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Introduction: In this work, we introduce a novel approach to one of the historically
fundamental questions in neural networks: how to encode information? More
particularly, we look at temporal coding in spiking networks, where the timing of a
spike as opposed to the frequency, determines the information content. In contrast
to previous temporal-coding schemes, which rely on the statistical properties of
populations of neurons and connections, we employ a novel synaptic plasticity
mechanism that allows the timing to be learnt at the single-synapse level.
Methods: Using a formal basis from information theory, we show how a phase-
coded spike train (relative to some reference’ phase) can, in fact, multiplex multiple
different information signals onto the same spike train, significantly improving overall
information capacity. We furthermore derive limits on the channel capacity in the
phase-coded spiking case, and show that the learning rule also has a continuous
derivative in the input-output relation, making it potentially amenable to classical
learning rules from artificial neural networks such as backpropagation.

Results: Using a simple demonstration network, we show the multiplexing of
different signals onto the same connection, and demonstrate that different
synapses indeed can adapt using this learning rule, to specialise to different
interspike intervals (i.e., phase relationships). The overall approach allows for
denser encoding, and thus energy efficiency, in neural networks for complex
tasks, allowing smaller and more compact networks to achieve combinations of
tasks which traditionally would have required high-dimensional embeddings.
Discussion: Although carried out as a study in computational spiking neural
networks, the results may have insights for functional neuroscience, and
suggest links to mechanisms that have been shown from neuroscientific studies
to support temporal coding. To the best of our knowledge, this is the first study to
solve one of the outstanding problems in spiking neural networks: to demonstrate
that distinct temporal codings can be distinguished through synaptic learning.

KEYWORDS

temporal coding, spiking networks, synaptic plasticity, channel capacity, interspike
intervals, neural coding, rate coding, network physiology

1 Introduction
1.1 The problem of learning

1.1.1 Why spiking?

‘Neural networks’ encompass a wide variety of techniques involving massively-parallel
computing models and, crucially, learning. Despite decades of impressive progress,
however, efficient learning remains elusive. Although in the ‘classical’ domain of
perceptron-style neural networks backpropagation has provided an effective general
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learning algorithm, the fact remains that modern models require
numerous epochs of training involving billions of weight
through the
thousands to millions (or more) of data examples. It would be

modifications  introduced presentation  of
a stretch to call such learning schedules ‘efficient’, although they
may be effective, ie., produce high-accuracy output results.
Biological neural networks, the supposed prototype of the
genre, clearly do not require such large-scale data presentations
and are achieving comparable results at far greater efficiency, so
clearly something very different is going on in the biology. Whilst
large-scale models based on backpropagation running on very
large machines may be reasonable for offline inference-based
responses to query-type tasks, edge computing, on small,
embedded devices, clearly needs something different. A closer
look at the biology is worth it here to find more efficient, smaller-
scale neural solutions to real-time, real-world problems. But what,
exactly, is biology doing?

A growing body of research and practice emphasises the
fundamental difference in information representation: spiking, in
contrast to continuous signals, as a crucial advantage of biology
(Tang et al., 2017). It has been repeatedly suggested that two critical
properties of a spiking representation, namely, its event-driven
nature, and its higher potential information capacity, open the
door to potentially advantageous computational efficiency (Wang
and Cruz, 2024; Rathi et al,, 2023). As early as 2004, Maass and
Markram (2004) showed that by abandoning the discrete-time
assumption of classical neural networks, where all computations
are performed on equilibrium states, a spiking network can achieve
universal computational capability as long as 2 distinct inputs can be
discriminated. Despite these theoretical suggestions, however, real
progress relative to classical nonspiking models remains elusive.
Establishing that inputs are in fact, distinguishable has not proven
easy. It has been shown that spiking models can work, but evidence
that they can be more efficient than backpropagation-style machine
learning is limited (Davidson and Furber, 2021; De Florio et al.,
2023). There is thus a strong need for fundamental models of
learning in spiking networks that are both efficient and scalable -
and compare favourably with classical neural networks.

1.1.2 Why on the synapses?

Most models of learning in neural networks presume that the
atomic unit of learning itself is the synapse (in classical neural
networks they are frequently termed a parameter), which has
historically been approximated as a weighted connection from
one neuron to another. A presynaptic neuron transmits some
(coded) value to a postsynaptic neuron, multiplied by a (scalar)
weight which represents the operation carried out in the synapse.
The most common choice, then, to implement learning is to
modulate the weight in some way - hence the choice of synapses
as the learning element. Although it would be possible to implement
learning by a modulation of some other element (e.g., adaptive
threshold), changing the synaptic efficacy is usually chosen in
spiking networks because it can be linked to the well-researched
STDP mechanism and also corresponds well to weight updates in
artificial neural networks (ANNs). However, modulating the weight
is easy to do if the value being transmitted itself is a scalar, but
necessitates a choice if spiking is to be used, since a (single) spike
does not naturally map to a scalar representation.
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1.1.3 Why temporal?

Spikes generally do not have an amplitude, and thus the possible
representations fall into 2 types: rate coding and temporal coding,
which are basically the event-driven equivalent of frequency
modulation and phase modulation. Rate coding, whilst popular
because it is easy to transform an equivalent classical model to a
rate-coded model, loses significant efficiency when there is nonzero
phase noise, because then multiple spikes have to be received in
order to define a mean rate (Maass and Orponen, 1998). Symbol-to-
symbol transitions also require some ‘dead’ space whilst the rate is
transient, thus further limiting the rate of information transmission
and hence efficiency. Temporal coding, by contrast, can achieve
efficiency limited only by the phase noise in the network, and thus
would seem like the more promising direction where efficiency is the
goal. However, again, models of temporal learning remain thin on
the ground, not least because while in the rate-coding case there is a
natural scalar intepretation of the value of a given signal, in the
temporal coding case the interpretation is arbitrary. Formally, it is
possible to encode multiple symbols using simple absolute timing
(‘Time to Spike’) (Van Rullen et al., 1998), but since in general this
would require arbitrary time-to-decode (each symbol might occur at
any future time), the interpretation (and number of bits per spike)
remains dependent on some choice of maximum delay. It therefore
makes sense to define a model for temporal learning that on the one
hand can work with individual spikes, and on the other, is not
dependent on any particular choice of representation of the
temporal code. This can be done by transforming the problem of
learning from one of adjusting weights - the synaptic transmission
strength - to one of adjusting delays - the synaptic transmission
timing. With the goal being to create a model for temporal learning,
strict biological realism or close adherence to biological plausibility
can be relaxed in favour of creating models that demonstrate the
possibility, in principle, of temporal learning, which might
subsequently be used to inform either neurobiological studies or
computing applications. This paper introduces a simple synaptic
model for this purpose, and shows how such models can be used to
learn temporally sensitive neural decoding mechanisms.

1.2 Background

1.2.1 Neural coding schemes: rate coding vs.
temporal coding

Neural coding describes how neurons encode and transmit
information, with two primary schemes being rate coding and
temporal coding. Rate coding relies on the average firing rate of
neurons over a specific time window, where the frequency of spikes
represents the encoded information (Gautrais and Thorpe, 1998).
This approach is robust and simple, but limited in rapid sensory
processing due to its reliance on longer observation periods (Van
Rullen and Thorpe, 2001). In contrast, temporal coding emphasises
the precise timing of spikes, which can carry significantly more
information, particularly in rapid sensory processing and working
memory mechanisms, and is suitable for spiking neural models and
neuromorphic systems (Guo et al., 2021). There is significant
evidence from biology that temporal coding is important in
processing, and leads to a dramatic increase in information
capacity (Kayser et al, 2009). The authors showed not only
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higher information capacity, but also that the resultant coding was more
robust to noise, making a compelling case for using phase coding in the
presence of noisy inputs. Surprisingly, however, such schemes have
been but little used in computing systems or machine intelligence,
where there is the potential not only to improve data rates at inference
time (ie., after learning) and robustness during training (i.e., before
learning), but also potentially to inform further work in computational
neuroscience. Much of the reason for this apparent lack of uptake may
be the challenges involved in identifying suitable learning rules.

1.2.2 Temporal coding in computational
neural models

Various computational models based on temporal coding have
been investigated. As early as 1993, Judd and Aihara (1993)
introduced the so-called pulsed propagation network (PPN).
Unlike neural network models that rely on average firing rates,
the PPN uses time intervals between action potentials as continuous
values. The authors showed that PPNs are computationally more
powerful than Turing machines and capable of approximating so-
called ‘R-machines’, which are general computing machines that
apply algorithms to data consisting of real-valued numbers.

There has always been a strand of models that are pure machine
translations of biological systems. For example, Rabang and Bartlett
(2011) developed a computational model of thalamocortical neurons in
the medial geniculate body (MGB) which transforms temporal coding
from synchronized inputs in the inferior colliculus (IC) to rate-coded
outputs in the MGB. The authors report that large-conductance IC inputs
preserve synchrony while small-conductance inputs desynchronize and
filter temporal modulation. By varying synaptic properties, input jitter,
and membrane potential, they highlight how distinct cellular mechanisms
shape auditory temporal processing in the MGB.

Other models aim at replicating important computational
processes. One of the most well-studied classes of temporal spiking
networks are the ‘projection’-style networks of which reservoir
2007; Maass et al., 2002) and
polychronization (Izhikevich, 2006) are the most well-known.

computers (Jaeger et al,
These relied on synaptic adaptation to tuned delays generated in a
random network; in the polychronization case by path selectivity, in
the reservoir case by output selectivity. The physical delays
themselves, however were fixed for any given path (generally
initialised randomly) and did not change over the course of
processing; such models worked by creating a sparse projection
into a high-dimensional space and thus the information capacity
of the network was typically limited by the number of connections. On
the one hand, such models are easily translated into relatively realistic
and plausible biological networks because the (fixed) delays can be
modelled as different axon lengths or spine locations along the
dendrite. On the other hand, however, the information storage
capacity of these models is typically a small fraction of the number
of connections, and accuracy as well as capacity is limited by the delay
combinations that happen to exist in the instantiated network.
Therefore, such models are very useful in demonstrating the
possibility of temporal coding and learning but are not particularly
efficient (typically demonstrating lower information capacity per
connection than deep networks, even though the latter exploit
similar high-level theoretical properties (Penkovsky et al., 2019)).
Millidge et al. (2024) introduced a computational model called
temporal predictive coding (tPC) that extended predictive coding to
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process dynamically changing sensory inputs over time. In a predictive
application, the tPC model achieved performance comparable to a
Kalman filter and demonstrated an ability to learn motion-sensitive,
Gabor-like receptive fields from natural dynamic inputs. In Comsa
et al. (2021), the authors introduced spiking autoencoders that utilized
temporal coding to process and reconstruct images with high fidelity,
leveraging the relative timing of neuronal spikes for information
encoding. They used a biologically-inspired synaptic transfer
function with backpropagation, achieving performance comparable
to conventional artificial neural networks on MNIST and FMNIST
datasets. The same group earlier presented a computational model
based on a spiking neural network that encodes information in the
relative timing of individual spikes (Comsa et al., 2020), using a
biologically-inspired alpha synaptic transfer function and trainable
synchronization pulses for temporal references. Such networks
illustrate the potential for spiking networks using temporal coding
to solving complex tasks. Comsa et al. (2020) accomplish the MNIST
digit classification task using a variety of coding strategies, encoding
pixel brightness values as temporal delays, and digit classifications
based on the timing of the first output neuron to spike. However, in
spite of promising performance, such demonstrations remain relatively
small scale, particularly compared to the advances made in network
size and application capability using conventional multilayer
perceptron-style networks trained using backpropagation.

1.2.3 Artificial neural networks vs. spiking
neural networks

The currently dominant method in machine intelligence, namely,
Artificial Neural Networks (ANNs), relies on synaptic weights that are
synchronously updated in discrete time in order to set the connection
strength between neurons, which determine the processing and
learning of information. Optimization of weight modification
strategies in ANNs has been shown to improve performance and
adaptability. Rumelhart et al. (1986), building on the seminal work
of Hebb (1949), advanced the understanding of ANN learning
mechanisms through the popularisation of backpropagation (earlier
introduced in Bryson and Ho (1969); Werbos, 1974). Backpropagation
allows ANN's to adjust synaptic weights efficiently (indeed, optimally)
improving generalisation and learning (although notoriously
susceptible to the problems of overfitting and ‘vanishing gradients’).
Whereas ANNSs transmit continuous-valued signals, in Spiking Neural
Networks (SNNs) transmission of information happens through
discrete spikes. This reduces energy consumption and makes them
potentially more computationally efficient Maass (1997). Where in an
ANN, a weight (or ‘parameter’) is typically a deterministic multiplier of
the input signal, in SNNs the comparable role of synapses (and hence
weights) is to modulate the probability of spike transmission. This, in
turn, influences the dynamics of the network and the learning
capabilities, enabling efficient processing of information through
relatively sparse (compared to classical ANNs) but informative
synaptic connections.

1.2.4 Hebbian learning, long term potentiation and
spike-timing-dependent-plasticity

Donald Hebb postulated, in his book “The organization of
behavior”, in 1949, that when neuron cells, A and B, keep
mutually exciting each other, then a bond is formed between
both cells such that whenever A fires, B fires, and vice versa
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(Hebb, 2005). Subsequently, Bliss and Lomo (1973) demonstrated
Long Term Potentiation (LTP) which describes the increase in
synaptic strength between neurons after prolonged stimulation of
their synapses. Later, towards the new millennium, Markram and
Sakmann (1995), Markram et al. (1997) and others (Gerstner et al.,
1996; Bi and Po, 1998) hypothesised that the exact timings of
excitation or inhibition between neurons played an essential role
in synaptic modifications, introducing the mechanism generally
known as spike-timing-dependent plasticity (STDP) (Markram
et al, 2012), which is the biological (and subsequently,
technological) implementation of Hebbian learning. As a
mechanism, STDP itself is considered to function independently
of other synapses, but in the context of the entire network there is
biological evidence that in fact, synapses are coupled in ‘clusters’
(Agnes and Vogels, 2024).

1.2.5 Existence of functional synaptic clusters
Functional synaptic clusters are formed through activity-
dependent mechanisms, where synaptic inputs with correlated
activity are preferentially stabilized and spatially organized into
groups, hence clusters (Hedrick et al., 2022). This behavior may
enhance the efficiency of information processing (Kastellakis and
Poirazi, 2019). During learning, new synapses form near preexisting
task-related spines, creating locally coherent activity patterns that
encode learned behaviors (Kastellakis et al., 2015). Overall, synaptic
clusters appear to amplify presynaptic activity, enabling precise
control over postsynaptic responses. However, the majority of
existing work has focussed on synchronous synaptic activation,
implying an integrator function. Numerous studies consider the
population dynamics, as opposed to the processing of individual
neurons (Bazhenov et al, 2008), and frequently use a fixed-
connectivity model in order to concentrate on the effects of
signalling parameters (Brunel, 2000). This may be useful for
densely-connected networks with relatively weak couplings
operating in a synchronous (essentially, discrete-time) regime
(Penn et al, 2016), but discards phase information that may be
useful in temporal coding. If, however, such clusters could be used
not as integrators but as phase discriminators, sensitive to a
particular timing pattern, it becomes possible to implement
suitable learning mechanisms for temporally-coded networks.

1.3 Biological inspiration

There is considerable evidence that synapses in biological neural
networks use mechanisms at multiple time scales, at least some of
which introduce timing-sensitive processing capability (Bi and Po,
1998). This contrasts sharply with the majority of computational
neural network implementations, whether spiking or non-spiking
(continuous-valued), which hitherto have typically treated synapses
as (possibly dynamic) amplifiers, but not phase discriminators. That
is to say, the transmission characteristics of the synapse do not
depend upon the incoming timing of signals. Biological synapses,
however, have at least 4 separate potential channels - AMPA (fast
[~1-10 m] excitatory), GABA-A ([~10 m] fast inhibitory), NMDA
(slow [~100 m] excitatory) and GABA-B ([~200 m] slow inhibitory)
(Destexhe et al., 1995; Nicoll and Malenka, 1995). The interaction of
these different channels has been shown in biological neuroscientific
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studies to allow for both phase- and frequency-sensitive
discrimination of signalling and may be fundamental to sequence
learning and timing-sensitive decoding (Romo et al., 1998). Lin and
Faber (2002) provide an early indication that changes in synaptic
delay may be a factor in (short-term) plasticity within
biological networks.

There are plausible mechanisms in biology that could allow a
network to learn specific delay patterns, e.g., through preferential
strengthening of particular connections dependent upon spine
location and dendritic position. Such mechanisms could be
incorporated into reservoir-like or polychronisation architectures
to learn delay codings. However, such an approach is relatively
costly in number of connections per delay encoded, and furthermore
what delays can be learnt is critically dependent upon the (built-in)
statistics of the delay distributions within the network, because these
mechanisms all rely on the ‘right’ delay value happening to exist in
the network through some combination of delays extant in the initial
system. A more efficient alternative approach would be to encode via
synapses themselves becoming tuned to a particular delay, and there
are also plausible biological methods to achieve this.

Detailed biophysical models have been introduced (Maiki-
Marttunen et al, 2020) that may offer a variety of low-level
mechanisms to encode delay, however, the intent in this work
being to produce a simple model amenable to computational
experimentation across a range of scales, such a level of
biological realism is out of scope. Simpler mechanisms, however,
can be elaborated which retain some biological plausibility. NMDA
channels, in particular, are thought to play a critical role in the
modulation of spike-timing-dependent plasticity (STDP) (Shouval
et al., 2002). The ability of synapses to strengthen or weaken over
time, hence their plasticity, is mediated through NMDA-type
glutamate receptors (NMDARs) (Malenka and Nicoll, 1999).
Biologically, the timing and amplitude of calcium influx through
NMDARs play a crucial rule in inducing LTP or Long Term
Depression (LTD.) (Kennedy, 2016). The interaction of NMDA
thus may affect the time distribution of synaptic transmission, and
hence offers a potential mechanism for learning mechanisms that
tune the synapse for a particular phase sensitivity (as opposed simply
to changing the ‘weight’, considered as the integrated charge release
over the entire open channel time). Boudkkazi et al. (2007) observed
release-amplitude-dependent variation of synaptic latencies. Their
study verified that such variation is induced during plasticity, and
determine that the most plausible celluar mechanism is modulation
of Ca** channels. These ideas were initially explored in Crook et al.
(2023) by devising a plausible mathematical model loosely based on
NMDA/AMPA kinetics. In this work we seek to extend this
approach to networks of spiking neurons that learn and are able
to decode particular spike sequences, which may overlap on
the same axon.

2 Materials and methods
2.1 Motivation
2.1.1 Theory

Given the evidence from biology that phase coding increases
information capacity (Kayser et al., 2009), the question arises of how
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[llustrative figure to demonstrate the insight of Ikeda and Manton (2009). Consider spikes with noisy phase margin relative to some reference timing
(often, another spike, but could be, e.g., background oscillations of network activity). In the inner ‘blue’ ring, the phase noise is just below the point where
individual phases can be relatively reliably discriminated. With the same temporal noise but a slower reference (outer ‘red’ ring), the discrimination is
better, at the cost of reduced information capacity, since the same number of symbols can be decoded at a slower overall rate. Hence higher phase
noise entropy increases information capacity. However, the number of distinct phases remains discrete - attempting to detect continuous phases would
end up (particularly in the ‘blue’ ring) conflating symbols, hence producing an unreliable decode.

much information can be contained in a given spike train. Mijatovic
et al. (2021) consider interactions between multiple neurons and
find that a continuous-time representation is more accurate and
expressive. Nevertheless, Tkeda and Manton (2009) analyse both
temporal and rate-coded neurons and find that under some
assumptions about the phase noise distributions, the capacities of
both are maximised by a discrete input distribution - essentially
equivalent to a fixed symbol vocabulary (Figure 1). In the temporal
coding case, this distribution is discrete in the complex plane,
corresponding to n-ary phase-shift keying modulation where n is
set by the underlying phase noise distribution. A classical formula
based on information theory for the output of a spiking neuron is
given in Equation 1 (Li et al,, 2023).

assuming the spike train is binned into intervals of time 0t within an

overall window of time T which defines a ‘word” w; in the input
T
o
assumed to have a ‘1’ in the nth position in the window T if a

sequence of length &, where w; is a specific binary bit-pattern

spike occurs with the interval n>t%T>n—-1 (where % is the
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modulus operator) Such a computation assumes a serial bitstream
representation, where a spike’s timing is only relevant insofar as it
aligns with a particular bit-slot n. This discards the possibility of a
phase-coded representation, where the timing of the spike signals a
complete word, and it is further evident that the equation above is
reliant on a more-or-less arbitrary choice of the bin interval §t. The
study of Tkeda and Manton (2009) is valid in the condition of perfect
decoding, but the question arises of information transmission over
an unreliable channel, where the probability of decoding a word may
be less than 1.

Consider therefore a spike train encoded according to a phase-
modulated encoding, where the relevant phase of the spike in a
similar window T encodes a complete word. The bit-length of a
word that can be successfully decoded within such a window is
dependent upon the phase noise or fitter’ vy of a spike with
notional phase ¢. Consider each spike at time t % T = ¢ to have
a Gaussian phase noise distribution N (¢) with mean y = ¢ and
variance o = vé. In this case, the probability of decoding a given
word w, will be found by multiplying the spike train by a sliding
Gaussian kernel equivalent to the phase noise distribution - i.e., by
a convolution:

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1664280

Crook et al.

P(wn) = Sn (t) *N((;b) (2)

where P(w,) is a continuous probability distribution in the word
space W = {w,,} and S, (¢) is the subpattern of the complete spike
train associated with word w,. Thus the capacity of the signal is:

HT = _%,[st(t) *N (¢)logs (S(1) *N (¢))dt (3)

where S(t) is the complete spike train between t and t + T. The
probability of successfully decoding a given word »n with notional
phase ¢, is then

Po(w) = [ P(w)PW)dn @)
where P(W) = S(t) *N (¢) and is the (prior) probability of any
word being decoded, and P (w,,) is the likelihood of word #.

This result is independent of any particular choice of
representation W and of any particular assumptions about
timing. There is an important choice, however, in the shape of
the Gaussian phase noise N (¢). The entropy of a Gaussian is
dependent on the variance: H (N (¢)) = % (1 +log(2mo0)). The
information content of a spiking signal (Equation 3) is
dependent on this phase noise convolution kernel - a higher
value of ¢ implies greater potential information content. But this
implies in turn a more ‘flattened’” Gaussian which will render the
probability density of any given word wy, less. Thus there is a tradeoff
between how much information can be transmitted (essentially, how
many distinct words w,, can be recovered) and how probable it is
that any given word w,, will be decoded successfully. This allows us
to build networks with both varying information capacity and
varying precision, for different application scenarios.

If an ideal word is defined by a reference spike train S, with
message probability distribution P, (W) =S, (¢) *\ (¢), we may
wish to compute the similarity between this reference word and
some actual received spike train, to serve as a basis for learning.
Lyttle and Fellous (2011) introduces a similarity measure with
strong affinity to Equation 4.

[ wgwar
c=1-—= T
\/_[Of(t)zdt\/Jog(t)zdt

where f (t) and g (t) are spike trains convolved with some Gaussian

(5)

ds

kernel in a similar manner to Equation 2 above. Equation 4 shows
that this simply represents the loss in posterior probability that the
second spike train f () received will be accurately decoded against
the first (reference) spike train g(t).

Decoding a word is equivalent to finding a structure that
maximises the probability that the word in question will be
identified given a particular spike train. It can be seen from
Equation 4 that this will be achieved when P(w,) is a delta
function on #, in other words, when the decoder modulates the
input spike train with a phase-shifted Gaussian filter that exactly
matches the phase noise distribution NV (¢). Indeed, Smirnov et al.
(2024) analyse the effect of different synaptic kinetics (and thus
sensitivities to phase noise) and find not only that this affects the
dynamics, but also, as suggested earlier, that increasingly broader
kinetics lead to more complex phase spaces and potentially higher
information content. If, therefore, we can create a synapse that can
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adapt itself such that its transmission probability matches this phase
noise distribution with the appropriate phase shift, we can create a
functional implementation of a decoder for a given word. If multiple
synapses afferent on a given neuron have individually tunable
(i.e., learnable) transmission probabilities, tuned to different
word-phases, we can create a neuron that can decode an
arbitrary set of overlapping words in the input spike train.

We are now in a position to define more formally the difference
in spike trains, considered from a point of view of information
theory. Given that both convolved functions P, (W) = g(t) and
P(W) = f(t) represent the word probability distributions within
the message, the Kullback-Liebler (KL) divergence gives us a
measure of the similarity in the distributions - i.e., how much
information difference there is between the two. This is shown in
Equation 6:

[e3)

P, (W)log, (P, (W)/P(W))dn

Dsc = KL (P, (W)IP(W) = |
(6)
This expression for the difference is spike trains has the useful
property that it can be used as a loss function for supervised learning
approaches, used at the output neurons to compare the output
against a canonical ‘reference’ spike train. Furthermore, the
recasting of the output into the decode probability domain
changes the meaning of the ‘activation’ of a neuron from a non-
differentiable discrete event (the neuron either spikes or does not) to
a differentiable continuous distribution representing the probability
that the neuron will output a given word w, (equivalently, spike at
phase ¢) for a given input (Equation 4) - enabling efficient
backpropagation-style algorithms with spiking neural networks.

2.1.2 Time structuring in spike trains

We now wish to consider a spike train that contains multiple
overlapping encoded symbols. It is immediately evident that a rate-
coded spike train cannot do so, because rate is not defined over an
instantaneous interval, and hence symbols are temporally separated
(with a change in spike frequency corresponding to symbol change).
Multiple symbols can only (co-)exist if the symbols are encoded by
phase: the relative timing of a spike compared to some (possibly
implicit) reference timing. A reference timing can easily be
generated in spiking networks, e.g., by a neural oscillator or
similar mechanism, although we do not concern ourselves here
with the details. Each discrete phase ¢ can be discriminated as a
different symbol w,, or equally a fixed set of phases ¢, ¢,,...¢,,
could be interpreted as a single symbol. As long as there is at least
one distinct phase in each symbol not shared by other symbols, we
may then encode multiple such symbols in the same time period -
and multiple messages (groups of symbols) which represent
different distinct timing patterns. We refer to these messages as
time structured spike trains. The reference timing T will be called a
window - i.e., a fixed period within which the time structured spike
train is decoded.

One use of such time-structured spike trains is obvious: to
encode information with explicit temporal content (such as, e.g.,
a set of spoken words). However, it is useful to consider a different
application of these patterns, when the same input carries multiple
features that may be decoded independently. For example, an image
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could contain separate channels for shape and colour. Although
there is no temporal relation as such in the data, using a temporal
encoding would allow both sources of information to be carried over
the same connections to separate decoding ‘heads’. Effectively, the
information would be multiplexed onto the same axon (or in
and be to all
subsequent neurons it connects to. Without making any specific

general, downstream connection) carried
conjecture about precisely where (or indeed if) such multiplexing
would occur in a biological network, temporal coding allows
computational modelling of processes that may be employed in
biology as well as computation to make efficient use of limited
resource. Not only does this mean fewer neurons and synapses to
process the same information stream, it also means that the streams
can be treated either separately or jointly, without having to make a
prior decision about what classes of information would be useful to
downstream processing elements. This capability allows a network
using time structured spike trains to retain latent information that
may be learned online later. Such a capability stands in sharp
contrast to ‘traditional’ neural networks, either spiking or non-
spiking, that ‘bake in’ the decoding upstream so that what is even
learned in downstream layers is a strict function of the information
extracted in the previous layers. Methods such as ‘skip connections’
(He et al, 2016)
Schmidhuber, 1997) are often used to try to circumvent this

or recurrent networks (Hochreiter and
limitation of classical networks, often at the expense of greater
computational complexity or stability. In a spiking model,
information can be multiplexed at the soma (neuron level)
through input from different synapses tuned to different delays,
whilst being decodable downstream by separate outputs themselves
tuned to the corresponding input delays. A time structured spike
train offers an effective way to avoid having to introduce complex
connectivity patterns in order to extract features that may not be
apparent at the outset.

Now, we wish for functional synaptic clusters to learn to
specialise on one or the other of a series of such timings within a
spike train, so that different messages embedded within the signal
may be independently decoded. Each synapse must thus be sensitive
to a given delay (i.e., phase) within the some time window, and each
neuron should have a series of input synapses whose timing
sensitivities match the desired ISI (inter-spike interval) for one
such timing, so that the neuron will fire with an output timing
corresponding to the degree of match of the pattern. A very close
match should produce a very early spike, an approximate match will
produce a later spike, no match at all will prevent the neuron from
spiking outright. To make the synapses sensitive to the delay, it will
have an output transmission conditional on a delay distribution,
where the peak of the distribution occurs at the exact match of the
input spike to the tuned delay. Somewhat later and/or earlier input
spikes will cause a lower current injection and hence retard the
output time relative to a close match; a delay far away altogether will
result in zero current injection. This mechanism implements the
synapse that adapts itself to match the phase noise distribution
N (¢) of subsection 2.1.1. One may think of the first spike of an ISI
pair as priming the neuron to fire when a well-timed second spike
arrives, and the second spike as triggering the output. This could be
considered a limit case of burst gating (either excitatory (Borden
etal,, 2022) or inhibitory (Elson et al., 2002), where instead of a spike
triggering transmission in a burst window, only a single spike with
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tuned timing is needed to trigger a comparable transmission.
However, where in previous works, subsequent learning (or
plasticity) only affected the strength of the synapse, here it affects
the timing sensitivity of the synapse. We can see (Figure 2) that the
overlap between the two distributions leads to an output firing
probability distribution proportionate to the degree of timing match.
Using this method, we will investigate spike trains with internal time
structure, and attempt to decode separate data within such
spike trains.

2.2 Methodology

In this paper, we explore the computational properties of
resonant synapses when they are combined into functional
synaptic clusters that are capable of decoding sequences of inter-
spike intervals. In particular, we seek to demonstrate that these
clusters have the following computational properties:

e The ability to ‘decode’ ordered sequences of inter-spike
(ISIs)
spike sequences

intervals across  multiple  time-structured

e Enable the recognition of sequences of ISIs across multiple
input units.

e Facilitate the decoding of such sequences in multiplexed

neural encoding scenarios.

In this work we adopt the term ‘Interspike Interval’ (ISI) to refer
not just to 2 immediately consecutive spikes, but to any arbitrary
pairing of presynaptic spikes in some temporal order. Thus
2 different ISIs could ‘interleave’ such that one ISI had an
intervening spike between the first spike of its pair and the second.

We adopt a simple two layer spiking neural network architecture
to demonstrate the above properties. Each network has an input
layer and an output layer that are fully connected, with multiple
synaptic connections between each input and each output neuron
(See Figure 3). In our experiments we use the Leakey Integrate and
Fire model for all neurons Gerstner and Kistler (2002).

av Tm(Isy,, + Ios)

Ty =V, -V +

Jt C. ;o V2V, V=V, (7)

The spike sequences from the input layer are generated using
above threshold current injections to each of the input neurons at
the time specified by the associated input patterns. The resonant
synapses that are connected to each output neuron are grouped into
functional synaptic clusters (Figure 3), where each cluster decodes
the sequence of incoming interspike intervals for one input pattern.

The resonance property of our synaptic model is represented
using a normal distribution whose parameters are adapted from the
statistics of the in-coming interspike intervals. In particular, the
mean of the distribution represents the mean interspike interval that
the synapse will selectively respond to and is used to determine the
transmission probabilities of the synapse (Figure 2):

P(T(Sk, ti)ltj> Wi (Tk) ~ N!‘kvdk(ti - tj) (8)

where T (s, t;) denotes a transmission event from synapse s at time
ti, and t; and t; are the arrival times in the synapse s of any two
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Adaptation of Synaptic Timing
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FIGURE 2
Adaptation of synaptic timing. Each ISI is associated with a particular distribution of sensitivities in the synapses. If one synapse (with yellow

distribution) is activated by an ISI of a, and a second synapse (with blue distribution) is activated by an ISI of b, the overlap between the two distributions
gives a window where the overall EPSP to the neuron will be raised. Both distributions are adapted if the postsynaptic neuron subsequently fires.
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FIGURE 3
The network architecture.
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spikes in a sequence where t;<t;. y, and o} are the mean and
variance of the incoming ISTs statistics for synapse sx. In our model
an ‘interspike interval’ is regarded as the time between any two
spikes arriving at a synapse, regardless of whether are any
intermediate spikes between t; and t; (such intermediate spikes
are not ‘discarded’ and will continue to affect the dynamics of the
synapse, but the term ISI is used here to refer to any identifiable spike
pair, even if there are intervening spikes). This property is necessary
for the model to be able to decode multiplexed spike trains.
When calculating the probability of a transmitting event in a given
synapse s, our resonant synapse model sums the probabilities of
transmission from the interspike intervals arriving in s, between the
last spike ¢; and all preceding spikes ¢ ; < ¢; in the current phase cycle. To
estimate the overall probability that the synapse will transmit after
receiving incoming spike at f;, given all preceding spikes t; < £;, we use
the CDF of Equation 8 for synapse si to calculate the area under the
normal curve of a fixed-width interval from —a to a either side of each
ISL. That is, between N, o ((t; —tj) —a) and N, o, ((t; = ;) + a)
summing over all interspike intervals in the current phase as follows:

P(T (s t)lpy ok @) = Z ((D((t,- - t]-) + a3 Uy ok,a) - (D((t,- - t}-) — a3 > O a))

ti<t;

= Y (J Ny Ot = [" N o (D)

ti<t;

)

Transmission events are generated using Bernoulli sampling
based on Equation 9:

w if r < P(T (s, 1))y 0k a)

0  otherwise (10)

T(Sk) ti) = {

where w is a fixed transmission weight for all synapses and
r ~ Uniform (0, 1).

Each synapse also has an independent time delay, which, as we
shall see below, is critical in enabling clusters of such synapses to
decode incoming spike trains. The functional synaptic clusters in
this context have the role of coordinating the transmission times of
active synapses so that specific sequences of inter-spike intervals
result in an above threshold voltage of the post-synaptic neuron at
the appointed time ¢7.

The learning or adaptation in this model takes place in two
phases. In the first phase each cluster assigns the incoming ISIs in the
training sequence to a distinct synapse, enabling it to specialise on
the statistics of that ISIs within that sequence over multiple
presentations of the spike train. In the second phase the delays of
each synapse in the cluster are adapted to facilitate the decoding of
the sequence of ISIs it is being trained on. In the experiments
reported below, the delays are initially randomised using samples
from a uniform distribution, and the allocation of ISIs to resonant
synapses was done using the temporal order of the incoming ISIs
(see Figure 4). For example, if a cluster consisting of three synapses
(s1, 52, s3) each with a randomised delay (d,, d,, d3) receives a spike
train consisting of four spikes (t1, ¢,, t3,t4), and the delays are such
that d, < d, < ds, then the cluster will allocate the first ISI (¢, — ¢;) to
s1, the second (t3 —t,) to s, and the third (t4 — t3) to ss.

The statistics of the ISIs are processed using Welford’s online
algorithm which facilitates the calculation of the variance in one pass
(Chan et al., 1983). The formulae for the online algorithm are shown
in Equation 11.
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— — Xn — anl

Xp =Xy + ——
n
MZ,n = MZ,nfl + (xn - xnfl) (xn - xn)

2 _ MZ,n (11)

o, =
n
SZ - Mz,n
" on-1

where x,, is the new sample which, in our case, are interspike
intervals t; — tjs Xp is the mean of the first n samples, afl is the
biased sample variance, and s2 is the unbiased sample variance. M,
holds the sum of square differences of the mean. Updates to the
mean and variance of each synapse are only permitted if the order of
the incoming ISI matches the allocation made by the cluster to
that synapse.

The adaptation of the synaptic delays which takes place in the
second phase of the training enables the cluster to successfully
decode the incoming sequence of ISIs. This is achieved by
aligning the delays such that each transmission meets the
following criteria:

.= { “tplog, (v: = RuI)[ve) vE#EW, (12)
0 V=1,

where ¢, is the target time delay between successive transmissions,
T, is the decay constant and v, the resting potential in Equation 7, v,
is the target potential after ¢ time steps (v, will either be v, for a
below post-synaptic threshold transmission which is not the last in
the decoding sequence, or v, for an above threshold transmission for
the last in the decoding sequence), and Ry, = & from Equation 7.
When v = v, it may be assumed that the spike is the first in the
sequence since there has been enough time for the neuron to return
to resting potential. This equation is obtained by solving the closed
form LIF update formula shown in Equation 13.

V,=R,I, +V,e (13)

for t and setting ¢, to the value that will yield V. The incremental
updates to the delays of resonant synapses are made according to
the following:

dk =dk+wd(tr—t) (14)

where w; is the delay update weight, ¢, is the target transmission
time for that synapse, and t is the current transmission time.

Our model determines the transmission time of each synapse in a
cluster using the ordering of the ISIs that were allocated to each synapse in
the first phase of training. To illustrate this process we return to the
example of the three synapses given previously [s, s;, s3] which were
allocated the following ISIs: s; allocated t, — t;, s, allocated 5 — ¢, and
sz allocated t4 — 3. Since s3 was allocated the last ISI in this sequence, it
will be responsible for securing an above threshold response from the
post-synaptic neuron when the fourth spike of the sequence ¢, is received.
To achieve this, synapse s; will use Equation 12 (with v, =v,) to
incrementally adjust its delay d5 over several iterative presentation of the
four-spike pattern so that the arrival of the fourth spike will ultimately
coincide with the timing of the desired above threshold response in the
post-synaptic neuron (ie., tr).

Synapse s,, which responds to the second ISI in this sequence,
will need to deliver a below threshold transmission using Equation
12 (with v, = v,) which needs to be timed so that the post-synaptic
voltage will reaching its above resting value of v, just as the third
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The allocation of ISIs to synapses.

spike arrives in the synapse. Once again, it achieves this using
Equation 12 to interactively adjust its time delay accordingly.
Similarly, synapse s, adjusts its time delay so that it can deliver a
below threshold transmission (v, = v,) just as the second pre-
synaptic spike arrives. In this way, only a spike train consisting
of three ISIs that match the pattern (¢1, £, t3, t4) will result in a spike
at tr in the post-synaptic neuron signalling that this spike train has
been successfully recognised or decoded.

3 Results

The objectives of the experimental work presented are to
demonstrate that resonant synapses combined into functional
synaptic cluster can:

1. Decode sequences of ISIs from separate input sources

2. Decode sequences of ISIs that are distributed across multiple
input sources

3. Decode multiplexed ISI sequence signals

The experimental work presented in this section involved the
use of the Brian2 simulator' to create networks of LIF neurons
(Equation 7) arranged in two connected layers, with layer
1 generating the input signals and layer 2 decoding those signals
and generating the output signals (Figure 3)°.

The connections between the input and the output neurons were
modelled using resonant synapses as described in the previous
section. Each input neuron had multiple time-delayed resonant
synapse connections with each of the output neuron. Each

1 https://briansimulator.org

2 https://github.com/ntcrook/NeuromorphicCode
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output neuron had one functional synaptic cluster which
included all the resonant synapses that were connected to it from
the input layer. In this way, the output units could decode sequences
of ISIs that were distributed across multiple input units.

Each sequence of input spikes and the corresponding decoding
output spikes occur within a cyclic 100 m window or phase that is
synchronous for all input and output units. The target decode time
was fixed in the range 50ms < t1 < 100ms for each experimental run.
It is important to note that the phase duration and the target decode
time together put a limit on the number of sequential ISIs that the
network can decode. This is because the delays between the
transmissions of each synapse (which is responsible for detecting
one of the ISIs) have to line up sequentially to successfully decode the
sequence and generate a post-synaptic spike at ¢r. Since the synaptic
delays are determined by Equation 12, it is the constants used in that
equation such as 7, and v, that determine the time between successive
transformations, and consequently the maximum number of ISIs that
can be decoded at t = t7. In the experiments we present below, the
maximum number of ISIs that could reliably be decoded (given that
all input spike times were generated randomly within set bounds) is
three (i.e. 4 sequential spikes).

The performance of the networks was evaluated using the
previously discussed distance measure shown in Equation 4;
(Lyttle and Fellous, 2011), comparing the sequence of spikes
emitted by each output neuron with the target spike output for
the corresponding input pattern. Each output neuron is induced to
emit a spike to mark the start of the 100 m phase window. The target
spike sequence for an output neuron that is designated to decode the
current input pattern therefore consists of two spikes: one at t = 0
and the other at the target decode time ¢7. The target spike sequence
for an output neuron that is not designated to decode the current
input pattern consists of just one spike at t = 0. Target and actual
spike sequences are convolved with a Gaussian kernel and then
compared using Equation 4. The resulting distance measures are
reported in the tables below.
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TABLE 1 Initial parameters.

Constant  Equation(s) Value Condition
Tm Equation 7 10 -
C Equation 7 1.0 -
Vi Equation 7 1.0 -
a Equation 8 2m -
w Equation 10 0.8 multiple ISI sequence
w Equation 10 1.8 single ISI
vy Equation 12 v, =15 | Above threshold transmission
v, Equation 12 v, =0.9  Below threshold transmission
Vs Equation 12 0 First spike
Vs Equation 12 Va Not first spike
wq Equation 14 0.4 -

TABLE 2 Maximum and minimum range of initial values of randomised
variables.

Variable Minimum Maximum
value value
synaptic delay 5m 20 m
resonance mean (4) 5m 20 m
resonance standard 2m 5m
deviation (o)

The model’s constants shown in Equation 7 through to 12 are
summarised in Table 1.

Model variables were randomised at the start of each
experimental run by making draws from a uniform distribution.
The maximum and minimum values of that distribution are shown
in Table 2.

The remainder of this section presents three sets of experimental
results corresponding to the three objectives listed above. Each set
consists of multiple experiments with different configurations of input
and output neurons, and different input patterns. The times of the
spikes in the input patterns are randomly generated using a ‘stick
breaking’ process Sethuraman (1994). The models used in all of the
following experiment had 4 resonant synapses from each input to every
output neuron. All of the synapses that impinged on the same output
neuron were recruited into the same functional synaptic cluster.

Each experimental run consisted of 300 epochs, where the
duration of an epoch is equal to the phase duration (100 m)
during which a §ittered’ version of the input pattern is presented
to the input layer, and a response from the output layer is generated.
No learning or adaptation is applied in first and the last 50 epochs,
enabling the collection of pre-training and post-training
performance metrics. Phase 1 of learning begins from epoch 51,
during which time the clusters allocate incoming ISIs to the synapses
which in turn learn the statistics of the ISIs assigned to them. The
graph in Figure 5 shows an example illustrated with historic plots of
the probability of transmission for each of four synapses within the
same functional cluster during Phase 1 adaptation. In this case,
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synapse 2 has adapted to the statistics of the first incoming ISI,
synapse 1 to the second, and synapse 0 to the first. Synapse 3 has not
been allocated an ISI and so its standard deviation is progressively
increased to prevent unwanted transmissions. The dotted line shows
the initial randomised delay, which is adapted during phase
2 of learning.

Phase 1 lasts for 180 epochs, after which Phase 2 begins the
adaptation of the synaptic delays which continues for a further
20 epochs. Figure 6 illustrates the subsequent Phase 2 adaptation of
the delays of the synapses shown in Figure 5.

Each of the results shown in the tables below are averaged over
10 experimental runs, each starting with one or more randomised
input patterns for the network to learn.

3.1 Experiment 1: separate input sources

This first suite of experiments seeks to establish that resonant
synapses that are organised into functional synaptic clusters can
learn to successfully decode incoming sequences of ISIs. We are
interested in how this model performs as the complexity of this
decoding task increases both in terms of the number of ISIs making
up the input sequence, and in terms of the complexity of the network
(i.e., the number of input and output units), and where sequences of
ISIs to be decoded were presented on separate input units.

Table 3 shows the mean and standard deviation of the distance
measure using Equation 5 for three sets of experiments. Columns 2 and
3 show the number of input and output units in each experimental
subset, and columns 5 to 10 show the mean and standard deviation of
the distance measure with respect to the target output both prior and
post training, with the number of ISIs in the input sequence increasing
from 1 to 3. Each row of the table is showing means and standard
deviations that have been averaged across 10 randomised network
parameter sets (Table 2) and 10 randomised spike trains that were
jittered prior to presentation a the input layer.

The post-learning results show a clear improvement in
performance over the pre-training outcomes. It is also clear that as
the model and the data complexity increase, the averaged distance
measures also increase as expected. It worth commenting, however,
on the fact that the distance measure on the pre-trained networks
already have a low similarity score. The primary reason for this is that
the randomisation of the means, standard deviations and time delays
for the resonant synapses at the start of each experimental run must be
done within the constraints of the phase duration (100 m). These
randomisations have a tendency to produce initial parameters that are
often not far from the optimal ones for decoding. Nevertheless, the
results in Table 3 demonstrate that learning has taken place. Using
Equation 5, we see, for example, that the decoding probability has
increased in Experiment 1.1 for 2 ISIs from 0.79 (79%) to 0.91 (91%).

3.2 Experiment 2: decode sequences of ISls
that are distributed across multiple
input sources

The second suite of experiments explore the capacity of this
model to decode time structured spike trains where the ISIs that
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Graphs showing historic plots from initial values (faint blue) to final values (dark blue) of the adaptation of synaptic transmission probabilities during
Phase 1. Note that these plots are not probability distributions, but show the probability of transmission sampled across the range of ISls shown.
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TABLE 3 Decoding sequences of ISls from separate input sources. The table reports the mean and standard deviation of the distance measure shown in
Equation 5 averaged across the experimental runs.

11SI AN 3 ISls
Exp [\ [o} No. Stats Pre-train Post-train Pre-train Post-train Pre-train Post-train
No. Inputs Outputs
11 1 1 Mean 0.19863 0.01649 0.21073 0.09346 0.29789 0.15690
St.Dev 0.06003 0.00706 0.04651 0.03999 0.06388 0.07941
12 1 2 Mean 0.12898 0.03306 0.18494 0.07365 0.22596 0.14233
St.Dev 0.01766 0.02830 0.03514 0.04343 0.06412 0.07429
13 2 4 Mean 0.09132 0.04610 0.11934 0.05146 0.18573 0.07962
St.Dev 0.06003 0.00706 0.04651 0.03999 0.06388 0.07941

TABLE 4 Decoding sequences of ISlIs that are distributed across multiple input sources.

N AN 3 ISls

Exp [\ [o} \[o} Stats Pre-train Post-train Pre-train Post-train Pre-train Post-train
No. Inputs Outputs
2.1 2 1 Mean 0.21239 0.10239 0.35427 0.17567 - -

St.Dev 0.04158 0.03765 0.05623 0.09353 - -
22 2 2 Mean 0.13026 0.08799 0.28212 0.13777 - -

St.Dev 0.01671 0.01844 0.04634 0.04811 - -
23 4 3 Mean 0.16728 0.08072 - - - -

St.Dev 0.04328 0.01483 - - - -

make up the sequence are distributed across multiple inputs. As Unsurprisingly, the results show that the multiplexed input

before, the columns of Table 4 show the network structure and the  signals results in a significant increase in the distance measures

number of ISIs presented to each of the input units. Given the limit  as the complexity of the signals, the number of ISIs and the number

of 3-4 ISIs per pattern to be learned, this model was unable to  of merged patterns are increased. Despite this, the model is able to

process 3 ISIs per input unit in experiment 2.1, 2.2, and 2.3, or 2ISIs  improve on the distance measure scores after training, suggesting

per input unit in experiment 2.3. The remaining results demonstrate  that it may have the capacity to decode multiplex time-structured

that learning has taken place between pre-training and post training  spike trains.

phases. Once again from Equation 5, in Experiment 2.1 for 2 ISIs, the There are some clear limitations to the experimental approach

decode probability increases from 0.65 (65%) to 0.82 (82%). Similar ~ we have taken here. One limiting factor is that all models are trained

probabilities can be derived for all the experiments conducted. with a fixed number of epochs for both phases of adaptation. It may
be that longer training regimes might have resulted in better
performance overall. It was our intention, however, to

3.3 Experiment 3: multiplexed input signals  understand how model and pattern complexity affected the
decoding challenge, and so consistent training times has helped

This third suite of experiments explores the capacity of this  to shed some light on this, whilst also demonstrating that functional

model for decoding multiple distinct sequences of ISIs that have  clusters of resonant synapses have the potential to decode time

been combined together into one input. The training sequence for  structured spike trains under various conditions.

these experiments differs from that used in the previous

experiments; in this case a number of random patterns

(sequences of ISIs) are generated and the model is trained on 4 Discussion

jittered versions of them as before. However, in the test phase,

these spike patterns are merged into one sequence. As before, the The work we have done thus far develops the basic mechanism

spikes in this combined sequence are jittered and the model is  for learning and subsequently decoding time-structured spike trains

evaluated on its performance in decoding them both before and after - i.e., ones where information is coded in the relative phase of spikes.

training. The results are summarised in Table 5. As has been seen in biology (Kayser et al., 2009), this potentially
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TABLE 5 Decoding multiplexed sequences of ISls.

10.3389/fnetp.2025.1664280

11SI AN 3 ISIs
Exp [\ [o} [\[o} Stats Pre-train Post-train Pre-train Post-train Pre-train Post-train
No. Inputs Outputs
3.1 1 2 Mean 0.34180 0.15499 0.55112 0.25910 0.67704 0.41644
‘ St.Dev 0.06404 0.07522 0.05525 0.07972 0.04856 0.06802
32 1 ‘ 3 Mean 0.56882 0.24305 0.73541 036983 0.81643 0.48556
‘ St.Dev 0.07949 0.03310 0.05066 0.04408 0.03036 0.02547

permits both higher information content and greater robustness to
noise. Furthermore, by developing formal models for spike-train
similarity and decoding, we are able to translate measures of spike
similarity directly into decode probabilities, providing a constructive
route to design of functional neural networks based on temporal
coding, with known probability of information retrieval given a
desired information density. These models could additionally be
used to develop network-level as opposed to synapse-level learning
rules,
backpropagation (without the traditionally associated difficulties

including supervised learning algorithms such as
concerning the non-differentiability of a spike signal). Future
work will build larger networks and libraries of such learning
rules, allowing functional neural networks that can be integrated
into real-time, real-world systems.

Further exploration of the information capacity of a temporally-
coded neural network remains an interesting problem. Although
Kayser et al. (2009) indicates there are gains to be had, Tkeda and
Manton (2009) show that the phase difference between 2 distinct
spike codes cannot be arbitrarily small, at least not if the decode is to
be reliable. However, in real-world problems, completely reliable
decoding may not be necessary. Some ‘error’ in computed output
may be tolerable if results are not needed to arbitrary precision, e.g.,
when computing motor commands for a given set of outputs on a
robot (where, in any case, the motors themselves have finite
command tolerances). Furthermore, if spike-codes are chosen so
that ‘similar’ phase codes (i.e., ones that lie adjacent to each other in
the word space of Equation 2), then errors are bounded to similar
semantic meanings, in the same way as is achieved in conventional
neural networks through suitable choice of embeddings. Further
formal work is clearly required to characterise the information-
processing capabilities of temporal spiking neural networks under
various bounds on intrinsic noise and symbol error. A major gap still
exists likewise in formal convergence proofs and learning models for
large-scale temporal spiking networks; the work presented here
provides some foundations, but the field as a whole still lags
behind the maturity achieved in conventional neural networks.

Although resonant synapses (RSs) (Crook et al., 2023) were
initially inspired by resonant neuronal groups (RNGs) (Aoun, 2022)
and we find similarities between both approaches (e.g., ISI
processing), RNGs are neuron-based while RSs are dendritic. In
addition, RS employs probability distributions and statistics in
decoding inputs while, RNGs follow nonlinear dynamical systems
methodology. We are exploring methods to combine both a
dynamical systems approach and the probabilistic approach to
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develop stochastic dynamical neural networks not dependent on
either noiseless signalling nor on discrete-time processing models.

The recent work of Agnes and Vogels (2024) on codependent
inhibitory and excitatory plasticity explores how the interplay
between excitatory and inhibitory synaptic changes maintains
network stability ~while enabling effective learning. By
incorporating these principles, the proposed temporal synaptic
learning model could achieve better balance in neural activity,
reduce the risk of runaway excitation or inhibition, and enhance
its ability to process complex, multiplexed spike patterns in a
biologically plausible manner. It provides insights into how
balanced synaptic modifications can enhance network stability
and learning efficiency. Incorporating such mechanisms could
improve the robustness and adaptability of the proposed
temporal synaptic learning model.

The ability to decode different spike patterns implies an
orthogonality of inputs. Indeed, there is some biological evidence
to suggest this: rats use their whiskers to encode the three-
dimensional location of objects through an orthogonal, triple-
code scheme (Knutsen and Ahissar, 2009). In this model, vertical
coordinates (elevation) are encoded spatially by the identity of
activated sensory neurons, horizontal coordinates (azimuth) are
encoded temporally by the timing of activation, and radial
coordinates (distance) are encoded by the intensity of activation.
These orthogonal inputs are mutually independent, allowing
individual primary afferents to encode all three dimensions
during a single whisker-object contact simultaneously. Such a
coding scheme reduces ambiguity and simplifies decoding
circuits, enabling efficient tactile perception during active sensing.
Multidimensional sensory and processing systems such as this could
likewise be employed, e.g., in mobile robotics, enabling efficient
integration of multimodal sensory input within constrained wiring
and power budgets (Yu et al., 2023).

5 Conclusion

We have demonstrated a mechanism for temporal synaptic
learning able to discriminate different patterns of phase-coded
spiking signals. This enables a new class of neural network able
to operate and learn in real time, with capabilities much closer to the
known abilities of biological systems, in contrast to typical modern
large-scale neural networks trained offline and requiring massive
datasets, with representations distributed over a large number of

frontiersin.org


https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1664280

Crook et al.

connections. With this new learning and coding model, multiple
classes of information can be transmitted and computed upon
simultaneously, by the same circuitry, at potentially significant
power savings. Even what is to be computed does not need to be
predecided or wired in, in advance: such networks, which have
already learnt to compute certain results can reuse data latent in the
signals being sent to potentially learn new classes of result that had
hitherto been unimportant or insignificant. Discarding the
fundamentally discrete-time, synchronous processing model of
both conventional neural networks and of digital circuitry has
always been a desideratum with real-world systems; we have
introduced a solution to the problem of learning in such
continuous-time processing that makes it feasible.
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