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Background: Major depressive disorder (MDD) and uremia are two chronic

wasting diseases that have interactive effects and significantly aggravate

patients’ distress. However, the molecular basis linking these diseases remains

poorly investigated.

Methods: Various machine learning algorithms were used to analyze

transcriptome data from the Gene Expression Omnibus (GEO) datasets,

including those from MDD and uremia patients, to develop and validate our

model. After removing batch effects, differentially expressed genes (DEGs) were

identified between each disease group and the control group. Functional

enrichment analysis was then performed at the intersection of DEGs from the

two diseases. In addition, single-sample gene set enrichment analysis (ssGSEA)

quantitative immune infiltration analysis was conducted. The optimal diagnostic

model of uremia was constructed by analyzing and verifying the training set with

multiple combinations of 12 machine learning algorithms. Finally, potential drugs

for uremia were identified using the “Enrichr” platform.

Results: According to enrichment analysis, a total of seven key genes closely

related to MDD and uremia, mainly involved in the immune process, were

identified. Immune infiltration analysis showed that MDD and uremia had

different profiles of immune cell infiltration compared to healthy controls.

Powerful diagnostic markers of seven genes (IL7R, CD3D, RETN, RAB13,

TNNT1, HP, and S100A12) were constructed from these genes, and all showed

better performance than published uremia diagnostic models. In addition,
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decitabine and nine other agents were found to be potential agents for the

treatment of uremia.

Conclusion: Our study combined bioinformatics techniques and machine

learning methods to develop a diagnostic model for uremia, focusing on

common genes between MDD and uremia.
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1 Introduction

Major depressive disorder (MDD) is a prevalent psychiatric

disorder with a significant global impact, causing substantial

disability and affecting everyday functioning (1). Its clinical

symptoms include persistent depressed mood, anhedonia, fatigue,

feelings of worthlessness, and impaired cognitive performance (2).

Major depression is estimated to have a lifetime prevalence of up to

19% (3), placing a significant burden on society (4). It remains a

challenge in the treatment of as many as half of the cases (5). Based

on previous studies, uremia has a significant association with MDD.

For example, studies conducted by Heng-Jung Hsu et al. showed

that the incidence of depressive disorders was significantly higher in

uremia patients (6). Depression can have a serious impact on

people’s lives, even letting people give up life, so it is urgent to

explore the association between uremia and depression.

Uremia is the final stage of chronic renal failure. It is clinically

characterized by abnormal water, electrolyte, acid, and base balance

and increased levels of metabolites (e.g., creatinine and urea) in the

blood (7). The uremic phase is often associated with some

secondary conditions and complications of chronic kidney disease

(CKD), including renal function, circulatory system, endocrine, and

metabolic disorders, as well as neuromuscular dysfunction and

cognitive impairment (8, 9). Among them, MDD is a more

common complication of uremia. Uremia is a chronic wasting

disease that usually requires hemodialysis treatment, and since

the introduction of dialysis, the mental health of hemodialysis

patients has been the focus of research (10, 11). Kimmel et al.

(12) demonstrated that persistent depression is a risk factor for

death in hemodialysis patients. Therefore, it is crucial to construct a

diagnostic model of uremia associated with major depression to

control it in time at an early stage and reduce mortality. However,

the diagnosis of Uremia mainly depends on serum creatinine and

glomerular filtration rate, which makes the diagnosis of Uremia

very lacking. In addition, although many genetic markers have been

investigated, such as CNOT8, MST4, PPP2CB, PCSK7, and RBBP4,

none of them could demonstrate enough specificity and sensitivity

for clinical applications (13). Others have shown a bidirectional

relationship between depression and physical diseases such as

chronic kidney disease (14). Therefore, it is particularly important

to construct a better diagnostic model that can be applied in clinical
02
practice through the relationship between depression and chronic

kidney disease for the early detection of uremia.

Bioinformatics and machine learning techniques have evolved

significantly over the last decade, and this is how we can investigate

potential biomarkers and therapeutics for diseases (15–18). In this

study, we used multiple integrated bioinformatics tools to reveal

hub genes and underlying mechanisms linking uremia and MDD by

analyzing data from three uremia datasets and three MDD datasets

selected from the Gene Expression Omnibus (GEO) database. We

explored immune cell infiltration in uremia and MDD. In addition,

113 combined machine learning algorithm frameworks were used

to construct a uremia diagnostic model.
2 Methods

2.1 Data collection

Appropriate datasets were filtered from the GEO database. First,

datasets of transcriptomes for major depression and uremia or end-

stage renal disease were searched. Then, because multiple datasets

were included, the data in the dataset were kept as much as possible

above 6. Finally, it was ensured that the included dataset was

suitable for machine learning methods. Following the above steps,

the following six datasets were obtained from the National Center

for Biotechnology Information (NCBI) GEO (https://

www.ncbi.nlm.nih.gov/geo/): GSE37171, GSE38750, GSE43484,

GSE52790, GSE76826, and GSE98793 (9, 19–23). These datasets

are described in detail in Table 1 and include the microarray

platform, panel, and number of samples.
2.2 Removal of batch effect

Before performing analysis, we merged the three MDD datasets

mentioned in Table 1 (GSE52790, GSE76826, and GSE98793). We

then corrected batch effects using the “ComBat” function in the “sva”

package (version 3.52.0) (24). We used principal component analysis

(PCA) analysis to assess the validity of this correction. Using the same

method, we then corrected three uremia cohorts (GSE37171,

GSE38750, and GSE43484).
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2.3 Determination of DEGs

In the analysis of the MDD and uremia datasets, the “Limma”

package (25) within the R software was employed to identify

differentially expressed genes (DEGs). Our selection criteria,

requiring |log2FC| > 0.25 and p-value <0.05, ensured a

comprehensive and accurate analysis. The outcomes were visually

represented through compelling volcano plots, and the shared part

of the two sets of DEGs was effectively depicted using Venn

diagrams. To further investigate the shared genes, Protein-Protein

Interaction Networks (PPI) networks were confidently generated

using GeneMANIA, facilitating an insightful exploration of their

associations (http://genemania.org/).
2.4 Enrichment analysis of common genes
in uremia with MDD

To gain insights into the biological functions and mechanistic

pathways of common genes, we utilized the “org.Hs.eg.db”, “ggplot2”,

“clusterProfiler”, “enrichplot”, “GSEABase”, and “DOSE” packages to

conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses, as well as Disease

Ontology Semantic and Enrichment (DOSE). p < 0.05 for enrichment

assessment was considered significant.
2.5 Immune cell infiltration

The quantification of 23 infiltrating immune cells in both

diseases was conducted using single-sample gene set enrichment

analysis (ssGSEA). Then, the differential expression of immune cells

in normal and uremia patients was further studied and analyzed.
2.6 Machine learning algorithms

Twelve machine learning algorithms were used to construct 113

different models: Lasso, Ridge, Stepglm, XGBoost, Random Forest

(RF), Elastic Net (Enet), Partial Least Squares Regression for

Generalized Linear Models (plsRglm), Generalized Boosted

Regression Modeling (GBM), NaiveBayes, Linear Discriminant

Analysis (LDA), Generalized Linear Boosting (glmBoost), and
Frontiers in Nephrology 03
Support Vector Machine (SVM). First, the raw data were

preprocessed to eliminate the influence of different feature scales.

Then, the dataset was randomly divided into training and testing sets,

70% of which were training sets and 30% of which were testing sets.

During the model training phase, a variety of machine learning

algorithms were used to evaluate their performance. These models

were trained on the training set, and the hyperparameters were

optimized using cross-validation. During the model evaluation

phase, Area Under Curve (AUC) values were calculated for each

model using the test set (threshold set at 0.7) to measure their

classification performance. Finally, AUC values were calculated for

each model using the RunEval function, and heat maps were

generated using the SimpleHeatmap function to visualize the

performance of each model. The model with the highest AUC value

was selected as the best model (26). In addition, calibration curves

were used to assess the predictive performance of our diagnostic

model, Decision Curve Analysis (DCA) curves were generated to

assess the clinical utility of the model, and Nomo plots were also

generated to calculate the probability of disease occurrences. Finally,

the DeLong test was used to compare our model’s diagnostic

performance with that of two existing uremia diagnostic models

(13, 27).

2.7 Candidate drug identification

To explore drugs that may target the mechanisms of action in

uremia and MDD, we utilized the Drug Signatures Database (DSigDB)

within the Enrichr web platform (https://maayanlab.cloud/Enrichr/).
2.8 Statistical analysis

Statistical analyses were performed using the R software version

4.4.1. An unpaired Student’s t-test compared differences between

the two groups. p < 0.05 was considered statistically significant.
3 Results

3.1 Data processing

The study design flowchart is shown in Figure 1. Original MDD

and control transcriptome data were obtained from GEO,
TABLE 1 Basic information of GEO datasets used in the study.

ID GSE series Disease Samples Source types Platform

1 GSE37171 Uremia 63 uremia patients and 20 normal controls Whole blood GPL570

2 GSE38750 Uremia 15 uremia patients and 19 normal controls Iliac artery and renal artery GPL571

3 GSE43484 Uremia 3 uremia patients and 3 normal controls Monocyte GPL571

4 GSE52790 MDD 10 MDD patients and 12 normal controls Peripheral blood GPL17976

5 GSE76826 MDD 20 MDD patients and 12 normal controls Blood GPL17077

6 GSE98793 MDD 128 MDD patients and 64 normal controls Whole blood GPL570
GEO, Gene Expression Omnibus; MDD, major depressive disorder.
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integrated after removing batch effects, and standardized MDD case

and control processing cohorts were generated (Figures 2A, B).

Similarly, the post-batch corrections of the original uremia and

control cohorts were combined (Figures 2C, D) to obtain a

standardized validation cohort with markedly reduced batch effects.
3.2 Identification of differential expression
associated with uremia and MDD

Based on the relationship between MDD and uremia, limma

analysis was performed for the uremia (GSE37171, GSE38750, and

GSE43484) and MDD (GSE52790, GSE76826, and GSE98793)

cohorts to identify causative genes for MDD-associated uremia.

Among the 4,209 DEGs detected in the uremia cohort, 1,871 genes

showed upregulated expression, while 2,338 were downregulated

(Figure 3A). The MDD cohort yielded 25 DEGs, 15 of which were

upregulated and 10 downregulated (Figure 3B). The DEGs of

uremia and MDD were intersected to obtain seven shared genes

for constructing a diagnostic model of uremia (Figure 3C).
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3.3 Functional enrichment of the shared
genes

The PPI networks of the shared genes were established from the

GeneMANIA database (Figure 4A), and then GO, KEGG, and

DOSE were used for functional enrichment analysis and to search

for potential pathogenic mechanisms. GO enrichment analysis

showed overexpression of biological processes, including defense

response to bacterium, T-cell differentiation in the thymus, cell

killing, gonad development, development of primary sexual

characteristics, negative regulation of T cell-mediated cytotoxicity,

response to insulin, positive regulation of T-cell differentiation in

the thymus, positive regulation of steroid hormone secretion, and

luteinization. Enriched cellular components included endocytic

vesicle, clathrin-coated vesicle, coated vesicle, secretory granule

lumen, cytoplasmic vesicle lumen, vesicle lumen, specific granule

lumen, clathrin-coated endocytic vesicle membrane, clathrin-

coated endocytic vesicle, and clathrin-coated vesicle membrane.

Overexpressed molecular functions included receptor for advanced

glycation end products (RAGE) receptor binding, tropomyosin
FIGURE 1

The flowchart of the study.
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binding, copper ion binding, calcium-dependent protein binding,

antioxidant activity, cytokine receptor activity, hormone activity,

immune receptor activity, serine-type endopeptidase activity, and

antigen binding (Figure 4B). KEGG pathway analysis further

revealed primary immunodeficiency, hematopoietic cell lineage,

PD-L1 expression and PD-1 checkpoint pathway in cancer, Th1

and Th2 cell differentiation, Chagas disease, and T-helper 17 (Th17)

cell differentiation (Figure 4C). Disease Ontology Semantic and

Enrichment analysis also showed Kawasaki disease, lymphadenitis,

lymph node disease, atherosclerosis, arteriosclerotic cardiovascular

disease, lymphatic system disease, arteriosclerosis, pulmonary

artery disease, pulmonary embolism, human immunodeficiency

virus infectious disease, inflammatory bowel disease, severe

combined immunodeficiency, gestational diabetes, liver cirrhosis,

intrinsic cardiomyopathy, combined immunodeficiency, intestinal

disease, acute myocardial infarction, sarcoidosis, myocardial

infarction, cardiomyopathy, non-alcoholic fatty liver disease,

neuropathy, hypertrophic cardiomyopathy, middle cerebral artery

infarction, hypersensitivity reaction type IV disease, coronavirus
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infectious disease, hypersensitivity reaction disease, colitis, and

hyperglycemia (Figure 4D).
3.4 Analysis of immune cell infiltration in
uremia and MDD

The enrichment analysis of the shared genes between uremia and

MDD showed a significant association with immune cell infiltration and

the development of inflammation. ssGSEA was used to describe the

composition of immune cell subsets in the uremia and MDD cohorts.

MDD samples exhibited decreased activated CD8 T cells and increased

activated dendritic cells relative to control samples (Figure 5A). The box

plot (Figure 5B) indicates that compared to controls, in the uremia

cohort, activated dendritic cells, macrophages, monocytes, natural killer

cells, and type 17 T-helper cell proportion increased, while activated

CD4T cells, immature dendritic cells, natural killer T cells, plasmacytoid

dendritic cells, T follicular helper cells, type 2 T-helper cells, and gamma

delta T-cell abundance decreased.
FIGURE 2

The integration of MDD datasets and uremia datasets. (A) PCA of three raw MDD datasets without batch effect correction. (B) PCA of the integrated
MDD dataset after batch effect correction. (C) PCA of three original uremia datasets before batch effect correction. (D) PCA for the combined
uremia dataset after batch effect correction. MDD, major depressive disorder.
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3.5 Identification of diagnostic hub genes
by machine learning and establishment of
a diagnostic model for MDD-associated
uremia

The most robust diagnostic model, based on seven shared genes,

was constructed by reducing selection bias using 113 combinations

of 12 machine learning algorithms. The analysis was performed on a

training dataset that randomly assigned 70%, and the remaining

30% test set was used to evaluate the predictive performance of

diagnostic models (Figures 6A, B). By integrating the Lasso and

GBM algorithms, the final model that showed the best performance

was built. The AUC value of the Receiver Operating Characteristic

(ROC) curve was obtained to be 0.941, and the constructed model

had superior predictive performance. The Lasso + GBM algorithm

identified seven key genes (IL7R, CD3D, RETN, RAB13, TNNT1,

HP, and S100A12). The calibration curve of our diagnostic model,

such as 6C, the bias-corrected line obtained by bootstrap sampling,

was close to the ideal diagonal of the cohort, visually showing that

the predicted probability of the model was highly consistent with

the actual observed probability, and once again proved the accuracy
Frontiers in Nephrology 06
of the model. A DCA curve analysis was also conducted

(Figure 6D), the curve shows that from a threshold probability of

approximately 0.2, the net gain of intervention according to the

prediction model begins to be significantly higher than that of

complete intervention or no intervention. Although the net gain

decreases with increasing threshold probability values, it is still

significantly stronger than that of intervention with full or no, so it

can be seen that this model has a practical application value. Finally,

as shown in Figure 6E, the integration analysis of the seven genes

established a Nomo plot, facilitating a more convenient estimation

of the probability of having uremia based on patient test results in

clinical practice.
3.6 Subgroup analysis of uremia diagnostic
model

We performed a subgroup analysis of the predictive model that

demarcated age by 50 (Figures 7A–D). In contrast, the diagnostic

performance of the predictive model was higher in the age > 50

group, with AUC values reaching 0.962 (Figure 7C), and ROC curve
FIGURE 3

Identification of DEGs. (A) Volcano plots describing DEGs between uremia and healthy controls. (B) Volcano plots showing DEGs between MDD and
healthy controls. (C) Venn diagram revealing seven DEGs shared between uremia and MDD. DEGs, differentially expressed genes; MDD, major
depressive disorder.
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analysis was also performed for each gene. It can be seen that

S100A12 has the highest predicted AUC value regardless of age

(Figure 7D). In addition to age, we also analyzed gender

(Figures 7E–H). We found that the accuracy of predicting men

was higher than that of women, but weaker than that of the overall

prediction model (Figures 7E, G). Then, we analyzed each gene

(Figures 7F, H) and found that S100A12 still had the highest

AUC value.
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3.7 Comparison of uremia diagnostic
models

Because of the developments of bioinformatics and big data

research technology, many diagnostic models for uremia have

recently been developed that combine machine learning methods.

Comprehensively comparing the performance of our model with

that of other models, it was found that our prediction model
FIGURE 4

PPI network analysis and enrichment analysis. (A) PPI network of seven shared genes constructed using GeneMANIA. (B) Bar plots of GO enrichment
analysis results for biological process, cellular component, and molecular function. (C) Bar plots of KEGG pathway enrichment analysis. (D) Bar plots
of Disease Ontology enrichment analysis.
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performed better than both of them in comparison with the Zeng

model (13) of network-based variable selection method (Figure 8A)

and the Xi model (27) analysis of cellular senescence-associated

genes (Figure 8B).
3.8 Candidate drug identification

Genes in diagnostic models were analyzed using the DSigDB

drug database on Enrichr to find potential targeted drugs. The top

10 candidates were decitabine, retinol, atorvastatin, liothyronine,

hexachloroethane, cholesterol, simvastatin and niacin,

hydrocortisone, dexamethasone, and caspan (Table 2).
4 Discussion

Both uremia and MDD have a significant impact on the

physical and mental health of patients, and extensive research has

been conducted on the relationship between these two diseases (28,

29). However, further investigation is necessary to explore the

genetic interaction between them.

The emergence of microarray and sequencing technologies has

facilitated the exploration of disease processes and molecular

landscapes. Furthermore, the increasing development of

bioinformatics analysis and machine learning has allowed us to

analyze massive datasets, explore meaningful biomarkers,

understand the potential mechanisms of action of diseases, and

develop promising therapeutic drugs. These advancements offer

valuable perspectives on the advancement and novel avenues of

complex diseases (30–32). As far as we know, this is the first study

to use 12 machine learning algorithms combined with biological

information to reveal MDD-associated uremic pathogenic genes.

Furthermore, as our diagnostic model predominantly utilizes blood

specimens from patients, assessing the levels of diagnostic genes in

the blood can help estimate the risk of uremia. This offers a
Frontiers in Nephrology 08
clinically easy-to-perform method for diagnosis. In conclusion,

the diagnostic model we explored holds significant promise for

achieving early screening of uremia patients and interventions,

thereby improving the outcomes of uremia patients.

A total of 4,209 DEGs between uremia and normal, and 25 DEGs

betweenMDD and normal were analyzed using GEO’s dataset. DEGs

at the intersection of uremia and MDD were taken to obtain seven

common risk genes. PPI networks were constructed using

GeneMANIA. GO and KEGG enrichment analyses were then

performed, and some biological behaviors and action pathways

were found, suggesting a potential mechanism for uremia

development and MDD development. GO enrichment analysis

highlighted factors such as defense response to bacterium, T-cell

differentiation in the thymus, cell killing, gonad development,

development of primary sexual characteristics, negative regulation

of T cell-mediated cytotoxicity, response to insulin, positive

regulation of T-cell differentiation in the thymus, positive

regulation of steroid hormone secretion, and luteinization.

Enriched cellular components included endocytic vesicle, clathrin-

coated vesicle, coated vesicle, secretory granule lumen, cytoplasmic

vesicle lumen, vesicle lumen, specific granule lumen, clathrin-coated

endocytic vesicle membrane, clathrin-coated endocytic vesicle, and

clathrin-coated vesicle membrane. Overexpressed molecular

functions included RAGE receptor binding, tropomyosin binding,

copper ion binding, calcium-dependent protein binding, antioxidant

activity, cytokine receptor activity, hormone activity, immune

receptor activity, serine-type endopeptidase activity, and antigen

binding. In addition, KEGG pathway analysis showed significant

enrichment of pathways associated with primary immunodeficiency,

hematopoietic cell lineage, PD-L1 expression and PD-1 checkpoint

pathway in cancer, Th1 and Th2 cell differentiation, Chagas disease,

and Th17 cell differentiation.

In the KEGG enriched pathway, there is a potential association

between Th17 differentiation and the onset of uremia and MDD.

Research indicates a significant increase in Th17 cells in the

peripheral blood of MDD patients (33). Similarly, uremia patients
E 5FIGUR

Immunological features of MDD and uremia. (A) Boxplots comparing immune cell abundances between MDD and controls. (B) Boxplots comparing
immune cell abundances between uremia and controls. *** p < 0.001,** p < 0.01, and *p < 0.05. MDD, major depressive disorder.
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show a discernible rise in these immune cells when compared to

healthy controls, suggesting a possible correlation between uremia

and the upregulation of Th17 cells (34). The lack of significant

change in their levels following dialysis in observed patients does

not exclude the potential for uremia progression linked to immune

activation. Further comprehensive studies are necessary to clarify

this relationship. Notably, previous research has shown that these

cells play a role in advancing atherosclerosis (35, 36). Interleukin-17

(IL-17), produced by Th17 cells, has synergistic effects with tumor

necrosis factor-a (TNF-a), which contributes to the pathogenesis of
Frontiers in Nephrology 09
atherosclerotic vascular diseases by creating a pro-inflammatory

microenvironment (37). The proliferation of these immune cells

could not only contribute to the onset of uremia but also increase

susceptibility to cardiovascular complications in affected patients. It

is well established that they play a significant role in mediating

autoimmunity (38, 39), which suggests that uremia may have some

relationship with the primary immunodeficiency pathway.

Additionally, Disease Ontology Semantic and Enrichment analysis

indicates that uremia may be complicated by Kawasaki disease,

lymph node disease, arteriosclerosis disease, pulmonary artery
FIGURE 6

Diagnostic performance of our model. (A) A total of 113 machine learning algorithm combinations evaluated by 10-fold cross-validation. (B) ROC
curves for the training cohort. (C) Calibration curve for the training cohort. (D) DCA curves for the training cohort. (E) Nomo plot of the training
cohort.
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disease, pulmonary embolism, human immunodeficiency virus

disease, and inflammatory bowel disease.

The occurrence and development of uremia may be associated

with immune activation (40), so we analyzed the immune

expression of uremia and found that in patients with uremia,

activated dendritic cells, macrophages, monocytes, natural killer

cells, and type 17 T-helper cell proportion increased, while activated
Frontiers in Nephrology 10
CD4 T cells, immature dendritic cells, natural killer T cells,

plasmacytoid dendritic cells, T follicular helper cells, type 2 T-

helper cells, and gamma delta T-cell abundance decreased. Our

immune cell analysis is also consistent with previous studies

suggesting that several immune cells, including dendritic cells and

macrophages, are activated and may contribute to the development

of CKD or even uremia (41–43). Our analysis also suggests a
FIGURE 7

ROC curves for model in subgroups. (A, B) ROC curves for the young (age ≤ 50 years) subgroup of model (A) and each gene (B). (C, D) ROC curves
for the old (age > 50 years) subgroup of model (C) and each gene (D). (E, F) ROC curves for the male subgroup of model (E) and each gene (F). (G,
H) ROC curves for the female subgroup of model (G) and each gene (H).
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decrease in several immune cells, possibly because the immune

system of uremia patients is overactivated but functionally

compromised. Still, few relevant studies prompt us to investigate

the immune cell infiltration and mechanisms of uremia further.

Uremia is now being diagnosed at a more advanced stage,

prompting a heightened emphasis on early detection and disease

management. The application of machine learning techniques to

construct diagnostic models for diseases and predict patient survival

has gained significant attention. Nevertheless, successfully

translating these methods into clinical practice while ensuring

diagnostic and predictive accuracy presents a notable challenge.

Certain studies have developed diagnostic models for uremia using

specific algorithms and conducted screenings for differential genes.

However, it is important to note that these endeavors may be

susceptible to personal biases and inherent preferences (26, 44).

Thus, we employed 113 combinations of 12 machine learning
Frontiers in Nephrology 11
algorithms to compare their diagnostic performance and identify

the best model that mitigates bias caused by these factors, and

ultimately, we determined Lasso + GBM as the best model. This

study approach significantly reduces the complexity of research and

uncovers the most representative patterns, enabling the

development of a streamlined and more meaningful model. To

further analyze the performance of prediction models constructed

using multiple machine learning algorithms, we selected two

published uremic diagnostic models that associate with different

functional genes. One was Zeng’s model (13), which included two

GEO datasets, GSE37171 and GSE70528, and associated modules

were identified using the Weighted gene co-expression network

analysis (WGCNA) method, followed by Lasso regression, to

identify five genes predictive of end-stage renal disease. The other

was Xi’s model (27), which incorporated the GEO dataset

GSE37171 to screen five predictive genes of end-stage renal
FIGURE 8

Comparison of diagnostic gene expression features in uremia. (A) ROC curves comparing our model to Xi et al. model in the uremia dataset. (B)
ROC curves comparing our model with the Zeng et al. model in the uremia dataset.
TABLE 2 Uremia and major depressive disorder (MDD) gene-targeted drugs.

Term p-Value Odds ratio Combined score Genes

Decitabine 0.01931202 7.594323873 29.97500571 TNNT1; RAB13; IL7R

Retinol 9.29E−04 59.72932331 417.0006812 HP; RETN

Atorvastatin 0.0010413 56.3177305 386.7499407 TNNT1; RETN

Liothyronine 0.001770571 42.82810811 271.3783008 HP; RETN

Hexachloroethane 0.001827075 42.13829787 265.6836032 HP; RETN

Cholesterol 0.001827075 42.13829787 265.6836032 HP; RETN

Simvastatin and niacin 0.001884438 41.47015707 260.1889826 TNNT1; RETN

Hydrocortisone 0.001981945 40.40204082 251.4492303 HP; RETN

Dexamethasone 0.008655043 18.68639618 88.75315333 HP; IL7R

Caspan 0.029904067 9.522084367 33.42023831 TNNT1; RAB13
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disease associated with cellular senescence through a PPI

interaction network. As can be seen from the results, our

prediction model performs significantly better than the other two

models. However, our model has two more genes than the other

models, and this increase in the number of genes may bring a little

difficulty in clinical practice. Future efforts should, therefore, focus

on the simple and efficient analysis of more models, ensuring

superior predictive performance and enabling widespread

implementation in clinical settings.

It is important to note that in a previous study, haptoglobin

(HP) in seven model genes that comprise our diagnostic model is

linked to hemolytic uremia (45). Mouse experiments have shown

that mice with hemolytic uremic syndrome (HUS) lacking

haptoglobin have a 25% reduction in survival compared with

normal mice. When low doses of haptoglobin were administered

to Shiga toxin-challenged wild-type mice, it reduced renal platelet

deposition and neutrophil recruitment, suggesting that haptoglobin

has beneficial effects, at least partly. Additionally, S100A12 has been

found to be a strong predictor of cardiovascular mortality in end-

stage renal disease (46–48). It has been discovered that RAGE

triggers pro-inflammatory pathways upon the activation of

S100A12, and the S100/RAGE interaction accelerates the

development of cardiac hypertrophy and diastolic dysfunction in

mouse models of CKD (49), further increasing mortality in uremia

patients. TNNT1 has been associated with myopathy and even

some cancers, but there are no definitive results on the mechanisms

affecting uremia, which need to be further investigated. RAB13,

which is mainly associated with the trafficking of intracellular

material and the functional regulation of organelles, is similar to

TNNT1, and the relationship to the role of uremia is unknown.

IL7R and CD3D have been found to have a possible relationship

with nephropathy, especially diabetic nephropathy, in previous

studies, and similarly, RETN (resistin) has been found to play a

role in diabetic nephropathy as well as renal insufficiency, but

unfortunately, studies have not involved pathogenesis, and basic

experiments are also needed for further exploration. Recently,

experts have found common pathways and protein expressions in

the central nervous system (CNS) and kidney, including glutamate

signaling (50), nephrin expression (51), and podocalyxin expression

(52), which also serve as the basis of our study. Through these

findings, it is understood that brain-derived neurotrophic factor

(BDNF), which is primarily produced in the nervous system, is also

secreted by the kidneys. To investigate BDNF function in vivo,

Endlich et al. knocked down BDNF in zebrafish larvae and found

that it led to decreased expression of podocin and nephrin, as well as

enlarged Bowman’s spaces, glomerular telangiectasia, and podocyte

loss. These structural changes were associated with an increased

urinary albumin–creatinine ratio. Based on these findings, BDNF

has been suggested as a novel potential biomarker of glomerular

kidney injury (53). BDNF is associated with sarcopenia (54), insulin

resistance (55), depression (56), and inflammation (57). Because all

these adverse conditions are also present in CKD patients, and

BDNF is expressed in glomeruli and tubules, Trk receptors (TrkB

and TrkC) are expressed in proximal and distal tubules, as well as in

collecting duct epithelial cells (58). It can be speculated that BDNF
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may be a potential marker of CKD. Many researchers have

investigated the relationship between depression and BDNF in

CKD. Sun et al. showed that the uremic toxin indoxyl sulfate is

associated with mood disorders and neurodegeneration and has an

inhibitory effect on BDNF expression in unilateral nephrectomized

mice (59). Similar results showed that p-cresol sulfate (PCS) levels

were increased and BDNF was decreased in C57/BL/6 mice after

unilateral nephrectomy, and these changes were often accompanied

by depression-like, anxiety-like, and cognitive impairment

behaviors (60). However, studies on depression and BDNF have

not been consistent, and Alshogran et al. showed that BDNF

concentrations did not correlate with depression scores (61).

Overall, BDNF may reflect a promising marker for depression

screening in CKD. The investigation of BDNF is mainly in the

screening of depression, and whether it is a biomarker of CKD or

even uremia still needs to be further explored.

At present, the treatment of uremia is scarce and expensive, and

the development of new therapeutic drugs is not easy. Therefore,

the use of the DSigDB database to find potential therapeutic agents

against uremia-related causative genes provides new insights into

the treatment of uremia. Importantly, it not only shortens the time

but also significantly reduces the cost of developing drugs. Previous

studies have shown that uremic toxins may inhibit Klotho

expression by promoting increased DNA methyltransferase

expression and DNA hypermethylation (62). At the same time,

Klotho, as a renoprotective factor (63, 64), is significantly decreased

in uremia patients (65). Decitabine prevents early kidney damage by

inhibiting DNA methyltransferases, reducing methylation of DNA,

and increasing Klotho expression (66). Of course, when it

progresses to end-stage renal disease, dialysis is the main

treatment, and different dialysis methods will also cause various

injuries to patients (67), which is also the direction to be explored in

the future.
5 Limitations

Our study has several limitations. Despite including three

datasets from the GEO database to mitigate the impact of a single

sample, the volume of collected data requires augmentation due to

the numerous models we analyzed. Furthermore, while we

successfully validated our model’s predictive performance,

additional experimental studies are needed to further confirm our

biomarkers and mechanisms of action.
6 Conclusions

Our research establishes a novel molecular framework for the

early diagnosis of uremia, especially in patients diagnosed with

MDD. Furthermore, we have conducted extensive model analyses

and identified an optimal diagnostic model, which provides

valuable insights for more comprehensive and effective diagnostic

gene analysis.
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