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Nanoparticles (NPs) possess unique properties due to their higher surface-to-
volume ratio and reactivity. Negative environmental impact and high cost of
traditional modes of synthesis have driven the shift towards utilization of
microbes and plants for synthesising NPs, referred as the biological or ‘Green’
synthesis. This study reported extracellular synthesis of copper NPs (CuNPs) using
the supernatant of Bacillus licheniformis CPJN13S. The parameters affecting this
process were optimized by OFAT approach and were reported to be 5 mM
concentration of copper sulfate (CuSO4), 32 h incubation period, 18 h reaction
time, 20:20 filtrate/substrate ratio, 7 pH, and 37 °C temperature. CuNPs produced
a characteristic UV-Visible absorption peak between 550–650 nm, Z-average of
305.3 nm and zeta potential value of −24.7 mV. SEM and HR-TEM revealed
hexagonal shape of NPs having average size of 12.4 nm. XRD peaks obtained at 2θ
positions of 45.52°, 56.52°, and 75.34° matched to diffraction from Cu.
Antimicrobial assay conducted using 100 μg/mL CuNPs led to highest
inhibition of 20.4% (Bacillus subtilis MTCC No. 441) and 43% (Staphylococcus
aureus MTCC No. 737), at 21 h and 27 h, respectively. The results suggest that
biological synthesis can serve as the eco-friendly alternative of physical and
chemical modes of synthesizing CuNPs and can be used to develop highly
effective antibacterial agents.
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1 Introduction

Nanoparticles (NPs) are micro particles in the range of 1–100 nm made up of metal,
metal oxides or organic matter (Santos et al., 2025). They possess unique physical, chemical
and biological properties as well as enhanced reactivity than their bulk forms (Ealia and
Saravanakumar, 2017). Metal NPs synthesized by different precursors viz., gold, zinc,
copper, iron, and silver, have distinct optoelectrical properties because of their plasma
resonance features (Burlec et al., 2023). Various physical (Ultrasonication, laser, pulse laser
ablation) and chemical (Microemulsion, chemical vapour deposition, electrochemical)
methods are used to synthesise NPs (Khan et al., 2022). However, requirement of
extremely high temperature and pressure, high cost of sophisticated instruments, use of
toxic chemicals along with difficulties in controlling size, distribution, and shape, have
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paved the way for biological synthesis (Rani et al., 2022). It includes
the synthesis of NPs using bacteria, fungi, plants, etc., and has gained
much attention recently owing to environmental safety and
convenience (Bokolia et al., 2024). These NPs are formed by the
reducing agents present in the supernatant/cell of microorganisms
or plant extract. There is no requirement of extreme pressure/
temperature and use of hazardous chemicals (Salem and
Fouda, 2021).

Bacteria possess the ability of rapid multiplication and can be
manipulated easily, therefore, suitable for the production of
biological NPs. Conditions such as aeration, temperature, pH,
and incubation period, can be adjusted to regulate their growth
and produce NPs of desired shape and size (Yusof et al., 2019). They
utilize either intracellular or extracellular mechanism to synthesize
NPs (Ahir et al., 2025). The metal ions are reduced into their
nanoform within the cell in intracellular mode of synthesis
whereas extracellular synthesis is mediated by the enzymes
present on the plasma membrane or released into the media.
Once the metals are reduced from their ionic to atomic form,
they undergo nucleation and form NPs. Some extracellular
proteins also act as capping agents and stabilize the NPs (Tank
et al., 2025).

Cu has long-term stability, resistance against oxidation, and is
significant for the normal functioning of organisms. Its NPs exhibit
unique properties due to their small size, high surface area-to-
volume ratio, and quantum effects leading to more reactions in
less time (Crisan et al., 2021). Though numerous studies have
reported the antimicrobial properties of CuNPs, its synergistic
use with antibiotics has also been reported as an efficient way to
enhance the antibiotic efficacy used in clinical practice (Abo-Shama
et al., 2020; Agreles et al., 2022). In addition, CuNPs have also been
found to exhibit superior antibacterial properties as compared to a
number of antibiotics used in present time (Sacoto-Figueroa et al.,
2021). For plants, Cu is an essential micronutrient critical to
photosynthesis, respiration, antioxidant system, and signal
transduction (Raza et al., 2022). These properties have boosted
the demand of CuNPs particularly in agriculture and healthcare
sector (Rautela et al., 2025; Vigneshwaran et al., 2025).

Bacillus species are known to contain an array of enzymes,
polysaccharide, and amino acids, which can reduce metal ions to
NPs. However, several physico-chemical factors affect this process,
necessitating the optimization of biosynthesis process in order to
enhance the quality of NPs. Optimization ensures the production of
homogeneous NPs with well-defined properties (Park et al., 2023).
Therefore, one factor at a time (OFAT) approach was used in the
present study to optimize the following factors; concentration of
metal precursor (CuSO4), incubation period, reaction time, filtrate
(Bacterial supernatant) to substrate (CuSO4) ratio, pH, and
temperature, which affects the synthesis of CuNPs using Bacillus
licheniformis CPJN13S. Earlier studies have reported the
antibacterial properties of CuNPs against a number of bacteria
viz., Klebsiella pneumoniae, Proteus vulgaris, Escherichia coli,
Staphylococcus aureus, Pseudomonas aeruginosa, and
Streptococcus mutans (Aytar et al., 2025; Gao et al., 2025;
Ibrahim, 2025). However, there are very few reports on the
comparative account of antibacterial efficacy of biological
(synthesized using bacteria) and chemical CuNPs. Therefore, in
the present study, biological CuNPs synthesized using optimized

parameters were utilized to check their antibacterial efficacy and
compare the same with chemically synthesized CuNPs.

2 Experimental setup

2.1 Optimization of CuNPs biosynthesis
using Bacillus licheniformis CPJN13S

Bacillus licheniformis CPJN13S was procured from Lab 312,
Department of Microbiology, MDU, Rohtak, Haryana. It is a plant
growth promoting endophyte and has already been used for the
synthesis of CuNPs in a previous study (Rani et al., 2024). First,
CuSO4 concentration was optimized by adding 1 mM, 2 mM, 3 mM,
4 mM, and 5 mM of CuSO4 solution to the equal volume of
supernatant obtained by centrifuging 2-days old CPJN13S culture
and incubated at 30 °C, 150 rpm for 24 h. The effect of incubation
period was determined by deriving the supernatant from 16 h, 24 h,
32 h, 40 h, and 48 h old CPJN13S culture and adding it to the CuSO4

solution with optimized concentration followed by incubation at
30 °C, 150 rpm for 24 h. Next, reaction mixture of CuSO4 and
supernatant (optimized CuSO4 concentration and incubation
period) was incubated for different time intervals (0 h, 6 h, 12 h,
18 h, & 24 h), at 30 °C and 150 rpm to assess the impact of reaction
time. Then, filtrate to substrate ratio was optimized by adding 4 mL,
8 mL, 12 mL, 16 mL, and 20 mL of supernatant derived from
CPJN13S culture to 20 mL of CuSO4 solution using optimized
factors. Effect of pH (3, 5, 7, 9, and 11) was also determined with
optimized factors and incubated at 30 °C and 150 rpm. Finally, the
reaction mixture prepared using all the optimized factors were
incubated at varying degrees of temperature (23 °C, 30 °C, 37 °C,
44 °C, 51 °C) at 150 rpm for optimized reaction time (Table 1).

2.2 Biosynthesis and characterization of
CuNPs using optimized parameters

CuNPs obtained using CPJN13S with optimized parameters were
characterized for UV-Visible absorption spectrum (Shimadzu) in the
range of 400–800 nm. Polydispersity index (PDI), particle size analysis,
and zeta potential, weremeasured on the Zetasizer (Malvern). Scanning
electron microscopy (SEM) images were obtained at an accelerating
voltage of 15 kV (Zeiss Geminisem). The aqueous suspension of CuNPs
was transferred onto an amorphous carbon-coated copper grid, dried,
and analyzed for high resolution transmission electron microscopy
(HR-TEM) (Hitachi). Samples were scanned from 30° to 80° of 2θ in
increments of 0.02° with a 4-s counting time for XRD (X-ray
diffraction) analysis (Rigaku).

2.3 Antibacterial assay

The antibacterial activity of CuNPs was checked against Bacillus
subtilis MTCC No. 441 and Staphylococcus aureus MTCC No. 737.
The solution containing 100 μg/mL CuNPs (1.5 mL) was added to
50 mL of tryptic soy broth (TSB) inoculated with 1 × 108 CFU mL-1

of B. subtilis and S. aureus culture and incubated at 30 °C, 150 rpm.
Autoclaved water served as control. Bacterial growth studies were
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TABLE 1 Factors optimized for the synthesis of CuNPs.

Factors influencing the biosynthesis of CuNPs Range of the factor

CuSO4 concentration (mM) 1 2 3 4 5

Incubation period (h) 16 24 32 40 48

Reaction time (h) 0 6 12 18 24

Filtrate/substrate ratio 04:36 08:32 12:28 16:24 20:20

pH 3 5 7 9 11

Temperature (˚C) 23 30 37 44 51

FIGURE 1
The absorption spectrum of CuNPs at different concentrations of
CuSO4 solution.

FIGURE 2
The absorption spectrum of CuNPs at different
incubation periods.

FIGURE 3
The absorption spectrum of CuNPs at different reaction times.

FIGURE 4
The absorption spectrum of CuNPs at varying filtrate to
substrate ratio.
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conducted in triplicates by measuring the absorbance at 600 nm
within every 3 h for 30 h. The percent inhibition was
calculated using:

Inhibition %( ) � Ao–A/Ao( ) × 100,

Where A0 is the absorbance of the control and A is the
absorbance of test sample (Wu et al., 2019).

3 Results and discussion

3.1 Optimization factors

3.1.1 Concentration of CuSO4 solution
Five concentrations of CuSO4 solution (1–5 mM) were used to

analyze their effect on the biosynthesis of CuNPs. The colour of
CuSO4 solution changed from blue to green upon the addition of an

equal volume of CPJN13S supernatant. The optical properties of
CuSO4 solution change with the formation of nanoparticles, causing
the solution to turn green and act as the preliminary confirmation of
nanoparticle synthesis (Amaliyah et al., 2020; Rani et al., 2024).
Since color change depends on the excitation on surface plasmon
vibration, the formation of CuNPs was confirmed by UV-Visible
spectrophotometer in the range of 400–800 nm.

Generally, CuNPs exhibit a characteristic UV-Visible absorption
peak between 550–650 nm (Gopalakrishnan and Muniraj, 2021;
Aziz et al., 2024). In the present study, lower concentrations of
CuSO4 (1–3 mM) did not produce a characteristic absorption peak
of CuNPs. Only higher concentrations led to the formation of
CuNPs absorption peak with 5 mM concentration showing
highest absorbance (λmax615 nm = 0.239) (Figure 1). Similar
study done on the synthesis of CuONPs using Streptomyces
sp. Reported increase in the rate of NPs formation with increase
in the concentration of CuSO4 from 1 mM to 8 mM and achieved
maximum absorbance at 5 mM concentration (Bukhari et al., 2021).
Noor et al. (2020) also observed the characteristic peaks of CuNPs
synthesized from Aspergillus niger STA9 at/above 5 mM CuSO4

concentration while concentrations lower than 5 mM did not
produce the absorption peak.

3.1.2 Incubation period
CPJN13S was incubated in TSB for different time intervals

(16–48 h) to determine the effect of incubation period on
biosynthesis of CuNPs, Supernatant derived from each time
interval was added to 5 mM concentration of CuSO4 solution.
Incubation period above 24 h resulted into the formation of a
characteristic absorption peak with maximum value of
absorbance (λmax614 nm = 0.281) obtained at 32 h (Figure 2).
This can be attributed to the formation of secondary metabolites at
late-exponential and early stationary phase leading to the reduction
of metal salt into NPs (Kaur et al., 2016; Seyedsayamdost, 2019). A
further increase in the incubation time caused a slight reduction in
absorbance. An earlier study done in our laboratory have also
reported 32 h as the optimized incubation period (Rani et al., 2025).

FIGURE 5
The absorption spectrum of CuNPs at different pH.

FIGURE 6
The absorption spectrum of CuNPs at different temperatures.

FIGURE 7
Absorption spectrum of CuNPs biosynthesized using optimized
parameters.
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3.1.3 Reaction time
Reaction time has significant effect on the stability and

production of NPs (Rajesh et al., 2016). 5 mM CuSO4 solution
mixed with supernatant retrieved from 32 h old CPJN13S culture,
was incubated for different reaction times (0–24 h). All the reaction
times led to the formation of characteristic absorption peak of
CuNPs with absorbance showing a consistent increase upon
increasing the reaction time up to 18 h (λmax602 nm = 0.342).
Previous study has also reported increase in absorbance with
increasing reaction times from 24 h to 96 h during synthesis of
CuNPs using Aspergillus niger STA9 (Noor et al., 2020). However,
reaction time above 18 h resulted in lower absorbance indicating its

negative influence on biosynthesis (Figure 3). CuNPs synthesized
using cell-free culture extract of Pseudomonas fluorescens
MAL2 underwent increase in absorbance upon increasing the
reaction time up to 90 min above which it reduced indicating the
role of optimized reaction time in sustaining the stability and
aggregation of CuNPs (El-Saadony et al., 2020).

3.1.4 Filtrate to substrate ratio
Five varying volumes of filtrate derived from 32 h old CPJN13S

culture were mixed with five different volumes of 5 mM substrate in
the ratio of 04:36–20:20 (mL), and incubated for 18 h at 30 °C,
150 rpm. Lower volumes of supernatant (04:36, 08:32, and 12:28) did

FIGURE 8
Size distribution (a) and Zeta potential analysis of CuNPs biosynthesized using optimized parameters (b).

FIGURE 9
SEM micrograph (Scale 2 µm) (a) and TEM electron micrograph of CuNPs biosynthesized using optimized parameters (Scale 50 nm) (b).
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not produce absorption peak as observed in case of higher volumes
with maximum absorbance obtained with an equal ratio of the
supernatant and CuSO4, i.e., 20:20 (λmax600 nm = 0.34). An earlier
study has also reported equal ratio (1:1) of filtrate and substrate to
result in highest absorbance of CuONPs at 550 nm as compared to 1:
0.5 and 1:2 ratio (Bukhari et al., 2021). Similar observation was made
during the green synthesis of CuNP from the polysaccharides of
Bacillus sp. (Banerjee et al., 2024). Thus an equal ratio of supernatant
and substrate is optimum for biosynthesis of CuNPs (Figure 4).

3.1.5 pH
Variations in pH can affect shape as well as size of the NPs

(Rajesh et al., 2016; Alhalili, 2022). Therefore, effect of different
pH (3–11) was analyzed using optimized CuSO4 concentration,
incubation period, reaction time, and filtrate to substrate ratio, at
30 °C and 150 rpm. Neutral pH (7) led to highest absorbance

(λmax610 nm = 0.277) while lower and higher pH reduced the
same by decreasing the rate of reduction of copper ions into atoms
(Figure 5). This is in accordance with previous studies reporting
maximum synthesis of NPs under neutral pH condition (Tiwari
et al., 2014; Lv et al., 2018). However, slightly acidic and basic
conditions have also been reported as optimal for green synthesis of
CuNPs rather than neutral pH depending upon the specific mode of
synthesis and type of reducing agent/s (Shende et al., 2015; Amjad
et al., 2021).

3.1.6 Temperature
Five different temperatures 23 °C–51 °C were used to study the

effect of temperature on the biosynthesis of CuNPs. Characteristic
peaks were observed only above 30 °C with 37 °C being the optimum
one (λmax600 nm = 0.358) (Figure 6). Reduced absorbance at lower
temperatures is attributed to lowering of microbial metabolism as
noticed in case of CuNPs synthesized using Shewanella loihica (Lv
et al., 2018). The conversion rate of Cu2+ ions increased when the
temperature went up due to their enhanced availability to the
reducing agents present in supernatant and reduced risk of
secondary processes (Gopalakrishnan and Muniraj, 2021; Amjad
et al., 2021). However, a temperature above 37 °C decreased the
conversion rate of copper ions probably due to the enhanced nuclei
surface activity promoting the agglomeration of particles or enzyme
denaturation (Lv et al., 2018; Nagar and Devra, 2018).

3.2 Characterization of
biosynthesized CuNPs

CuNPs were biosynthesised using the optimized parameters and
characterized. The color of CuSO4 solution changed from blue to
dark green upon addition of CPJN13S supernatant and exhibited an
absorbance peak between 550 and 650 nm (Figure 7) as observed
earlier (El-Saadony et al., 2020; Bukhari et al., 2021). PDI, Particle
size, and zeta potential, were measured on the zetasizer. PDI is a
measure of particle size distribution and its value below 0.4 (0.386 in
present study) indicates the monodispersity of sample formulation
(Danaei et al., 2018). Z-average depicting hydrodynamic size and
zeta potential of NPs were reported to be 305.3 nm and −24.7 mV,
respectively. Highly negative zeta potential prevents the aggregation
and ensures long-term stability of biogenic CuNPs as reported
earlier (Singh et al., 2023; Habibah et al., 2024) (Figures 8a,b). In
a previous study, Cu/CuO NPs synthesised from Stenotrophomonas
sp. and Priestia megaterium, also had highly negative zeta potential
(Talebian et al., 2023; Mohamed et al., 2024). SEM and TEM
revealed polygonal shape of the CuNPs (Figures 9a,b). Analysis
of TEM images (ImageJ software) showed the NPs lying in range of
7.7–18.4 nm with an average size of 12 nm (Figure 10). Earlier
studies have reported the synthesis of spherical CuNPs with an
average size of 30 nm using bacterial strains isolated fromAntarctica
and polygonal CuNPs with an average size of 13.025 nm using
Pantoea agglomerans (John et al., 2021; Rani et al., 2024). The XRD
spectrum revealed three sharp peaks at 2θ positions of 45.52°, 56.52°,
and 75.34° (JCPDS No. 040836) that matched to diffraction from Cu
(Figure 11). According to JCPDS data (80–0,076), the exhibited
diffraction peaks at 2θ = 31.78° and 66.31° corresponds to different
planes of monoclinic phase of CuONPs, indicating partial oxidation

FIGURE 10
Histogram depicting size of CuNPs biosynthesized using
optimized parameters.

FIGURE 11
XRD analysis of CuNPs biosynthesized using optimized
parameters.
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of the CuNPs. The results are in accordance with previous
investigations that reported similar diffraction peaks for Cu/
CuONPs (Phul et al., 2018; Thakar et al., 2022; Manyasree et al.,
2017). A comparative study of biosynthesized Cu/CuO NPs based
on previous studies has been given in Table 2.

3.3 Antimicrobial assays of CuNPs

The antimicrobial activity of CuNPs was studied against B.
subtilis and S. aureus by analyzing their growth curves in the
presence of CuNPs. It was observed that 100 μg/mL of
biosynthesized CuNPs lowered the growth rate of both the
bacteria. However, maximum inhibition was noticed at 21 h

and 27 h wherein a significant decrease of 20.4% and 43% was
observed in the growth of B. subtilis and S. aureus, respectively, as
compared to their respective control sample (Figures 12a,b).
Moreover, S. aureus showed more sensitivity towards CuNPs
as compared to B. subtilis and was more negatively affected.
Several studies have demonstrated the bactericidal effect of
biogenic CuNPs synthesized from bacteria (John et al., 2021;
Talebian et al., 2023; Rani et al., 2025), fungi (Murthy et al., 2020;
Nassar et al., 2023; Noor et al., 2025), and plants (Rambau et al.,
2024; Kasthuri et al., 2024; Ibrahim, 2025), against a variety of
bacterial strains. In addition, bimetallic nanoparticles of copper
and silver synthesised biologically have also displayed significant
antibacterial activity (Merugu et al., 2021; Al-Haddad
et al., 2020).

TABLE 2 A comparative analysis of the present study of biosynthesis, optimization and characterization of CuNPs with previous reports.

S.
No.

Source Optimized condition Size
(nm)

Zeta
potential
(mV)

PDI Shape Reference

1 Pseudomonas
fluorescens
MTCC103

Metal ion concentration (318.4 ppm), Reaction time
(90 min), Volume of supernatant (10 mL), pH (7)

20–80 - - Spherical &
Hexagonal

Shantkriti and
Rani (2014)

2 Pseudomonas
aeruginosa

Metal ion concentration (2 mM), pH (6.5)
Temperature (45 °C), rotations per minute (200)

110 −18.1 0.31 Spherical Tiwari et al. (2014)

3 Aspergillus niger Metal concentration (20 mM), Reaction time (96 h),
Filtrate to substrate ratio (1:1), pH (7)

5–100 - 0.25 Round Noor et al. (2020)

4 Pseudomonas
fluorescens MAL2

Media (F-base), Metal concentration (300 ppm),
Reaction time (90 min), Filtrate to Substrate ratio (10:
40), pH (7), Temperature (35 °C)

10–70 −26 0.23 Spherical &
Hexagonal

El-Saadony et al.
(2020)

5 Streptomyces sp Metal concentration (5 mM), Reaction time (1 h),
Substrate to Filtrate Ratio (1:1), pH (7)

1.72–13.49 - - Spherical Bukhari et al.
(2021)

6 Bacillus licheniformis
CPJN13S

Metal concentration (5 mM), Incubation period
(32 h), Reaction time (18 h), Filtrate to Substrate ratio
(1:1), pH (7), Temperature (37 °C)

7.7–18.43 −24.7 0.38 Polygonal Present report

FIGURE 12
Effect of biosynthesized CuNPs on the growth curve dynamics (a) Bacillus subtilis. (b) Staphylococcus aureus.
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4 Conclusion

In the present study, OFAT-mediated optimization of the
biosynthesis of CuNPs using Bacillus licheniformis CPJN13S
resulted into 5 mM concentration of CuSO4, 32 h incubation
period, 18 h reaction time, equal filtrate to substrate ratio, 7 pH,
and 37 °C temperature, to be the optimum values. These CuNPs
were found to be effective against B. subtilis and S. aureus. The
optimization studies are immensely crucial for the largescale
application of CuNPs in the field of biomedicine to assist in
replacing the widely consumed antibiotics and several related
areas. Nevertheless, there is a need to keep screening more non-
pathogenic microbes for their ability to synthesize NPs. Endophytes
are a reliable source of metabolites which can be harnessed to
synthesize various metallic NPs as utilized in the present study.
In addition, more studies targeted on identifying and characterizing
the reducing and capping agents involved in the reduction and
stabilization of NPs, respectively, are required to be conducted.
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