characterisation of neural function, although what level of
detail is would be necessary and sufficient to determine function
remains to be determined. Note, though, that while morphological
information may be thought of as a proxy for function, it does not
constitute a necessary or sufficient condition for it.

Finally, an important issue is whether a statistical mechanics is
possible given the number of qualitatively different pieces of
hardware. Microfoundations of models would imply a detailed
description of the hardware. This may seem to weaken the pillars
of the statistical mechanics approach underlying graph theoretical
modelling, viz. a loss of important symmetries (exchangeability,
scaling, and universality).

3.1.3 Beyond neurons

An important question is whether brain dynamics can be
understood just in terms of classic excitable units, i.e., neurons,
or other units. For instance, in the human brain, glia cells are
approximately as numerous as neurons and are tightly integrated
into neural networks (Herculano-Houzel, 2014) but are in general
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not accounted for in brain network models (Turkheimer et al.,
2025). Glial cells play a key role in the development of vascular and
neural networks and control homeostatic processes in the mature
brain, provide neurons with energy, supply neurons with
neurotransmitter precursors and catabolise neurotransmitters
(Verkhratsky and Nedergaard, 2018). In particular, astrocytes are
key to fundamental processes in brain networks’ building, dynamics
and repair, regulate synaptic maturation, maintenance, and
extinction, and play an important role in the orchestration of
synaptic plasticity (De Pitta and Berry, 2019) and in the
restoration of connectivity and synchronisation in dysfunctional
circuits, e.g., in cerebellar networks (Kanner et al., 2018). Astrocytes
actively communicate with neurons, through a process termed
2014). While their
functions  are understood,

gliotransmission exact

mechanisms

(Araque et al,
and poorly
gliotransmitters activate neuronal receptors and account for
astrocyte-mediated modulation of synaptic transmission and
plasticity (Savtchouk and Volterra, 2018), acting as spatio-
temporal integrators, decoding information in large arrays of
neuronal activity. The relationship between neocortical neurons
and astrocytes is a critical factor determining the effects of
field

interactions (Martinez-Banaclocha, 2018). For example, while

endogenous and exogenous electric and magnetic
seizure discharges ultimately result from neuronal activity, glias
may play an important role in excitation and inflammation in
seizures kindling and modulation (Devinsky et al., 2013). More
generally, atypical neuron-glia interactions are implicated in brain
pathology, viz. in schizophrenia (Radulescu et al., 2025). Finally,
synapse-astrocyte communication may also play a fundamental role
in cognitive function, e.g., in working memory (De Pitta and

Brunel, 2022).

3.2 Link-related properties

Loss of neurophysiological detail in network modelling is also
found at the level of bare connectivity. This is partly due to
simplification of the anatomical connectivity structure to
accommodate it to that of a simple network and partly to lack of
knowledge of the functional mechanisms of neural information

transport and computation.

3.2.1 Wire properties

When considering neural systems in real space, links represent
brain fibres at all scales, and of interest is how these structures
support activity. The amount of current or information conveyed by
a link depends on wires’ physical characteristics, such as their
diameter and length but also their mechanical and conduction
properties (Sterling and Laughlin, 2015). Wire geometry therefore
contains important information at time scales ranging from
evolutionary to experimental.

An important neural property often not incorporated in graph
theoretical models of brain activity is load, a local measure given by
the ratio between flow and capacity. Together with network
topology, information on load and its distribution may be crucial
in the prediction of link failure on network processes and to
understand which links are critical to a given function (Witthaut
et al., 2016).

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1667656

Papo and Buldu

3.2.2 Delays

Brain networks are embedded in the anatomical space and this
leads to time-delays due to finite signal propagation speed. Time-
continuous delay systems, which exhibit in practice high
dimensionality and short-term memory express a variety of
dynamical regimes, ranging from periodic and quasiperiodic
oscillations to deterministic chaos (Ikeda and Matsumoto, 1987).
Delays can facilitate zero-lag in-phase synchronisation (Ernst et al.,
1995; Atay et al., 2004; Fischer et al., 2006) and can both stabilise and
destabilise dynamical systems (Scholl and  Schuster, 2008).
Moreover, delay systems afford simple dynamical systems high-
level information-processing capabilities (Appeltant et al., 2011).

Distance-dependent conduction delays are a crucial factor
shaping brain dynamics and have a significant impact on the
architecture of neocortical phase synchronisation networks (Deco
et al., 2009; Petkoski et al., 2016; Roberts et al., 2019; Petkoski and
Jirsa, 2019; 2022; Williams et al., 2023), inducing qualitative changes
in the phase space of spatially-embedded networks (Voges and
Perrinet, 2010). While topology can be thought of as a control
parameter steering the dynamics through phase transitions, the
dynamics is largely due to heterogeneous connectivity’s time-
delay, rather than changes in the topology (Jirsa and Kelso, 2000;
Pinder et al., 2024). In the presence of delays, limit-cycle oscillators
lead to collective metastable synchronous oscillatory modes at
frequencies slower than the oscillators’ natural frequency (Cabral
et al, 2022). Time-delays also play an important role in neural
networks’ pattern formation (Muller et al., 2016; Roberts et al., 2019;
Petkoski and Jirsa, 2022). For instance, spontaneous travelling waves
may be an emergent property of horizontal fibre time delays
travelling through locally asynchronous states (Davis et al., 2021).
Moreover, in the presence of conduction delays, spike-timing
dependent plasticity can exert activity-dependent effects on
network synchrony in recurrent networks (Lubenov and Siapas,
2009). Finally, conduction delays are essential in long-range
communication through coherence in the brain (Bastos et al., 2015).

3.2.3 Activity propagation and flow directionality

According to the law of dynamic polarisation (Ramoén y Cajal,
1909), information unidirectionally flows from dendrites to Soma to
axon. However, for many types of neurons, excitable ionic dendritic
currents allow dendritic action potentials traveling in the opposite
direction (Stuart et al., 1997). Thus, the neuron itself contains an
endogenous feedback mechanism. Backpropagating action
potentials have many important consequences for dendritic
function and synaptic plasticity (Linden, 1999). For example, a
somatic action potential can trigger a burst due to its interaction
with the dendrites (Hausser and Mel, 2003). Moreover, dendritic
geometry, together with channel densities and properties, plays a
crucial role in determining both forward and backpropagation of
action potentials and dendritic spikes (Vetter et al., 2001). Likewise,
synapses can propagate activity centrifugally but also centripetally,
distributing input and output over the entire group of dendrites
(Pribram, 1999).

3.2.4 Connectivity density and anatomo-
functional structure

Both anatomical and dynamical brain networks have long
been thought of as highly sparse. However, no general consensus
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exists over global estimates of brain activity. For instance, while
estimates of the absolute number of axons suggested that human
cortical areas are sparsely connected (Rosen and Halgren, 2022;
Hilgetag and Zikopoulos, 2022) cortical areas may be far more
connected than previously acknowledged (Markov et al., 2011;
Wang and Kennedy, 2016). While in random networks, sparsity
would ensure that neurons share a negligible proportion of
presynaptic neighbours and inputs, and as a result that their
activity is in general uncorrelated, this would not be the case in
non-trivial, densely connected cortical populations (Pretel
et al., 2024).

Densification may induce non-trivial structural transitions,
including phase transitions in the scaling of the number of
cliques of various orders with the number of network nodes
and absence of self-averaging (Lambiotte et al, 2016),
connectivity density may in principle affect network resilience,
although neither anatomical disruption nor decreased connectivity
are necessary conditions for functional disruption (Papo and
Buldd, 2025a). From a modelling viewpoint, an incorrect
density estimate, tantamount to downsampling the system
(Wilting and Priesemann, 2018) may ultimately lead to
underestimating network size. Near a phase transition, where
correlations diverge, such systems this may lead to finite size
effects, which can hide criticality or rare region effects.
Moreover, a correct estimate of connectivity is key to obtaining
a faithful representation of the associated dynamic patterns’
dimensionality (Recanatesi et al., 2019). Moreover, while strong
links may incorporate fundamental features of the system, weak
links, often missed, particularly in experimental data analysis, may
be needed to identify the system (Zanin et al., 2021; 2022), and
failure to include them may lead to incorrect conclusions on
network stability and robusteness to network dismantling
(Csermely, 2004).

3.2.5 Mesoscopic structural principles

Any model of brain cortical structure should incorporate or
account for general organisational properties of its anatomy and
physiology. For instance, the cerebral cortex exhibits a layered
with  the varying
phylogenetically different cortices. Moreover, various cortical and

organisation, number of layers across
subcortical regions have a topographic arrangement, whereby
spatially adjacent stimuli are represented in adjacent cortical
locations, as well as a columnar structure whereby neurons
within a vertical column share similar functions and connections
and are connected horizontally to constitute functional maps
(Hoffman, 1989; Mendoza-Halliday et al., 2024).

In almost all cortical areas, a substantial part of the output
targets its area of origin (Douglas and Martin, 2007; Barak, 2017). In
recurrent structures, a given neuron can receive input from any
other neuron in the network, blurring the concept of upstream or
downstream activity, so that their activity is affected the network’s
and not only by exogenous afferent input. Such a structural property
enables networks to perform computations at time scales much
larger than those of a single stimulus, e.g., working memory,
decision-making (Douglas and Martin, 2007), recall through
pattern completion (Marr, 1971; Treves and Rolls, 1992), or
integration of sensory information with stored knowledge
(Singer, 2021).
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3.3 The node-link contact area

Perhaps the most overlooked aspect on brain network modelling
is the node-link junction. Type of contact and location are typically
stylised, even at neuronal level. Furthermore, in large-scale models,
the effects of contacts are modelled as flows, and therefore implicitly
thought of as excitatory.

3.3.1 Contact area and signal integration

Both anatomically and functionally, the area through which
different brain units contact other is sometimes difficult to
characterise, even at the single neuron level. On the one hand,
many neurons do not connect via linear one-to-one connections,
but form neurites with collaterals, or branches at distinct segments
of the main axon, connecting with multiple synaptic targets or
highly branched synaptic termination zones (Spead and Poulain,
2020). On the other hand, action potentials are in general thought to
be initiated in a particular subregion of the axon along which they
propagate promoting neurotransmitter release at synaptic terminals.
However, in some cases, neurons may be morphologically and
dynamically different, e.g., they may not have a genuine axon,
and the cell’s basic functional aspects are undertaken by
dendrites (Goaillard et al., 2020). Spikes can also be generated at
dendrites, though their functional meaning is still poorly understood
(Larkum et al., 2022). Furthermore, dendritic trees are often thought
of as spatially extended systems consisting of passive cables, and
electric current’s spreading is understood in terms of cable
equations, but signal integration rules within such a system, how
they influence synaptic input processing, interact with different
forms of plasticity, and ultimately contribute to the brain’s
computational power are still poorly known matters (Héusser
and Mel, 2003). Moreover, evidence for the role of astrocytes in
synaptic integration and processing, and for tripartite synapses, a
configuration wherein astrocytes and neurons communicate
bidirectionally (Perea et al., 2009), further complexifies contact
area’s functional structure at single neuron scales. Finally, contact
areas are more complex to delineate at meso- and macroscopic
scales, where both node contours and links’ definition require
context-dependent assumptions (Korhonen et al.,, 2021).

3.3.2 Inhibition

A key aspect of neural activity whose relationship with network
structure remains difficult to incorporate is inhibition. Inhibition
plays important roles at essentially all neural scales (see
Supplementary Material A3). At the single neuron scale,
inhibitory inputs from distinct sources target specific dendritic
subdomains, from distal to proximal dendritic regions (Markram
et al,, 2004; Jadi et al., 2012). This region-specific targeting plays a
key role in controlling dendritic processes (Larkum et al., 1999;
Isaacson and Scanziani, 2011), in synchronising their activity
(Vierling-Claassen et al., 2010), and in regulating plasticity
(Sjostrom et al., 2008). Moreover, while excitation and inhibition
are not symmetric in the way they compete for spike generation,
inhibitory synapses are associated with high information transfer
between spike trains, which are usually exclusively ascribed to
excitatory synapses. At meso- and macroscopic scales, inhibition
plays a crucial role in synchronisation of neural systems (van
Vreeswijk et al, 1994). Inhibitory control of excitatory loops
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(Bonifazi et al, 2009) constitutes a generic organisational
principle of cortical functioning, which stabilises brain activity
(Griffith, 1963). For instance, inhibitory feedback can decorrelate
a network (Tetzlaff et al., 2012). Moreover, inhibitory neurons have
been proposed to play an important role in controlling the cortical
microconnectome (Kajiwara et al., 2021). On the other hand, while
evidence suggests that excitatory neurons form networks with non-
trivial structure, whose fine-scale specificity is determined by
inhibitory cell type and connectivity (Yoshimura and Callaway,
2005), inhibitory interneuron connectivity tends to be locally all-
to-all (Fino and Yuste, 2011).

Neurons’ collective dynamical regime, known as an
asynchronous state (Renart et al., 2010), characterised by sporadic
relatively uncorrelated firing with high temporal variability results
from the interplay between excitatory and inhibitory forces (van
Vreeswijk and Sompolinsky, 1996; 1998). Notably, such a balance
relies on the role of glial cells, particularly astrocytes (Turkheimer
et al.,, 2025).

Inhibition also constitutes an important ingredient for high-
precision computation. The maintenance of an excitatory/
inhibitory balance may allow cortical neurons to construct
high-dimensional population codes and learn
of their
mechanism far more precise than local Poisson rate codes
(Denéve and Machens, 2016).

How does inhibition affect network-related properties and the

complex

functions inputs through a spatially-extended

processes taking place on the network structure? First, inhibition
plays an important role in routing (Wang and Yang, 2018). Second,
it may affect network structure via plasticity mechanisms. In
particular, interneurons contribute to the induction of long-term
plasticity at excitatory synapses (Wigstrom and Gustafsson, 1985);
conversely, excitatory transmission modulates inhibitory synaptic
plasticity (Belan and Kostyuk, 2002). By modulating plasticity,
inhibition, inhibitory plasticity and connectivity play important
2021). For
inhibition controls the duration of sharp-wave ripples in
hippocampal
(Vancura et al., 2023), while inhibitory plasticity supports replay

functional roles (Pulvermuller et al., instance,

recurrent networks, which mediate learning
generalisation in the hippocampus (Liao et al., 2024). Furthermore,
inhibitory connectivity determines the shape of excitatory plasticity
networks (Mongillo et al., 2018). On the other hand, while neural
structure heterogeneity may locally affect the excitation/inhibition
balance, the balanced state may be recovered through homeostatic
mechanisms, which may themselves be regulated by inhibitory
mechanisms (Pretel et al., 2024). Likewise, it has recently been
shown that networks adapt to chronic alterations of excitatory-
inhibitory compositions by balancing connectivity between these

activities (Sukenik et al., 2021).

3.4 Multiscale and field-related properties

Up until now, we mentioned neural mechanisms which can be
mapped onto particular regions of a network structure. However,
other important neural mechanisms are not easily mapped onto
local network structure. Arguably the two most prominent are
neural mechanisms related to learning and adaptation and
neuromodulation.
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3.4.1 Learning, plasticity, and adaptation

Up until now, the focus has been on spatially local static or
steady-state properties of neural activity. However, neural
populations are able to change their properties in order to learn
and adapt to new challenges from the environment. For instance,
white matter is plastic and myelin can be modified in an activity-
dependent way (Talidou et al., 2022). This has important
implications for a number of neural parameters, e.g., delays, as
white matter governs transmission speeds along axons (Pajevic
et al, 2023). One important mechanism of brain plasticity is
represented Hebbian learning,

whereby the strength of

connections between neurons increases when they are
simultaneously activated (Hebb, 1949). Hebbian learning alone
would lead to dynamic instability and runway excitation
(Markram et al, 1997), and ultimately to complete circuit
synchronisation (Zenke et al., 2017). Dynamic stability can be
achieved in various ways, e.g., via homeostatic plasticity, through
which neurons control their own excitability, ultimately regulating
spike rates or stabilising network dynamics at various time scales
(Turrigiano et al., 1998; Cirelli, 2017). Homeostasis can be
implemented by various neurophysiological mechanisms, e.g., as
synaptic scaling or efficacy redistribution (Turrigiano et al., 1998),
membrane excitability adaptation (Davis, 2006; Pozo and Goda,
2010), or neuron-glial interactions (de Pitta et al., 2016). Synaptic
plasticity may occur not only at synapses active during induction,
but also at synapses not active during the induction. While these
two mechanisms operate on the same time scales they have
different computational properties and functional roles. The
former mediates associative modifications of synaptic weights,
while the latter counteracts runaway excitation associated with
Hebbian plasticity and balances synaptic changes (Chistiakova
et al., 2015).

Synaptic strength adjustment is only one among various
possible homeostatic regulation mechanisms. A critical role in
learning may also be played by suprathreshold activation of
neurons and their integration. Neuronal activity is determined
by excitatory and inhibitory synaptic input strength but also by
intrinsic firing properties, which are regulated by the balance of
inward and outward voltage-dependent conductances,
respectively stabilising average neuronal firing rates and
controlling shifts between synaptic input and firing rate
(Turrigiano et al., 1998).

Plasticity has been associated with the generation of complex
dynamical regimes in recurrent neural networks. For example,
synaptic facilitation and depression promote regular and irregular
network dynamics (Tsodyks et al.,, 1998). Plasticity at inhibitory
synapses can stabilise irregular dynamics (Vogels et al., 2011), while
synaptic plasticity based either on activity strength (de Arcangelis
etal., 2006; Levina et al., 2007, 2009) or on spike timing (Meisel and
Gross, 2009; Rubinov et al., 2011) can induce critical fluctuations
and phase transitions from random subcritical to ordered
supercritical dynamics (Rubinov et al, 2011). Although often
thought of as a purely local phenomenon, which would therefore
be best understood as pertaining to node-link contact area, there are
still considerable knowledge gaps regarding the spatial and temporal
scale at which Hebbian, homeostatic and other plasticity
mechanisms actually interact as well as their exact functional role

(Wen and Turrigiano, 2024).
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3.4.2 Neuromodulation

Neuronal activity is regulated at various spatial and temporal
scales by numerous chemical messengers, including
neurotransmitters, neuromodulators, hormones. These systems
are often thought of a pointwise as they originate in well-defined
brainstem and forebrain nuclei, and their effect is studied as a
generic perturbation of neuronal network. However, one should
distinguish ~ between the quasi pointwise structure of
neuromodulatory nuclei and the network-like structure of
neuromodulation’s consequences. these chemical messengers
exert their effects through complex networks of diverging and
converging pathways. For instance, different transmitters can act
through the same network. Moreover, the effects of transmitters
often depend on the presence of other transmitters and are
characterised by higher-order functional phenomena such as
metamodulation, whereby a modulator’s action is gated by that
of another modulator (Katz and Edwards, 1999). Of interest are then
not only the effects of each of these chemicals on the topological
properties of the neural network, but also those of the complex high-
order network of neuromodulators. How does global network
dynamics and functional space result from the multidimensional
input space of transmitters? Should neuromodulation be thought of
as an extrinsic structure? Does it have a network structure of its own
or should it be considered as a modulator of a system it is not part of?
If so, how should this interaction be modelled?

Neuromodulators have long been known to shape neural circuits
(Bargmann, 2012). More specifically, it has been proposed that
neuromodulatory systems enable the brain to flexibly shift
network topology (Shine et al, 2019; 2021) in a state and
activity-dependent way (Ito and Schuman, 2008; Sakurai and
Katz,  2009). whether

neuromodulatory systems interact with plasticity mechanisms to

However, and how  various
facilitate brain function is poorly understood. In particular, on what
type of network, what network property, how and at what scales do

neuromodulators act?

4 Fine-tuning network structure

In the previous part, we examined some neural properties that
are seldom included in neural network modelling particularly at
system-level scales. There is no clear picture of the information lost
by network models simplifying brain structure and dynamics and,
conversely, of the extent to which such network representations and
the phenomenology that they may produce are robust to detail
simplification.

Here we examine network structure that could explicitly
incorporate and account for key neural properties.
Understanding the brain as a networked system has at least two
important conceptual aspects. Equipping a system with a network
structure comes with a number of assumptions and corresponding
limitations. The conditions for reducibility to network structure,
including, discretisability, intrinsicality, structure preservation have
been discussed at length elsewhere (Korhonen et al., 2021; Papo and
Buldt, 2024). We provisionally assume that the system can
adequately be described as a networked system at least at some
level, but that the network structure used to model such a system

may fail to incorporate important aspects of its anatomy, dynamics
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and physiology. This implies that network structure is “relevant” to
some important aspect of the system, in particular to its dynamics
and function. Conversely, understanding the brain as a particular
network structure has implications for the system’s dynamics, for
the process taking place on it, and ultimately for its function. For
instance, the choice of a particular class of connectivity metrics
induces a corresponding change in combinatorial, topological and
geometrical properties of the associated network structure and phase
space geometry and, therefore, different phenomenology and
physics (del Genio et al,, 2016).

The following questions are addressed: how can network
structure be modified to incorporate network detail? What may
be the phenomenological consequences of such changes in network
structure? Can we account for more neural phenomenology by
changing network structure? Is there experimental evidence for a
given generalised structure? How robust is the system’s behaviour
with respect to changes in its basic structure? Assuming a simple,
undirected, unweighted and static network structure as the ground-
level, there are essentially three ways in which unaccounted for
neural properties can be addressed: 1) considering different
properties of the original structure, e.g, properties of the
connectivity matrix; 2) understanding the system as a network
structure with different allowed constituent properties; 3)
understanding the system as a qualitatively different network-
based structure.

4.1 Roads less travelled in standard network
neuroscience

4.1.1 Degrees of freedom

The general neuroscience problem of defining relevant neural
units and relevant degrees of freedom is replicated when equipping
the system with a network structure. At a network level, the
discretisation process may in principle be predicated upon
various properties, the identification of truly functional
constituent units in real space being only one of them.

In real space representations, the system’s degrees of freedom
are most often identified with nodes, irrespective of the scale at
which a network structure is defined, but particularly at system level.
On the other hand, in statistical mechanics, the system’s degrees of
freedom are identified with links, whereas the number of particles
play the role of volume in classical physical systems (Gabrielli et al.,
2019). In the corresponding dual networks, nodes are turned into
links and, conversely, links become nodes (Presigny and De Vico
Fallani, 2022). While these two networks are in some sense
equivalent, a link-based approach may for instance allow defining
fine-grained vasculature data at all length scales and therefore also
measuring blood flow conductance, current and inferring pressure
differences for each link (Di Giovanna et al., 2018; Kirst et al., 2020).

Another important aspect of network structure is that, however
defined, the degrees of freedom can have their own spatio-temporal
dynamics in real space (Korhonen et al., 2021). Thus, at the level of
dynamics and function, it may be appropriate to think of the system
as a fluid structure where both nodes and links may be non-
stationary (Solé et al., 2019). Nodes may appear or disappear,
merge as a result of physiological or pathological conditions at
various spatial and temporal scales or change their spatial location.
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For example, at subneural scales, spine motility (Bonhoeffer and
Yuste, 2002) may be thought of in terms of moving nodes. Nodes
may also constitute local subspaces in the codomain onto which they
are projected but may result from non-local subspaces of the domain
space. Similarly, the activity of neurons spiking at the same time can
be identified with the nodes of a network whose links are the
neurons themselves (Curto and Itskov, 2008; Morone and Makse,
2019; Morone et al., 2020).

4.1.2 Directionality and reciprocity

One property characterising neural activity seldom included but
that can readily be accounted for in a standard simple network
structure is flow directionality. Directionality may characterise both
real and phase space neural activity. In the latter case, brain activity
is thought of as discrete dynamical system, whose trajectories form a
directed network in state space, wherein each node, representing a
state, is the source of a link pointing to its dynamical successor.
Directed networks qualitatively differ from their undirected
in the
mechanics (Bogufia and Serrano, 2025), but also in important

counterparts system’s combinatorics and statistical
aspects of the dynamical processes such as synchronisation
(Muolo et al, 2022), pattern formation (Asllani et al, 2014),
phase-transitions (Fruchart et al, 2021). The presence of
asymmetric connectivity is associated with the emergence of
some important features: on the one hand, spontaneous activity
is characterised by time scales and corresponding oscillatory modes
different with respect to those emerging from symmetric
connectivity (Chen and Bialek, 2024). On the other hand, when
perturbed, systems with asymmetric connectivity undergo complex
transients, with time scales induced by different aspects of the
respect to those of symmetric

connectivity (Grela, 2017). Moreover,

connectivity matrix with
in the presence of
asymmetric interactions, fluctuations can get locally enhanced
before propagating through the system promoting collective
qualitatively changes in large scale collective behaviour in
globally ordered systems (Cavagna et al, 2017). This can be
explained in terms of frustration, which arises when competing
interactions prevent the system from finding a configuration that
minimises the total energy leading to a complex disordered state
(Vannimenus and Toulouse, 1977). Frustrated closed-loop motifs
disrupt synchronous dynamics, allowing the coexistence of multiple
metastable configurations (Gollo and Breakspear, 2014; Saberi
et al., 2022).

More generally, directed links metrics induce different physics.
While symmetric connectivity readily accounts for equilibrium
systems, asymmetric coupling matrices are associated with open
out-of-equilibrium systems, where detailed balance is broken
(Nartallo-Kaluarachchi et al, 2024). Such systems exchange
energy with the external environment, allowing effects such as
gain and loss, and non-reciprocity (Bowick et al,, 2022). In many-
body systems, non-reciprocity leads to the dynamical recovery of
spontaneously broken continuous symmetries (Fruchart et al,
2021). Conversely, non-reciprocal coupling per se usually implies
non-zero energy and information flows (Loos and Klapp, 2020).
This has not only theoretical but also methodological implications.
For instances, choices associated with links and the way these are
constructed, e.g., hybrid reconstruction with space- and time-
varying properties, represent not only a technical but also a
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theoretical challenge, in that they induce spaces with non-trivial
geometries and corresponding physics.

4.1.3 Beyond network topology

Brain modelling typically focuses on combinatorial and
topological properties, neglecting neural networks’ physical
aspects. The underlying space is treated as a topological space,
ie, a set of objects equipped with a set of neighborhood
relations and no usual metric needs to be defined. It is therefore
effectively treated as a non-metric space. In such models, nodes and
links are treated as dimensionless entities. However, the physical size
of neural material affects network geometry at all scales. The fact
that physical wires cannot cross imposes limitations on the system’s
structure (Bernal and Mason, 1960). In particular, the path chosen
by neural fibres may be characterised by tortuosity as a function of
node and link size and density (Dehmamy et al., 2018). Thus, the
system’s structure is ultimately determined not only by operators
associated with the connectivity matrix, but also by the network’s
3 D layout (Cohen and Havlin, 2010). For a given network adjacency
matrix, there is an infinite number of configurations differing in
node positions and wiring geometry, those of which that can be
bijectively mapped into one another through continuous bending,
and without link crossings forming isotopy classes (Liu et al., 2021).
The geometry of connectivity may have an important impact on
cortical dynamics and function (Knoblauch et al, 2016). For
instance, lobal brain activity patterns may result from excitations
of brain geometry’s resonant modes, which may better capture
important properties of spontaneous and stimulus-induced
activity with respect to connectivity-based models disregarding
neural surface’s geometry (Pang et al., 2023). Thus, methods may
be needed which can distinguish between topologically equivalent
manifolds with different geometries (Chaudhuri et al., 2019).

The no-crossing condition also affects the system’s mechanical
properties. While at low densities the system displays a solid-like
response to stress, for high densities it behaves in a gel-like fashion
(Dehmamy et al., 2018). The brain’s mechanical properties play a
critical role in modulating brain anatomy, dynamics and ultimately
function (Goriely et al., 2015). Due to its softness, brain tissue
displays a range of mechanical features: it is essentially elastic for
small deformations (Chatelin et al., 2010), but inelastic and
deformation rate- and time-scale-dependent for large ones
(Fallenstein et al., 1969).

Overall, numerous questions are still to be fully addressed:
what’s the relationship between topology and geometry in
anatomical networks? In particular, to what extent does topology
determines geometry? How do the geometric constraints on wiring
affect brain structure, dynamics, development, evolution, functional
efficiency and robustness to various sources of damage?

4.1.4 Learning rules and adaptative networks

One way in which neural populations adapt to environmental
challenges is by changing their configuration. At time scales longer
than those of sensory-motor processes, this typically involves
plasticity mechanisms. At the algorithmic level, homeostatic
plasticity mechanisms constitute slow negative feedback loops
(Zierenberg et al., 2018). Various studies incorporated simple
plasticity mechanisms into large-scale network models, showing
that this may affect network topology (Avalos-Gaytan et al., 2012;
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2018) and give rise to rich dynamical phenomena including
intermittency (Skardal et al.,, 2014), multistability (Chandrasekar
et al., 2014) and criticality (Magnasco et al., 2009) or explosive
synchronisation (Avalos-Gaytan et al., 2018).

From a network viewpoint, various questions are still
unresolved: on what network aspect (including at what network
scale) does plasticity operate? What algorithmic properties do
plasticity mechanisms possess? Is the system adaptive, ie., are
there feedback mechanisms connecting topology to dynamics? If
so, how do they affect function?

4.2 Beyond ground-level network structure

If the simple network structure fails to incorporate essential
properties of neural anatomy and dynamics, its modelling power
should be addressed by allowing structures with different properties
and appreciating the changes that these may produce. Insofar as the
simple network structure can be thought of as a ground level of
network structure, new network classes can be obtained by relaxing
some of its properties.

4.2.1 Recurrency and feedback loops

A set of anatomical properties of neural circuits generally not
incorporated in standard system-level network representations is
represented by recurrency. In terms of network properties this
translates into self-loops, ie., links connecting a node to itself,
and cycles, ie., closed paths with the same starting and ending
node (Douglas and Martin, 2007; Fan et al., 2021). Recurrent
interactions play a major role in dynamics, leading to chaotic
dynamics (van Vreeswijk and Sompolinsky, 1996; Pernice et al.,
2011; 2013). Moreover, feedback loops are an essential ingredient in
both dynamics and computation (Alon, 2007; Zafudo and Albert,
2013). For instance, multistability and sustained oscillations
respectively require positive and negative feedback loops
(Thomas, 1981).
(Markovi¢ et al., 2020) with recurrent connectivity, including

Moreover, various neuromorphic devices
liquid and solid state machines, echo-state networks, and general
deep neural networks (Maass et al., 2002), and physical reservoir
computing devices exploiting physical systems dynamics as devices
(Tanaka et al., 2019) display information-processing capabilities. In
such devices, multiple recurrently connected dynamical systems are
used to implement nonlinear mappings of input signals into a high-

dimensional state space using.

4.2.2 Higher-order network structure

Perhaps the most natural generalisation of network structure
consists in changing its combinatorial properties by relaxing the
pairwise (dyadic) character of connectivity (Lambiotte et al., 2019;
Battiston et al., 2020; 2021; Bianconi, 2021; Bick et al., 2023). This
may be done in various ways (See Supplementary Material A4).
While in standard networks interactions are associated with links
connecting two nodes, graphs can be generalised to include
hyperlinks, i.e., links connecting more than two nodes (Ghoshal
etal., 2009). Interactions could also in principle involve structures of
different orders. Simplicial complexes allow defining interactions
across orders (nodes, hyperlinks or simplices) (Giusti et al., 2016). In
simplicial complexes, state variables used to describe the dynamical
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system can be associated with structure at any order. Thus, for
instance, the state of a link can influence not only the state of its
associated nodes, but also that of the higher-order interaction
structures it belongs to, and such a system’s overall dynamics
ultimately results from the time-varying interactions across all
orders. Moreover, a node may regulate the interaction between
two other nodes, either facilitating or inhibiting it (Sun et al., 2023;
Niedostatek et al., 2024).

Higher-order topology has an important role in determining
both dynamical and functional network properties. For instance,
the dynamical ordered state has minima corresponding to single
homology classes of the simplicial complex (Milldn et al., 2020).
Furthermore, coupled oscillator networks have fixed points
consisting of two clusters of oscillators that become entrained
at opposite phases and which can be thought of as configurations
with information storage ability. Topology determines the small
subset of the fixed points which are stable (Skardal and
Arenas, 2020).

What experimental evidence is there for or against the existence
of such a structure in neural systems? The structural aspects of
higher-level interactions in the network structure of brain dynamics
have long been addressed. Early studies suggested that real space
neural activity may almost completely be explained in terms of
pairwise correlations (Schneidman et al, 2006; Merchan and
Nemenman, 2016). However, this experimental result could
crucially hinge on the overall size of the considered cell
population, and higher-level correlations may be necessary to
account for larger populations’ neural activity (Yeh et al., 20105
Ganmor et al,, 2011; Giusti et al., 2015; Reimann et al., 2017).
Experimental evidence suggests that dynamical correlations between
pairs of neurons are more significant when these belong to higher
dimensional structure (Reimann et al., 2017), although recent results
suggest that brain activity is dominated by pairwise interactions
(Huang et al.,, 2017; Chung et al., 2025). In phase space, a higher-
level structure may be induced by the intersection of place fields of
neurons firing within the same theta frequencies cycle. Under
certain conditions of the place fields, the homology of the
simplicial complex induced by the intersections is equal to that
of the underlying space, so that this structure effectively constitutes a
faithful internal representation of the stimulus space ignoring finer
phase-modulated spike timing effects (Curto and Itskov, 2008).
Place field intersections also induce a metric providing relative
distances between cell groups. This yields a faithful geometric
of the
independent of the specific nature of the place fields.

representations external physical space somehow

On the other hand, the interactions between structure of
different dimensions in principle afforded by a truly simplicial
structure, have not been investigated in earnest yet. In a spatially
embedded physiological context, this would almost necessarily
involve cross-talk between dynamics at different spatial but also
temporal scales.

Supposing that neural systems indeed present significant non-
dyadic structure, for instance that higher-order dynamical systems
do not result from some coordinate transformation of dyadic
network dynamical systems (Bick et al, 2023), what is the
neurophysiological meaning of such a class of structures? Can
computation be performed in such structures? If so, which ones?

How is it implemented by neural systems?
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But what does this structure say about the mechanisms
underlying  its  emergence and  generating  observed
phenomenology? On the one hand, it has been pointed out that
high order structure of the system’s emergent properties does not
necessarily require high-order terms in the underlying dynamical
law or in the Hamiltonian, and that even high-order methods relying
on pairwise statistics (e.g., simplicial complexes built from a
correlation matrix) may miss significant information only present
in the joint probability distribution but not the pairwise marginals
(Rosas et al, 2022; Robiglio et al, 2025). On the other hand,
observed phenomena are not always a good proxy for the
underlying generating mechanisms. In particular, the presence of
statistical synergy does not imply genuinely non-decomposable
interactions per se, as observable patterns may emerge from
additive dynamics and pairwise interaction sequences, and even if
complex collective behaviour can in principle involve irreducibility
it often does not (Ji et al., 2023).

Structural descriptions based on higher-level generalisations
face the standard problem in network modelling, i.e., mapping
the network structure on appropriate aspects of the system, but,
in spite of the restriction on the admissible contiguity laws, have an
otherwise rather intuitive meaning, both in real and in phase space.
On the other hand, dynamical descriptions are more problematic.
For instance, while it is reasonable to assume that neural
computation resorts to some form of discrete calculus and that it
may integrate information across scales, it is not straightforward to
understand neural dynamics and function in terms of standard
exterior calculus and co-boundary operators. Furthermore, it is not
clear to what extent brain dynamics presents meaningful
interactions across structures of different dimensions.

4.2.3 Generalised interaction types

A further network structure generalisation consists in allowing
multiple types of interactions between nodes (De Domenico et al.,
2013; Boccaletti et al., 2014; 2023; Kiveli et al., 2014; Bianconi, 2018).
In this class of structures, nodes may exist at different layers, with a
connectivity structure in principle independent at each layer. Intra-
layer links belong to the same layer and inter-layer links connect the
projections of the nodes at different layers (See Supplementary
Material A5). The layers of a multiplex network can account for
different interaction phenomena such as information transfer or the
ability to synchronise (De Domenico, 2017; Buldt and Porter, 2018).
Moreover, at least prima facie, this class of structures appears as a
natural representation of interdependencies among different
systems (both within and without the brain) and can therefore be
used to assess properties such as stability (Bonamassa et al., 2021),
robustness and vulnerability (Buldyrev et al., 2010; Gao et al., 2011;
De Domenico et al., 2014), or to understand the nature of
interactions, e.g., competition (Danziger et al, 2019). Such a
structure can highlight the role of connectivity, particularly of
connector nodes in the modulation of bare dynamics or of
processes unfolding on the network (Aguirre et al., 2013; 2014;
Buldu et al., 2016). Not only does the interaction of a given subgraph
with other nodes in the network affect whether that subgraph
corresponds to a fixed-point support (Morrison and Curto,
2019), but the type of node (peripheral or central) acting as
connector between subnetworks affects dynamics and processes
in each of them (Aguirre et al, 2013; 2014). Note that this
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construct is not different from that of a standard network but rather
a change in the way the relation matrix is segmented.

Unpacking information that may be hidden in standard
collapsed representations (Cardillo et al., 2013; Zanin, 2015) may
better account for interdependencies of interacting units within
single network units and may reveal structural and dynamical
properties of biological networks, for instance synchronisation
properties which may be opposite to those operating in isolated
networks (Aguirre et al., 2014).

Multilayer networks may naturally account for the layered
structure of cerebral and cerebellar cortices (Huber et al.,, 2021)
but also for interactions between neural populations in the cerebral
cortex and separable subsystems such as the neuromodulatory
system (Brezina and Weiss, 1997; Brezina, 2010), as well as the
relationship between neural and extrinsic systems, e.g., the heart or
the breathing system, as in a network physiology approach (Bashan
et al,, 2012). A multilayer (and multiplex) interaction structure has
also been associated with the interactions between brain regions at
different frequency bands, each band corresponding to a different
layer of a multiplex/multilayer network undetected when averaging
activity across layers (De Domenico, 2017; Buldt and Porter, 2018).
Furthermore, various results point to the possibility of using
multilayer brain networks as biomarkers of brain degenerative
diseases such as Parkinson’s disease, mild cognitive impairment
of Alzheimer’s disease (De Domenico et al., 2016; Echegoyen et al.,
2021; see (Papo and Buldu, 2025a for a full discussion on network
structure’s role in disease).

A subclass of multilayer networks is represented by temporal
networks, wherein each layer corresponds to the structure at a
particular step, layers through
unidirectional time-ordered links (Holme and Saramiki, 2012).

time and are connected
In temporal networks, nodes are related to each other via causal
or time-respecting paths (Holme, 2015), and dynamic interactions’
complex temporal structure may lead to history-dependent paths
with long-term memory (Scholtes et al, 2014). Higher-order
dependencies between nodes imply that causal paths can be more
complex than those induced by static and aggregated networks and
can affect topological network properties, e.g., node centrality
(Scholtes et al., 2016), or community structure (Rosvall et al,
2014; Peixoto and Rosvall, 2017), dynamical processes, e.g.,
diffusion and dynamical processes (Ghosh et al., 2022) and the
controllability (Zhang et al., 2021; Li et al., 2017).

At long time scales, brain fluctuations are characterised by non-
trivial dynamical and statistical properties such as intermittency, scale
invariance and long-range temporal correlations (Novikov et al., 1997;
Allegrini et al., 2010; Fraiman and Chialvo, 2012; Papo, 2014).
Multilayer temporal networks may capture non-trivial higher-order
cross-order interactions, including cross-memory among neural
populations, with complex fluctuating dynamics and nucleation or
coalescence of neuronal populations (Gallo et al., 2024). However,
whether such a symmetry breaking is present in brain activity and its
functional meaning is still poorly understood.

4.3 Beyond single networks

Relaxing simple network properties gives rise to generalised
possibly associated with profoundly different phenomenology but in
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some sense similar networks. However, the brain could be endowed
with a structure that does not stem from property relaxation, and
that may be qualitatively different from that of a simple network,
ultimately changing the very essence of brain networkness.

4.3.1 From single networks to network ensembles
and sequences

In essence, most network models of brain activity constitute field
theories studying the time evolution of relevant variables measured
at each point in time and on a finite number of points in space
(Mikaberidze et al., 2025). Insofar as the relevant field variables are
inherently fluctuating quantities, it is natural to describe the
probability of field states in terms of ensembles incorporating the
uncertainty about the system’s state or, equivalently, describing the
system’s possible states and their structure.

Rather than focussing on the relational structure to learn about
the topological and geometrical network properties of neural
systems, a useful representation may highlight the statistical
properties of relations. Networked structures are then described
by statistical models that specify a probability distribution over a set
of graphs, e.g.,, a probability of observing a given set of relations
(Dichio and De Vico Fallani, 2022) and the quantities of interest are
(See
frequency with which

the set of properties of such spaces (Kahle, 2014)
A6). The
topological properties appear and their significance are explained
in terms of probability distributions. Thus, the system is

Supplementary Material

characterised not only in terms of topological invariants but also
of their scaling properties, e.g., with system size or dimension. This
framework’s dynamical counterpart is represented by the path-
integral approach, where the system’s dynamics is represented by
weighted sums of all possible paths the system can take. In a
conceptually similar approach, each node can be understood as a
superposition of multiple states (Ghavasieh and De
Domenico, 2022).

The shift between single network to network ensembles
highlights various aspects corresponding to different cuts into the
relevant space. First, the relevant structure is not that of single
realisations of a process (or of averaged or steady-state equivalents)
or of a specific scale or scale range. These structures induce an
effective thermodynamics, whose thermodynamic potentials and
their non-analytical points identify corresponding phase transitions
(Meshulam and Bialek, 2025). Second, proper brain structure and
function representations may contain a relationship between these
representations. This can be thought of in various ways, e.g., in terms
of the minimum and maximum coupling levels, which act as energy
levels in Hamiltonian systems (Santos et al., 2019), below and above
which topological invariants vanish (Santos and Coutinho-Filho,
2009) or as the limit of a sequence of graphs, e.g., a graphon (Lovész
and Szegedy, 2006) and effectively treated as a dynamical system
(Bick and Sclosa, 2024).

4.3.2 Models of network models

A more fundamental way to understand relationships across
scales consists in conceiving of the network structure as an effective
field theory of brain structure and dynamics, i.e., a description of a
system’s physics at a given scale up to a certain level of accuracy,
using a finite number of variables that parametrise unspecified
information in a useful way (Georgi, 1993) (See Supplementary
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Material A7). Indeed, in both anatomical and dynamical brain
network representations, nodes and links, which constitute the
microscopic scale of a network representation at a given scale,
can always be understood as resulting from renormalisation of
neurophysiological properties at lower scales and each degree of
freedom effectively constitutes a kinetic model of phenomena at
lower scales. Particularly at meso- and macroscopic neural scales,
each node is then an asymptotically stable invariant subset of the
phase space (in the simplest case a fixed point) in a renormalisation
flow across scales.

Renormalisation theory shifts the focus from the investigation of
the outcomes of a given model to the analysis of models themselves,
by relating models of the same system at different scales along a
renormalisation trajectory or grouping models of different systems
sharing the same critical behavior and exhibiting the same large scale
behaviour (See Supplementary Material A7). The renormalisation
framework highlights scale-dependence of interactions in a
systematic way and allows investigating the level at which non-
random structure emerges, the relationship of such structure with
the one present at other levels and ultimately the possible ways in
which spatio-temporal patterns are converted into macroscopic
dynamics and function.

Network sequences induce corresponding spaces with rich non-
random structure. At each renormalisation flow stage, one may
consider the coarse-grained structure emerging above the level of
individual nodes in the system’s hierarchical organisation, whose
nodes correspond in some sense to communities, and whose links
represent members shared by two communities (Pollner et al,
2006). The presence of structure at various scales (not all of
which ought to be functionally meaningful) reflects a property of
biological systems, which may present different out-of-equilibrium
properties at different scales, or equilibrium properties at certain
scales but not at others (Cugliandolo et al., 1997; Egolf, 2000).

The renormalisation flow can be understood as dynamics on the
space of field models, and it is important to understand the extent to
which it operates in a functorial, structure-preserving manner,
linking different field models and their properties, i.e., how it
preserves properties not only of its space components but also of
maps between them (Ghrist, 2014) (See
Material A8).

Note that brain network renormalisation typically dispenses

Supplementary

with the treatment of infinities involved in the transition between
essentially continuous anatomical or dynamical fields, and network
structure. This mapping is dealt with through discretionary steps the
consequences (Korhonen

et al.,, 2021).

of which are poorly understood

4.3.3 Emergence of network structure
and function

It is straightforward to understand network ensembles and
sequences in terms of structure emergence. The structure’s
statistical properties emerge naturally from constrained entropy
maximisation, each constraint giving rise to different models
(Radicchi et al, 2020) a reasonable model at long, e.g,
evolutionary time scales (See Supplementary Material A9). In this
vein, for example, mean-field representations can be thought of as
maximum entropy models for the topology of direct interactions,
whereas network models as that of paths (Lambiotte et al., 2019).
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More generally, a system’s organising principles can be thought of as
the result of underlying non-equilibrium growth and development
mechanisms (Betzel and Bassett, 2017).

Renormalisation, the most

perhaps
representation of emergence at any scale, is usually understood as

general conceptual
an analytical tool to highlight neural structure (See Supplementary
Material A9). In this context, coarse-graining has two contrasting
effects: on the one hand, it is necessarily associated with information
loss. On the other hand, it reduces noise and increases the strength of
relationships, so that structure may emerge far from the micro-scale,
where macro-states have stronger dependencies (Hoel et al,, 2013).
Emergent behaviour can be transient, context-dependent and non-
local in real space or time (Varley, 2022), and behaviour at one scale
may not be well predicted by behaviour at a finer scale (Wolpert and
MacReady, 2000). Moreover, causality may be circular, with large
scale behaviour dictating the one at lower scales (Haken, 2006b) (See
Supplementary Material A9). The following important questions are
often addressed: what makes a neuronal unit reducible to a node?
Can coarse-graining allow neglecting hardware heterogeneity, e.g.,
glial cells? What structure does the renormalisation flow preserve?
To what extent is functionally relevant information retained or lost
in coarse-graining?

Renormalisation can also be thought of as a genuinely
functional neural process. In this sense, network structure
emergence can be distinguished from the emergence of
function. Function emerges from one particular coarse-graining
procedure (which may not necessarily correspond to real space
renormalisation) (Bradde and Bialek, 2017). For instance, in the
sensory domain, network structure constitutes the nerve covering
induced by boundary conditions emerging from dynamical
annealed disorder associated with neuronal populations’
receptor fields (Curto, 2017). In this framework, nodes and
links are emergent properties, rather than a structure a priori
(See Supplementary Material A9). Likewise, geometry can be seen
as an emerging property of single neurons’ physiology and of the
functional architecture through which these local properties are
renormalised. Whether the emerging structure is fundamental or
a manifestation of a more primitive, pre-geometric reality
(Bianconi et al., 2015) depends on whether it has functional
value or not.

The corresponding questions are: how does behaviour emerge
from its spatio-temporal dynamics? If renormalisation represents
to what do
representations depend on the specific renormalisation process?

how function emerges, extent appropriate

5 Pathways for network neuroscience

In addressing possible future avenues for a network

understanding of the brain great emphasis is typically put on
improving experimental techniques, for instance, electron
microscopy reconstruction is expected to significantly improve
scope  with  respect

techniques and may help

accuracy  and to  traditional

electrophysiological constraining
computational models (Litwin-Kumar and Turaga, 2019) and on
mathematical and physical modelling and in data analysis
techniques (Goodfellow et al., 2022). However, advances may

come from better knowledge concerning fundamental aspects of
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brain functioning and, from changes in some conceptual aspects of
the network-brain association at the heart of network neuroscience.

Here we discuss three main conceptual axes along which
network neuroscience may evolve: (i) the use of function to
gauge brain models; (ii) how network theory should help in
advancing neuroscientific knowledge and conceptual apparatus;
(iii) how phenomenology is explained.

5.1 Gauging structure through function

One of the most fundamental endeavours of network
neuroscience is to understand how network structure is related to
brain function (Ito et al., 2020). Thus, network structure can be
associated with some fitness for specific tasks. While not all observed
structure has functional meaning, and not all observed features
optimise function but may instead be a byproduct of the way the
network evolved (Solé and Valverde, 2020), without a proper theory
of its function it is in general arduous to explain observed anatomical
and dynamical structure and generative models are
underdetermined both at experimental and at longer time scales
(Doyle and Csete, 2011). Brain networks and the dynamical
processes occurring on them are to a large extent the result of
evolutionary, learning and adaptation processes, through which the
brain solves computational problems necessary for survival, which
in turn arbitrate trade-offs among available resources. Classical
statistical physics approaches do not incorporate the notion of
function, partly due to the fact that large non-biological
disordered systems such as glasses do not arise through
evolutionary processes (Advani et al., 2013).

The relationship between structural properties, e.g., topology,
and function may suggest features essential to appropriate
phenomenological models. For instance, if function and
functional dynamics are respectively associated with some
structural universality class and topological phase transitions,
ie, qualitative changes in topology, then this should be
accounted for and a corresponding physiological mechanism
should be found. While altering the microscopic scale affects the
resulting physics, the question is not only whether the associated
phenomenology constitutes a good descriptor of brain dynamics and
function but also whether there are elements suggesting its
plausibility.

The relationship between brain structure, dynamics and
function is in many ways a complex one. First, the properties of
a networked dynamical system do not trivially stem from either local
dynamics or network structure alone, but from the interaction of the
two (Curto and Morrison, 2019). Second, while deterministic
macroscopic order can govern function, e.g., learning, such
structure can arise in ways that are independent of the details of
network heterogeneity (Advani et al., 2013). Third, while tens of
neurons may be sufficient to identify the network’s dominant
variability modes (Williamson et al, 2016), a given network’s
function can vary in a context-dependent way (Biswas and
Fitzgerald, 2022), although different structures tend to be optimal
for different tasks. For instance, information flow and response
diversity are optimised by different circuits (Ghavasieh and De
Domenico, 2024). Conversely, different networks can give rise to

similar function. Overall, how network structure contributes to
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neural networks’ dynamical and functional properties such as
sloppiness and degeneracy (Gutenkunst et al., 2007; Machta et al.,
2013) is still poorly understood (See Supplementary Material A10).
Fourth, structural complexity does not necessarily lead to functional
complexity, e.g., to heterogeneous responses to perturbations.
Functional heterogeneity is in general a genuine emergent
property which cannot be deduced from the system’s structural
properties e.g., structural heterogeneity or dynamical properties
(Ghavasieh and De Domenico, 2022), and which can give rise to
rather non-trivial phase space configurations (Stadler and Stadler,
2006) (See Supplementary Material A10). Ultimately, which aspects
and properties of network structure are necessary in a brain model
and, as a result, which methods should be summoned to represent
them (Giusti et al., 2015; Curto, 2017) depend on the properties of
such mapping.

Finally, while a network’s function can help understanding both
its structure and complex dynamics (Chen et al., 2006; Lau et al.,
2007; Sterling and Laughlin, 2015), function itself may not always be
obvious a priori and may have a non-trivial relationship with bare
dynamics (Papo, 2019a). The general dearth of neural, particularly
functional stylised facts induces a circularity of functional brain
networks: the incomplete knowledge of the algorithmic and
implementation aspects of neural computation, even at single
neuron scales (Moore et al,, 2024), biases the segmentation at
microscopic scales, giving rise to network structure that is not
necessarily functionally meaningful. sometimes, models contain
which which
plausible. For instance, network structure dynamics could be

mechanisms incorporate  properties appear
understood as emerging from a non-equilibrium dynamics
similar to that of the network geometry with flavour growth
model, where the flavour parameter may appear a good
candidate model for neuromodulation (Bianconi and Rahmede,
2015; Bianconi, 2015). Often models also aim at replicating some
of the system’s ostensible generic statistical or dynamical properties,
e.g., its scaling of fluctuations. However, often these can arise in
rather different ways (Morrell et al., 2021), and their functional
properties are in general not directly tested but only inferred based

on prior knowledge.

5.1.1 Universality

In some sense, understanding how robust network structure is
with respect to both biological detail and network specification is a
question germane to the issues of neural functional equivalence and
switching. Indeed, universality constitutes a form of robustness
(Lesne, 2008). Moreover, from a functional viewpoint, an
important question is the extent to which function is robust to
changes in structure. A nested question is related to the scale-
dependence of such relationship, ie., the scales at which the
structure-function map induces qualitative changes.
in the
structure’s role in the brain is the extent to which dynamical

A fundamental issue determination of network
emergence is a property of network structure, e.g., topology,
independently of the specific properties of node dynamics. On
the one hand, emergent dynamics is not necessarily inherited from
intrinsically oscillating nodes or induced by the characteristics of
forcing stimuli but may arise from the coupling structure
(Morrison et al., 2024). This is for instance the case of

threshold-linear networks (Morrison and Curto, 2019). On the

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1667656

Papo and Buldu

other hand, empirically observed fluctuation scaling properties can
be achieved by imposing specific nodal properties, e.g., a particular
type of neuron excitability (Buendia et al., 2021). This could for
instance be implemented by neural apparatus in which the global
coupling strength would be normalised by the average coupling
strength per node, so that the dynamics would be invariant under
scaling of the adjacency matrix, sterilising the role of the network
from the specific properties of the nodes (Nishikawa and
Motter, 2016).

In a statistical physics sense, universality reflects the fact that
many systems possibly differing in their microscopic properties,
can nonetheless be classified into a small number of universality
classes defined by their scaling exponents, which quantify a system’s
relationship between different scales (See Supplementary Material
A7). Universal relations arise when the changes caused by
modification of microscopic parameters

are effectively

summarised by a small number of phenomenological
parameters (Goldenfeld et al., 1989). Complex systems such as
the brain may exhibit instability of renormalisation, i.e., may fail to
converge to a stable fixed point, within a topological class,
comprising systems or states sharing the same fundamental
topological properties, even for combinatorics
(Martens and Winckler, 2016).

While the temporal structure of avalanches shows signs of

stationary

universality (Friedman et al, 2012), one important question is
that of determining how network properties may contribute to its
emergence. In correlated inhomogeneous structures, universal
behaviour is comparable to the one characterising continuous
field theories of system with non-integer dimension, and the
relevant control parameter for universal behaviour
inhomogeneous structures is the spectral dimension (Millin

et al., 2021).

on

5.2 A neuro-inspired network science

What does network structure tell us about fundamental
properties of brain dynamics and function? Can we express how
efficiently the brain carries out its functions or how it can withstand
environmental challenges, possibly changing as a result of them, in
terms of network structure?

For many systems it is natural to relate properties such as
robustness and efficiency to the topological properties of its
network structure (Ma et al, 2009; Estrada et al, 2012; Faci-
Lazaro et al., 2022). However, there is no guarantee that the way
efficiency and robustness (or, equivalently, resilience and
vulnerability) are usually defined (Kitano, 2002; 2007; Lesne,
2008; Liu et al, 2022; Schwarze et al.,, 2024) is actually a good
indicator of functional robustness (Papo and Buldu, 2025a).
there
properties that may covary with functional robustness and of the

Furthermore, is little knowledge of the topological
relationship between robustness, degeneracy and evolvability in the
brain (Wagner, 2008; Masel and Trotter, 2010; Whitacre and
Bender, 2010; Whitacre, 2012). Future research should quantify
properties such as robustness and efficiency in a way that is
functionally meaningful (Levit-Binnun and Golland, 2012; Papo
and Buldu, 2025a). This will imply a conceptual effort and perhaps
the adoption of meaningful metaphors.
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5.3 From causal to topological explanations

A fundamental question not often addressed is whether network
properties can be used to explain neural function.

Causal explanations are thought of as essential to the scientific
method (Livneh, 2023). Causal explanations account for observed
process or performed function in terms of chains of causal factors or
interactions bound by spatio-temporal continuity and statistical
relevance (Van Fraassen, 1977). However, in systems with a great
number of non-linearly and non-locally interacting units such as the
brain, causal chains may be difficult both to observe and to define, as
global parameters emerging from the intrinsic interactions among
the individual parts of the system may in turn govern their
behaviour (Haken, 2006a; b). Alternative types of explanation are
often thought of as satisfying accounts of observed phenomena. For
instance, mechanistic aim at

explanations highlighting

neurophysiological ~mechanisms i.e., “entities and activities
organised in such a way that they are responsible for the
phenomenon” (Illari and Williamson, 2012).

Results from research fields ranging from condensed matter
physics (Thouless et al., 1982; Bowick and Giomi, 2009), to quantum
computing (Collins, 2006) and data mining (Rasetti and Merelli,
2015) indicate that complex system’s phenomenology can be
explained in topological terms (Huneman, 2010; Kosti¢, 2018;
Tozzi and Papo, 2020). Topological descriptions may help
establishing under what conditions network structure, and under
which conditions network structure is relevant, and predicting and
acting upon brain activity (Papo, 2019b). While various factors,
including function and energetics may account for structure and
dynamics, a still rather poorly understood question is the extent to
which structure, particularly topology, explains or constrains

function, or rather constitutes a mere by-product of it.

6 Concluding remarks

We discussed on the one hand ways to add detail to neural
structure, which is typically drastically simplified in standard network
neuroscience models of brain anatomy and dynamics and, on the
other hand, possible alternative network structure classes and the
potential benefits that these may offer in terms of ability to account for
known neural phenomenology or to reveal as yet unknown one,
distinguishing between computing different properties of a standard
network structure and changing the structure itself.

In essence we addressed two dual questions: to what extent does
adding biological detail qualitatively change network models of brain
activity? How universal is network structure? Appropriate
phenomenological descriptions of a system always contain a
universal part and a few detail-sensitive constants (Goldenfeld et al.,
1989). The quest for the appropriate level of detail characterises the
study of most complex biological systems. In some sense,
understanding the brain as a networked system boils down to
determining whether a statistical mechanics approach makes sense
and at which scales details matter (Cavagna et al., 2018). In network
neuroscience, it is important to understand to what extent network
structure not explicitly incorporating the important neural properties
mentioned hitherto nonetheless recovers good approximations of
brain structure, dynamics and ultimately function.
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What can generalised structures change with respect to
different
phenomenology, generalising network structure can provide with

standard, network models? Over and above
different ways to conceive of brain anatomy, dynamics and function

and, more fundamentally, to explain neurophysiological
phenomena. However, generalised structures face the same
fundamental issues related to intrinsicality, universality (intended
as robustness to changes in neurophysiological detail), and
functional meaningfulness of standard network models: is
structure intrinsic? If so, how does it allow the system to carry
out the functions it is assigned? What aspect of the neural system’s
network structure is functionally meaningful? To what extent is such
a structure universal? How can we decide whether a given structure
is a mere extrinsic description or can be thought of as part of its
intrinsic modus operandi? While whether there exists an appropriate
structure representing a given dynamical system may be a question
of context (Bick et al., 2023). Answering these fundamental
questions will require incorporating function but also a better
characterisation of neurophysiological stylised facts and of the
structure-dynamics-function relationship.

Finally, throughout, we mainly discussed the extent to which a
network representation reflects the way the system may work, rather
than how such a structure allows investigating it theoretically or
experimentally. The method used to investigate a system (e.g., the
process used to explore a network) and the functions that the system
actually implements are somehow intertwined and often equated,
and so are a given structure’s information content and the dynamical
aspects that this structure supports. For instance, a given space
parametrisation may be expedient in a particular context, but may
not reflect the system’s underlying functional geometry, affording an
extrinsic embedding-dependent view of the true underlying space
(Pennec, 2006; Lenglet et al., 2006). In the space underlying a given
representation, the allowed operations may also not reflect the
computations performed by the system. Likewise, while a given
structure may be associated with a certain amount of information,
that does not entail that such information is actually transferred or

computed or that it is functionally relevant.
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