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The cone visual cycle and its 
disorders: insights from zebrafish
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Continuous vision relies on the recycling of visual pigment chromophore, which 
is photoisomerized during the process of vision. In vertebrates, this recycling 
is mediated by a complex network of biochemical reactions distributed across 
different cell types referred to as the visual cycle. In this review, we outline both 
historical and recent findings on the visual cycle and its connection to outer retinal 
dystrophies. Particular emphasis is placed on the recycling of cone, rather than 
rod, visual pigments, and on the utility of the zebrafish (Danio rerio) as a model 
for such studies.
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The canonical visual pathway

The vertebrate retina consists of three neuronal layers, the Outer Nuclear Layer (ONL) 
consists of photoreceptor, the photosensitive neurons that convert the physical stimulus to a 
biological signal. Photoreceptors are divided into two groups; rods that contribute to 
dim-light or night vision, and cones that support bright-light or daylight vision. The 
classification of vertebrate rods and especially cones has long been debated due to species-
specific differences in spectral sensitivity, absorption spectra, and opsin expression. Recently, 
Baden et al. proposed a revised photoreceptor nomenclature, as shown in Figure 1  
(Baden et al., 2025).

The photoreceptor composition and topology in the retina are also species-specific, at least 
partially influenced by the visual ecology that the animal lives in. Photoreceptors contain the 
visual chromophore 11-cis retinal (11-cis-RAL), a derivative of vitamin A (retinal A1), that is 
covalently bound to opsins located in their outer segments (OS) of the photoreceptors. Upon 
illumination, 11-cis-RAL is converted to all-trans retinal (all-trans-RAL) that then detaches 
from its opsin (Wald, 1968). After reduction to all-trans retinol, this molecule is leaving the 
photoreceptor OS, and is recycled via a multistep process now known as the canonical visual 
cycle, before reentering the outer segments as 11-cis-RAL. Although 11-cis-RAL is the main 
prosthetic group of vertebrate opsins, some fish and amphibians also use 11-cis 
3,4-didehydroretinal (A2 retinal) that has been associated to turbid or red light dominated 
environments (Corbo, 2021; Hagen et al., 2023). A2 can be taken up by both photoreceptor 
types and is most commonly found in amphibians and freshwater fish (Allison et al., 2004; 
Enright et al., 2015). Interestingly, zebrafish can shift opsin binding from A1 to A2 by thyroid 
hormone treatment (Allison et al., 2004).

In 1876 Friedrich Boll was the first to observe light-induced bleaching and regeneration 
of the “red” pigment (now known as rhodopsin) in the frog retina, noting that the process can 
be reversed when the tissue was kept in the dark (Boll, 1877). Subsequently, Franz Kühne 
demonstrated that this regeneration required interaction between the retina and another 
tissue, the retinal pigment epithelium (RPE) (Kühne, 1878). Over the span of two decades, 
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George Wald and his colleagues elucidated what is now known as the 
retinoid recycling pathway or visual cycle (Dowling, 1960; Wald and 
Brown, 1956), a discovery that earned Wald the Nobel Prize in 
Physiology or Medicine in 1967.

The RPE-mediated visual cycle regenerates 11-cis-RAL for both 
rod and cone photoreceptors (Figure 2). Upon light absorption, 11-cis-
RAL is photoisomerized to all-trans-RAL, which is reduced by all-trans 
retinol reductase 8 (RDH8) to all-trans-retinol (all-trans ROL) in the 
photoreceptor outer segments or by all-trans retinol reductase 12 
(RDH12) in the inner segment (Parker and Crouch, 2010). This 
retinoid is transported to the RPE, where lecithin retinol acyltransferase 
(LRAT) esterifies it to all-trans-retinyl esters (REs) (Sears and 
Palczewski, 2016). These REsare either stored in lipid droplets or 
directly isomerized by the bona fide isomerase RPE65 (retinal pigment 
protein of 65kD) into 11-cis-retinol (11-cis-ROL) (Kiser, 2022), which 
is subsequently oxidized by either cis-retinol dehydrogenase 5 or 11 
(RDH5/11) to regenerate 11-cis-RAL. To prevent photodegradation 
and enable solubilization in an aqueous environment, 11-cis-RAL 
binds to cellular retinaldehyde-binding protein 1 (CRALBP1), which 
stabilizes 11-cis-RAL until it is shuttled to the photoreceptor outer 
segments (Morimura et al., 1999a; Saari and Crabb, 2005). The assisted 
retinoid transportation is mediated by Interphotoreceptor retinoid-
binding protein (IRBP). In parallel to the canonical visual cycle, retinal 
G protein–coupled receptor (RGR) functions as a light-driven 
photoisomerase in the RPE, converting all-trans-ROL to 11-cis-ROL 
upon blue-light absorption (Figure 2, steps in blue) (Ruddin et al., 
2025). The discovery of a second RPE-independent pathway and the 
cone specific recycling of 11-cis-RAL was widely accepted only in the 
early 2000s (Fleisch and Neuhauss, 2010; Mata et al., 2002b; Muniz et 
al., 2007; Wang and Kefalov, 2009, 2011).

A cone specific inner-retinal recycling 
pathway

The existence of this second intra-retinal recycling pathway was 
already suggested by electrophysiological recordings in frogs in the 
1970s by Goldstein and Wolf (Goldstein, 1968, 1967; Goldstein and 
Wolf, 1973; Hood and Hock, 1973). Additional evidence was 
provided by Jones and colleagues in 1989 when they showed that 
rod and cone sensitivity was restored by supplementing 11-cis-RAL, 
but only cones recover by supplying 11-cis-ROL, implying different 
recycling pathways (Jones et al., 1989). A decade later in vitro 
chicken Muller glia (MG) cell culture experiments demonstrated 
that these cells are capable of synthesizing 11-cis-ROL (Das et al., 
1992). Subsequently, Mata, Muniz and their colleagues, confirmed 
in in vivo experiments the existence of an additional cone-specific, 
RPE-independent pathway, using cone-dominant chicken (Mata et 
al., 2005, 2002a; Muniz et al., 2007) and ground squirrel (Mata et 
al., 2002b) retinas. Moreover, the chemical ablation of Muller glia 
cells in mouse, salamander, and primate retinas by L-α-aminoapidic 
acid (L-α-aa) initially affected cone recovery and the 
supplementation with 11-cis-ROL rescues cone responses (Wang 
and Kefalov, 2009), providing additional evidence for an RPE 
independent recycling pathway. Zebrafish has also provided 
valuable information to the field with their cone dominant retina 
(Collery et al., 2008; Fleisch et al., 2008; Schonthaler et al., 2007). It 
is now well established that cones also rely on a second recycling 
pathway involving MG cells, where RGR is considered the main 
isomerase, while the once proposed candidate dihydroceramide 
desaturase-1 (DES1) was later ruled out (Mata et al., 2002b; Kaylor 
et al., 2013; Kiser et al., 2019; Wang and Kefalov, 2011; Tworak et 

FIGURE 1

Photoreceptor mosaic organization in the human (A), mouse (B), and zebrafish (C,D) retina. The human retina is known to be trichomatic and rod-
dominant with the macula and in the very center the fovea that has cone-only structure (Hofer et al., 2005). Mouse retina is dichromatic rod dominant 
that lacks macula but there is a central area that has a higher ratio of cones-to-rods (Applebury et al., 2000). Zebrafish has tetrachromatic vision and 
two distinct mosaic patterns: the larval one that has very few non-responsive rods and the recordings come from cones-only and the juvenile/adult 
mosaic that has physiologically responsive rods but is still cone dominant (Allison et al., 2010). Updated photoreceptor nomenclature of Baden et al. is 
used that is based on the physiological and molecular identity of the neurons and not the spectral properties of their opsins (Baden et al., 2025). Image 
created in BioRender.
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al., 2023). Similar to the canonical visual cycle, CRALBP1 binds to 
11-cis-RAL, 11-cis retinol oxidase 10 (RDH10) is the current 
candidate retinol dehydrogenase, even though the knockout mouse 
retina had no severe defects(Xue et al., 2017), and a retinyl ester 
hydrolase, presumably multifunctional-O-acyltransferase (MFAT) 
have been identified as components of the cone private path. 
(Kaylor et al., 2015; Widjaja-Adhi et al., 2022) (see Figure 2B) 
However, the exact biochemical steps of this cone-specific pathway 
have yet to be fully delineated.

Even though the canonical visual cycle pathway is the shared 
pathway for cones and rods, the cone private pathway is believed to be 
ancestral. Cones are the ancestral vertebrate photoreceptors types with 
rods appearing at the base of the vertebrate radiation [reviewed by 
Hunt and Collin (Hunt and Collin, 2014)]. Phylogenetic studies 
between vertebrate and invertebrate outgroups showed that the 
ancestral rod opsin RH duplicate evolved into the jawed vertebrate 
rhodopsin Rh1 (Collin et al., 2003). In the basal vertebrate lamprey, 
orthologs of RPE65 and LRAT are present and exhibit enzymatic 
activities consistent with retinoid isomerization and esterification, 
respectively, similar to those observed in other vertebrate visual 

system cycles (Poliakov et al., 2012; Vopalensky et al., 2012). In 
contrast, members of the cephalochordate lineage, the sister group to 
vertebrates, possess a central eye composed of a mosaic of rod-like and 
cone-like photoreceptors associated with pigmented epithelial cells, 
yet lacking functional orthologs of RPE65 and LRAT (Poliakov et al., 
2012). This suggests that 11-cis-RAL was initially recycled via the 
cone-private pathway.

The significance of the dynamics between the canonical visual 
cycle and the cone private pathway becomes apparent when light is 
taken into account. Rods are saturated under bright light conditions 
and therefore require maximum supply of retinoids. Cones have 
concomitantly a high demand for retinoids that may exceed recycling 
resources due to direct competition with rods, necessitating a cone 
private pathway (see Figure 2B). Thus, the species’ habitat and their 
retina composition (ratio rod-cone photoreceptors) is expected to 
affect the interplay between these two recycling pathways in a light 
dependent manner.

Defects in the recycling of 11-cis-RAL results in accumulation of 
all-trans RAL, one of the initial steps leading to photodamage (Maeda 
et al., 2012). Non-recycled all-trans-RAL is photoconverted to toxic 

FIGURE 2

Model for recycling of 11-cis retinal (RAL) for rods (A) and cones (B) in vertebrates. (A) The RPE-mediated visual cycle provides both rods (yellow) and 
cones (green) with recycled 11-cis-RAL (in dashed arrows). Upon excitation 11-cis-RAL is photoconverted to all-trans RAL that is converted by an all-
trans retinol dehydrogenase 8 or 12 (RDH8/12)to all-trans ROL that is then shuttled to the RPE (in grey) and is subsequently converted to all-trans 
retinylesters (REs) by lecithin retinol acyltransferase LRAT. These all-trans REs are either stored in lipid droplets or isomerized by RPE65 to 11-cis-ROL 
and finally converted to 11-cis-RAL by another cis retinol dehydrogenase 5 or 11 (RDH5/11). 11-cis-RAL binds to CRALBP1 to prevent photodegradation 
and is supplemented at any time to the photoreceptor outer segments. Assisted transportation retinoids between the RPE and the photoreceptors is 
mediated by the IRBP. Additionally, RGR re-isomerizes all-trans-ROL in the RPE by absorbing blue light, independent of the visual cycle. (B) Cone 
photoreceptors have an additional pathway mediated by Müller Glia cells (in purple) with some still unidentified components. Among the identified 
proteins are RGR photoisomerase, CRALBP1 retinoid binding protein, RDH10 dehydrogenase, nonetheless the precise steps are not defined. Image 
created in BioRender.
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retinoid by-products, with A2E being the most prominent one (Kim 
and Sparrow, 2021; Parish et al., 1998; Sparrow et al., 2010, 2003). Such 
toxic derivatives are enclosed in lipid droplets in the RPE called 
lipofuscin. These cause chronic oxidative stress and inflammation that 
result in photoreceptor degeneration and subsequent retinal 
detachment (Boyer et al., 2012; Feeney, 1978; Feldman et al., 2022; 
Kennedy et al., 1995; Wing et al., 1978). Depending on the underlying 
mutation, the disease may initially affect rods and subsequently cones, 
leading to rod–cone dystrophies such as autosomal or recessive 
Retinitis Pigmentosa (RP) and early-onset Leber congenital amaurosis 
(LCA) (Bernal et al., 2003; Fahim et al., 1993; Kumaran et al., 2017, 
1993; Lima de Carvalho et al., 2020; Maeda et al., 2009; Morimura et 
al., 1999b; Sarkar et al., 2021). Defects in visual pigment recycling can 
secondarily affect cone photoreceptors in the human macula, leading 
to their degeneration and resulting in age-related macular 
degeneration (AMD), which typically manifests after the fifth decade 
of life. (Chen et al., 2012; Deng et al., 2021; Maeda et al., 2012; 
Somasundaran et al., 2020).

Despite more than a century of research on 11-cis-RAL recycling, 
and numerous comprehensive reviews on the canonical visual cycle, 
the cone-specific pathway and retinoid biochemistry, important gaps 
in our knowledge remain. The interaction between the canonical 
RPE-dependent visual cycle and the cone-specific MG mediated 
pathway remains incompletely defined, particularly regarding the 
contribution of the latter to cone physiology.

How do studies in a cone-dominant 
retina contribute to our knowledge in 
rod-dominant retina species?

Most studies of visual pigment recycling were conducted using the 
retinas of rod-dominant mammalian and amphibian species. The 
salamander retina, with its large photoreceptors, was the first 
preparation to enable long-lasting electrophysiological recordings at 
single-cell resolution during light and dark adaptation (Wang et al., 
2009). The bovine retina is large and readily accessible post mortem, 
making it well suited for biochemical studies. It has been widely used 
for retinoid analyses and as an in vitro system to study the RPE 
retinoid pool through microsome formation (Mata et al., 2002b; 
Zhang et al., 2019). These investigations were subsequently extended 
to the mouse retina, an established mammalian model amenable to 
genetic manipulation, leading to the generation of numerous visual 
cycle disease models used to study these pathways (Batten et al., 2004; 
Driessen et al., 2000; Liou et al., 1991; Redmond et al., 1998; Saari et 
al., 2001).

Light conditions, visual ecology and species-specific behavior 
influence the way that rods and cones recycle their visual pigments 
(Albalat, 2012; Guido et al., 2022; Hagen et al., 2023; Hankins et al., 
2014; Musilova et al., 2021). Given the differences in retinal mosaics 
among zebrafish, mice, and humans (Figure 1), as well as variations 
in their rod-to-cone ratios (Table 1), the interplay between the 
canonical visual cycle and the cone-specific retinoid pathway is 
likely to differ substantially across species. Consequently, several 
models describing these mechanisms have been revised over the 
past decade. A prominent example illustrating the importance of 
species-specific context is the debated role of RGR (Morshedian et 

al., 2019; Radu et al., 2008; Tworak et al., 2023; Wenzel et al., 2005; 
Zhang et al., 2019).

Although the human retina is rod dominant, high visual acuity 
and color vision depend on the cones in the densely packed central 
macula (fovea), which accounts for only about 0.02% of the total 
retinal area (Kolb et al., 1995) (Figure 1A). Since the human retina 
is largely only accessible to non-invasive experiments, such as 
optical coherence tomography (OCT) or electroretinography 
(ERG), researchers have to rely on suitable model organism to study 
retinal metabolism. Because most models for studying pigment 
recycling are rod dominant, the scarcity of cones in these systems 
may have hindered accurate interpretation of cone-specific 
phenotypes caused by impaired pigment regeneration (Figure 1B). 
The cone dominant models that have been used to approach cone 
physiology such as the chicken and ground squirrel retina 
contributed immensely to record cone responses and assess the 
visual pigment recycling as mentioned above. However, these 
systems are not suitable for genetic approaches.

This is precisely why zebrafish serve as an excellent model for 
studying cone visual pigment recycling. During larval stages, the 
zebrafish retina is almost exclusively cone-based, with measurable 
ERG responses detectable from 4 days post-fertilization onwards 
(Bilotta et al., 2001). Allison et al. demonstrated that the larval 
retina contains ~92% cones, with only a few rods that do not 
contribute to vision (Figure 1C). At 15 days post-fertilization the 
retina begins to transition into a mixed mosaic (Figure 1D) that 

TABLE 1  Cone: rod ratio for model organisms in vertebrate 
ophthalmology.

Species Fovea? Cone: rod 
ratio

% Cones

Human Yes ~1:20 ~5%

Macaca monkey 

(diurnal primate) Yes ~1:20 ~5%

Mouse No ~1:30 ~3%

Namaqua rock mouse 

(Micaelamys 

namaquensis – 

nocturnal rodent) No ~1:12.4 ~7%

Four-striped field 

mouse (Rhabdomys 

pumilio – diurnal/

crepuscular rodent) No ~1:1.23 ~45%

Hamster No ~1:32 ~3%

Ground squirrel No ~24:1 ~96%

Cow (Bovine) No ~1:12 ~8%

Chicken No ~3:2 ~60%

Salamander/Frog No ~2:1 ~35%

Zebrafish larva No ~23:2 ~92%

Zebrafish juvenile/

adult No ~3:2 ~60%

List of the most commonly used species in vision biology and their respective cone-to-rod 
ratio and the cone percentage in their retina mosaic (Allison et al., 2010; Wang and Kefalov, 
2011). Primate retinas with a fovea consist of 100% cones.
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remains cone dominant (~60%) throughout life (Allison et al., 
2010; Saszik et al., 1999). Ecologically, zebrafish are adapted to 
diurnal vision and there are many well-established genetic models 
for numerous human ocular diseases (Gestri et al., 2012; Rosa et 
al., 2023). Their powerful genetic toolbox enables targeted 
knockouts of genes of interest, with phenotypes assessable by 
histology and optical non-invasive OCT (Bailey et al., 2012; Bell 
et al., 2016). Visual function can be quantified both 
electrophysiologically via whole-field ERGs and single-
photoreceptor recordings (Bilotta et al., 2001; Makhankov et al., 
2004; Nelson and Connaughton, 1995; Saszik et al., 1999; Sato and 
Kefalov, 2025) and behaviorally by using assays such as the 
optokinetic response (OKR), visuomotor response (VMR), and 
optomotor response (OMR) (Baier, 2000; Brockerhoff et al., 1995; 
Neuhauss et al., 1999; Neuhauss, 2003). For retinoid analysis, 
ocular extracts can be assessed by HPLC, and modern techniques 
even allow in situ imaging of retinoid fractions within the RPE, a 
method not feasible in humans (Babino et al., 2015). Collectively, 
these tools enable a comprehensive and detailed analysis of the 
cone-dominant zebrafish retina, providing valuable insights for 
both comparative and translational vision research.

Zebrafish: illuminating the cone visual 
cycle

Studies in the zebrafish have expanded our understanding of 
visual pigment recycling. The first findings focused on the visual 
cycle isomerase RPE65 with the knockdown of RPE65a and 
pharmacological inhibition of RPE65. Both approached led to the 
conclusion that there was a reduction in 11-cis-RAL leading to 
impaired rod function while cone-driven visual behavior remains 
largely intact. These results support the notion of an RPE65-
independent pathway for cone chromophore regeneration in 
zebrafish (Schonthaler et al., 2007). Two additional paralogs of 
RPE65 have been described in zebrafish. While rpe65b is not 
expressed in the retina (Schonthaler et al., 2007), rpe65c (really a 
tandem duplicate of rpe65b, more aptly named rpe65ba and 
rpe65bb) was reported to be expressed in MG cells (Takahashi et al., 
2012, 2011). The authors demonstrated isomerohydrolase activity 
in cell lysates. These results are still awaiting confirmation by other 
researchers. Recently an inconclusive report on rpe65a knockdown 
larvae was published reporting a surprisingly high lethality (Mirzaei 
et al., 2024).

The two paralogs of cralbp1, also referred to retinaldehyde-
binding protein1 (rlbp1) were identified in zebrafish, leading to an 
interesting scenario of subfunctionalization (Fleisch et al., 2008). 
rlbp1a is expressed in the RPE, while rlbp1b is localized to MG cells. 
The mouse ortholog is expressed in both cell types. Both single 
knockdown animals displayed reduced saccades frequency in the 
OKR assay (Collery et al., 2008). Moreover, the knockdown of either 
paralogue reduces 11-cis-RAL and combined knockdown effect is 
additive, along with the reduction of their b-wave amplitude in 
response to light stimulation (Fleisch et al., 2008). Lastly, rlbp1a 
(RPE-CRALBP1a) knockout had reduced 11-cis-RAL, impaired 
scotopic and photopic ERG responses and morphological analysis 
revealed REs accumulation as enlarged retinosomes in the RPE of 

these mutants closely modeling human RLBP1 disease (Schlegel et al., 
2022). The lack of an apparent phenotype for the MG-expressed 
rlbp1b KO line has been attributed to functional compensation by the 
11-cis-RAL recycling machinery. These results collectively proved that 
both RPE and MG cell pathways contribute to cone pigment 
regeneration. In the RPE-deficient cralbp1 knockout zebrafish, human 
RLBP1 variants are screened via CRISPR/Cas9 knock-in. However, 
expression of wild-type human CRALBP failed to rescue the 
phenotype, as determined by the dim-light VMR assay. Notably, key 
visual-cycle and vitamin A handling proteins (e.g., Lrat, Rdh5, Stra6, 
Rpe65a, Rgr) were upregulated in knock-out eyes, consistent with 
compensatory responses to reduced 11-cis retinoids (Fehilly et 
al., 2025).

RDH12, a retinol dehydrogenase expressed in the 
photoreceptor inner segment, is another visual cycle component 
that was also studied in zebrafish. In the rdh12 mutants 
mislocalized rhodopsin was detected in inner segments, which 
implies impaired opsin trafficking and is an early sign of 
photoreceptor degeneration. Moreover, the mutant RPE had 
enlarged phagosomes, indicative of defects in outer segment 
phagocytosis and disrupted retinoid recycling. Interestingly, the 
oxidative-stress related superoxide dismutase sod2 gene expression 
was significantly reduced in mutant retinas, indicative of 
beginning neurodegeneration (Sarkar et al., 2021).

Babino and colleagues reported that the 11-cis-RE pools in the 
RPE provide a reserve for visual pigment storage in cone-dominant 
retinas that they innovatively visualized with 2-photon microscopy. 
Pharmacological blockage of the canonical visual cycle or by 
eliminating rods in the zebrafish larva proved that these 11-RE pools 
sustain cone vision in varying light conditions (Babino et al., 2015). 
Pharmacological and genetic perturbations were also used in the 
context of visual pigment recycling to investigate photopic vision. 
They recorded OKR of zebrafish larvae that had been treated with 
Emixustat, an RPE65 inhibitor, or fenretinide, which inhibits the 
retinol binding protein (RBP4) and DES1, and subsequently supplied 
with 9-cis-retinal, which was able to rescue the inhibitor-induced 
defects (Ward et al., 2020). Their assay, performed in a cone-dominant 
retina, revealed potential side effects on photopic vision. They further 
demonstrated that RPE65-mediated isomerization is essential for the 
immediate response to light, whereas sustained vision under bright 
light can be supported by photoisomerization, now known to be 
mediated by RGR.

Conclusion

Within just a few decades of extensive research, significant 
progress has been made in understanding pigment recycling in cone 
photoreceptors. However, important gaps in knowledge remain. Key 
questions still to be addressed include (a) the identification of all 
components of the cone-specific pathway and its intermediates (b) the 
dynamics between the two pathways in varying light conditions and 
(c) the impact of defects in the cone-private pathways in the 
physiology of cones and rods.

The zebrafish offers unique advantages to bridge this gap of 
knowledge in cone pigment recycling. As a well-established 
model organism, it provides a state-of-the-art genetic toolkit and 
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two cone-dominant retinal mosaics. The larval mosaic 
(Figure 1C) consists exclusively of physiologically responsive 
cones, whereas in the juvenile and adult mosaic (Figure 1D), 
rods are present but cones remain predominant. These features, 
together with the potential for high-throughput drug screening, 
make zebrafish as a powerful system to resolve current 
discrepancies in the cone physiology. There are plenty of visual 
pigment recycling drugs in clinical trials tested solely in 
rod-dominant species for RP. These experiments should also be 
conducted in cone-dominant retinas to increase their 
translational relevance to the human retina. We suggest 
additional screening using zebrafish RP models for assessment 
of these visual pigment recycling inhibitors/modulators (Swigris 
et al., 2025; Zaluski et al., 2025).

Ultimately, findings from zebrafish cone-dominant retina along 
with other models from different species will collectively help us 
dissect the dynamics of the visual pigment recycling and get a better 
understanding of cone physiology.
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