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Background: Major depressive disorder (MDD) and uremia are two chronic
wasting diseases that have interactive effects and significantly aggravate
patients’ distress. However, the molecular basis linking these diseases remains
poorly investigated.

Methods: Various machine learning algorithms were used to analyze
transcriptome data from the Gene Expression Omnibus (GEO) datasets,
including those from MDD and uremia patients, to develop and validate our
model. After removing batch effects, differentially expressed genes (DEGs) were
identified between each disease group and the control group. Functional
enrichment analysis was then performed at the intersection of DEGs from the
two diseases. In addition, single-sample gene set enrichment analysis (ssGSEA)
quantitative immune infiltration analysis was conducted. The optimal diagnostic
model of uremia was constructed by analyzing and verifying the training set with
multiple combinations of 12 machine learning algorithms. Finally, potential drugs
for uremia were identified using the “Enrichr” platform.

Results: According to enrichment analysis, a total of seven key genes closely
related to MDD and uremia, mainly involved in the immune process, were
identified. Immune infiltration analysis showed that MDD and uremia had
different profiles of immune cell infiltration compared to healthy controls.
Powerful diagnostic markers of seven genes (IL7R, CD3D, RETN, RAB13,
TNNTL, HP, and S100A12) were constructed from these genes, and all showed
better performance than published uremia diagnostic models. In addition,
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decitabine and nine other agents were found to be potential agents for the
treatment of uremia.

Conclusion: Our study combined bioinformatics techniques and machine
learning methods to develop a diagnostic model for uremia, focusing on
common genes between MDD and uremia.

uremia, major depressive disorder, machine learning, diagnostic models, bioinformatics

1 Introduction

Major depressive disorder (MDD) is a prevalent psychiatric
disorder with a significant global impact, causing substantial
disability and affecting everyday functioning (1). Its clinical
symptoms include persistent depressed mood, anhedonia, fatigue,
feelings of worthlessness, and impaired cognitive performance (2).
Major depression is estimated to have a lifetime prevalence of up to
19% (3), placing a significant burden on society (4). It remains a
challenge in the treatment of as many as half of the cases (5). Based
on previous studies, uremia has a significant association with MDD.
For example, studies conducted by Heng-Jung Hsu et al. showed
that the incidence of depressive disorders was significantly higher in
uremia patients (6). Depression can have a serious impact on
people’s lives, even letting people give up life, so it is urgent to
explore the association between uremia and depression.

Uremia is the final stage of chronic renal failure. It is clinically
characterized by abnormal water, electrolyte, acid, and base balance
and increased levels of metabolites (e.g., creatinine and urea) in the
blood (7). The uremic phase is often associated with some
secondary conditions and complications of chronic kidney disease
(CKD), including renal function, circulatory system, endocrine, and
metabolic disorders, as well as neuromuscular dysfunction and
cognitive impairment (8, 9). Among them, MDD is a more
common complication of uremia. Uremia is a chronic wasting
disease that usually requires hemodialysis treatment, and since
the introduction of dialysis, the mental health of hemodialysis
patients has been the focus of research (10, 11). Kimmel et al.
(12) demonstrated that persistent depression is a risk factor for
death in hemodialysis patients. Therefore, it is crucial to construct a
diagnostic model of uremia associated with major depression to
control it in time at an early stage and reduce mortality. However,
the diagnosis of Uremia mainly depends on serum creatinine and
glomerular filtration rate, which makes the diagnosis of Uremia
very lacking. In addition, although many genetic markers have been
investigated, such as CNOT8, MST4, PPP2CB, PCSK7, and RBBP4,
none of them could demonstrate enough specificity and sensitivity
for clinical applications (13). Others have shown a bidirectional
relationship between depression and physical diseases such as
chronic kidney disease (14). Therefore, it is particularly important
to construct a better diagnostic model that can be applied in clinical
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practice through the relationship between depression and chronic
kidney disease for the early detection of uremia.

Bioinformatics and machine learning techniques have evolved
significantly over the last decade, and this is how we can investigate
potential biomarkers and therapeutics for diseases (15-18). In this
study, we used multiple integrated bioinformatics tools to reveal
hub genes and underlying mechanisms linking uremia and MDD by
analyzing data from three uremia datasets and three MDD datasets
selected from the Gene Expression Omnibus (GEO) database. We
explored immune cell infiltration in uremia and MDD. In addition,
113 combined machine learning algorithm frameworks were used
to construct a uremia diagnostic model.

2 Methods
2.1 Data collection

Appropriate datasets were filtered from the GEO database. First,
datasets of transcriptomes for major depression and uremia or end-
stage renal disease were searched. Then, because multiple datasets
were included, the data in the dataset were kept as much as possible
above 6. Finally, it was ensured that the included dataset was
suitable for machine learning methods. Following the above steps,
the following six datasets were obtained from the National Center
for Biotechnology Information (NCBI) GEO (https://
www.ncbi.nlm.nih.gov/geo/): GSE37171, GSE38750, GSE43484,
GSE52790, GSE76826, and GSE98793 (9, 19-23). These datasets
are described in detail in Table 1 and include the microarray
platform, panel, and number of samples.

2.2 Removal of batch effect

Before performing analysis, we merged the three MDD datasets
mentioned in Table 1 (GSE52790, GSE76826, and GSE98793). We
then corrected batch effects using the “ComBat” function in the “sva”
package (version 3.52.0) (24). We used principal component analysis
(PCA) analysis to assess the validity of this correction. Using the same
method, we then corrected three uremia cohorts (GSE37171,
GSE38750, and GSE43484).
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TABLE 1 Basic information of GEO datasets used in the study.

10.3389/fneph.2025.1576349

1D GSE series Disease Samples Source types Platform
1 GSE37171 Uremia 63 uremia patients and 20 normal controls Whole blood GPL570

2 GSE38750 Uremia 15 uremia patients and 19 normal controls Iliac artery and renal artery GPL571

3 GSE43484 Uremia 3 uremia patients and 3 normal controls Monocyte GPL571

4 GSE52790 MDD 10 MDD patients and 12 normal controls Peripheral blood GPL17976
5 GSE76826 MDD 20 MDD patients and 12 normal controls Blood GPL17077
6 GSE98793 MDD 128 MDD patients and 64 normal controls Whole blood GPL570

GEO, Gene Expression Omnibus; MDD, major depressive disorder.

2.3 Determination of DEGs

In the analysis of the MDD and uremia datasets, the “Limma”
package (25) within the R software was employed to identify
differentially expressed genes (DEGs). Our selection criteria,
requiring |log,FC| > 0.25 and p-value <0.05, ensured a
comprehensive and accurate analysis. The outcomes were visually
represented through compelling volcano plots, and the shared part
of the two sets of DEGs was effectively depicted using Venn
diagrams. To further investigate the shared genes, Protein-Protein
Interaction Networks (PPI) networks were confidently generated
using GeneMANIA, facilitating an insightful exploration of their
associations (http://genemania.org/).

2.4 Enrichment analysis of common genes
in uremia with MDD

To gain insights into the biological functions and mechanistic
pathways of common genes, we utilized the “org.Hs.eg.db”, “ggplot2”,
“clusterProfiler”, “enrichplot”, “GSEABase”, and “DOSE” packages to
conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses, as well as Disease
Ontology Semantic and Enrichment (DOSE). p < 0.05 for enrichment
assessment was considered significant.

2.5 Immune cell infiltration

The quantification of 23 infiltrating immune cells in both
diseases was conducted using single-sample gene set enrichment
analysis (ssGSEA). Then, the differential expression of immune cells
in normal and uremia patients was further studied and analyzed.

2.6 Machine learning algorithms

Twelve machine learning algorithms were used to construct 113
different models: Lasso, Ridge, Stepglm, XGBoost, Random Forest
(RF), Elastic Net (Enet), Partial Least Squares Regression for
Generalized Linear Models (plsRglm), Generalized Boosted
Regression Modeling (GBM), NaiveBayes, Linear Discriminant
Analysis (LDA), Generalized Linear Boosting (glmBoost), and
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Support Vector Machine (SVM). First, the raw data were
preprocessed to eliminate the influence of different feature scales.
Then, the dataset was randomly divided into training and testing sets,
70% of which were training sets and 30% of which were testing sets.
During the model training phase, a variety of machine learning
algorithms were used to evaluate their performance. These models
were trained on the training set, and the hyperparameters were
optimized using cross-validation. During the model evaluation
phase, Area Under Curve (AUC) values were calculated for each
model using the test set (threshold set at 0.7) to measure their
classification performance. Finally, AUC values were calculated for
each model using the RunEval function, and heat maps were
generated using the SimpleHeatmap function to visualize the
performance of each model. The model with the highest AUC value
was selected as the best model (26). In addition, calibration curves
were used to assess the predictive performance of our diagnostic
model, Decision Curve Analysis (DCA) curves were generated to
assess the clinical utility of the model, and Nomo plots were also
generated to calculate the probability of disease occurrences. Finally,
the Delong test was used to compare our model’s diagnostic
performance with that of two existing uremia diagnostic models
(13, 27).

2.7 Candidate drug identification
To explore drugs that may target the mechanisms of action in

uremia and MDD, we utilized the Drug Signatures Database (DSigDB)
within the Enrichr web platform (https://maayanlab.cloud/Enrichr/).

2.8 Statistical analysis
Statistical analyses were performed using the R software version

4.4.1. An unpaired Student’s t-test compared differences between
the two groups. p < 0.05 was considered statistically significant.

3 Results
3.1 Data processing

The study design flowchart is shown in Figure 1. Original MDD
and control transcriptome data were obtained from GEO,
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FIGURE 1

The flowchart of the study.

integrated after removing batch effects, and standardized MDD case
and control processing cohorts were generated (Figures 2A, B).
Similarly, the post-batch corrections of the original uremia and
control cohorts were combined (Figures 2C, D) to obtain a
standardized validation cohort with markedly reduced batch effects.

3.2 Identification of differential expression
associated with uremia and MDD

Based on the relationship between MDD and uremia, limma
analysis was performed for the uremia (GSE37171, GSE38750, and
GSE43484) and MDD (GSE52790, GSE76826, and GSE98793)
cohorts to identify causative genes for MDD-associated uremia.
Among the 4,209 DEGs detected in the uremia cohort, 1,871 genes
showed upregulated expression, while 2,338 were downregulated
(Figure 3A). The MDD cohort yielded 25 DEGs, 15 of which were
upregulated and 10 downregulated (Figure 3B). The DEGs of
uremia and MDD were intersected to obtain seven shared genes
for constructing a diagnostic model of uremia (Figure 3C).
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3.3 Functional enrichment of the shared
genes

The PPI networks of the shared genes were established from the
GeneMANIA database (Figure 4A), and then GO, KEGG, and
DOSE were used for functional enrichment analysis and to search
for potential pathogenic mechanisms. GO enrichment analysis
showed overexpression of biological processes, including defense
response to bacterium, T-cell differentiation in the thymus, cell
killing, gonad development, development of primary sexual
characteristics, negative regulation of T cell-mediated cytotoxicity,
response to insulin, positive regulation of T-cell differentiation in
the thymus, positive regulation of steroid hormone secretion, and
luteinization. Enriched cellular components included endocytic
vesicle, clathrin-coated vesicle, coated vesicle, secretory granule
lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule
lumen, clathrin-coated endocytic vesicle membrane, clathrin-
coated endocytic vesicle, and clathrin-coated vesicle membrane.
Overexpressed molecular functions included receptor for advanced
glycation end products (RAGE) receptor binding, tropomyosin
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The integration of MDD datasets and uremia datasets. (A) PCA of three raw MDD datasets without batch effect correction. (B) PCA of the integrated
MDD dataset after batch effect correction. (C) PCA of three original uremia datasets before batch effect correction. (D) PCA for the combined
uremia dataset after batch effect correction. MDD, major depressive disorder.

binding, copper ion binding, calcium-dependent protein binding,
antioxidant activity, cytokine receptor activity, hormone activity,
immune receptor activity, serine-type endopeptidase activity, and
antigen binding (Figure 4B). KEGG pathway analysis further
revealed primary immunodeficiency, hematopoietic cell lineage,
PD-L1 expression and PD-1 checkpoint pathway in cancer, Thl
and Th2 cell differentiation, Chagas disease, and T-helper 17 (Th17)
cell differentiation (Figure 4C). Disease Ontology Semantic and
Enrichment analysis also showed Kawasaki disease, lymphadenitis,
lymph node disease, atherosclerosis, arteriosclerotic cardiovascular
disease, lymphatic system disease, arteriosclerosis, pulmonary
artery disease, pulmonary embolism, human immunodeficiency
virus infectious disease, inflammatory bowel disease, severe
combined immunodeficiency, gestational diabetes, liver cirrhosis,
intrinsic cardiomyopathy, combined immunodeficiency, intestinal
disease, acute myocardial infarction, sarcoidosis, myocardial
infarction, cardiomyopathy, non-alcoholic fatty liver disease,
neuropathy, hypertrophic cardiomyopathy, middle cerebral artery
infarction, hypersensitivity reaction type IV disease, coronavirus
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infectious disease, hypersensitivity reaction disease, colitis, and
hyperglycemia (Figure 4D).

3.4 Analysis of immune cell infiltration in
uremia and MDD

The enrichment analysis of the shared genes between uremia and
MDD showed a significant association with immune cell infiltration and
the development of inflammation. ssGSEA was used to describe the
composition of immune cell subsets in the uremia and MDD cohorts.
MDD samples exhibited decreased activated CD8 T cells and increased
activated dendritic cells relative to control samples (Figure 5A). The box
plot (Figure 5B) indicates that compared to controls, in the uremia
cohort, activated dendritic cells, macrophages, monocytes, natural killer
cells, and type 17 T-helper cell proportion increased, while activated
CD4 T cells, immature dendritic cells, natural killer T cells, plasmacytoid
dendritic cells, T follicular helper cells, type 2 T-helper cells, and gamma
delta T-cell abundance decreased.
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3.5 Identification of diagnostic hub genes
by machine learning and establishment of
a diagnostic model for MDD-associated
uremia

The most robust diagnostic model, based on seven shared genes,
was constructed by reducing selection bias using 113 combinations
of 12 machine learning algorithms. The analysis was performed on a
training dataset that randomly assigned 70%, and the remaining
30% test set was used to evaluate the predictive performance of
diagnostic models (Figures 6A, B). By integrating the Lasso and
GBM algorithms, the final model that showed the best performance
was built. The AUC value of the Receiver Operating Characteristic
(ROC) curve was obtained to be 0.941, and the constructed model
had superior predictive performance. The Lasso + GBM algorithm
identified seven key genes (IL7R, CD3D, RETN, RAB13, TNNT1,
HP, and S100A12). The calibration curve of our diagnostic model,
such as 6C, the bias-corrected line obtained by bootstrap sampling,
was close to the ideal diagonal of the cohort, visually showing that
the predicted probability of the model was highly consistent with
the actual observed probability, and once again proved the accuracy
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of the model. A DCA curve analysis was also conducted
(Figure 6D), the curve shows that from a threshold probability of
approximately 0.2, the net gain of intervention according to the
prediction model begins to be significantly higher than that of
complete intervention or no intervention. Although the net gain
decreases with increasing threshold probability values, it is still
significantly stronger than that of intervention with full or no, so it
can be seen that this model has a practical application value. Finally,
as shown in Figure 6E, the integration analysis of the seven genes
established a Nomo plot, facilitating a more convenient estimation
of the probability of having uremia based on patient test results in
clinical practice.

3.6 Subgroup analysis of uremia diagnostic
model

We performed a subgroup analysis of the predictive model that
demarcated age by 50 (Figures 7A-D). In contrast, the diagnostic
performance of the predictive model was higher in the age > 50
group, with AUC values reaching 0.962 (Figure 7C), and ROC curve
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analysis was also performed for each gene. It can be seen that
S100A12 has the highest predicted AUC value regardless of age
(Figure 7D). In addition to age, we also analyzed gender
(Figures 7E-H). We found that the accuracy of predicting men
was higher than that of women, but weaker than that of the overall
prediction model (Figures 7E, G). Then, we analyzed each gene
(Figures 7F, H) and found that S100A12 still had the highest
AUC value.
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3.7 Comparison of uremia diagnostic
models

Because of the developments of bioinformatics and big data
research technology, many diagnostic models for uremia have
recently been developed that combine machine learning methods.
Comprehensively comparing the performance of our model with
that of other models, it was found that our prediction model
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Immunological features of MDD and uremia. (A) Boxplots comparing immune cell abundances between MDD and controls. (B) Boxplots comparing

immune cell abundances between uremia and controls. *** p < 0.001,** p

performed better than both of them in comparison with the Zeng
model (13) of network-based variable selection method (Figure 8A)
and the Xi model (27) analysis of cellular senescence-associated
genes (Figure 8B).

3.8 Candidate drug identification

Genes in diagnostic models were analyzed using the DSigDB
drug database on Enrichr to find potential targeted drugs. The top
10 candidates were decitabine, retinol, atorvastatin, liothyronine,
hexachloroethane, cholesterol, simvastatin and niacin,
hydrocortisone, dexamethasone, and caspan (Table 2).

4 Discussion

Both uremia and MDD have a significant impact on the
physical and mental health of patients, and extensive research has
been conducted on the relationship between these two diseases (28,
29). However, further investigation is necessary to explore the
genetic interaction between them.

The emergence of microarray and sequencing technologies has
facilitated the exploration of disease processes and molecular
landscapes. Furthermore, the increasing development of
bioinformatics analysis and machine learning has allowed us to
analyze massive datasets, explore meaningful biomarkers,
understand the potential mechanisms of action of diseases, and
develop promising therapeutic drugs. These advancements offer
valuable perspectives on the advancement and novel avenues of
complex diseases (30-32). As far as we know, this is the first study
to use 12 machine learning algorithms combined with biological
information to reveal MDD-associated uremic pathogenic genes.
Furthermore, as our diagnostic model predominantly utilizes blood
specimens from patients, assessing the levels of diagnostic genes in
the blood can help estimate the risk of uremia. This offers a
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< 0.01, and *p < 0.05. MDD, major depressive disorder.

clinically easy-to-perform method for diagnosis. In conclusion,
the diagnostic model we explored holds significant promise for
achieving early screening of uremia patients and interventions,
thereby improving the outcomes of uremia patients.

A total of 4,209 DEGs between uremia and normal, and 25 DEGs
between MDD and normal were analyzed using GEO’s dataset. DEGs
at the intersection of uremia and MDD were taken to obtain seven
common risk genes. PPI networks were constructed using
GeneMANIA. GO and KEGG enrichment analyses were then
performed, and some biological behaviors and action pathways
were found, suggesting a potential mechanism for uremia
development and MDD development. GO enrichment analysis
highlighted factors such as defense response to bacterium, T-cell
differentiation in the thymus, cell killing, gonad development,
development of primary sexual characteristics, negative regulation
of T cell-mediated cytotoxicity, response to insulin, positive
regulation of T-cell differentiation in the thymus, positive
regulation of steroid hormone secretion, and luteinization.
Enriched cellular components included endocytic vesicle, clathrin-
coated vesicle, coated vesicle, secretory granule lumen, cytoplasmic
vesicle lumen, vesicle lumen, specific granule lumen, clathrin-coated
endocytic vesicle membrane, clathrin-coated endocytic vesicle, and
clathrin-coated vesicle membrane. Overexpressed molecular
functions included RAGE receptor binding, tropomyosin binding,
copper ion binding, calcium-dependent protein binding, antioxidant
activity, cytokine receptor activity, hormone activity, immune
receptor activity, serine-type endopeptidase activity, and antigen
binding. In addition, KEGG pathway analysis showed significant
enrichment of pathways associated with primary immunodeficiency,
hematopoietic cell lineage, PD-L1 expression and PD-1 checkpoint
pathway in cancer, Thl and Th2 cell differentiation, Chagas disease,
and Th17 cell differentiation.

In the KEGG enriched pathway, there is a potential association
between Th17 differentiation and the onset of uremia and MDD.
Research indicates a significant increase in Th17 cells in the
peripheral blood of MDD patients (33). Similarly, uremia patients
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Diagnostic performance of our model. (A) A total of 113 machine learning algorithm combinations evaluated by 10-fold cross-validation. (B) ROC
curves for the training cohort. (C) Calibration curve for the training cohort. (D) DCA curves for the training cohort. (E) Nomo plot of the training

cohort.

show a discernible rise in these immune cells when compared to
healthy controls, suggesting a possible correlation between uremia
and the upregulation of Th17 cells (34). The lack of significant
change in their levels following dialysis in observed patients does
not exclude the potential for uremia progression linked to immune
activation. Further comprehensive studies are necessary to clarify
this relationship. Notably, previous research has shown that these
cells play a role in advancing atherosclerosis (35, 36). Interleukin-17
(IL-17), produced by Th17 cells, has synergistic effects with tumor
necrosis factor-o. (TNF-a), which contributes to the pathogenesis of
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atherosclerotic vascular diseases by creating a pro-inflammatory
microenvironment (37). The proliferation of these immune cells
could not only contribute to the onset of uremia but also increase
susceptibility to cardiovascular complications in affected patients. It
is well established that they play a significant role in mediating
autoimmunity (38, 39), which suggests that uremia may have some
relationship with the primary immunodeficiency pathway.
Additionally, Disease Ontology Semantic and Enrichment analysis
indicates that uremia may be complicated by Kawasaki disease,
lymph node disease, arteriosclerosis disease, pulmonary artery
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disease, pulmonary embolism, human immunodeficiency virus
disease, and inflammatory bowel disease.

The occurrence and development of uremia may be associated
with immune activation (40), so we analyzed the immune
expression of uremia and found that in patients with uremia,
activated dendritic cells, macrophages, monocytes, natural killer
cells, and type 17 T-helper cell proportion increased, while activated

Frontiers in Nephrology

CD4 T cells, immature dendritic cells, natural killer T cells,
plasmacytoid dendritic cells, T follicular helper cells, type 2 T-
helper cells, and gamma delta T-cell abundance decreased. Our
immune cell analysis is also consistent with previous studies
suggesting that several immune cells, including dendritic cells and
macrophages, are activated and may contribute to the development
of CKD or even uremia (41-43). Our analysis also suggests a
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decrease in several immune cells, possibly because the immune
system of uremia patients is overactivated but functionally
compromised. Still, few relevant studies prompt us to investigate
the immune cell infiltration and mechanisms of uremia further.
Uremia is now being diagnosed at a more advanced stage,
prompting a heightened emphasis on early detection and disease
management. The application of machine learning techniques to
construct diagnostic models for diseases and predict patient survival
has gained significant attention. Nevertheless, successfully
translating these methods into clinical practice while ensuring
diagnostic and predictive accuracy presents a notable challenge.
Certain studies have developed diagnostic models for uremia using
specific algorithms and conducted screenings for differential genes.
However, it is important to note that these endeavors may be
susceptible to personal biases and inherent preferences (26, 44).
Thus, we employed 113 combinations of 12 machine learning

TABLE 2 Uremia and major depressive disorder (MDD) gene-targeted drugs.

algorithms to compare their diagnostic performance and identify
the best model that mitigates bias caused by these factors, and
ultimately, we determined Lasso + GBM as the best model. This
study approach significantly reduces the complexity of research and
uncovers the most representative patterns, enabling the
development of a streamlined and more meaningful model. To
further analyze the performance of prediction models constructed
using multiple machine learning algorithms, we selected two
published uremic diagnostic models that associate with different
functional genes. One was Zeng’s model (13), which included two
GEO datasets, GSE37171 and GSE70528, and associated modules
were identified using the Weighted gene co-expression network
analysis (WGCNA) method, followed by Lasso regression, to
identify five genes predictive of end-stage renal disease. The other
was Xi’s model (27), which incorporated the GEO dataset
GSE37171 to screen five predictive genes of end-stage renal

Term p-Value Odds ratio Combined score Genes
Decitabine 0.01931202 7594323873 29.97500571 TNNTI; RAB13; IL7R
Retinol 9.29E-04 59.72932331 417.0006812 HP; RETN
Atorvastatin 0.0010413 563177305 386.7499407 TNNTI; RETN
Liothyronine 0.001770571 42.82810811 271.3783008 HP; RETN
Hexachloroethane 0.001827075 42.13829787 265.6836032 HP; RETN
Cholesterol 0.001827075 42.13829787 265.6836032 HP; RETN
Simvastatin and niacin 0.001884438 4147015707 260.1889826 TNNTI; RETN
Hydrocortisone 0.001981945 40.40204082 251.4492303 HP; RETN
Dexamethasone 0.008655043 18.68639618 88.75315333 HP; IL7R
Caspan 0.029904067 9.522084367 3342023831 TNNT1; RABI3
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disease associated with cellular senescence through a PPI
interaction network. As can be seen from the results, our
prediction model performs significantly better than the other two
models. However, our model has two more genes than the other
models, and this increase in the number of genes may bring a little
difficulty in clinical practice. Future efforts should, therefore, focus
on the simple and efficient analysis of more models, ensuring
superior predictive performance and enabling widespread
implementation in clinical settings.

It is important to note that in a previous study, haptoglobin
(HP) in seven model genes that comprise our diagnostic model is
linked to hemolytic uremia (45). Mouse experiments have shown
that mice with hemolytic uremic syndrome (HUS) lacking
haptoglobin have a 25% reduction in survival compared with
normal mice. When low doses of haptoglobin were administered
to Shiga toxin-challenged wild-type mice, it reduced renal platelet
deposition and neutrophil recruitment, suggesting that haptoglobin
has beneficial effects, at least partly. Additionally, SI00A12 has been
found to be a strong predictor of cardiovascular mortality in end-
stage renal disease (46-48). It has been discovered that RAGE
triggers pro-inflammatory pathways upon the activation of
S100A12, and the S100/RAGE interaction accelerates the
development of cardiac hypertrophy and diastolic dysfunction in
mouse models of CKD (49), further increasing mortality in uremia
patients. TNNT1 has been associated with myopathy and even
some cancers, but there are no definitive results on the mechanisms
affecting uremia, which need to be further investigated. RAB13,
which is mainly associated with the trafficking of intracellular
material and the functional regulation of organelles, is similar to
TNNT1, and the relationship to the role of uremia is unknown.
IL7R and CD3D have been found to have a possible relationship
with nephropathy, especially diabetic nephropathy, in previous
studies, and similarly, RETN (resistin) has been found to play a
role in diabetic nephropathy as well as renal insufficiency, but
unfortunately, studies have not involved pathogenesis, and basic
experiments are also needed for further exploration. Recently,
experts have found common pathways and protein expressions in
the central nervous system (CNS) and kidney, including glutamate
signaling (50), nephrin expression (51), and podocalyxin expression
(52), which also serve as the basis of our study. Through these
findings, it is understood that brain-derived neurotrophic factor
(BDNF), which is primarily produced in the nervous system, is also
secreted by the kidneys. To investigate BDNF function in vivo,
Endlich et al. knocked down BDNF in zebrafish larvae and found
that it led to decreased expression of podocin and nephrin, as well as
enlarged Bowman’s spaces, glomerular telangiectasia, and podocyte
loss. These structural changes were associated with an increased
urinary albumin-creatinine ratio. Based on these findings, BDNF
has been suggested as a novel potential biomarker of glomerular
kidney injury (53). BDNF is associated with sarcopenia (54), insulin
resistance (55), depression (56), and inflammation (57). Because all
these adverse conditions are also present in CKD patients, and
BDNF is expressed in glomeruli and tubules, Trk receptors (TrkB
and TrkC) are expressed in proximal and distal tubules, as well as in
collecting duct epithelial cells (58). It can be speculated that BDNF
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may be a potential marker of CKD. Many researchers have
investigated the relationship between depression and BDNF in
CKD. Sun et al. showed that the uremic toxin indoxyl sulfate is
associated with mood disorders and neurodegeneration and has an
inhibitory effect on BDNF expression in unilateral nephrectomized
mice (59). Similar results showed that p-cresol sulfate (PCS) levels
were increased and BDNF was decreased in C57/BL/6 mice after
unilateral nephrectomy, and these changes were often accompanied
by depression-like, anxiety-like, and cognitive impairment
behaviors (60). However, studies on depression and BDNF have
not been consistent, and Alshogran et al. showed that BDNF
concentrations did not correlate with depression scores (61).
Overall, BDNF may reflect a promising marker for depression
screening in CKD. The investigation of BDNF is mainly in the
screening of depression, and whether it is a biomarker of CKD or
even uremia still needs to be further explored.

At present, the treatment of uremia is scarce and expensive, and
the development of new therapeutic drugs is not easy. Therefore,
the use of the DSigDB database to find potential therapeutic agents
against uremia-related causative genes provides new insights into
the treatment of uremia. Importantly, it not only shortens the time
but also significantly reduces the cost of developing drugs. Previous
studies have shown that uremic toxins may inhibit Klotho
expression by promoting increased DNA methyltransferase
expression and DNA hypermethylation (62). At the same time,
Klotho, as a renoprotective factor (63, 64), is significantly decreased
in uremia patients (65). Decitabine prevents early kidney damage by
inhibiting DNA methyltransferases, reducing methylation of DNA,
and increasing Klotho expression (66). Of course, when it
progresses to end-stage renal disease, dialysis is the main
treatment, and different dialysis methods will also cause various
injuries to patients (67), which is also the direction to be explored in
the future.

5 Limitations

Our study has several limitations. Despite including three
datasets from the GEO database to mitigate the impact of a single
sample, the volume of collected data requires augmentation due to
the numerous models we analyzed. Furthermore, while we
successfully validated our model’s predictive performance,
additional experimental studies are needed to further confirm our
biomarkers and mechanisms of action.

6 Conclusions

Our research establishes a novel molecular framework for the
early diagnosis of uremia, especially in patients diagnosed with
MDD. Furthermore, we have conducted extensive model analyses
and identified an optimal diagnostic model, which provides
valuable insights for more comprehensive and effective diagnostic
gene analysis.
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