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It has been shown before that two species of diffusing particles can separate from
each other by the mechanism of reciprocally concentration-dependent
diffusivity: the presence of one species amplifies the diffusion coefficient of
the respective other one, causing the two densities of particles to separate
spontaneously. In a minimal model, this could be observed with a quadratic
dependence of the diffusion coefficient on the density of the other species. Here,
we consider a more realistic sigmoidal dependence as a logistic function on the
other particle’s density averaged over a finite sensing radius. The sigmoidal
dependence accounts for the saturation effects of the diffusion coefficients,
which cannot grow without bounds. We show that sigmoidal (logistic) cross-
diffusion leads to a new regime inwhich a homogeneous disordered (well-mixed)
state and a spontaneously separated ordered (demixed) state coexist, forming
two long-lived metastable configurations. In systems with a finite number of
particles, random fluctuations induce repeated transitions between these two
states. By tracking an order parameter that distinguishes mixed from demixed
phases, we measure the corresponding mean residence in each state and
demonstrate that one lifetime increases and the other decreases as the
logistic coupling parameter is varied. The system thus displays typical features
of a first-order phase transition, including hysteresis for large particle numbers. In
addition, we compute the correlation time of the order parameter and show that
it exhibits a pronounced maximum within the bistable parameter range, growing
exponentially with the total particle number.
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1 Introduction

The emergence of spatiotemporal structures in suspensions of active particles is an
important topic in the current research in nonequilibrium statistical physics
(Romanczuk et al., 2012; Marchetti et al., 2013; Costanzo et al., 2014; Grossmann
et al., 2014; O’Keeffe et al., 2017; Granek et al., 2024). Interestingly, in such settings,
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order in terms of separation of different sorts of particles may
emerge other than by repelling or attracting forces but via the
mutual control of motility.

A particularly striking example is the demixing of two different
strains of Escherichia coli bacteria with reciprocal motility
interaction, studied experimentally and in a reaction-diffusion
model by Curatolo et al. (2020). A central part of the mechanism
of particle separation was a mutual amplification of the diffusion
strength caused by the presence of the respective other bacteria. This
could be mimicked in the paper by Schimansky-Geier et al. (2021),
which presented, simulated, and studied analytically a minimal
model in which two populations of overdamped Brownian
particles mutually control their strength of diffusivity (the noise
intensity of driving fluctuations increases with the concentration of
the respective other sort of particles). The dependence of the
diffusion coefficient has to be strong enough (qualitatively and
quantitatively) to observe a demixing of the two
population densities.

Here, we study a variant of the model suggested by Schimansky-
Geier et al. (2021) and demonstrate a novel bistability between a
well-mixed and a demixed state that results in a system with finite
particles in stochastic transitions between an ordered and a
disordered state. This result might be interesting and also
observable experimentally when the reciprocal motility
interaction is particularly tailored.

Our paper is organized as follows. In the next section, we
introduce the studied model, focusing on the novel aspect, the
sigmoidal diffusion coefficient. In Section 3, we derive the
conditions under which a single demixed state, a single
homogeneous (well-mixed) state, and bistability between both
states can be observed in the model and present the system
bifurcation diagram. In Section 4, we show and discuss the
results of simulations in the bistable parameter regime, in which
we measure the mean times that the system spends in the two
bistable states and inspect how these times depend on the
bifurcation parameter. We conclude in Section 5 with a
discussion of our results.

2 Model and measures

We consider two populations of Brownian particles, A and B,
each of size N, that diffuse on an interval [−1, 1] with reflecting
boundary conditions at x � ± 1 according to

dxA,i

dt
�

������������
f ~pB xA,i, t( )( )√

ξA,i t( ),
dxB,j

dt
�

������������
f ~pA xB,j, t( )( )√

ξB,j t( ).
(1)

Here i, j � 1, . . . , N, ξA,i(t) and ξB,j(t) are white Gaussian noise
sources with 〈ξF,i(t)ξG,i(t′)〉 � δF,Gδi,jδ(t − t′)withF,G ∈ A,B, and
the equations are interpreted in the Ito sense (Gardiner, 1985). The
intensity by which these fluctuations enter at a point x depends on
the density of the respective other particles in a neighborhood
(sensing region) of the point x. Specifically, we use the so-called
sensing radius, rs, so that in the limit N → ∞ the spatially
averaged densities, ~pA,B(x) in Equation 1 are (Schimansky-
Geier et al., 2021)

~pA,B x( ) � 1
2rs

∫rs

−rs
dx′pA,B x + x′( ). (2)

Averaging close to the boundaries is implemented in a reduced
window over an inside range of the respective densities; see below for
an explanation. The case of local interaction where ~pA,B(x) �
pA,B(x) corresponds to rs � 0.

Our model belongs to the broad class of active matter systems,
ensembles of particles that continuously consume energy and
therefore operate out of equilibrium (Romanczuk et al., 2012;
Marchetti et al., 2013). In Equation 1, noise represents
fluctuations in the internal drive of the particles. The time-
dependent local density of the opposite species modulates each
particle’s effective diffusivity (noise intensity). This reciprocal
motility control represents energy influx at the microscopic scale,
breaking detailed balance. Consequently, the observed steady states
are maintained by a sustained flux of energy.

For the nonlinear function, f(p), that determines the
dependence of the noise intensity on the density of the other
particle species, we choose a logistic function (Heinen et al., 2024),

f p( ) � 1
1 + exp −α p − p0( )[ ], (3)

a function that monotonically grows with its argument (hence, the
fluctuations driving the A particles at x become stronger when there
are a lot of B particles) but shows a saturation: the noise intensity
cannot grow unbounded, as was the case for the quadratic function
used in Schimansky-Geier et al. (2021). We set the maximum
diffusion coefficient (or noise intensity) to one, noticing that a
value different from one can be absorbed by simply rescaling
time. The positive parameters α and p0 in Equation 3 determine
the slope and the inflection point of the sigmoid, respectively.

Implementing the average of the densities as estimated from
simulations of a finite number of particles deserves some comments,
see Schimansky-Geier et al. (2021) for details. In our numerical
simulations, the sensing radius accounts for a moving average of
binned probability density functions (PDF). For each bin and a given
time instant, the PDF is estimated by the number of particles that
have fallen into this bin. To estimate ~pA,B, these PDF values are
averaged over s bins to the left and s bins to the right, i.e., over 2s + 1
bins, except for bins close to the boundaries. With the bin size
Δx � 2/(m − 1), this implies a sensing radius of rs � s · Δx in
Equation 2. The averaging window size is shrunk near the
endpoints to include only existing bins.

In the limit of infinite particle numbers, N → ∞, the dynamics
of the system is described by coupled nonlinear and nonlocal
Smoluchowski equations, which describe the evolution of the
probability densities (Schimansky-Geier et al., 2021)

∂tpA x, t( ) � ∂2x f ~pB x, t( )( )pA x, t( )[ ],
∂tpB x, t( ) � ∂2x f ~pA x, t( )( )pB x, t( )[ ]. (4)

We emphasize that these nonlinear diffusion equations may permit
more than one steady-state solution. We implement a numerical
solution of these equations by a finite-difference scheme described in
detail in Appendix B of Schimansky-Geier et al. (2021), testing
different initial conditions to determine the number and stability of
asymptotic solutions. The integration of the Smoluchowski
equations was terminated once the probability distributions at
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two consecutive time steps differed by less than 10−8 at every spatial
point x. The stationary value of the order parameter (time-
independent) was then computed from the stationary
probability densities.

As in Schimansky-Geier et al. (2021), the system admits a
homogeneous steady-state solution pA,h(x) � pB,h(x) ≡ 1/2 (the
interval length is 2). However, this homogeneous state may be
unstable. To capture the emergence of inhomogeneity, we define
the time-dependent order parameter

Ih t( ) � ∫1

−1
pA x, t( ) − 1

2
[ ]2dx, (5)

which becomes significantly larger than zero whenever the system is
demixed. This quantity can be computed from both finite-
population simulations and from numerical solutions of the
coupled Smoluchowski equations.

As an additional measure of order in the system, we consider the
instantaneous mean position of the A particles:

〈xA〉 � 1
N

∑N
i�1

xA,i t( ), (6)

which should remain close to zero when the A-particle distribution
is homogeneous, but will deviate if A particles preferentially occupy
one side of the interval (negative for the left side, positive for the
right). Compared to Ih, an advantage of this measure is that it
explicitly distinguishes between the two possible demixed states.
Finally, we note that these order parameters are symmetric with
respect to an exchange of A and B particles, i.e., they remain
invariant (with respect to their absolute value) under the
substitutions pA → pB in Equation 5 and xA → xB in Equation 6.

For finite N, we employed the Euler–Maruyama scheme in the
Itô interpretation to simulate the stochastic differential Equation 1
numerically. With the sensing radius, the dependence on the
integration of the time step, Δt, is weak: the larger rs (or s), the
weaker the dependence on Δt (Schimansky-Geier et al., 2021). For
s � 10 used in the following, the results for Δt � 10−3 and 10−4 can
hardly be distinguished. In contrast, omitting the averaging via
sensing radius altogether and using directly the PDF itself in
Equation 1, leads to an exceptionally strong dependence on the
time step, such that extreme simulation times are required,
especially to measure the jump statistics between metastable
demixed and mixed states. In the following, we use the
parameters as given in Table 1 if not explicitly stated otherwise.

The simulation time window was chosen to ensure a sufficient
number of transitions between metastable states in the bistable
parameter regime for reliable estimation of the mean residence
times, the probability density, and the correlation function of the

order parameter. For exponentially distributed residence times, the
standard error of the sample mean τ̂ of M switching events is
SE(τ̂) � τ/

��
M

√
, where τ is the true mean residence time. By the

central limit theorem, the relative margin of error of τ̂ at confidence
level 1 − α is ϵ � z1−α/2/

��
M

√
, with z1−α/2 � Φ−1(1 − α/2) the

standard normal quantile, see e.g., Bendat and Piersol (2011).
Thus, the required number of switching events is M≥ (z1−α/2/ϵ)2.
Accordingly, the expected simulation window is Tmax ≥ τM. For ϵ �
0.1 and 1 − α � 0.95 this gives M≥ 384. We used M � 103 and
τ � 104, which results in Tmax � τM � 107, the value adopted in our
simulations, accommodating for possible deviations from
exponential statistics and occasional long residence times. To
allow the system to approach a steady state, we first integrated
for a relaxation period of Trelax � 104. The system was then
integrated for an additional Tmax � 107, and the time-dependent
order parameter Equation 5 was approximated using the trapezoidal
rule to compute the integral.

3 State diagram for N → ∞
We start with the numerical analysis of Equation 4 and find the

asymptotic state(s) of the system by solving the nonlinear equations
for various initial conditions on a grid.

When we vary the parameters α and p0 of the sigmoidal
nonlinearity, we encounter parameter regimes that have been
seen before with a quadratic nonlinearity in (Schimansky-Geier
et al., 2021). Specifically, when the inflection point p0 is low, and the
function is not particularly steep (small α), the homogeneous state in
which both densities are well-mixed is the only stable state. When
the inflection point is enlarged (but α is still small), we observe that
the system demixes. There are regions where the A particles are in
excess and the B particles are diminished in numbers, and there are
other regions where it is the other way around; this is the demixed
state. Now, beyond these two known regimes in which either a stable
homogeneous or a stable demixed state exists, there is at large α and
small p0 also a regime of coexistence of both states. The lines of
bifurcations are shown in Figure 1a; we also illustrate that the
bistability does not hinge on a finite sensing radius (the red lines
show the bifurcation for the case rs � 0). In Figure 1b, the new
coexistence of demixed and homogeneous states is demonstrated for
a specific parameter set: A and B particles might here be distributed
in a homogeneous manner (black line) or by an increased density of
A particles on the left and B particles on the right (because of the
symmetry of the problem, there is the symmetric demixed solution
with an excess of B particles on the left, etc.). We note that the
densities, because of the finite averaging, do not add up to a constant,
but there is an overall reduction of particles around x � 0.

As a consequence of the different parameter regimes, we see
different types of transitions when the inflection point p0 is
increased, depending on whether the logistic function is shallow
(α≲ 7) or steep (α≳ 7). For a shallow logistic function, the transition
shown in Figure 1c is continuous: close to the bifurcation, the order
parameter Ih is still close to zero, and demixing starts as a slight
difference in the densities from the homogeneous state. For a steeper
nonlinearity as illustrated in Figure 1d, we see a first-order-like
transition with a homogeneous state (Ih � 0) that remains stable
when p0 is increased (orange line), then jumps abruptly to a

TABLE 1 Simulation parameters.

Parameter Meaning Value

α Steepness of nonlinearity 8

m Partition for PDF estimates 100

s Sensing radius parameter 10

Δt Time step 10−3
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pronouncedly demixed state, and continues further from there.
Upon reversal of the parameter variation (blue line), we see a
hysteresis effect. Namely, the system stays in the bistable state
where previously the abrupt jump occurred before it jumps to Ih �
0 at a smaller value of p0 than the one at which the jump in the
forward direction was observed.

The observed bistability in the system with an infinite number of
A and B particles (corresponding to the Smoluchowski equations)
raises the interesting question of what will happen in a system with a
finite number of particles that is prone to fluctuations. We explore
the bifurcation in a system with many but finite particles next and
then turn to smaller systems in which finite-size fluctuations may
trigger transitions between bistable states.

4 First-order-like transition in finite but
large systems

We now turn to a large system with N � 104 of each A and B
particle and integrate the stochastic differential equations
Equation 1 with an α sufficiently large to encounter the above-
discussed bistability. We use parameter continuation with
different initial conditions: (i) the mixed state, in which xA

and xB are uniformly distributed in (−1, 1), and (ii) the
demixed state, where xA was distributed solely in (−1, 0), and
xB in (0,1). From the two distributions of particles, we obtain

time series Ih(t) from which a time average Ih as well as its
probability density, P(Ih), can be estimated. We illustrate the
mean value in the case of a parameter continuation p0 for the two
initial conditions (i) and (ii) in Figure 2a by solid and dashed
lines and for the values of the sensing radius rs (red, blue, green).
It becomes apparent that the exact transition point p0* as well as
the width of the hysteresis depend on rs. With growing sensing
radius, the critical inflection points move up, and the size of the
hysteresis range shrinks. This is further explored in Figure 2b,
where we show the time-averaged order parameter as a function
of sensing radius for different values of p0. Also, here we observe
an abrupt jump of Ih with increasing rs; it is quite plausible that
too much averaging (a too large value of rs) will destroy the
demixing mechanism. Interestingly, the order parameter for
moderate increases may also cause a modest growth in the
order parameter (cf., for instance, the maximum of the green
curve in Figure 2b).

How does the bifurcation plot depend on the number of used
particles? This is exhibited in Figure 3 for our standard value of
sensing radius, rs � 0.1, and four different system sizes. The figure
clearly shows hysteresis for large N (104 and 5 × 103), while for
smaller N, the averaged order parameter displays a smoother
dependence on p0. The latter dependence is expected if the
system can jump between the bistable states within the averaging
time window. We next explore the behavior of small particle
numbers in more detail.

FIGURE 1
State transitions in the case N → ∞. (a) State diagram with bifurcation lines separating regions with a mixed (homogeneous) state, a demixed state,
and with the coexistence of both mixed and demixed states (bistability). Non-locale case (black lines) compared to local case (rs � 0, red lines, for
calculation, see Supplementary Appendix). (b) Steady states in the bistability region (α � 8, p0 � 0.36). (c) Continuous (second-order-like) transition for
α � 6. (d) First-order-like transition for α � 8 with forward (orange) and backward (blue) parameter continuation.

Frontiers in Network Physiology frontiersin.org04

Neiman et al. 10.3389/fnetp.2025.1612495

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2025.1612495


5 Switching between mixed and
demixed state in the bistable regime for
small N

For small N, e.g., for N � 500, the system exhibits switching
between mixed and demixed states for parameter values within the
range of bistability. Figure 4 exemplifies time traces of Ih and 〈xA〉
(panel a) and corresponding probability distributions P(Ih) (b) for
three parameter values. For p0 � 0.357 (red line), the switching
results in a bimodal distribution P(Ih).

From Figure 4a we can also conclude that both Ih and 〈xA〉 are
viable measures of demixing. Furthermore, transitions between a
demixed state with 〈xA〉< 0 (A particles preferentially on the left)

and a demixed state with 〈xA〉> 0 (A particles preferentially on the
right) or the other way around seem to have to pass through the
demixed state first (〈xA〉 ≈ 0); this is definitely the case for smaller
values of p0 but becomes less well visible for p0 � 0.36 for which the
mixed state is least stable.

Figure 5 shows a complete picture of P(Ih) vs. p0,
demonstrating a region of switching dynamics. Superimposed are
the locations of maxima and minima of P(Ih) (illustrating the
bimodality in the intermediate region) and the smoothly varying
time-averaged order parameter, �Ih.

The stochastic transitions can be most appropriately
characterized by the mean residence times in the mixed and
demixed states. To this end, we extract many (≥ 103) realizations

FIGURE 2
Effect of the sensing radius. (a) Time-averaged order parameter vs. p0 for the indicated number of sensing radius, rs. Solid lines refer to amixed initial
state; dashed lines refer to a demixed initial state. (b) Time-averaged order parameter vs. rs for the indicated values of p0. The initial distribution of particles
was in the demixed state. N � 104 for both panels.

FIGURE 3
Hysteresis in the time-averaged order parameter is only seen for sufficiently large systems. Time-averaged order parameter vs. p0 for the indicated
number of particles, N. Solid lines refer to a mixed initial state; dashed lines refer to a demixed initial state.
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FIGURE 4
Stochastic transitions between mixed and remixed states for small particle numbers. Fragments of time traces of Ih and 〈xA(t)〉 (a), and
corresponding probability distributions P(Ih) for full traces (b), for p0 � 0.354 (blue), p0 � 0.357 (red), and p0 � 0.36 (green) for N � 500 particles. Time in
the panel (a) and in the following is in arbitrary units.
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of residence times from the time course Ih(t). The residence times
were estimated as time intervals between a threshold crossing
events lasting for at least Tmin � 5, to avoid fast threshold
recrossing. The threshold was determined as the local minimum
of the probability distribution of the order parameter (black circles
in Figure 5). Figure Figure 6 shows the averages over the two types
of intervals for N � 300, 500, and 1000. The chosen range of p0

values (with α � 8) falls entirely into the bistable regime shown
in Figure 1a.

Clearly, a larger number of particles implies ‘more waiting’: for
N � 1000, the mean residence times are exponentially larger than
for the smaller particle numbers. Furthermore, the mean residence
time in the mixed (or homogeneous) state decreases upon increasing
p0 - this is quite plausible because we move the system away from

FIGURE 5
Probability distribution of Ih vs. p0 for N � 500. Red and black circles show positions of the maxima and the minimum of P(Ih), respectively; the blue
line shows the mean, �Ih .

FIGURE 6
Mean residence times of mixed and demixed states for small systems. The mean duration of mixed (solid line) and demixed epochs (dashed line) vs.
p0 for the indicated values of N.
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the bifurcation boundary where this homogeneous state becomes
the only stable state in the system and hence go the other way, we
destabilize this state in the sense that we increase the system’s chance
to leave this state. In contrast, the mean residence time of the
demixed state increases - we stabilize this state by moving towards
the bifurcation boundary at which the demixed state turns into the
only stable state of the system.

There is a particular value of p0 (which depends onN) at which
both mean residence times are equal. Here, both mixed and demixed
states are roughly equally likely, and the histogram of Ih may exhibit
a pronounced bimodality. The particle number not only controls the
finite-size noise in the system (in the sense of enlarging the mean
residence times because fewer fluctuations can induce a transition)
but also shifts the residence-time curves with respect to p0.

The slow back and forth between the different states of the
system (especially at larger particle numbers and amid the bistable
regime) may lead to long temporal correlations. We inspect their
dependence on the system parameter by calculating the normalized
correlation function of the order parameter

R τ( ) � 〈Ih t( )Ih t + τ( )〉 − 〈Ih t( )〉2
〈Ih t( )2〉 − 〈Ih t( )〉2

and extracting its typical decay time, the correlation time by the
following estimate

tcor � ∫T

0
dτ|R τ( )|. (7)

We note that the correlation time is easier to calculate than the
residence times, as one does not need to define and use a threshold
to determine the residence epochs. In Figure 7a, the correlation
time Equation 7 displays a pronounced maximum at the sweet spot
p0*, corresponding roughly to the equal residence of the mixed and
demixed states. Making the systemmore asymmetric, i.e., biasing it
towards the mixed or demixed state, will reduce the correlation
time. Similar effects have been observed for the diffusion
coefficient of particles with a bimodal velocity distribution (that
is actually proportional to the correlation time of the velocity
process) (Lindner and Nicola, 2008; Lindner and Sokolov, 2016)
and for the count variability in bursting neurons (Kullmann et al.,
2022). In many of these systems, it was observed that the system

size controls the height of the maximum, and the maximal
correlation time grows exponentially with N. This is also true
for our system, cf. Figure 7b.

Furthermore, when the number of particles N is increased, the
maximum becomes more peaked such that outside a critical range of
asymmetry, the correlation time decreases with increasing N (or is
almost constant as is the case for the two extreme examples shown in
Figure 7b in green and blue) while inside this range tcorr increases
strongly with increasing N. The range itself has a moderate
dependence on N, as has also been observed for some of the
other systems mentioned (Lindner and Sokolov, 2016; Kullmann
et al., 2022).

6 Summary and discussion

We have inspected a minimalistic model of two populations of
Brownian particles that mutually enhance by their presence the
diffusion coefficient of the respective other population. Building on
the results from Schimansky-Geier et al. (2021), as a new model
ingredients we used here a sigmoidal nonlinearity characterized by
an inflection point p0 and a slope parameter α, replacing a simple
quadratic nonlinearity previously considered in Schimansky-Geier
et al. (2021). We showed that, besides the already known regimes in
which either only a homogeneous (well-mixed) state is stable or a
demixed state is stable, this model exhibits a novel regime in which
these two states (mixed and demixed) can coexist. This was first
demonstrated using the nonlinear Smoluchowski equations
corresponding to a system with infinite particles.

Exploring the case of finite particle numbers using Langevin
equations revealed the emergence of repeated stochastic transitions
between the homogeneous (disordered) mixed state and a demixed
state in which one kind of particle is in excess in one region while the
other one is in excess in another region. Hence, in a strong
formulation, the system switches back and forth between order
and chaos, which we quantified by an order parameter that measures
the deviation from a uniform distribution. We note that another
measure would be the entropy of the two distributions: we have
verified that the entropy indeed displays stochastic transitions
between two values corresponding to the more ordered, demixed

FIGURE 7
Correlation time of the order parameter. (a)Correlation time vs. p0 for the indicated values ofN. (b)Correlation time vs.N for the indicated values of
p0. The solid red line shows the least-square exponential fit, tcor � αeβN, α � 15.1, β � 3.653 · 10−3.
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state and the more disordered, homogeneously distributed state (not
shown). Repeated back-and-forth transitions between order and
disorder have been observed experimentally in several systems
(Pufall et al., 2004; Paul et al., 2022); interestingly, in the context
of our work, the simplicity of the model leads to such transitions
between high- and low-entropy states.

We have furthermore explored the transitions using the
residence times and the correlation time of the order parameter
and, specifically, their dependence on the bifurcation parameters
and the system size. Typical for a symmetric bistable setup, the
correlation time is maximized and displays an exponential growth in
the system size.

It would be fascinating to observe this type of transition between
mixed and demixed states in experimental systems of active matter.
The new feature of our nonlinear dependence of the diffusion
coefficient on the probability density seems to be rather realistic:
diffusion coefficients can certainly not grow unbounded with the
number of opposite particles (at some point, the presence of other
particles may even hinder and limit diffusion), hence a saturation of
D(p) is quite plausible. Whether this would also be possible in more
complicated models of mutual motility dependence and in the
experiments presented in Curatolo et al. (2020), remains an
exciting question for future research. In particular, the model can
be extended by incorporating a quorum-sensing effect by introducing
a self-dependent diffusivity, in which, in addition to cross-density
dependence, the motility of a species is affected by its own density.
Our preliminary results indicate that quorum-sensing self-dependent
diffusivity can drive clustering, the so-called motility-induced phase
separation of active Brownian particles (Cates and Tailleur, 2015).
However, the bistable mixing/demixing reported here relies on
reciprocal motility control between two species.

Our logistic mutual diffusion model captures self-organized
demixing and noise-induced transitions between mixed and
demixed states, behavior that resembles a thermodynamic first-
order phase separation transition as in liquid-liquid phase
separation (LLPS) (Banani et al., 2017; Zeigler et al., 2021).
Further, cross-diffusion systems can be recast formally as
Cahn–Hilliard–type equations (Berendsen et al., 2017) and
therefore may share phenomenological features with LLPS
models (Laghmach and Potoyan, 2020; Li and Hou, 2022).
Conceptually, however, our model is an active media system and
is not an LLPS model. In our model, the demixing is driven by
reciprocal modulation of diffusion rather than by intermolecular
interaction energies, as in LLPS.

The observed behavior in our model is a form of self-
organization—more precisely, a transient self-organization that
repeatedly emerges and decays. It may be useful to regard the
spontaneous formation of high-concentration domains as a
dynamical network whose nodes exchange particles and either
adjust their size (approaching a single-interface metastable state)
or disaggregate (transitioning to the disordered state). Methods
from the theory of adaptive networks (Gross and Sayama, 2009;
Berner et al., 2023) could be used to extend and analyze our
framework in settings where state-dependent (context-
dependent) interactions are expected. In our model, “state-
dependent coupling” refers to the cross-diffusion gains
depending on the locally averaged density of the partner

species. Beyond microbial consortia, analogous activity-
dependent couplings occur in several physiological contexts,
for example, cancer–immune crosstalk in tissues (Hsieh et al.,
2022; Marzban et al., 2024) and organ–organ interactions
discussed in Network Physiology (Bashan et al., 2012; Qi et al.,
2024; Lehnertz et al., 2020; Ivanov, 2021). We emphasize that
these connections are qualitative, as quantitative mapping would
require system-specific variables and timescales.

Our results may be viewed in the broader framework of
synergetics, originally proposed by Hermann Haken, wherein
emergent macroscopic patterns and states in nonlinear systems
are cast via a small set of order parameters that “enslave”
microscopic degrees of freedom (Haken, 1977; Haken 1983;
Haken, 2012). In particular, our model’s demixing phenomenon,
driven by reciprocal diffusivity feedback, exemplifies the hallmark of
self-organization: above a threshold in the control parameter (here,
the sigmoidal strength), a new collective state emerges and coexists
with the homogeneous state, leading to noise-induced transitions
between these metastable configurations.
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