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Background: Millions of people each year suffer from chronic low back pain (cLBP), which adversely affects their physical and mental health. While non-pharmacological interventions such as mindfulness are known to be effective in treating cLBP, not all patients experience the same benefit. Determining who these treatments might work best for is difficult, as there are no reliable predictors of the response to mindfulness for cLBP. The objective of the current study was to apply predictive machine learning to data collected from a completed clinical trial of mindfulness for cLBP to identify phenotypes characterizing those who did and did not respond to the intervention.



Methods: The analyses here focused on 132 participants in the intervention arm of the clinical trial of mindfulness for cLBP. The Random Forest machine learning technique was used to identify key characteristics of responders (49) and non-responders (83).



Results: The top three responder phenotypes were able to identify 26 out of the 49 responders with 92%–100% precision. The top three non-responder phenotypes were able to identify 36 out of 83 non-responders, all with 100% precision.



Conclusions: Results from this machine learning based phenotyping can guide clinician and patient decision-making to maximize clinical efficiency, patient outcomes, and resource use as well as inform research and development of mindfulness-based treatments for pain.
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Introduction

Chronic low back pain (cLBP), defined as pain lasting three months or longer, affects approximately 9%–10% of adults worldwide, with prevalence increasing from early into late adulthood (1). Globally, over half a billion people reported LBP in 2020, and chronic cases are expected to increase by more than 36%—to over 843 million—by 2050 as populations age globally (2). As the leading cause of disability worldwide, cLBP is a substantial cause of lost productivity and imposes significant economic burdens, with individual costs reaching $10–20,000 per patient per year (3). Beyond the financial toll—estimated at hundreds of billions annually in many countries—affected individuals frequently experience reduced quality of life, higher rates of depression, early retirement, and increased mortality risk (4).

Standard treatment protocols for cLBP typically begin with nonpharmacologic interventions, which are favored due to their lower risk profiles and modest but consistent benefits. The American College of Physicians and related guidelines strongly recommend exercise programs (e.g., aerobic activity, motor-control/core strengthening), mind body interventions (mindfulness-based stress reduction, yoga, Tai chi), and multidisciplinary rehabilitation, each supported by moderate-quality evidence demonstrating small to moderate improvements in pain and function (5). If these nonpharmacologic methods are not effective, guidelines suggest progressing to oral NSAIDs as first-line medications, which are moderately effective for many patients. Second-line pharmacologic agents include SNRIs (notably duloxetine), tramadol, and tricyclic antidepressants, each offering small improvements in pain relief (6). However, while opioids may provide short-term pain reduction, they are not always advantageous. These medications carry considerable risk profile—withdrawals, adverse effects, and potential for misuse— and are thus reserved for cases where other therapies have failed and after careful consideration by patient and provider. The ongoing opioid epidemic (7), with over 54,000 opioid related overdose deaths in 2024 alone (8), has increased interest and efforts to maximize the application and effectiveness of nonpharmacologic interventions, including mindfulness.

Mindfulness-based interventions, particularly Mindfulness-Based Stress Reduction (MBSR) and related meditation practice, are often effective, low-risk treatments for cLBP. A comprehensive meta-analysis of 12 randomized controlled trials involving 1,153 patients found that meditation-based therapies modestly but significantly reduced pain intensity and bothersomeness while improving quality of life compared with non-meditation controls (9). Additional systematic reviews of MBSR have reported short-term reductions in pain intensity (mean difference ≈ 1 on a 0–10 scale) and modest gains in physical function, though long-term superiority to other active treatments is unclear (10). A large randomized trial (n = 342) comparing MBSR, Cognitive Behavioral Therapy (CBT), and usual care found that both MBSR and CBT yielded greater improvements in pain and functional limitations at 26 and 52 weeks—with MBSR effects persisting at one year—vs. usual care (11, 12). Overall, mindfulness programs for cLBP consistently yield small to moderate benefits in pain, function, and well-being, underscoring their role as a valuable component of nonpharmacologic, multimodal pain management strategies.

Various modeling methods have been used to quantify various musculoskeletal outcomes such as osteoporosis related variability in hip fractures (13) and declining hip fracture rates in a Norwegian population (14). Related work has established clinical tools for stratifying patients with musculoskeletal pain (15), predicting the risk of musculoskeletal disorders in the workplace (16), and predicting postsurgical pain (17). The prediction of pain outcomes is particularly challenging, and research in this area has benefited greatly from the use of machine learning (ML) modeling techniques.

ML has been used to effectively predict and evaluate pain outcomes across a spectrum of clinical scenarios. A 2021 review of 26 predictive ML studies of pain outcomes (diagnosis, pain intensity, managing pain) reported superior performance compared to traditional statistical methods (18). Similarly, a systematic review of 44 EEG-based ML studies reported that models could accurately predict pain intensity and treatment response (65%–100% accuracy) demonstrating substantial analytic potential depending on the method used (19). One 2024 study using high-dimensional clinical data from over 67,000 outpatient records found that ensemble ML methods such as Random Forest outperformed standard logistic regression and other machine learning methods in predicting chronic pain presence and treatment response—highlighting key predictors such as BMI and inflammatory markers (20). In summary, while there is consistent evidence of ML's effectiveness in predicting pain intensity and treatment outcomes, it has not been applied to predict the response to mindfulness-based interventions for pain.

The current secondary data analysis applied predictive ML to data collected from a completed randomized clinical trial of mindfulness for cLBP (the Aging Successfully with Pain study) (21). This parent clinical trial sought to determine the effectiveness of a mind-body program at increasing function and reducing pain in older adults with cLBP. Analyses focused on the intervention arm of the RCT and used Random Forest to identify phenotypes of responders and non-responders. The objective was to go beyond the phenotyping of chronic pain to identify clusters of participant features (hereafter termed “responder and non-responder phenotypes”) characterizing those who did and did not respond to the intervention.



Methods


Aging successfully with pain RCT overview

This experimental study was designed as a randomized, patient education-controlled clinical trial of a mind-body program for older adults with cLBP. Details of the study procedure have been published previously (21, 22). 282 independent, community-dwelling adults 65 years or older were recruited from metropolitan Pittsburgh, Pennsylvania. Participants in the mind-body (intervention) group received the group intervention of 8 weekly 90-minute mindfulness meditation sessions modeled on the Mindfulness-Based Stress Reduction program (23, 24). Controls received an 8-week group health education program based on the “10 Keys” to Healthy Aging. After completion of the 8-week program, participants in the intervention and control programs were asked to return for 6 monthly booster sessions. Measures were obtained at baseline, after the 8-week program, and 6 months after program completion. Recruitment occurred from February 14, 2011, to June 30, 2014. The final 6-month assessment was completed April 9, 2015. The study protocol was approved by the institutional review board of the University of Pittsburgh. All participants provided written informed consent.



RCT inclusion and exclusion criteria

Participants were included if they were 65 years or older, spoke English, had intact cognition (Mini-Mental State Examination score, ≥24) (25), had functional limitations owing to their chronic LBP (defined as a score of ≥11 on the Roland and Morris Disability Questionnaire [RMDQ] (26); range, 0–24, with higher scores indicating increased limitations), and had self-reported moderate chronic pain levels on a verbal descriptor scale (Pain Thermometer; measured on a visual scale as pain as bad as it could be, extreme, severe, moderate, mild, or no pain) occurring daily or almost every day for at least the previous 3 months (26). Participants were excluded if they had participated in a previous mindfulness meditation program, had serious underlying illness (such as malignant neoplasms, infection, unexplained fever, weight loss, or recent trauma) causing their pain, were nonambulatory, had severe impaired mobility, had visual or hearing impairment that interfered with assessments, had pain in other parts of the body more severe than their chronic LBP or acute back pain, had an acute or a terminal illness, or had moderate to severe depressive symptoms (Geriatric Depression Scale score, ≥ 21; range, 0–30) (27).



RCT assessments and outcome measures

The Roland-Morris Disability Questionnaire (RMDQ) was the primary outcome measure. It contains 24 questions specifically related to functional limitations as a result of LBP. A clinically meaningful change in the RMDQ ranges from a 2.5- to a 5.0-point improvement (reduction) from baseline (28).

Pain (present, average, and most severe during the past week) was measured by self-report with the 21 point Pain Numeric Rating Scale (PNRS; range, 0–20, with higher scores indicating worse pain) (29). Because pain is a complex phenomenon that affects quality of life, mood, and psychological function, a variety of established instruments were used to measure these different domains.

The Modifiable Activity Questionnaire (MAQ) was used to record the frequency and duration of various levels of physical activity (30). The MAQ assesses activities during occupational and leisure time, as well as inactivity due to disability. A total score is calculated by summing the scores from each domain, ranging from 3 to 15, where a higher score indicates a higher level of physical activity.

Quality of life was measured with the RAND-36 Health Status Inventory (SF-36, consisting of the physical functioning, mental, health, and general health perception scores, with higher scores indicating better health (31).

The Profile of Mood States (POMS) was used to measure transient and fluctuating feelings and enduring affect states. It's a 65 item self-report questionnaire that evaluates six mood states: tension-anxiety, depression, anger-hostility, vigor, fatigue, and confusion (32).

Given the strong association between chronic pain and depression, the 30 item Geriatric Depression Scale (GDS) was used to assess depression (33). It has a score range of 0–15, with higher scores indicating more severe depression. Scores are typically interpreted as follows: 0–4 = normal, 5–8 = mild depression, 9–11 = moderate depression, and 12–15 = severe depression. Self-efficacy has been shown to predict task performance (34). This construct was measured with the well-validated Chronic Pain Self-Efficacy Scale (CPSE, range, 0%-100%, with higher scores indicating improved self-efficacy) (35).

The Fear Avoidance Beliefs Questionnaire (FABQ) was used to assess how fear-avoidance beliefs about physical activity and work affect and contribute to low back pain (36). The FABQ consists of 16 items in which an individual rates their agreement with each statement on a 7-point Likert scale. There is a maximum score of 66, where a higher score indicates more strongly held fear avoidance beliefs.

Chronic pain acceptance was measured with the Chronic Pain Acceptance Questionnaire (CPAQ) (37), which assesses how individuals accept their chronic pain and its impact on their lives. The standard CPAQ has a range of 0–120, with higher scores indicating greater acceptance. The CPAQ has two subscales: Activity Engagement (score range 0–66) and Pain Willingness (score range 0–54). Each item is rated on a 7-point scale from 0 (never true) to 6 (always true). Pain catastrophizing was measured with the Catastrophizing Scale of the Coping Strategies Questionnaire (CSCS, range, 0–6, with higher scores indicating greater catastrophizing) (38).

Self-reported mindfulness was assessed with the Mindful Attention Awareness Scale (MAAS; range, 1–6, with higher scores indicating greater mindfulness) (39). Data on comorbidity were reported with the Cumulative Illness Rating Scale (range, 0–13, with higher scores indicating more comorbid conditions) (40).

The Multidimensional Scale of Perceived Social Support (MSPSS) is a 12 question measure used to measure perception of support from 3 sources: family, friends and a significant other (41). The total score ranges from 12 to 84, with higher scores indicating greater perceived social support. Each subscale (family, friends, and significant others) also has a score range of 4 to 28.

The Credibility Expectancy Questionnaire (CEQ) is a six-item scale which was used to assess participants' perceptions of treatment credibility and their expectancy of its effectiveness, with higher scores indicating greater credibility and stronger outcome expectations (42).



Objective measure

The Short Physical Performance Battery (PPB) (43–45) tests lower extremity function by measuring standing balance, gait speed and timed chair rise, tasks that are commonly encountered by older adults. The maximum score is 12 and higher scores indicate better function.



Intervention

The intervention was modeled on the 8-week Mindfulness-Based Stress Reduction (MBSR) program (23, 24). Four methods of mindfulness meditation were taught: the body scan, sitting practice, walking meditation, and mindful stretching. These techniques take regular activities such as sitting, walking, and lying down and transform them into a meditation through directed breathing and mindful awareness of thoughts and sensations. To encourage proficiency with the meditation method after completion of the intervention, monthly 60-minute booster sessions were held. Each session included time for a mindfulness meditation and time for discussion of the themes brought up during the 8-week program.



Machine learning modeling: dataset and data preprocessing

The final sample size for the intervention arm of the RCT was 140 participants. The intervention group was 34% male, had a mean age of 75, and was 70% white and 30% black. Given that the goal of our analysis was to determine factors predictive of response to MBSR (in contrast to determining efficacy of MBSR as a treatment for pain, which has already been established in the literature), we focus on 132 out of 140 intervention participants with data at baseline and 8-weeks. The main outcome was the Roland-Morris Disability Questionnaire (RMDQ), which measures functional limitations owing to low back pain. Other self-reported questionnaires were collected by the study at baseline and 8-weeks (end of treatment). Questionnaire subscores and total scores were all used for the ML analyses. No further pre-modeling feature selection was applied to allow the ML modeling access to all available features and to perform its own embedded feature selection. Missing values in predictive features were imputed using mean feature values.



Outcome attribute: clinically significant change in RMDQ

The machine learning modeling results in the present analyses focus on the Roland-Morris Score (RMscore). We used change in the Roland-Morris score as our predictive outcome, which we denote as ΔRMscore (“delta RMscore”) and compute by subtracting a subject's 8-week score from their baseline score: Δrmscore = RMscorebaseline - RMscore8−week.

A positive ΔRMscore indicates that the subject saw an improvement in the self-reported disability measure. A within-patient change of at least 4 or 5 points in the Roland-Morris score is recognized as the threshold for a clinically important. Hence, in the current study our main outcome is a binary treatment response outcome, where ΔRMscore > 4 is considered clinically significant improvement (outcome class 1) and ΔRMscore ≤ 4 is not considered clinically significant improvement (outcome class 0). The number of participants with ΔRMscore > 4 is 49; and with ΔRMscore ≤ 4 is 83.



Machine learning modeling technique: random forests

The modeling goal was to identify markers that predict clinically significant response (or lack of it) to treatment. The current analyses present markers and combinations of markers that our Random Forest based ML modeling has identified as predictive of treatment response. The Random Forest is an ensemble method that constructs a collection of decision trees by including randomness in the tree construction process to allow the creation of different decision trees over the same dataset; this reduces overfitting (46).

The Random Forest (RF) algorithm and the underlying Decision Tree (DT) algorithm are ML methods of choice for their high accuracy, descriptiveness, and fast training and prediction time. Given a dataset and an input hyperparameter for the desired number of decision trees, the RF algorithm builds the specified number of decision trees, each one over a different random subsample of data features and a random subsample of data instances. Each decision tree is a hierarchical representation of the predictive data variables in the subsample in the order in which they should be tested to maximize predictive performance. The algorithm determines the most predictive data variable (take for example “gait speed”) together with an optimal threshold to split the variable values (take for example “0.6″) using an optimization entropy-like metric (e.g., gini). The algorithm then creates a root node that contains this most predictive variable (gait speed) and creates two children of the node: the left child is for participants whose variable value is less than or equal to the threshold (gait speed ≤ 0.6) and the right child corresponds to the remaining participants (gait speed > 0.6). Each branch of the tree continues to be expanded in a similar way: the next node on the leftmost branch is the variable that is the best outcome predictor (take for example, fatigue) for participants on that branch (participants with gait speed ≤ 0.6) according to the optimization metric. The expansion of a branch terminates on a “leaf” node when there is sufficient certainty (as measured by a confidence metric) to make a prediction for participants who satisfy all variable “tests” on the branch. Here, that prediction (“class”) is a yes/no answer to whether a cLBP participant who matches all variable tests on the branch will respond to MBSR.

Machine learning experiments were conducted using the scikit-learn machine learning Python package. Hyperparameter tuning was performed with the GridSearchCV function using 5-fold cross-validation to select combinations of hyperparameter values that maximize prediction accuracy. Based on this optimization, the number of decision trees to include in the random forest (i.e., the number of estimators) was set to 25 and the maximum depth of the tree branches was set to 5; the resulting random forest was used for the construction of phenotypes described below. Given that the random forest technique provides embedded feature selection, no pre-modeling feature selection was employed.



Predictive patterns: “phenotypes”

We extracted the most predictive tree branches from the Random Forest obtained by our ML modeling. Each of these tree branches consists of a combination of baseline markers (such as participant features or study variables) that is highly predictive of response to treatment at 8-weeks. We call these patterns “phenotypes”. Each of these phenotypes can be represented as an IF-THEN rule of the following type:

IF [set of conditions] THEN [response prediction].

where “set of conditions” consists of one or more conditions on participant features (e.g., Gait Speed > 0.6); and the response prediction is either “yes” (i.e., clinically significant response to treatment) or “no” (i.e., no clinically significant response to treatment). The order in which these conditions appear in the phenotype corresponds to the predictive importance of the conditions, with the first condition being the most important in the prediction.



Metrics used to measure individual phenotype predictive performance: precision and sensitivity

Each IF-THEN phenotype makes only one type of prediction, either “yes” (i.e., clinically significant response) or “no” (i.e., not clinically significant response) for all the participants who satisfy the set of conditions in the phenotype. For example, the fake rule: IF Gait Speed > 0.6 THEN predict clinically significant improvement predicts clinically significant improvement for all participants whose gait speed is greater than 0.6, but it remains silent about the outcome of participants with gait speed ≤ 0.6. Hence, metrics such as accuracy, area under the Receiver Operating Characteristic (ROC) curve, AUC, and specificity are not appropriate to measure the predictive performance of an IF-THEN phenotype. We consider instead two performance metrics, precision and recall, that best describe the predictive performance of these phenotypes:

Precision: Percentage of correct predictions among all predictions made by the phenotype. In our case, this is the percentage of participants with the same outcome as the THEN-part of phenotype among participants who satisfy the condition(s) on the IF-part of the phenotype.

Sensitivity (also called “Recall”): Percentage of correct predictions made by the phenotype among those whose outcome is the same as that on the THEN-part of the phenotype. In our case, this is the percentage of participants who satisfy the conditions on the IF-part of the phenotype among all participants with the same outcome as the THEN-part of phenotype.

Precision is our main metric to measure the predictive performance of single phenotypes. We ranked decision tree branches in the random forest in descending order of precision, breaking ties using length of the branch (shorter branches are preferable) and sensitivity.




Results


Markers predictive of response: feature importance

This section presents individual features that were deemed important by the Random Forest models in the prediction of the binarized intervention response. Figure 1 depicts the top 10 features identified by Random Forests as significant for predicting the RMDQ response to the mindfulness intervention. Each of these features appears frequently in the decision trees of the Random Forest model. Each of these features is not a good predictor of outcome by itself but is instead a significant contributor to combinations of features that together predict outcome. The following sections focus on analyzing the tree branches in the Random Forest to identify combinations of features that together have high predictive power.


[image: Bar chart titled \"Random Forest Classifier: Top 10 Features ranked by Importance.\" The top feature is \"Chronic Pain Self-Efficacy Function Score\" with an importance of 0.0635388. It is followed by \"PPB Gait Speed\" (0.0614704), \"CSCSS Overall Score\" (0.0579478), and others, ending with \"MPSS Significant Other\" (0.0290939). The features are ranked by descending importance.]
FIGURE 1
Top 10 features for predicting binary response to intervention. Chronic Pain Self-Efficacy (CPSE) function score; PPB (Short Physical Performance Battery) gait speed score; CSCSS (Catastrophizing Scale of the Cognitive Strategies Questionnaire) overall score; summed ability to participate in activities; POMS (Profile of Mood States) fatigue rating score; SF 36 (Short-Form Health Survey) physical functioning score; mental health composite score, and general health perception score; CEQ (Credibility Expectancy Questionnaire) expectancy score; and MPSS (Multidimensional Scale of Perceived Social Support) significant other score.




Combinations of markers predictive of response: phenotypes

This section presents the top ranking IF-THEN phenotypes identified with Random Forests to predict whether the change in Roland-Morris score from baseline to 8-weeks was a clinically significant improvement (i.e., Δrmscore > 4 for responders) or not (i.e., Δrmscore ≤ 4 for non-responders).



Top 3 responder phenotypes


Responder phenotype 1 improvement in Roland Morris with MBSR

IF ([POMS Profile of Mood States] Fatigue Subscore) ≤ 1.2 and ([CPSE Chronic Pain Self-Efficacy] Function Subscore) > 75 and ([SF-36 Quality of Life] General Health Perception Subscore)> 45.5 and ([MPSS Multidimensional Scale of Perceived Social Support] Total Score) ≤ 6 and ([FABQ Fear Avoidance and Beliefs Questionnaire] Total Score) > 1.5 THEN predict clinically significant improvement (see Figures 2, 3).


[image: Five side-by-side scatter plots show change in Roland-Morris disability score (Δrmscore) across different psychological or health-related measures, with a shaded blue region indicating predicted improvement (Δrmscore ≥ 4). Each plot represents a different metric: POMS Fatigue Rating, Chronic Pain Self-Efficacy Function Score, SF-36 General Health Perceptions Score, MPSS Total Score, and Fear Avoidance and Beliefs Questionnaire Total Score. Data points represent individual subjects, color-coded by condition and prediction accuracy, with a legend indicating subjects who passed all conditions, those correctly predicted, and those with predicted improvement. Threshold values for each measure are labeled on the x-axis.]
FIGURE 2
Responder phenotype 1 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: Flowchart depicting a top-performing phenotype predicting clinically significant improvement based on five metrics: POMS Fatigue Subscore (≤1.2), CPSE Function Subscore (>75), SF-36 General Health Perception (>45.5), MPSS Total Score (≤6), and FABQ Total (>1.5). A table shows cumulative performance metrics with precision and sensitivity scores for each metric. Matches are shown: 132 participants total with 49 displaying clinical improvement. Precision ranges from 44% to 100% and sensitivity from 35% to 73%.]
FIGURE 3
Responder phenotype 1 conditions and performance metrics. The 2nd column shows the precision and sensitivity values of the 1st phenotype condition; each subsequent column shows the precision and sensitivity values of the combined conditions from the 1st condition to that of the current column. Hence, the last column presents the total precision and sensitivity of the phenotype.



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 17 split as 17 with clinically significant response + 0 with no clinically significant response.


	•Precision = 17/17 (100%)

	•Sensitivity = 17/49 (35%)





Responder phenotype 1 summary

This phenotype predicts with 100% precision that a study participant with low back pain with the following characteristics will respond to MBSR: having low fatigue, having high self-efficacy around performing daily activities despite chronic pain (function), perceiving their general health as relatively good, having any except for the highest level of social support, and greater than minimal fear and avoidance of physical activity and work.




Responder phenotype 2 improvement in Roland Morris with MBSR

IF ([PPB Short Physical Performance Battery] Gait Speed) > 0.6 and ([POMS Profile of Mood States] Vigor Score) ≤ 3.25 and ([MPSS Multidimensional Scale of Perceived Social Support] Significant Other score) ≤ 6.9 and ([CSCSS Catastrophizing Scale of the Cognitive Strategies Questionnaire] Overall Score) ≤ 0.6 and ([PNRS Pain Numeric Rating] Best Recent Pain Level) > 10.5 THEN predict clinically significant improvement (see Figures 4, 5).


[image: Five scatter plots display change in Roland-Morris disability score (Δrmscore) for individual subjects across different health-related assessments: PPB Gait Speed, POMS Vigor Rating, MPSS Significant Other, CSCCS Overall Score, and Pain Numeric Rating for Best Recent Pain Level. Each x-axis shows a threshold condition, and a shaded blue region marks predicted improvement (Δrmscore ≥ 4). Data points are color-coded to indicate condition progression and prediction accuracy, as defined in the legend. Green-outlined dots denote correct predictions, and purple dots indicate subjects who passed all conditions.]
FIGURE 4
Responder phenotype 2 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: Flowchart illustrating the second top-performing phenotype predicting clinically significant improvement. It involves five criteria: [PPB] Gait Speed > 0.6, [POMS] Vigor Score ≤ 3.25, [MPSS] Significant Other Subscore ≤ 6.9, [CSCSS] Overall Score ≤ 0.6, and [PNR] Best Recent Pain Level > 10.5. The outcome is clinically significant improvement. A table shows performance metrics, including 132 matches with 43% precision and 82% sensitivity. Of these, 49 participants showed improvement, while 83 did not.]
FIGURE 5
Responder phenotype 2 conditions and performance metrics. The 2nd column shows the precision and sensitivity values of the 1st phenotype condition; each subsequent column shows the precision and sensitivity values of the combined conditions from the 1st condition to that of the current column. Hence, the last column presents the total precision and sensitivity of the phenotype.



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 13 split as 12 with clinically significant response + 1 with no clinically significant response.


	•Precision = 12/13 (92%)

	•Sensitivity = 12/49 (24%)





Responder phenotype 2 summary

This phenotype predicts with 92% precision that an individual with the following characteristics will respond to MBSR: normal or slower gait speed, having a moderate or less vigor score, having any except for the highest value of social support from their significant other, extremely low to no catastrophizing, experiencing moderate or greater levels of pain.




Responder phenotype 3 in Roland Morris with MBSR

IF ([SF-36 Quality of Life] Mental Health Composite Raw Score) ≤ 50.5 and ([MPSS Multidimensional Scale of Perceived Social Support] Total Score) ≤ 6 and ([CPSE Chronic Pain Self-Efficacy] Function Score) > 75.6 and ([CEQ Credibility Expectancy Questionnaire] Credibility Expectancy Score) ≤ 1.6 and ([SF-36 Quality of Life] General Health Perception Subscore)> 45 THEN predict clinically significant improvement (see Figures 6, 7).


[image: Five adjacent scatter plots show individual change in Roland-Morris disability score (Δrmscore) against different psychological or functional measures: SF-36 Mental Health Composite Score, MPSS Total Score, Chronic Pain Self-Efficacy Function Score, CEQ Expectancy Score, and SF-36 General Health Perceptions Score. A shaded blue area indicates predicted improvement (Δrmscore ≥ 4). Subjects are color-coded based on progression through predictive conditions and accuracy of predictions, as detailed in the legend. Green-outlined points represent correctly predicted cases, and thresholds are shown on the x-axes for each measure.]
FIGURE 6
Responder phenotype 3 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: Chart showing top performing phenotypes predicting clinically significant improvement. Includes criteria like POMS Fatigue, CPSE Function, and others, leading to predictions with 100% precision and 36% sensitivity for 17 of 49 subjects. Additional phenotypes yield 92% precision and varying sensitivity, covering more subjects cumulatively, up to 26 of 49.]
FIGURE 7
Top 3 performing responder phenotypes. The rightmost column shows the coverage of each phenotype (the number of responders correctly identified by the phenotype) as well as the cumulative phenotype coverage (the number of single responders identified by the 1st phenotype, by the 1st and 2nd phenotypes, and by the 1st, 2nd, and 3rd phenotypes).



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 12 split as 11 with clinically significant response + 1 with no clinically significant response.


	•Precision = 11/12 (92%)

	•Sensitivity = 11/49 (22%)





Responder phenotype 3 summary

This phenotype predicts with 92% precision that an individual with the following characteristics will respond to MBSR: having less than average self-perceived mental health, having any except for the highest level of social support, having high self-efficacy about the ability to function through chronic pain, having moderate or lower expectancy around treatment outcomes, and perceiving their general health as relatively good.





Top non-responder phenotypes


Phenotype 1 predicting no clinically significant improvement in Roland Morris with MBSR

IF ([CPSE Chronic Pain Self-Efficacy] Function Subscore) ≤ 57.2 and ([SF-36 Quality of Life] Global Health Composite Raw Score) ≤ 45.5 and ([PPB Short Physical Performance Battery] Gait Speed) ≤ 0.8 and ([SF-36 Quality of Life] Energy/Fatigue Subscore) > 31.5 and ([CPAQ Chronic Pain Acceptance Questionnaire] Total Score)≤ 85.5 THEN predict no clinically significant improvement (see Figures 8, 9).


[image: Five scatter plots present change in Roland-Morris disability score (Δrmscore) for individual subjects across different psychological or physical health measures: Chronic Pain Self-Efficacy Function Score, SF-36 Mental Health Composite Raw Score, PPB Gait Speed, SF-36 Energy/Fatigue Score, and CPAQ Total Score. Each x-axis denotes a threshold condition, and a shaded blue region marks predicted lack of improvement (Δrmscore < 4). Data points are color-coded to reflect subject groupings and prediction outcomes, with orange circles indicating correctly predicted non-improvement. A legend identifies all categories used in the visualizations.]
FIGURE 8
Non-responder phenotype 1 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: Flowchart depicts the top performing phenotype predicting no clinically significant improvement. Consists of criteria: CPSE Function Subscore ≤ 57.2, SF-36 Global Health Composite ≤ 45.5, PPB Gait Speed ≤ 0.8, SF-36 Fatigue Subscore > 31.5, CPAQ Total Score > 85.5. Table shows cumulative performance metrics: 132 matches, 75% precision, and 36% sensitivity, predicting no significant improvement in 83 participants.]
FIGURE 9
Non-responder phenotype 1 conditions and performance metrics. The 2nd column shows the precision and sensitivity values of the 1st phenotype condition; each subsequent column shows the precision and sensitivity values of the combined conditions from the 1st condition to that of the current column. Hence, the last table column presents the total precision and sensitivity of the phenotype.



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 22 split as 0 with clinically significant response + 22 with no clinically significant response.


	•Precision = 22/22 (100%)

	•Sensitivity = 22/83 (27%)





Non-responder phenotype 1 summary

This phenotype predicts with 100% precision that an individual with the following characteristics will not response to MBSR: having moderate or lower self-efficacy around performing daily activities despite chronic pain (function), moderate or lower self-perception of physical and mental health, having a gait speed that limits their ambulation in the community setting, having clinically meaningful fatigue with moderate impairment, and moderate or lower pain acceptance.




Phenotype 2 predicting no clinically significant improvement in Roland Morris with MBSR

IF ([POMS Profile of Mood States] Vigor Score) ≤ 3.2 and ([SF-36 Quality of Life] Global Health Composite Raw Score) ≤ 45.5 and ([CPSE Chronic Pain Self-Efficacy] Pain Score) > 39 and ([MPSS Multidimensional Scale of Perceived Social Support] Family Subscore) > 6.4 THEN predict no clinically significant improvement (see Figures 10, 11).


[image: Four scatter plots illustrate individual change in Roland-Morris disability score (Δrmscore) across different psychological and functional metrics: POMS Vigor Rating, SF-36 Global Health Composite Raw Score, Chronic Pain Self-Efficacy Pain Score, and MPSS Family. The x-axes show threshold criteria for each measure, while the shaded blue region identifies predicted lack of improvement (Δrmscore < 4). Subjects are color-coded to reflect condition progression and prediction accuracy, with orange circles representing correctly predicted non-improvement and purple for those meeting all conditions. A legend at right defines all symbol and color categories.]
FIGURE 10
Non-responder phenotype 2 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: The image shows a flowchart depicting the second top phenotype that predicts no clinically significant improvement. It highlights four criteria: POMS Vigor Score ≤ 3.2, SF-36 Global Health Composite ≤ 45.5, CPSE Pain Subscore > 39, and MPSS Family Subscore > 6.4. These factors collectively predict no significant improvement. A table below shows cumulative performance metrics, including precision and sensitivity percentages for each criterion, with specific match numbers and participant data. Clinically significant improvement is coded in blue and no improvement in red.]
FIGURE 11
Non-responder phenotype 2 conditions and performance metrics. The 2nd column shows the precision and sensitivity values of the 1st phenotype condition; each subsequent column shows the precision and sensitivity values of the combined conditions from the 1st condition to that of the current column. Hence, the last column presents the total precision and sensitivity of the phenotype.



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 17 split as 0 with clinically significant response + 17 with no clinically significant response.


	•Precision = 17/17 (100%)

	•Sensitivity = 17/83 (20%)





Non-response phenotype 2 summary

This phenotype predicts with 100% precision that an individual with the following characteristics will not response to MBSR: having moderate or lower vigor, having average or lower physical and mental health, having moderate or higher self-efficacy around living with chronic pain, and having a high degree of social support from family.




Phenotype 3 predicting not clinically significant improvement in Roland Morris with MBSR

IF ([MPSS Multidimensional Scale of Perceived Social Support] Family Subscore) > 6.6 and ([SF-36 Quality of Life] General Health Perceptions Score)> 30.5 and ([CPSE Chronic Pain Self-Efficacy] Function Score) ≤ 86.7 and ([SF-36 Quality of Life] Global Health Composite Raw Score) ≤ 45.5 THEN predict no clinically significant improvement (see Figures 12, 13).


[image: Four scatter plots display individual change in Roland-Morris disability score (Δrmscore) across psychological and functional measures: MPSS Family, SF-36 General Health Perceptions Score, Chronic Pain Self-Efficacy Function Score, and SF-36 Global Health Composite Raw Score. Each x-axis includes a threshold condition, and a shaded blue area indicates predicted lack of improvement (Δrmscore < 4). Data points are color-coded to show subject grouping and prediction accuracy, with orange circles indicating correct non-improvement predictions and purple circles marking those who passed all conditions. A legend defines all symbols and color categories.]
FIGURE 12
Non-responder phenotype 1 scatter plots. Each scatter plot corresponds to one phenotype condition and depicts the phenotype condition values on the x-axis vs. the outcome (ΔRMscore) values on the y-axis. Scatter plots are presented in the same order of condition importance within a phenotype from left to right. Data points represent all intervention participants in the dataset.



[image: Diagram illustrating phenotypes predicting no significant clinical improvement. Arrows list criteria such as CPSE, SF-36 scores, and more. Boxes show 100% precision and recall percentages of 27% and 20%. Phenotype coverage indicates predictions covering 36 out of 83 subjects, with cumulative figures.]
FIGURE 13
Top 3 performing Non-responder phenotypes. The rightmost column shows the coverage of each phenotype (the number of non-responders correctly identified by the phenotype) as well as the cumulative phenotype coverage (the number of single non-responders identified by the 1st phenotype, by the 1st and 2nd phenotypes, and by the 1st, 2nd, and 3rd phenotypes).



Prediction performance metrics

Counts of participants who satisfy the phenotype conditions: 17 split as 0 with clinically significant response + 17 with no clinically significant response.


	•Precision = 17/17 (100%)

	•Sensitivity = 17/83 (20%)





Non-response phenotype 3 summary

This phenotype predicts with 100% precision that an individual with the following characteristics will not response to MBSR: having a high degree of social support from family, self-perceiving their general health as moderate or high, having a wide range except for the highest level of self-efficacy around functioning with pain, and having a moderate or lower perception of physical and mental health.






Discussion


Overall summary and performance

The present analyses demonstrate the utility of machine learning approaches for accurately identifying responders and non-responders to mindfulness for cLBP. This was achieved through constructing predictive phenotypes encompassing clusters of relevant characteristics. Three responder phenotypes covered over 50% of the responders with 92%–100% precision, and three non-responder phenotypes covered 43% of non-responders with 100% precision. This required only four-to-five variables, where precision was still 80%–100% with four variables. Our results can be used to inform future related studies and patient and clinician decision making on mindfulness interventions for chronic pain to maximize clinical efficacy, patient outcomes, and resource use.

It is important to emphasize that the goal of this analysis was to uncover combinations of factors that are predictive of response or non-response to MBSR treatment. We have presented here only the top 3 phenotypes for each case, as they suffice to illustrate our approach. In general, each tree branch in the Random Forest represents a phenotype (with its own precision and sensitivity) and although each branch is likely to have small coverage, it is possible to select a sufficiently large collection (ensemble) of tree branches that collectively cover all data instances.



Contributions to predictive ML studies of chronic pain

While there is robust literature on the use of ML to predict pain levels in general, studies predicting the response to interventions for pain reduction, especially complementary interventions, are limited. Furthermore, most investigations focus on identifying individual or groups of predictive factors rather than specific phenotypes. Phenotypes add granularity around not only specific clusters of features, but also thresholds above or below which a particular feature becomes meaningful. The current phenotype development therefore provides enhancements in both specificity and accuracy compared to many earlier studies, increasing reliability and confidence in related clinician and/or patient decision making. In clinical settings, if a patient closely matches a certain highly-predictive phenotype, this could be a strong indicator that mindfulness is a favorable option for that individual. Similarly, if a patient matches multiple phenotypes, this would additionally increase confidence in likelihood of response. The presented methods can also be easily applied to other populations and/or types of interventions to derive similar specificity and accuracy and integrated into automated algorithms to guide decision-making.



Responder phenotypes

Common responder attributes found in multiple phenotypes consisted of high chronic pain self-efficacy, moderate to high perceptions of overall health, any except for the highest level of social support, and low treatment expectancy. Other attributes included low fatigue and catastrophizing, low to moderate perceived mental health, and moderate or greater recent pain level. Taken together, this suggests that individuals who respond to mindfulness are, at baseline, more confident in their ability to manage their own pain, perceive themselves to be in good health, have some social support, and do not have high expectations of the mindfulness intervention.

The high self-efficacy and perception of overall health may indicate that responders have the motivation and optimism necessary for a behavioral intervention such as mindfulness to work (47). Although treatment expectancy plays a significant role in how individuals respond to mindfulness-based interventions (MBIs) for pain relief, where positive expectations about the effectiveness of mindfulness can contribute to greater pain reduction (48, 49), the lack of high expectations in the present responder phenotypes may make it less likely they will be disappointed in the treatment outcome. In some phenotypes, this is associated with low fatigue and catastrophizing, not surprising given the internal motivation and optimism necessary for mindfulness-based interventions to have significant effects (50). Furthermore, the relationship between mindfulness and back pain-associated disability may be mediated by catastrophizing (51).

An enhanced ability to identify responders to mindfulness interventions for cLBP has clinical implications for patients and providers. This is because by identifying a patient's phenotype the provider can advise a mindfulness treatment to those patients most likely to benefit from it. This would potentially accelerate rate of symptom improvement and lower chances of progression to higher risk interventions since patients are most likely to respond to mindfulness based on their phenotype. For example, it could mean reduced need for surgery and/or opioids. Additionally, a general increased awareness of predictors of a positive response to mindfulness interventions among providers may increase referrals to these effective, low-risk treatments. The phenotypes could potentially be disseminated to clinicians via a checklist.



Non-responder phenotypes

Common non-responder attributes identified in multiple phenotypes consisted of moderate to low chronic pain self-efficacy, moderate to low perception of overall health, and the highest level of social support from family. Other attributes included slow gait, low vigor, and moderate or lower chronic pain acceptance. The low pain self-efficacy may be indicative of an inability to take advantage of beneficial aspects of mindfulness related to improved self-care (52, 53). Lower perception of overall health and low pain acceptance in the non-responder phenotypes could indicate general health related pessimism and inability to benefit from the acceptance elements of mindfulness for chronic pain (54, 55). Self-efficacy and pain acceptance are associated with mindfulness attributes, and self-efficacy may mediate the relationship between mindfulness and emotion regulation (56). The common presence of social support from family in the non-responder phenotypes could indicate that individuals with social support from relatives (possibly beyond that of a significant other) may not benefit from social support aspects of mindfulness interventions.

The ability to accurately identify non-responders to mindfulness for cLBP presents multiple distinct benefits. In addition to directing treatment away from those least likely to benefit from these often time- and resource-intensive interventions, it can be used to identify non-responder populations and to inform adjunct interventions or tailor the mindfulness programming to potentially address the causes, moderators, and/or mediators of non-responsiveness. In this vein, if a patient closely matches one or more non-response phenotypes, then the clinical goal might shift toward first addressing any modifiable factors that predict non-response to improve the patient's suitability for mindfulness treatment. For example, if it is determined that low pain self-efficacy inhibits a positive response to mindfulness, the intervention could be modified to increase the emphasis on improving self-efficacy, either before or in parallel with the mindfulness.



Strengths, limitations, and future work

These results make a novel contribution to the field and forward the goal of achieving a personalized and precise understanding of response to mindfulness for chronic pain. Nonetheless, while the present analyses successfully and accurately identified predictive phenotypes with high precision and good sensitivity, the intervention sample was still modest in size and comprised of older adults. Further comparative and validation work is needed to determine how well these and similar phenotypes can predict response or non-response in other relevant at-risk clinical populations. An increased emphasis on the trajectory of predictors (change over time in addition to baseline values) would provide further insight into how to address the lack of response to mindfulness for chronic pain, including through identifying potential pre-intervention targets for intervention. That is, modifying certain features that are predictive of non-response may increase someone's likelihood that mindfulness would subsequently be effective for reducing pain. We also did not have access to various other types of data, such as physical activity, neural activity or blood-based biomarkers, which could improve precision and/or sensitivity. Ongoing and future work should capitalize on other data modalities including activity and sleep sensors, omics, and neuroimaging as well as train models with larger clinical datasets. These additions would augment the robustness of machine learning approaches for identifying useful clusters of predictive characteristics.




Conclusions

Results from this machine learning based phenotyping provide an integrated portrait of responders and non-responders. These phenotypes—and those that may emerge from using machine learning in other datasets, can meaningfully inform clinician and patient decision making to ultimately promote better pain outcomes for patients with chronic pain. Clinical support tools can be imbedded in many types of clinical workflows such as through screening tools, and electronic health record algorithms to flag patients. If clinicians can identify specific patient characteristics, they can better predict who responds to MBSR and who has increased risk of treatment for their cLBP with MBSR. Among these preliminary phenotypes, three variables appear in 5 out of 6 of our top phenotypes and that could be candidates in a decision-making clinical tool (chronic pain self-efficacy, perceived quality of life, social support). This work can also more broadly inform research and development of mindfulness-based treatments for pain and advance the central goal of personalized, complementary pain management.
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