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Simulating water droplets made up of millions of molecules and on timescales as
needed in biological and technological applications is challenging due to the
difficulty of balancing accuracy with computational capabilities. Most detailed
descriptions, such as ab initio, polarizable, or rigid models, are typically
constrained to a few hundred (for ab initio) or thousands of molecules (for
rigid models). Recent machine learning approaches allow for the simulation of up
to 4 million molecules with ab initio accuracy but only for tens of nanoseconds,
even if parallelized across hundreds of GPUs. In contrast, coarse-grained models
permit simulations on a larger scale but at the expense of accuracy or
transferability. Here, we consider the CVF molecular model of fluid water,
which bridges the gap between accuracy and efficiency for free-energy and
thermodynamic quantities due to i) a detailed calculation of the hydrogen bond
contributions at the molecular level, including cooperative effects, and ii) coarse-
graining of the translational and rotational degrees of freedom of the molecules.
The CVF model can reproduce the experimental equation of state and
fluctuations of fluid water across a temperature range of 60° around ambient
temperature and from 0 to 50 MPa. In this work, we describe efficient parallel
Monte Carlo algorithms executed on GPUs using CUDA, tailored explicitly for the
CVF model. We benchmark accessible sizes of 17 million molecules with the
Metropolis and 2 million with the Swendsen-Wang Monte Carlo algorithm.
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1 Introduction

Large-scale water modeling plays an essential role in simulations of biological systems
and technological applications, where the balance between the model’s accuracy and
computational efficiency is crucial. On the one hand, a faithful representation of water
properties is necessary to successfully reproduce the thermodynamic behavior of the entire
system (Chaplin, 2006). On the other hand, the computational cost of modeling thousands
or millions of water molecules, including explicit water-solute interactions, limits the
accessible length and time scales of the simulation (Onufriev and Izadi, 2018).

A detailed approach to simulate water systems is ab initiomolecular dynamics (AIMD),
which treats the nuclei classically while treating the electrons quantum mechanically. For a
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long time, this technique has been limited to systems of up to a few
hundred molecules. However, thanks to recent advances in
machine-learned DeepMD models, it is now feasible to simulate
homogeneous nucleation with ab initio accuracy in systems of
around hundreds of thousands of water molecules (Piaggi et al.,
2022). To our knowledge, the most extensive system benchmarked
with this method was composed of four million water molecules,
requiring parallelization over 480–27360 GPUs in the Summit
supercomputer (Lu et al., 2021). Although the length scale makes
this approach promising for studying biochemical reactions, its
computational cost limits the simulations to a few tens of ns, a
short timescale for many biochemical and nanotechnological
applications.

The accessible timescales can be extended by using models that
represent water molecules at a lower level of description. The
atomistic rigid TIP4P/2005 and the polarizable AMOEBA best
describe the behavior of the systems (Klesse et al., 2020), but
they are typically limited to thousands of molecules and
hundreds of nanoseconds. Alternatively, coarse-graining (CG)
strategies reduce computational costs by averaging over the
degrees of freedom that are believed to have a minor impact on
the system’s behavior. Among the most popular CG models used in
biological simulations are MARTINI (Tsanai et al., 2021) and
SIRAH (Machado et al., 2019; Klein et al., 2021). MARTINI
maps four water molecules into a single bead that interacts
through effective potentials (4:1). Instead, SIRAH employs a
mapping ratio of (11:4). However, at this level of description,
these models cannot accurately reproduce hydrogen-bond (HB)
interactions or cooperative effects (Barnes et al., 1979). Therefore,
they leave the relevance of these interactions in biological systems
unaddressed.

Notably, recent advances in machine learning (ML) allow to
increase the accessible scales in simulations of CG models. In
particular, ML-BOP was employed to study ice crystallization
(Dhabal et al., 2024) and amorphous phases (de Almeida Ribeiro
et al., 2024) in systems containing up to 200,000 and 500,000 water
molecules, respectively. Using massive parallelization, the ML-BOP
model is suitable for simulations of ice and liquid systems containing
up to 2 million water molecules, with predictions of quality
comparable to those of the mW model (Chan et al., 2019).

The quest for a water model that simultaneously offers a detailed
description of the HB network, including cooperativity, while also
being suitable for large-scale simulations remains unresolved. In this
context, the model proposed by Franzese and Stanley (FS) for water
monolayers (Franzese and Stanley, 2002; 2007; Kumar et al., 2008;
Mazza et al., 2011; Stokely et al., 2010; Franzese et al., 2008; de los
Santos and Franzese, 2011; 2012; Bianco and Franzese, 2014; 2019;
Coronas et al., 2022) stands out as a promising approach.

The FS model describes the monolayer HB network at a
molecular resolution, incorporating many-body contributions
(Stokely et al., 2010) while coarsening the translational degrees of
freedom of the molecules through a discrete density field. It is
suitable for long-time and large-scale simulations (Mazza et al.,
2011), even under supercooled conditions (Bianco and Franzese,
2014; 2019). Furthermore, its extension by Bianco and Franzese
(BF), which includes the effect of interfaces, has been applied to
biological problems such as protein folding (Bianco and Franzese,
2015; Bianco et al., 2017b), protein design (Bianco et al., 2017a), and

protein aggregation (Bianco et al., 2019; 2020; March et al., 2021). In
these studies, the BF model has helped to reveal the role of HB
interactions in the complex behavior of proteins under various
thermodynamic conditions.

Coronas, Vilanova, and Franzese (CVF) recently extended the
FS model to bulk (Coronas, 2023; Coronas et al., 2025; Coronas and
Franzese, 2024). They also demonstrated its applicability to hydrated
biological interfaces (Coronas, 2023).

Specifically, in Ref. (Coronas et al., 2025), we showed
that–thanks to a parametrization based on quantum ab initio
calculations and experimental data–the model is
thermodynamically reliable. It reproduces the experimental
equation of state of water and thermodynamic fluctuations with
outstanding accuracy. The range of quantitative agreement extends
over 60°, around 300 K at ambient pressure, and up to 50 MPa. The
interested reader will find a comparison of the predictions of the
CVF model and other water models, including AMOEBA14 (Laury
et al., 2015), TIP4P/2005 (Teplukhin, 2013), ML-mW, andML-BOP
(Chan et al., 2019), in the Supplementary Information of Ref.
(Coronas et al., 2025).

In Ref. (Coronas and Franzese, 2024), we demonstrated that the
CVF model is transferable to deep supercooled conditions, where it
exhibits a liquid-liquid critical point in the thermodynamic limit.
This finding is consistent with results obtained from optimized rigid
models, such as rigid TIP4/Ice, and polarizable models, such
as iAMOEBA.

In this work, we design parallel algorithms to show that the CVF
model is also scalable and efficient for conducting large-scale
simulations. To illustrate its scalability, we present results from
simulations involving up to 17 million water molecules in the liquid
phase. For these simulations, we needed only a few hours on a single
workstation to calculate the thermodynamic properties at specific
temperatures and pressures. To achieve this efficiency, we developed
in-house software, which we describe here and offer as open access
for further use and modifications by the scientific community.

Our code uses CUDA, a C-style programming language for
kernels executed by the graphics processing unit (GPU) (NVIDIA,
2022). Over the last decade, CUDA has been widely utilized in
Computational Physics to simulate, for example, lattice spin models
using local and cluster Monte Carlo (MC) (Hawick et al., 2011;
Weigel and Yavorskii, 2011; Komura and Okabe, 2012), molecular
engines (Hall et al., 2014), Brownian motors (Spiechowicz et al.,
2015), and to solve stochastic differential equations (Januszewski
and Kostur, 2010). GPU architectures are particularly effective for
enhancing the performance of MC dynamics for spin models on
regular lattice (Hawick et al., 2011). As we will demonstrate in the
following sections, this is also true for the CVF model, which
employs an underlying lattice structure to coarse-grain the
density field and define the HB network.

We define both local and cluster MC algorithms for the CVF
model. In both cases, we use the specific topological properties of our
model. Consequently, both algorithms are tailored to the CVF
model. However, our work may inspire the development of
parallel algorithms for other models, such as those proposed in
Refs. (Borick et al., 1995; Guisoni and Henriques, 2006; Girardi et al.,
2007; Fiore et al., 2009; Bertolazzo and Barbosa, 2014; Urbic and
Dill, 2018; Cerdeiriña et al., 2019). for water, or the model for ion
hydration proposed by Dutta et al. (2015)).
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The model presented here is limited to the liquid phases of
water, including supercooled states, and does not address the
crystalline phases. This limitation arises from coarse-graining the
coordinates of the molecules using a density field defined at the
lattice resolution, where each cell’s volume corresponds to the
proper volume of the molecules. Consequently, we cannot define
structural functions, such as the radial distribution function or the
structure factor, to distinguish between the ice and fluid phases of
water. This limitation will be addressed in the future by extending
themodel to incorporate the coordinates of the molecules, as done in
Ref. (Bianco et al., 2014), where polymorphism and melting via a
hexatic phase were studied for a monolayer.

Additionally, for numerical efficiency, we do not permit
molecular diffusion. Therefore, we cannot compute
translationally dynamic quantities, such as the diffusion
coefficient or characteristic translational decorrelation times.
However, these quantities can be easily calculated within the
framework of MC simulation by considering diffusive MC
dynamics, as illustrated in Refs. (Franzese and de los Santos,
2009; de los Santos and Franzese, 2011; 2012), which allows us to
estimate the occurrence of glassy dynamics and diffusive anomalies.

Nevertheless, our work allows unprecedented large-scale
calculations for the thermodynamic observables of water in the
fluid phases, including the supercooled region, while maintaining a
detailed description of the HB network with quantitative precision.
We pave the way for realistic simulations of large protein systems in
explicit solvent, incorporating the effects that stem from individual
HBs and their cooperativity.

The paper is organized as follows: In Section 2, we present the
model and define the algorithms for the local (Metropolis) MC and
the cluster (Swendsen-Wang) MC calculations. In Section 3, we
show and discuss the results regarding critical slowing down in the
supercooled liquid region, explain how the cluster MC allows us to
overcome this issue, and provide a benchmark for the algorithm. In
Section 4, we address the advantages and limitations of our approach
and present our conclusions. Technical details about the algorithms
and benchmarks are provided in the Supplementary Material.

2 Materials and methods

2.1 The model

We considerNwater molecules at a constant temperature T and
pressure P within a fluctuating volume V(T, P). We decompose the
total volume V into two components: homogeneous and
heterogeneous. The homogeneous component, Viso(T, P),
corresponds to the isotropic contribution arising from the van
der Waals interaction between the water molecules. This
component is modeled using the Lennard-Jones potential
in Equation 1,

U r( ) ≡ 4ϵ r0
r

( )12

− r0
r

( )6[ ] − Uc, if r< rc

0 if r≥ rc,

⎧⎪⎪⎨⎪⎪⎩ (1)

with a hard-core distance r0 and a cutoff at rc ≡ 6r0, where r0 ≡ 2.9
Å is the van der Waals diameter of a single water molecule,

associated to its van der Waals volume v0, as determined from
experiments (Finney, 2001). We shift the potential by
Uc ≡ 4ϵ[(r0/rc)12 − (r0/rc)6] to avoid a discontinuity at rc.
The cutoff is chosen large enough to include all significant
contributions to the van der Waals interactions. We take ϵ, the
characteristic energy of the Lennard-Jones interaction, as the
internal unit of energy. From ab initio energy calculations
(Henry, 2002), we set ϵ ≡ 5.5 kJ/mol.

The heterogeneous component of the volume reflects local
fluctuations resulting from the formation of HBs under specific
thermodynamic conditions. Sastry et al. demonstrated (Sastry et al.,
1996) that assuming these fluctuations are proportional to the total
number of HBs, NHB, is sufficient to reproduce water’s volumetric
anomalies. Thus, the total volume is expressed as

V ≡ Viso + vHBNHB, (2)
where the proportionality factor vHB remains independent of the
thermodynamic conditions (T, P). This assumption is made to
simplify the model and is shown to be reasonable a posteriori, at
least within a limited range of T and P. We will further discuss this
limitation before the conclusions.

We set vHB ≡ 0.6v0. This choice stems from the volume
difference per HB between high-density ice VI and VIII and
low-density tetrahedral ice Ih (Bianco and Franzese, 2014;
Coronas et al., 2022). It is based on the reasonable assumption
that the difference between the low- and high-density ices is
solely due to the open structure associated with tetrahedral HB
formation and that in low-density ice, all HBs are formed, with
each water molecule engaging in four HBs. In contrast, in high-
density ices, all HBs are absent.

Our strategy for achieving large-scale simulation capability
involves reducing the degrees of freedom of water without losing
information about the HB network. To this end, we replace the
atomic coordinates of theNmolecules with a density field defined at
the resolution of a single molecule. Therefore, we partition the
homogeneous component of the total volume Viso into N cells, each
sized viso ≡ Viso/N ≥ v0, and ensure that N ≥N. The case N � N,
examined here, corresponds to bulk water, with each cell
accommodating a single molecule and viso representing the
proper volume of a water molecule that forms no HBs. The case
N >N indicates that the volume is shared by water and solutes,
which will be addressed in a future publication for the 3D case
(Coronas, 2023). In 2D, the caseN >N has been considered already
when there are vacancies in a monolayer (Franzese and de los
Santos, 2009; de los Santos and Franzese, 2011; 2012) or for hydrated
proteins, e.g., in (Durà-Faulí et al., 2023) and references therein.

To account for local volume fluctuations caused by the
formation of HBs, we associate a heterogeneous component
vHBnHB,i/2 with each cell i ∈ [1, . . . ,N ]. Here, nHB,i represents
the number of HBs formed by the molecule within cell i, with∑inHB,i/2 � NHB. The factor of 1/2 avoids double-counting of HBs.
Consequently, each cell i has a local volume defined as

vi ≡ viso + vHBnHB,i/2, (3)
that implies Equation 2.

To keep our coarse-graining approach (i) straightforward to
implement and (ii) consistent with both low and high coordination
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numbers in the fluid, we partition the total volume V into cells of a
cubic lattice. As a result, the relation between the van der Waals
diameter r0 and the associated volume is v0 ≡ r30.

The partition of the volume V into a cubic grid of cells is
appropriate because DFT-based Car-Parrinello molecular dynamics
simulations indicate that the water coordination number does not
exceed six under ambient conditions (Skarmoutsos et al., 2022).
Simulations at high pressures also confirm this finding (Saitta and
Datchi, 2003; Paschek et al., 2008). Therefore, each cell i has six
nearest neighbors.

The average distance between neighboring molecules is defined
as r ≡ v1/3iso ∈ [r0,∞). Note that r is unaffected by NHB, as the
formation of HBs reduces the coordination number of water but
does not alter the separation between molecules. Specifically, each
water molecule minimizes the enthalpy of its local environment by
forming four HBs in an almost perfect tetrahedral arrangement
while excluding any ‘interstitial’water molecule. This rearrangement
leads to a decrease in local density, which corresponds with an
increase in the effective volume of each molecule in the network,
resulting in a variation in the total V as described by Equation 2.

The system is compressible, meaning thatV fluctuates at fixed P
in accordance with the equation of state. Therefore, for each i, the
two components of vi (viso and vHBnHB,i/2) vary. For the first,
independent of i, it holds that v0/viso � r30/r

3 ∈ [0, 1]. By defining
r1/2 as the value where r30/r

3
1/2 � 0.5, we classify as gas-like the cells

with r> r1/2, i.e., those with viso ≥ 2v0, and as liquid-like the others.
Since this definition is independent of i, the entire system is either
gas or liquid-like, depending on the value of Viso. Nevertheless, local
changes in the HB network, via nHB,i, lead to heterogeneities in local
volume fluctuations.

We consider negligible the HB formation in the gas and assume
that molecules within gas-like cells cannot form HBs since the
average O–O distance between them exceeds the HB-breaking
threshold (Luzar and Chandler, 1996). In addition, according to
ab initio simulations and the Debye-Waller factor (Teixeira et al.,
1990), only ÔOH angles (between two water molecules) within 60°

result in a bonded state. Therefore, only 1/6 of the possible relative
orientation states of two water molecules at HB distance can form a
HB. To account for this, we introduce a bonding variable
σ ij ∈ [1, . . . , q] with q � 6. It describes the relative orientation
between molecules in neighboring cells i and j. Each molecule i
has six bonding variables, σ ij, one for each of the six neighboring
molecules j. A HB is formed when σ ij � σji, in such a way that a
bonded state has a probability 1/q � 1/6 to occur.

As discussed in (Coronas and Franzese, 2024; Coronas et al.,
2025), the model splits the HB interaction into two components: (i)
covalent (pairwise directional) (Shi et al., 2018), and (ii) cooperative
(many-body) (Barnes et al., 1979), with a characteristic energies J
and Jσ , respectively. We set J ≡ 11 kJ/mol, i.e., J/(4ϵ) ≡ 0.5, which is
consistent with the energy of a single HB and cluster analysis
(Stokely et al., 2010).

The cooperative HB interactions arise from many-body effects,
contributing to the tetrahedral arrangement of HBs at low
temperatures (Cisneros et al., 2016). The model includes
interactions up to the five-body term within the first
coordination shell, as derived from polarizable models (Abella
et al., 2023). Based on DFT calculations (Cobar et al., 2012), we
set Jσ /(4ϵ) � 0.08 to optimize the model’s accuracy in predicting the

experimental equation of state and thermodynamic fluctuations
(Coronas et al., 2025).

The six bonding variables σ ij of the same molecule i interact
cooperatively, resulting in a reduction in energy Jσ when σ ij � σ ik
for j ≠ k. With a coordination number of six, this implies that the
maximum cooperative energy in a cell is 15Jσ . For the selected
model’s parameters (Table 1), it follows that Jσ ≪ J, which aligns
with the general understanding that HB cooperative reorganization
occurs at a temperature significantly lower than the formation of
individual HBs (Cisneros et al., 2016).

Both experimental and computational studies indicate that
bulk water molecules form four tetrahedral HBs in their lowest
energy state. Excited states correspond to defects in the HB
network, where molecules have either fewer or more HBs. Ab
initio calculations for liquid water at ambient conditions show
that under-coordinated molecules comprise approximately 45%
of the HB network, while over-coordinated molecules account for
less than 5% (DiStasio et al., 2014). According to neutron
scattering and Raman spectroscopy studies (Giguère, 1987),
bifurcated hydrogen bonds—where one acceptor interacts with
two donors—could potentially enable the formation of up to five
HBs. However, the energy of each bifurcated HB is approximately
half that of a canonical HB. The current consensus suggests that
molecules can rapidly switch their HBs between two neighboring
molecules within their coordination shell, within hundreds of
femtoseconds (Laage and Hynes, 2006). This dynamics, which
resembles, on average, a bifurcated HB, is included in our model.
Therefore, to simplify, we impose a maximum of four HBs per
molecule, introducing variables ηij, which are set to 1 or
0 depending on whether the HB between molecules i and j is
allowed, as described in Supplementary Material: Checkerboard
partition for η variables.

Finally, the enthalpy of the system is given by:

H N,P, T( ) � ULJ −NHBJ −NσJσ + PV, (4)
where ULJ is the Lennard-Jones potential in Equation 1 ULJ(r),
NHB ≡ ∑〈i,j〉θ(r1/2 − ri,j)δ(σ i,j, σj,i)ηi,j, Nσ ≡ ∑N

k ∑〈i,j〉δ(σk,j, σk,i),
and V is given by Equation 2. Here, ri,j ≡ |ri→− rj

→| is the
distance between molecules i and j, and θ(r) and δ(i, j) are the
Heaviside step and Kronecker delta functions, respectively. Thus,
the formation of a macroscopic HB network leads to an increase in
volume for Equation 2, a decrease in entropy due to the reduced
number of accessible σ ij states, and an increase in HB enthalpy,
for Equation 4.

2.2 Monte Carlo step definition

A configuration of the CVF model is defined by the variables
{ri→, σ ij, ηij}. In the present version of the model, as discussed above,
we coarse-grain the molecule position ri

→ over the lattice cell and

TABLE 1 The CVF parameters. The parameters for the Lennard-Jones
potential modeling the van der Waal interaction,  and r0, are adopted as
units of energy and length, respectively.

ϵ r0 Cutoff v0 vHB J/(4ϵ) Jσ/(4ϵ)
5.5 kJ/mol 2.9 Å 6 r0 r30 0.6 v0 0.5 0.08

Frontiers in Nanotechnology frontiersin.org04

Coronas et al. 10.3389/fnano.2025.1637828

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2025.1637828


assign to each molecule a proper volume vi, Equation 3. Therefore,
considering the definitions of Viso and ηij, the CVF configuration of
the present model reduces to {Viso, σ ij, ηij}.

In each MC step, we update these variables in the
following order:

1. Update Viso, keeping {σ ij, ηij} fixed.
2. Update ηij, keeping {Viso, σ ij} fixed.
3. Update σ ij, keeping {Viso, ηij} fixed.

We use the standard Metropolis algorithm to update the global
variable Viso. This method involves accepting or rejecting a tentative
change from Viso to Viso + ΔViso with a probability proportional to
exp[−PΔViso/(kBT)], where ± ΔViso ∝O(Viso/100). We update the
ηij as described in Supplementary Material: Checkerboard partition
for η variables. For the σ ij, we employ the parallel local Metropolis
algorithm (Section 2.3) or the parallel Swendsen-Wang cluster
algorithm (Section 2.4), depending on the temperature:
Metropolis for T≥ 208 K and Swendsen-Wang for lower
temperatures.

2.3 Metropolis

The Metropolis algorithm on a regular lattice can be efficiently
parallelized by dividing the space into domains for simultaneous

variable updates. To maintain detailed balance, the enthalpy change
from altering a variable must remain independent of other variables
within the same domain. For the Ising model, common partitioning
schemes include layered (Barkema and MacFarland, 1994) and
checkerboard (Heermann and Burkitt, 1990) methods, with
CUDA implementations available for both 2D and 3D (Hawick
et al., 2011; Weigel and Yavorskii, 2011; Wojtkiewicz and
Kalinowski, 2015). However, these methods are not easily
applicable to the CVF model due to differing lattice topologies,
so we use a layered partition that enables memory coalescing in the
CVF model.

We partition the {σ ij} variables, as described in Figure 1 (Top),
into six domains. Each domain contains variables interacting with
six bonding indices: five on the same molecule and one on a n.n.
Molecule, all from different domains. Therefore, we can update all
the σ ij in the same domain simultaneously.

In CUDA applications, the main bottleneck in execution arises
from data access latency (Tapia and D’Souza, 2011). Performance
can be enhanced by efficiently sorting memory to exploit memory
coalescing (Leist et al., 2009; Sanders and Kandrot, 2010; NVIDIA,
2022). The GPU creates, manages, schedules, and executes blocks of
32 threads simultaneously, called warps (Hawick et al., 2011). When
a kernel reads (or writes) to global memory locations, it performs a
single coalesced read (or write) transaction for every half-warp of
16 threads. Therefore, we are interested in sorting the vectors so that
consecutive threads read (or write) consecutive memory addresses.

FIGURE 1
Schematic illustration of the layered domains partitioning the bonding indices {σ ij}. (Top) Three layers (marked by dashed lines) of water molecules
along the direction x. If i is the central molecule, the colored arrows represent the bonding indices {σ ij}where j runs over the n.n. molecules. The bonding
index’s color code with the n.n. molecule is blue for the right molecule, black for the left molecule, red for the back molecule, yellow for the front
molecule, green for the topmolecule, and brown for the bottommolecule. For clarity, we indicate only the blue arrow for the othermolecules in the
figure. The set {σ ij} is divided into six domains, one for each color. Therefore, the blue domain, represented in the figure, includes all the σ ij where
xj � xi + (viso/v0)1/d . The blue variable σ ij interacts with the five (different colors, same molecule) σ ik with k ≠ j via the cooperative interaction with
characteristic energy Jσ , and, if ηij � 1, with the black variable σ ji via the characteristic energy Jeff ≡ J − PvHB . (Bottom) Array sorting of the ηij and σ ij
variables, according to the indexing formula described in the text, grouped by the color-coded domains. The ordering is relevant since it enables
coalesced reading, improving the performance.
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We achieve this by sorting the arrays that store ηij and σ ij
variables according to the index idx � arm ·N + cell, where
arm ∈ {0, 1, . . . , 5}, and cell ∈ {0, 1, . . . , N − 1}. The index arm

represents the six possible neighbors of the cell (from 0 to 5: left,
right, front, back, top, bottom), and cell ≡ i is the index of the cell
(Figure 1 Bottom).

We implement a CUDA kernel gpu_metropolis(arm)

that launches one thread per water molecule i, where arm

indicates which of the six independent domains is updated
(Supplementary Algorithm 1). We define a parallel Metropolis
update as six sequential calls to gpu_mertopolis(arm),
where arm is chosen randomly to mimic the random selection of
σ ij variables in the sequential Metropolis and to avoid the
propagation of correlation waves.

We illustrate how the kernel gpu_metropolis(arm)

performs coalesced memory transactions with the following
example. We consider a half-warp that updates the block dir �
0 (left domain) of the water cells cell ∈ {0, . . . , 15}. Thus, idx
takes values from 0 to 15. When the kernel estimates ΔNHB, it reads
the right arms of the neighboring cells 1 to 16, i.e., the (consecutive)
positions idx � 65 to 80. The same occurs when estimating ΔNσ , as
the kernel reads memory positions in consecutive domains. We
observe that an exception to this rule arises when the neighboring
cell is positioned on the opposite side of the simulation box due to
the periodic boundary conditions.

2.4 Swendsen-Wang

Local MC algorithms, such as Metropolis, experience a critical
slowdown in their dynamics as the correlation length approaches the
system size (as discussed in Section 3.1). In contrast, cluster MC
algorithms efficiently update entire correlated regions of spins
(clusters) simultaneously. Consequently, they produce statistically
independent configurations at significantly lower computational
costs. This efficiency is crucial in the supercooled region, for
example, where the model exhibits a liquid-liquid phase
transition culminating in a liquid-liquid critical point (Coronas
and Franzese, 2024). In this context, we examine the Swendsen-
Wang (SW) multi-cluster algorithm (Swendsen and Wang, 1987).
The algorithm is defined so that, at each step, clusters of σ ij variables
are formed with sizes ranging from 1 (an isolated σ ij variable) to the
system’s size N. This formation follows a distribution that
reproduces that of thermodynamically correlated degrees of
freedom, as discussed in detail in (Bianco and Franzese, 2019)
based on site-bond correlated percolation (Kasteleyn and Fortuin,
1969; Coniglio et al., 1979). The new configuration is generated by
updating all the (correlated) σ ij variables within the same cluster to a
new state. The sequential SW algorithm for the CVFmodel proceeds
as follows:

1. Visit all the cells i. For each i, loop over all the pairs of variables
(σ ij, σ ik). If they are in the same state, place a fictitious bond
between them with probability pσ � 1 − exp(−Jσ/kBT).

2. Visit all the pairs of n.n. Cells 〈i, j〉. If Jeff ≡ J − PvHB > 0,
ηij � 1, and δσij ,σj,i � 1, place a fictitious bond with probability
peff � 1 − exp(−|Jeff |/kBT). Instead, if Jeff < 0, place a fictitious
bond with probability peff if δσ ij ,σji � 0.

3. Use the Hoshen-Kopelman algorithm (Hoshen and Kopelman,
1976) to identify the clusters of σ ij variables connected by
fictitious bonds.

4. Visit all the clusters. For each, choose a random integer
rnd_int ∈ {0, . . . , q − 1}. Change the state of all the σ ij
variables in the cluster to σ ij ← (σ ij + rnd_int)%q, where
← is the assignment operator and % is the
modulo operation.

The SW algorithm performs three independent tasks. First, it
places fictitious bonds between σ ij variables to generate the
clusters. Second, it identifies all the clusters. Third, it updates
each cluster. The first and third tasks are highly localized and can
be easily parallelized. However, this is not the case for the cluster
labeling operation. To tackle this challenge, we build on the work
of Hawick et al., who developed various parallel labeling
algorithms for arbitrary and lattice graphs using CUDA
(Hawick et al., 2010). Among these, the label equivalence
algorithm was refined by Kalentev et al. (Kalentev et al., 2011)
and later applied by Komura and Okabe to SW simulations of the
2D Potts model (Komura and Okabe, 2012). In this context, we
modify the Hawick-Kalentev label-equivalence algorithm for the
CVF model.

For a given SW step, we first generate the clusters. We directly
parallelize this task so that each thread works on one CVF cell. Each
thread is responsible for the cooperative interactions within its cell
and the covalent interactions with the left, front, and top directions.
To accomplish this, we allocate the array connected of size
(15 + 3)N � 18N, which indicates whether two neighboring σ ij
variables belong to the same cluster. We nest this array based on
the index con_idx � linkN + cell, where link ∈ {0, . . . , 17}.
link � 0, 1, and 2 represents the covalent connections between
cell and its neighbors in the left, front, and top directions. The
values link ∈ {3, . . . , 17} represent the 15 cooperative connections
within cell.

Once the bonds are placed, we apply the label equivalence
algorithm. We allocate the label array of size 6N, which
indicates the cluster that σ ij belongs to. Thanks to Kalentev’s
sophistication, this array also resolves label equivalences
(Kalentev et al., 2011). The advantage is the reduction of the
memory cost of the algorithm, which is significant due to the
limited storage resources of the GPUs. We initialize label as
label[idx] � idx, where idx is the σ ij index defined in
Metropolis. The algorithm resolves label equivalences through
iterative calls to the scanning and analysis functions (Kalentev
et al., 2011; Komura and Okabe, 2012). When the algorithm
converges, all the σ ij variables in the same cluster will take the
same label value.

The scanning function compares the label of a site idx to the
labels of all the n.n. σ ij within the cluster. For every idx,
label[idx] is updated to the minimum value among all the
labels of the bonded sites, including itself. In Ref. (Komura and
Okabe, 2012), Komura and Okabe implemented this function
using a single kernel for the 2D Potts model. However, for the
CVF model, we find it more convenient to divide this function
into two kernels. First, in gpu_scanning_covalent, each
thread scans left, front, and top covalent interactions
(Supplementary Algorithm 2). Second, gpu_scanning_
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cooperative scans the cooperative interactions
(Supplementary Algorithm 3). An alternative implementation
in a single kernel leads to race conditions when two threads
attempt to update the same element of label1.

Next, the analysis function updates label[idx]
(Supplementary Algorithm 4). This step further propagates
the minimum value of label to other σ ij variables within
the same cluster. Although the parallel implementation of the
analysis function experiences race conditions, these collisions
between threads will eventually be resolved in subsequent
applications of the scanning and analysis functions
(Kalentev et al., 2011). To minimize the impact of thread
conflicts, we implement the gpu_analysis(arm) kernel,
which updates only the label of those σ ij variables in the
arm domain. We then loop through the six domains to account
for all the lattice sites.

To check whether the algorithm has converged, we first store
a copy of the label vector before calling the scanning and
analysis functions, and then we compare it to the updated
label. We parallelize this task by assigning one thread to
each CVF cell. The algorithm converges when the label

remains unchanged. We provide an example of label

convergence after successive applications of the scanning and
analysis functions in Table 2.

3 Results and discussion

3.1 Critical slowdown of the metropolis
dynamics in the vicinity of the liquid-liquid
critical point

The CVF model predicts a liquid-liquid phase transition
(LLPT) between high-density liquid (HDL) and low-density
liquid (LDL) phases in the supercooled region (Coronas and
Franzese, 2024). The LLPT ends in a liquid-liquid critical point
(LLCP), located at PC � 174 ± 14 MPa and TC � 186 ± 4 K in the
thermodynamic limit (N → ∞). This is in close agreement with
finite-N estimates from iAMOEBA (Pathak et al., 2016), TIP4P/
Ice (Debenedetti et al., 2020), and ML-BOP (Dhabal et al., 2024)
models, as well as with a recent estimate from a collection of
experimental data (Mallamace and Mallamace, 2024).

Approaching the LLCP, the correlation length ξ of the water
HB network increases and ultimately diverges at the critical
point. Consequently, the autocorrelation time τ of the local
Metropolis MC dynamics, which is proportional to ξ, also
increases approaching the LLCP. This can be demonstrated by
calculating the autocorrelation function

CM Δt( ) ≡ 〈Mi t0 + Δt( )M t0( )〉 − 〈M〉2

〈M2〉 − 〈M〉2 , (5)

where M ≡ 1
qNmax {Nq′} is an order parameter, and Nq′ is the

number of σ ij variables in the state q′ ∈ {0, . . . , q − 1}. We define the
autocorrelation time τ as the time at which C(τ) � 1/e. Thus, C(Δt)
allows us to estimate the autocorrelation time τ of the HB network.
Two CVF configurations are uncorrelated if they are sampled after a
number of MC steps ≥ τ.

TABLE 2 Example of parallel label equivalence algorithm.We consider a small cluster of seven σ ij variables with indices in “σ ij index” row in a lattice ofN � 64
cells. Each pair of σ ij variables in the same cell (cell index ↔ Cartesian coordinates row) are bonded through a cooperative interaction. The pairs of σ ij
variables (0,65), (257,337), and (17,82) are bonded through a covalent interaction. The initial value of label coincides with the σ ij index. The following lines
show the resulting label after the application of the kernels scan covalent, scan cooperative, and analysis. At the third iteration, label does not change, so
this cluster has converged. The SW step ends when all the clusters converge.

Cell index ↔ (x, y, z) 0 ↔(0,0,0) 1↔(1,0,0) 17↔(1,0,1) 18↔(2,0,1)

σ ij index 64 0 65 257 337 17 82

initial label 64 0 65 257 337 17 82

scan covalent 64 0 0 257 257 17 17

scan cooperative 0 0 0 0 17 17 17

analysis 0 0 0 0 17 17 17

converged? No

scan covalent 0 0 0 0 0 17 17

scan cooperative 0 0 0 0 0 0 17

analysis 0 0 0 0 0 0 0

converged? No

scan + analysis 0 0 0 0 0 0 0

converged? Yes

1 To avoid this, we could use the CUDA atomic_min function; however, we

found that it resulted in worse performance due to increased thread

divergence (Kalentev et al., 2011).
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We calculate, with the Metropolis algorithm, CM(Δt) for a
system with N � 32 768 water molecules (Figure 2a). At a
pressure of P � 160 MPa, which is close to the critical
pressure in the thermodynamic limit (P � 174 ± 14 MPa), τ

displays non-monotonic behavior with fast dynamics at high T �
208 K and low T � 188 K, alongside an apparent divergence at
T � 193 K. This behavior is linked to a structural change between
HDL-like and LDL-like forms of water, characterized by the
Widom line (the locus of maxima of ξ) emerging from the

LLCP at higher pressure (Coronas and Franzese, 2024). As an
approximate estimate of the Widom line, we present the locus of
extrema of the specific heat CP, namely, the maxima of the
enthalpy fluctuations (Figure 2b). At extremely low pressure, P �
−300 MPa, far from the critical region, τ exhibits a similar non-
monotonic behavior, but without any apparent divergence upon
crossing the Widom line. This is consistent with a decrease in the
maxima of the correlation length ξ as the distance between the
LLCP and the point along the Widom line increases.

FIGURE 2
(a) Correlation function CM(Δt) of the order parameter M for parallel Metropolis MC algorithm. The time Δt is measured in units of MC steps. The
system size is N � 32 768. At P �160 MPa and T �193 K (blue triangles), near the estimate of the supercooled water LLCP in the thermodynamic limit
(Coronas and Franzese, 2024), the correlation function decreases very slowly, consistent with the critical slowing down expected for local MC dynamics
near a critical point. As temperature increases (T � 208 K, blue diamonds) or decreases (T � 188 K, blue squares) at constant pressure, the correlation
decays more rapidly. A similar trend is observed at low-P � −300 MPa, with slow decay at T � 208 K (green triangles) and faster decay at higher T � 236 K
(green diamonds) and lower T � 200 K (green squares). The dashed line indicates the CM � e−1 value corresponding to the autocorrelation time τ. (b)
Location of simulated thermodynamic points in the P-T phase diagram. From the LLCP (red), the locus of extrema of the correlation length ξ, i.e., the
Widom line, emerges. As a proxy estimate of the Widom line, we plot the locus of maxima of the specific heat, i.e., the maxima of enthalpy fluctuations
(turquoise line) as discussed in (Coronas and Franzese, 2024). The blue and green symbols correspond to the thermodynamic conditions selected in
panel (a) and Figure 3.

FIGURE 3
Comparison between correlation function CM(Δt) computed with Metropolis and SW. (a) For the Metropolis MC, at P �160 MPa and T �195 K (blue
triangles), near the LLCP, the correlation function decreases very slowly, as discussed in Figure 2. At a higher temperature of T � 205 K and a lower
pressure of P � −300 MPa (green circles) near the Widom line, the correlation function exhibits a slow decay. Away from the Widom line, at the same
temperature but at a higher pressure of P � 0.1 MPa (orange circles), the correlation function decays much faster. (b) The SW algorithm avoids the
critical slowdown of dynamics at the same state points (symbols and colors as in panel a). Inset: An enlarged view of the short-time regime enhances the
distinction among the data for different state points.
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3.2 Cluster MC dynamics avoids the
critical slowdown

Cluster MC algorithms are suitable for efficiently sampling the
critical region, as they bypass the critical slowdown of the dynamics
by updating regions of correlated HBs simultaneously. We compare
the autocorrelation function (Equation 5) computed with local
Metropolis (Figure 3a) and cluster SW (Figure 3b) algorithms. As
discussed in Section 3.1, we observe slow dynamics of the system at
low P � −300 MPa and T � 205 K, near the Widom line. With
increasing pressure (P � 0.1 MPa) at constant temperature, the
system remains in a metastable supercooled liquid state,
exhibiting rapid decorrelation. Finally, at T � 195 K and P � 160
MPa, close to the LLCP (174 ± 14 MPa, 186 ± 4 K) (Coronas and
Franzese, 2024), the autocorrelation time appears to diverge. The
comparison with SW illustrates that cluster MC circumvents the
critical slowdown of the dynamics in all cases, even near the LLCP.

Caution should be taken for the interpretation of time
autocorrelation functions computed through MC simulations.
Molecular Dynamics (MD) and MC fundamentally differ in how
they explore the configurational phase space. While MD solves the
time evolution of the system, MC proposes random updates of the
system that are accepted or rejected with a probability given by the
Boltzmann factor. Consequently, the MC timestep does not have a
direct physical meaning. It is a computational step used to explore
the configuration space, but it does not correspond to any real
elapsed time. If MD is used, time correlation functions are a physical
property of the system and describe how quickly a property, such as
the HB lifetime, decorrelates. Conversely, when employingMC, time
correlation functions reflect the algorithm’s ability to propose (and
accept) configurations that vary with respect to a specific property.
In the MC context, the time correlation function is not a property of
the system but a property of the algorithm. Indeed, Metropolis and
SW algorithms explore the same free energy landscape with identical
equilibrium configurations; however, they differ in the number of
steps needed to reach other equilibrium microstates. Hence,
differences in MC time autocorrelation functions between
Metropolis and SW do not reflect different physical properties of
the simulated system but rather different algorithm efficiencies.

3.3 Benchmark of the algorithms

As discussed above, the autocorrelation time τ for the SW
algorithm is significantly shorter than that for the Metropolis MC.
However, SW cluster MC is notably more computationally expensive
than Metropolis. Therefore, to determine which MC dynamics is more
efficient in generating uncorrelated configurations, one must compare
the time each algorithm takes to produce τ MC steps.

First, we analyze the computational cost of the parallel
Metropolis algorithm for different system sizes, N≤ 17 576 000.
The hardware and software specifications of the workstation are
detailed in Supplementary Material: Workstation. Depending on the
system size, we perform between 2 and 10 independent simulations
of 5 000 MC steps. We find that the results are robust against
changes in thermodynamic conditions; that is, changes in T and P
do not affect the computational cost of the algorithm
(Supplementary Algorithm 1).

Our results show that the time necessary (cost) for a parallel
Metropolis update scales linearly for 32 768≤N≤ 2 097 152
(Figure 4). For these systems, the GPU resources are neither
saturated (large N) nor under-exploited (small N); thus, the time
spent on data accessing scales linearly with N. For small N≤ 8 000,
the computational resources of the GPU are not optimized. We find
that in this range, the time cost of a Metropolis step remains
approximately constant (~ 0.1 ms, Figure 4: inset). For large
N≥ 2 097 152, the size of the arrays of random numbers must be
reduced to fit within the GPU global memory (Supplementary
Material: Generation and usage of random numbers). The
additional time cost arises from both the increasing number of
executions of the kernels for generating random numbers and the
time involved in memory transactions. In particular, we benchmark
accessible size-systems up toN � 17 576 000 water molecules with a
time cost of 280 m per Metropolis update (Figure 4), which
corresponds to a cubic simulation box of 75 × 75 × 75 nm3.

We estimate the size-dependent performance gain, or speedup
factor, SF(N) ≡ tCPU/tGPU, defined as the ratio between the time
required for a parallel and a sequential update of an entire system of
N molecules, as shown in Table 3. The results indicate that, for the
smallest system considered (N � 64 molecules), the parallel
algorithm is less efficient than the sequential one. This is not
surprising, as a sufficiently large number of threads must be
executed to fully utilize the GPU resources (Hall et al., 2014).
Indeed, Wojtkiewicz and Kalinowski also find SF< 1 for small
systems (Wojtkiewicz and Kalinowski, 2015). The large
SF� 136.72 measured for N � 2 097 152 is attributed to the
significant increase in the time cost of the sequential
implementation compared to the parallel approach. More
specifically, we find that the large σ and η arrays exceed the
RAM storage capacity, necessitating that they be loaded in

FIGURE 4
Time cost of a parallel Metropolis update of 64 ≤N≤
17,576000 water molecules. The line is a linear fit t � aN + b of the
time cost within the range 32 768≤N≤ 2097 152, with fitting
parameters a � (4.11 ± 0.03)10−6 ms and b � (1.2 ± 3)10−2 ms.
We observe a large deviation from linearity for N> 107. Inset: The
enlarged view at small N highlights the deviation from linearity for
N≤8000, with a time cost saturation ~ 0.1 ms at small N. In both the
main panel and the inset, error bars are smaller than the size of
the symbols.
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portions, which delays the sequential computation. We could not
measure the SF for 2 097 152<N≤ 17 576 000 due to the excessive
cost of computing tCPU. Instead, we extrapolated SF� 208 for N �
10 077 696 and SF� 245.8 forN � 17 576 000 from a power-law fit in
the range 32 768≤N≤ 2 097 152 (see Supplementary Figure S3).
Further details on the computation of the SF are provided in
Supplementary Material: Speedup factors.

Next, we estimate the performance of the parallel SW algorithm.
Unlike the Metropolis case, the time cost of a SW update depends on
the cluster size distribution, which in turn is influenced by the
thermodynamic conditions (Bianco and Franzese, 2019). Close to
the Widom line, the system undergoes a transition from non-
percolation to percolation upon isobaric cooling. Thus, we
consider two temperatures on either side of the transition: T �
195 K (percolation) and 210 K (not percolation), with P � 0.1 MPa.
For every system sizeN, we perform between 5 and 10 independent
simulations of 103 MC steps.

We find that the time cost of the parallel SW algorithm increases
linearly for N≤ 262, 144, although data at small values of N are
noisy (Figure 5). As with the parallel Metropolis algorithm, we
attribute this to the suboptimal usage of GPU resources.

At larger values ofN, we observe additional time costs compared
to linearity. As in the Metropolis case, we attribute this to limited
resources for storing large arrays, such as those used for random
numbers. However, the cost value reached at N � 2 097 152 for SW
is approximately 1.6 times larger than in the Metropolis case for the
same size, which limits our ability to explore sizes with tens of
millions of water molecules.

We note that the parallel SW update is faster under percolating
conditions than in the absence of percolation. Although a better
performance for a cluster algorithm is expected when the correlation
length is large, because larger clusters lead to fewer in number, this
result is not obvious. One might expect that the total time cost of the
update is governed by the time cost of labeling the largest cluster, as
seen in the sequential implementation.

TABLE 3 Speedup factor, SF”tCPU/tGPU, of the GPU Metropolis algorithm in
comparison to the sequential implementation on the CPU for N water
molecules. The error in the last digit of the estimate is indicated in
parentheses. (*) For N ≥ 10 077 696, we extrapolate SF from a power law fit
(Supplementary Figure S3).

Metropolis speedup factor (SF)

Number of molecules N SF

64 0.1159 (6)

4 096 7.09 (3)

8 000 13.42 (9)

32 768 37.8 (3)

140 608 63.8 (3)

262 144 63.5 (3)

2 097 152 136.72 (3)

10 077 696 (*) 208.0

17 576 000 (*) 245.8

FIGURE 5
Time cost of a parallel SW cluster update of N water molecules. Red squares correspond to T � 210 K (non-percolating cluster) and blue circles
correspond to T � 195 K (percolating cluster) at pressure P � 0.1 MPa. Lines with matching colors indicate linear fits of the data, expressed as t � aN + b,
within the range 16≤N≤2097 152. The fitting parameters Are a � (3.60 ± 0.15) × 10−5 ms and b � (0.8 ± 0.2) ms for the red line, and a �
(3.22 ± 0.14) × 10−5 ms and b � (0.8 ± 0.2) ms for the blue line, respectively. We observe that the cost increases faster than linear at large N and
exceeds that of the Metropolis MC, limiting our ability to explore sizes with tens of millions of water molecules, which contrasts with the Metropolis case.
Inset: The enlarged view at smallN highlights excellent linearity for the smallN. In both themain panel and the inset, error bars are smaller than the size of
the symbols.
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A possible explanation is that the analysis function converges
rapidly irrespective of the cluster size, making the size of the largest
cluster less relevant. Therefore, the difference in time cost between
percolation and non-percolation likely stems from less efficientmemory
readings of the label array in smaller clusters by the scanning and
labeling functions.

A further consequence of this feature of the parallel
implementation on GPUs is that the speedup factor relative to
the sequential implementation on CPUs is greater under percolation
conditions (Table 4; Supplementary Figure S4). In particular, we find
that for N≥ 32 768, the SF under percolating conditions is nearly
twice that under non-percolating conditions.

Based on our results, we observe that the time cost of a single
MC update for a CVF water sample of N � 32 768 molecules (as
discussed in Sections 3.1, 3.2) is 0.15 m using Metropolis. In the
case of SW, the time cost is 1.9 m for percolating clusters,
i.e., approaching the LLCP, and 2.0 m for non-percolating
clusters, away from the critical region.

Therefore, the SW algorithm is approximately ten times more
costly than Metropolis for N � 32 768. This result suggests that the
SW algorithm should be employed whenever the autocorrelation
time τ obtained with SW is at least ten times shorter than the τ

obtained with Metropolis. As we have discussed above, this occurs
when the system approaches the Widom line (the maximum of the
correlation length ξ) or the region of maxima of specific heat (the
maximum of enthalpy fluctuations).

4 Conclusion

In this work, we implement efficient parallel MC algorithms
for the CVF model of bulk water. In particular, we design a
Metropolis algorithm based on a layered partition scheme and
adapt the label equivalence algorithm from Hawick et al. (2010)
and Kalentev et al. (2011) for simulations using the SW
algorithm. Our results show that when the correlation length
of the HB network is small, the parallel Metropolis algorithm is
more efficient than the SW. This efficiency arises because the
Metropolis algorithm takes less time per update to perform
memory and computation tasks. Specifically, we demonstrate

that a single Metropolis update is roughly ten times faster than an
update with the SW algorithm for N � 32 768.

However, the Metropolis dynamics suffer from slowing down
when the correlation length ξ of the HB network is large. This
occurs when the thermodynamic conditions are close to the
Widom line, for example, at ambient pressure and
supercooled conditions, T≲ 205 K, or near the LLCP (174 ±
14 MPa, 186 ± 4 K) (Coronas and Franzese, 2024) where ξ

eventually diverges. Thanks to simultaneous updates of
correlated clusters, the SW algorithm avoids the critical
slowing down of the dynamics, enabling efficient sampling
under those conditions. Therefore, we conclude that the SW
algorithm should be preferred when the system is near a critical
point or the corresponding Widom line, as the increased
computational time for a single update is balanced by the
fewer Monte Carlo steps required to yield statistically
independent configurations.

Furthermore, we observe that the speedup factor of the GPU
implementation, in relation to the CPU implementation, of the
2 MC algorithms can be approximately 137 for Metropolis and
65 for SW when N � 2 097 152. Therefore, regardless of the
algorithm used, we find that GPU parallelization enables the
CVF model to scale for simulations of unprecedentedly large
water systems, reaching tens of millions of water molecules.

For instance, we benchmark systems of 17,576 000 water molecules
using the Metropolis algorithm, and 2097152 molecules for the SW
cluster MC. The smaller size for the SW algorithm results from its
higher computational cost in terms of time and memory compared to
Metropolis dynamics.

Combining these results with the observation that the CVFmodel is
reliable, given its quantitative accuracy around ambient conditions
(Coronas et al., 2025), and is transferable at extreme thermodynamic
conditions (Coronas and Franzese, 2024), we conclude that the CVF
model is suitable for addressing problems in nanotechnology and
nanobiology due to its accuracy, efficiency, and scalability.
Furthermore, we observe that, although many relevant issues in these
scientific areas occur at near-ambient conditions, the model’s
transferability at extreme conditions is essential for a better
understanding of phenomena such as protein denaturation upon
heating, cooling, pressurization, or depressurization (Bianco and
Franzese, 2015).

To further support these conclusions, we have demonstrated
in preliminary work (Coronas, 2023) that CVF water enables us
to calculate the free energy landscape of extensive biological
systems that were previously simulatable only with implicit
solvents. In particular, we examined the sequestration of
superoxide dismutase 1 (SOD1) proteins into crowded bovine
serum albumin (BSA) globular protein and Fused in Sarcoma
(FUS) disordered protein environments (Samanta et al., 2021),
as well as the shear-induced unfolding of the von Willebrand
factor (Languin-Cattoën et al., 2021). Both cases were
previously analyzed using the OPEP protein model with
implicit solvent (Timr et al., 2023).

In conclusion, the CVF represents a REST—reliable, efficient,
scalable, and transferable—model for water and hydrated
systems. Its innovative approach holds the promise to
transform free energy calculations for large-scale nano-bio

TABLE 4 As in Table 3, but for the GPU Swendsen-Wang algorithm under
the two thermodynamic conditions shown in Figure 5.

SW speedup factor (SF)

Number of
molecules N

(T �195 K, P �0.1 MPa)
Percolating

(T �210 K, P �0.1 MPa)
Non-Percolating

64 0.0617 (12) 0.052 (12)

4 096 3.17 (4) 2.04 (3)

8 000 7.38 (10) 4.57 (3)

32,768 30.3 (5) 16.57 (13)

140,608 41.5 (3) 20.7 (2)

262,144 47.8 (7) 21.89 (11)

2 097 152 65.0 (2) 24.99 (6)
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systems, paving the way for groundbreaking discoveries in
the field.
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