

OPEN ACCESS

EDITED AND REVIEWED BY Sumaira Anjum, Kinnaird College for Women University, Pakistan

*CORRESPONDENCE

Esmeralda Mendoza-Mendoza, ⊠ esmeralda.mendoza@uaslp.mx René D. Peralta-Rodríguez, ⊠ rene.peralta@ciqa.edu.mx

RECEIVED 26 August 2025 ACCEPTED 09 September 2025 PUBLISHED 22 September 2025

CITATION

Mendoza-Mendoza E and Peralta-Rodríguez RD (2025) Editorial: Spotlight on nanotechnology: Latin America. *Front. Nanotechnol.* 7:1693266. doi: 10.3389/fnano.2025.1693266

COPYRIGHT

© 2025 Mendoza-Mendoza and Peralta-Rodríguez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Spotlight on nanotechnology: Latin America

Esmeralda Mendoza-Mendoza^{1,2,3}* and René D. Peralta-Rodríguez⁴*

¹Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, ²Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, ³Investigadores por México, SECIHTI, Ciudad de México, Mexico, ⁴Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Saltillo, Mexico

KEYWORDS

Latin America, spotlight on nanotechnology, Research Topic, nanotechnology, Latin America contributions

Editorial on the Research Topic

Spotlight on nanotechnology: Latin America

Introduction

Nanotechnology is certainly a rapidly expanding research area that is translating into a broad spectrum of applications, from biomedicine to industry. The term was introduced in 1974, although the foundational concepts were proposed by American physicist Richard Feynman, a Nobel Laureate, in 1959. Since then, research and practical applications of nanotechnological discoveries have grown significantly. In 2024, over 256,000 papers related to nanotechnology were indexed in the Web of Science (WoS) database (Statnano, 2025a). China, India, and the United States are the leading countries producing publications on nanosystems. Regionally, educational institutions and research centers that published more than 50 nanotechnology-related articles in 2024 in the top 10% of journals with the highest Impact Factor (IF) are predominantly based in Asian countries (44.7%), followed by European (30.4%) and North American countries (20.9%). Latin American countries account for 2.3% (Statnano, 2025b). These numbers highlight the focus on nanotechnology in these regions. In Latin America, Brazil is the leading country in this field, followed by Mexico and Argentina. The Brazilian Nanotechnology National Laboratory, managed by the Ministry of Science, Technology, and Innovation, conducts significant research in nanotechnology. In Argentina, the Ministry of Science, Technology, and Innovation launched the Federal Plan to Promote Biotechnology and Nanotechnology in 2022, with an initial investment of \$3,800 million Argentine pesos allocated for 2023. Mexico's research in nanotechnology is carried out by research centers, universities, and National Laboratories such as the National Nanotechnology Laboratory and the National Laboratory on Micro and Nanofluidics. Both laboratories are currently overseen by the Ministry of Science, Humanities, Technology, and Innovation.

This Research Topic on "Spotlight on Nanotechnology: Latin America" highlights some of the research currently being developed in this region. The Research Topic contains five contributions: one in energy, two in biomedicine, and two in environmental remediation.

Energy

The research reported in the paper by De Souza et al. involves contrasting three synthetic routes for PtRu/C catalysts to be applied in polymer electrolyte fuel cells, using methanol (CH₃OH) oxidation as the target process. The findings underscore the potential of the synthesized catalysts for use in direct CH₃OH fuel cells, which would offer better performance than catalysts prepared by alternative routes.

Biomedicine

The paper by Farfán-Castro et al. expands existing evidence on the potential of using AuNPs as biocompatible and effective transporters for nanovaccine design, as the obtained conjugates did not induce irreversible *in vitro* cytotoxic effects. Further, the results show the capacity to provide long-term and broad protection against SARS-CoV-2 VOC, independent of conventional adjuvants.

Chávez-Hernández et al. tested the performance of polyvinylpyrrolidone (PVP)-coated AgNPs on the small intestine contraction as well as other mediators in an *ex vivo* model (intestinal segments). Five concentrations of AgNPs and three individual concentrations of PVP-coated AgNPs were used as cumulative. The results indicate that the small intestine is a key target of the actions induced by AgNP, modifying the intestinal motility that affects nutrient absorption efficiency.

Environmental remediation

The article by Camposeco et al. reports on the effect of combining titanium dioxide (TiO₂) with mordenite zeolite to support AuNPs in the low temperature oxidation of carbon monoxide (CO). The catalysts tested performed satisfactorily in converting CO into CO₂. It was found that the presence of TiO₂ in mordenite, combined with the addition of AuNPs, promotes the partial coverage of the structural channels of the zeolite, thereby increasing efficiency at room temperature in CO oxidation.

Oros-Ruíz et al. report the one-pot solvothermal synthesis and characterization of hierarchical BiOI and GO/BiOI microspheres with high photoactivity against rhodamine B (RhB) and methylene blue (MB), as well as their performance for H_2 production using very low-power sources. In particular, the GO/BiOI heterojunction demonstrated superior performance in terms of RhB degradation, considering nominal power consumption vs. RhB degradation efficiency. Scavenger assays showed that the main species causing the RhB oxidation are holes and peroxide radicals. When it comes to H_2 production, the GO/BiOI heterojunction showed satisfactory results when using low-power UV lamp irradiation.

References

Statnano (2025a). Top 10 countries by nanotechnology publications in 2024. Available online at: https://statnano.com/news/74558 (Accessed July 16, 2025).

The papers published in this Research Topic showcase the diverse approaches and significant advancements achieved in nanotechnology in Brazil and Mexico. To ensure continued progress, institutions across Latin America must actively strengthen interdisciplinary collaboration to address the challenges hindering research in these promising technologies.

Author contributions

EM-M: Writing – original draft, Writing – review and editing, Visualization, Conceptualization, Supervision, Validation. RP-R: Writing – original draft, Writing – review and editing, Conceptualization, Visualization, Validation.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Statnano (2025b). Universities and research centers. Available online at: https://statnano.com/orgs/mexicoconsulted (Accessed July 16, 2025).