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The cone visual cycle and its
disorders: insights from zebrafish

loanna S. Koutroumpa® and Stephan C. F. Neuhauss®*

Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

Continuous vision relies on the recycling of visual pigment chromophore, which
is photoisomerized during the process of vision. In vertebrates, this recycling
is mediated by a complex network of biochemical reactions distributed across
different cell types referred to as the visual cycle. In this review, we outline both
historical and recent findings on the visual cycle and its connection to outer retinal
dystrophies. Particular emphasis is placed on the recycling of cone, rather than
rod, visual pigments, and on the utility of the zebrafish (Danio rerio) as a model
for such studies.
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visual cycle, retina, retinoids (vitamin a derivatives), zebrafish, cone photoreceptor,
vision

The canonical visual pathway

The vertebrate retina consists of three neuronal layers, the Outer Nuclear Layer (ONL)
consists of photoreceptor, the photosensitive neurons that convert the physical stimulus to a
biological signal. Photoreceptors are divided into two groups; rods that contribute to
dim-light or night vision, and cones that support bright-light or daylight vision. The
classification of vertebrate rods and especially cones has long been debated due to species-
specific differences in spectral sensitivity, absorption spectra, and opsin expression. Recently,
Baden et al. proposed a revised photoreceptor nomenclature, as shown in Figure 1
(Baden et al., 2025).

The photoreceptor composition and topology in the retina are also species-specific, at least
partially influenced by the visual ecology that the animal lives in. Photoreceptors contain the
visual chromophore 11-cis retinal (11-cis-RAL), a derivative of vitamin A (retinal A1), that is
covalently bound to opsins located in their outer segments (OS) of the photoreceptors. Upon
illumination, 11-cis-RAL is converted to all-trans retinal (all-trans-RAL) that then detaches
from its opsin (Wald, 1968). After reduction to all-trans retinol, this molecule is leaving the
photoreceptor OS, and is recycled via a multistep process now known as the canonical visual
cycle, before reentering the outer segments as 11-cis-RAL. Although 11-cis-RAL is the main
prosthetic group of vertebrate opsins, some fish and amphibians also use 11-cis
3,4-didehydroretinal (A2 retinal) that has been associated to turbid or red light dominated
environments (Corbo, 2021; Hagen et al., 2023). A2 can be taken up by both photoreceptor
types and is most commonly found in amphibians and freshwater fish (Allison et al., 2004;
Enright et al., 2015). Interestingly, zebrafish can shift opsin binding from A1 to A2 by thyroid
hormone treatment (Allison et al., 2004).

In 1876 Friedrich Boll was the first to observe light-induced bleaching and regeneration
of the “red” pigment (now known as rhodopsin) in the frog retina, noting that the process can
be reversed when the tissue was kept in the dark (Boll, 1877). Subsequently, Franz Kithne
demonstrated that this regeneration required interaction between the retina and another
tissue, the retinal pigment epithelium (RPE) (Kiithne, 1878). Over the span of two decades,
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FIGURE 1

Photoreceptor mosaic organization in the human (A), mouse (B), and zebrafish (C,D) retina. The human retina is known to be trichomatic and rod-
dominant with the macula and in the very center the fovea that has cone-only structure (Hofer et al., 2005). Mouse retina is dichromatic rod dominant
that lacks macula but there is a central area that has a higher ratio of cones-to-rods (Applebury et al., 2000). Zebrafish has tetrachromatic vision and
two distinct mosaic patterns: the larval one that has very few non-responsive rods and the recordings come from cones-only and the juvenile/adult
mosaic that has physiologically responsive rods but is still cone dominant (Allison et al., 2010). Updated photoreceptor nomenclature of Baden et al. is
used that is based on the physiological and molecular identity of the neurons and not the spectral properties of their opsins (Baden et al., 2025). Image

created in BioRender.

George Wald and his colleagues elucidated what is now known as the
retinoid recycling pathway or visual cycle (Dowling, 1960; Wald and
Brown, 1956), a discovery that earned Wald the Nobel Prize in
Physiology or Medicine in 1967.

The RPE-mediated visual cycle regenerates 11-cis-RAL for both
rod and cone photoreceptors (Figure 2). Upon light absorption, 11-cis-
RAL is photoisomerized to all-trans-RAL, which is reduced by all-trans
retinol reductase 8 (RDHS) to all-trans-retinol (all-trans ROL) in the
photoreceptor outer segments or by all-trans retinol reductase 12
(RDH12) in the inner segment (Parker and Crouch, 2010). This
retinoid is transported to the RPE, where lecithin retinol acyltransferase
(LRAT) esterifies it to all-trans-retinyl esters (REs) (Sears and
Palczewski, 2016). These REsare either stored in lipid droplets or
directly isomerized by the bona fide isomerase RPE65 (retinal pigment
protein of 65kD) into 11-cis-retinol (11-cis-ROL) (Kiser, 2022), which
is subsequently oxidized by either cis-retinol dehydrogenase 5 or 11
(RDHS5/11) to regenerate 11-cis-RAL. To prevent photodegradation
and enable solubilization in an aqueous environment, 11-cis-RAL
binds to cellular retinaldehyde-binding protein 1 (CRALBP1), which
stabilizes 11-cis-RAL until it is shuttled to the photoreceptor outer
segments (Morimura et al., 1999a; Saari and Crabb, 2005). The assisted
retinoid transportation is mediated by Interphotoreceptor retinoid-
binding protein (IRBP). In parallel to the canonical visual cycle, retinal
G protein-coupled receptor (RGR) functions as a light-driven
photoisomerase in the RPE, converting all-trans-ROL to 11-cis-ROL
upon blue-light absorption (Figure 2, steps in blue) (Ruddin et al,,
2025). The discovery of a second RPE-independent pathway and the
cone specific recycling of 11-cis-RAL was widely accepted only in the
early 2000s (Fleisch and Neuhauss, 2010; Mata et al., 2002b; Muniz et
al.,, 2007; Wang and Kefalov, 2009, 2011).
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A cone specific inner-retinal recycling
pathway

The existence of this second intra-retinal recycling pathway was
already suggested by electrophysiological recordings in frogs in the
1970s by Goldstein and Wolf (Goldstein, 1968, 1967; Goldstein and
Wolf, 1973; Hood and Hock, 1973). Additional evidence was
provided by Jones and colleagues in 1989 when they showed that
rod and cone sensitivity was restored by supplementing 11-cis-RAL,
but only cones recover by supplying 11-cis-ROL, implying different
recycling pathways (Jones et al., 1989). A decade later in vitro
chicken Muller glia (MG) cell culture experiments demonstrated
that these cells are capable of synthesizing 11-cis-ROL (Das et al.,
1992). Subsequently, Mata, Muniz and their colleagues, confirmed
in in vivo experiments the existence of an additional cone-specific,
RPE-independent pathway, using cone-dominant chicken (Mata et
al., 2005, 2002a; Muniz et al., 2007) and ground squirrel (Mata et
al., 2002b) retinas. Moreover, the chemical ablation of Muller glia
cells in mouse, salamander, and primate retinas by L-a-aminoapidic
acid (L-a-aa) and the
supplementation with 11-cis-ROL rescues cone responses (Wang

initially affected cone recovery
and Kefalov, 2009), providing additional evidence for an RPE
independent recycling pathway. Zebrafish has also provided
valuable information to the field with their cone dominant retina
(Collery et al., 2008; Fleisch et al., 2008; Schonthaler et al., 2007). It
is now well established that cones also rely on a second recycling
pathway involving MG cells, where RGR is considered the main
isomerase, while the once proposed candidate dihydroceramide
desaturase-1 (DES1) was later ruled out (Mata et al., 2002b; Kaylor
et al., 2013; Kiser et al., 2019; Wang and Kefalov, 2011; Tworak et
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Model for recycling of 11-cis retinal (RAL) for rods (A) and cones (B) in vertebrates. (A) The RPE-mediated visual cycle provides both rods (yellow) and
cones (green) with recycled 11-cis-RAL (in dashed arrows). Upon excitation 11-cis-RAL is photoconverted to all-trans RAL that is converted by an all-
trans retinol dehydrogenase 8 or 12 (RDH8/12)to all-trans ROL that is then shuttled to the RPE (in grey) and is subsequently converted to all-trans
retinylesters (REs) by lecithin retinol acyltransferase LRAT. These all-trans REs are either stored in lipid droplets or isomerized by RPE65 to 11-cis-ROL
and finally converted to 11-cis-RAL by another cis retinol dehydrogenase 5 or 11 (RDH5/11). 11-cis-RAL binds to CRALBP1 to prevent photodegradation
and is supplemented at any time to the photoreceptor outer segments. Assisted transportation retinoids between the RPE and the photoreceptors is
mediated by the IRBP. Additionally, RGR re-isomerizes all-trans-ROL in the RPE by absorbing blue light, independent of the visual cycle. (B) Cone
photoreceptors have an additional pathway mediated by Mdller Glia cells (in purple) with some still unidentified components. Among the identified
proteins are RGR photoisomerase, CRALBP1 retinoid binding protein, RDH10 dehydrogenase, nonetheless the precise steps are not defined. Image
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al., 2023). Similar to the canonical visual cycle, CRALBP1 binds to
11-cis-RAL, 11-cis retinol oxidase 10 (RDH10) is the current
candidate retinol dehydrogenase, even though the knockout mouse
retina had no severe defects(Xue et al., 2017), and a retinyl ester
hydrolase, presumably multifunctional-O-acyltransferase (MFAT)
have been identified as components of the cone private path.
(Kaylor et al., 2015; Widjaja-Adhi et al., 2022) (see Figure 2B)
However, the exact biochemical steps of this cone-specific pathway
have yet to be fully delineated.

Even though the canonical visual cycle pathway is the shared
pathway for cones and rods, the cone private pathway is believed to be
ancestral. Cones are the ancestral vertebrate photoreceptors types with
rods appearing at the base of the vertebrate radiation [reviewed by
Hunt and Collin (Hunt and Collin, 2014)]. Phylogenetic studies
between vertebrate and invertebrate outgroups showed that the
ancestral rod opsin RH duplicate evolved into the jawed vertebrate
rhodopsin Rh1 (Collin et al., 2003). In the basal vertebrate lamprey,
orthologs of RPE65 and LRAT are present and exhibit enzymatic
activities consistent with retinoid isomerization and esterification,
respectively, similar to those observed in other vertebrate visual
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system cycles (Poliakov et al., 2012; Vopalensky et al, 2012). In
contrast, members of the cephalochordate lineage, the sister group to
vertebrates, possess a central eye composed of a mosaic of rod-like and
cone-like photoreceptors associated with pigmented epithelial cells,
yet lacking functional orthologs of RPE65 and LRAT (Poliakov et al.,
2012). This suggests that 11-cis-RAL was initially recycled via the
cone-private pathway.

The significance of the dynamics between the canonical visual
cycle and the cone private pathway becomes apparent when light is
taken into account. Rods are saturated under bright light conditions
and therefore require maximum supply of retinoids. Cones have
concomitantly a high demand for retinoids that may exceed recycling
resources due to direct competition with rods, necessitating a cone
private pathway (see Figure 2B). Thus, the species” habitat and their
retina composition (ratio rod-cone photoreceptors) is expected to
affect the interplay between these two recycling pathways in a light
dependent manner.

Defects in the recycling of 11-cis-RAL results in accumulation of
all-trans RAL, one of the initial steps leading to photodamage (Maeda
et al.,, 2012). Non-recycled all-trans-RAL is photoconverted to toxic
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retinoid by-products, with A2E being the most prominent one (Kim
and Sparrow, 2021; Parish et al., 1998; Sparrow et al., 2010, 2003). Such
toxic derivatives are enclosed in lipid droplets in the RPE called
lipofuscin. These cause chronic oxidative stress and inflammation that
result in photoreceptor degeneration and subsequent retinal
detachment (Boyer et al., 2012; Feeney, 1978; Feldman et al., 2022;
Kennedy et al., 1995; Wing et al., 1978). Depending on the underlying
mutation, the disease may initially affect rods and subsequently cones,
leading to rod-cone dystrophies such as autosomal or recessive
Retinitis Pigmentosa (RP) and early-onset Leber congenital amaurosis
(LCA) (Bernal et al., 2003; Fahim et al., 1993; Kumaran et al., 2017,
1993; Lima de Carvalho et al., 2020; Maeda et al., 2009; Morimura et
al., 1999b; Sarkar et al., 2021). Defects in visual pigment recycling can
secondarily affect cone photoreceptors in the human macula, leading
to their degeneration and resulting in age-related macular
degeneration (AMD), which typically manifests after the fifth decade
of life. (Chen et al, 2012; Deng et al.,, 2021; Maeda et al., 2012;
Somasundaran et al., 2020).

Despite more than a century of research on 11-cis-RAL recycling,
and numerous comprehensive reviews on the canonical visual cycle,
the cone-specific pathway and retinoid biochemistry, important gaps
in our knowledge remain. The interaction between the canonical
RPE-dependent visual cycle and the cone-specific MG mediated
pathway remains incompletely defined, particularly regarding the
contribution of the latter to cone physiology.

How do studies in a cone-dominant
retina contribute to our knowledge in
rod-dominant retina species?

Most studies of visual pigment recycling were conducted using the
retinas of rod-dominant mammalian and amphibian species. The
salamander retina, with its large photoreceptors, was the first
preparation to enable long-lasting electrophysiological recordings at
single-cell resolution during light and dark adaptation (Wang et al.,
2009). The bovine retina is large and readily accessible post mortem,
making it well suited for biochemical studies. It has been widely used
for retinoid analyses and as an in vitro system to study the RPE
retinoid pool through microsome formation (Mata et al., 2002b;
Zhang et al., 2019). These investigations were subsequently extended
to the mouse retina, an established mammalian model amenable to
genetic manipulation, leading to the generation of numerous visual
cycle disease models used to study these pathways (Batten et al., 2004;
Driessen et al., 2000; Liou et al., 1991; Redmond et al., 1998; Saari et
al., 2001).

Light conditions, visual ecology and species-specific behavior
influence the way that rods and cones recycle their visual pigments
(Albalat, 2012; Guido et al., 2022; Hagen et al., 2023; Hankins et al.,
2014; Musilova et al., 2021). Given the differences in retinal mosaics
among zebrafish, mice, and humans (Figure 1), as well as variations
in their rod-to-cone ratios (Table 1), the interplay between the
canonical visual cycle and the cone-specific retinoid pathway is
likely to differ substantially across species. Consequently, several
models describing these mechanisms have been revised over the
past decade. A prominent example illustrating the importance of
species-specific context is the debated role of RGR (Morshedian et
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TABLE 1 Cone: rod ratio for model organisms in vertebrate
ophthalmology.

Species Fovea? Cone: rod % Cones
ratio

Human Yes ~1:20 ~5%

Macaca monkey

(diurnal primate) Yes ~1:20 ~5%

Mouse No ~1:30 ~3%

Namaqua rock mouse

(Micaelamys

namaquensis —

nocturnal rodent) No ~1:12.4 ~7%

Four-striped field

mouse (Rhabdomys

pumilio - diurnal/

crepuscular rodent) No ~1:1.23 ~45%

Hamster No ~1:32 ~3%

Ground squirrel No ~24:1 ~96%

Cow (Bovine) No ~1:12 ~8%

Chicken No ~3:2 ~60%

Salamander/Frog No ~2:1 ~35%

Zebrafish larva No ~23:2 ~92%

Zebrafish juvenile/

adult No ~3:2 ~60%

List of the most commonly used species in vision biology and their respective cone-to-rod
ratio and the cone percentage in their retina mosaic (Allison et al., 2010; Wang and Kefalov,
2011). Primate retinas with a fovea consist of 100% cones.

al., 2019; Radu et al., 2008; Tworak et al., 2023; Wenzel et al., 2005;
Zhang et al., 2019).

Although the human retina is rod dominant, high visual acuity
and color vision depend on the cones in the densely packed central
macula (fovea), which accounts for only about 0.02% of the total
retinal area (Kolb et al., 1995) (Figure 1A). Since the human retina
is largely only accessible to non-invasive experiments, such as
optical coherence tomography (OCT) or electroretinography
(ERG), researchers have to rely on suitable model organism to study
retinal metabolism. Because most models for studying pigment
recycling are rod dominant, the scarcity of cones in these systems
may have hindered accurate interpretation of cone-specific
phenotypes caused by impaired pigment regeneration (Figure 1B).
The cone dominant models that have been used to approach cone
physiology such as the chicken and ground squirrel retina
contributed immensely to record cone responses and assess the
visual pigment recycling as mentioned above. However, these
systems are not suitable for genetic approaches.

This is precisely why zebrafish serve as an excellent model for
studying cone visual pigment recycling. During larval stages, the
zebrafish retina is almost exclusively cone-based, with measurable
ERG responses detectable from 4 days post-fertilization onwards
(Bilotta et al., 2001). Allison et al. demonstrated that the larval
retina contains ~92% cones, with only a few rods that do not
contribute to vision (Figure 1C). At 15 days post-fertilization the
retina begins to transition into a mixed mosaic (Figure 1D) that
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remains cone dominant (~60%) throughout life (Allison et al.,
20105 Saszik et al., 1999). Ecologically, zebrafish are adapted to
diurnal vision and there are many well-established genetic models
for numerous human ocular diseases (Gestri et al., 2012; Rosa et
al., 2023). Their powerful genetic toolbox enables targeted
knockouts of genes of interest, with phenotypes assessable by
histology and optical non-invasive OCT (Bailey et al., 2012; Bell
2016).
electrophysiologically via whole-field ERGs

et al, Visual function can be quantified both

and single-
photoreceptor recordings (Bilotta et al., 2001; Makhankov et al.,
2004; Nelson and Connaughton, 1995; Saszik et al., 1999; Sato and
Kefalov, 2025) and behaviorally by using assays such as the
optokinetic response (OKR), visuomotor response (VMR), and
optomotor response (OMR) (Baier, 2000; Brockerhoff et al., 1995;
Neuhauss et al., 1999; Neuhauss, 2003). For retinoid analysis,
ocular extracts can be assessed by HPLC, and modern techniques
even allow in situ imaging of retinoid fractions within the RPE, a
method not feasible in humans (Babino et al., 2015). Collectively,
these tools enable a comprehensive and detailed analysis of the
cone-dominant zebrafish retina, providing valuable insights for
both comparative and translational vision research.

Zebrafish: illuminating the cone visual
cycle

Studies in the zebrafish have expanded our understanding of
visual pigment recycling. The first findings focused on the visual
cycle isomerase RPE65 with the knockdown of RPE65a and
pharmacological inhibition of RPE65. Both approached led to the
conclusion that there was a reduction in 11-cis-RAL leading to
impaired rod function while cone-driven visual behavior remains
largely intact. These results support the notion of an RPE65-
independent pathway for cone chromophore regeneration in
zebrafish (Schonthaler et al.,, 2007). Two additional paralogs of
RPE65 have been described in zebrafish. While rpe65b is not
expressed in the retina (Schonthaler et al., 2007), rpe65¢ (really a
tandem duplicate of rpe65b, more aptly named rpe65ba and
rpe65bb) was reported to be expressed in MG cells (Takahashi et al.,
2012, 2011). The authors demonstrated isomerohydrolase activity
in cell lysates. These results are still awaiting confirmation by other
researchers. Recently an inconclusive report on rpe65a knockdown
larvae was published reporting a surprisingly high lethality (Mirzaei
et al., 2024).

The two paralogs of cralbpl, also referred to retinaldehyde-
binding proteinl (rlbp1) were identified in zebrafish, leading to an
interesting scenario of subfunctionalization (Fleisch et al., 2008).
rlbpla is expressed in the RPE, while rlbp1b is localized to MG cells.
The mouse ortholog is expressed in both cell types. Both single
knockdown animals displayed reduced saccades frequency in the
OKR assay (Collery et al., 2008). Moreover, the knockdown of either
paralogue reduces 11-cis-RAL and combined knockdown effect is
additive, along with the reduction of their b-wave amplitude in
response to light stimulation (Fleisch et al., 2008). Lastly, rlbpla
(RPE-CRALBP1a) knockout had reduced 11-cis-RAL, impaired
scotopic and photopic ERG responses and morphological analysis
revealed REs accumulation as enlarged retinosomes in the RPE of
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these mutants closely modeling human RLBP1 disease (Schlegel et al.,
2022). The lack of an apparent phenotype for the MG-expressed
rlbp1b KO line has been attributed to functional compensation by the
11-cis-RAL recycling machinery. These results collectively proved that
both RPE and MG cell pathways contribute to cone pigment
regeneration. In the RPE-deficient cralbp1 knockout zebrafish, human
RLBP1 variants are screened via CRISPR/Cas9 knock-in. However,
expression of wild-type human CRALBP failed to rescue the
phenotype, as determined by the dim-light VMR assay. Notably, key
visual-cycle and vitamin A handling proteins (e.g., Lrat, Rdh5, Stra6,
Rpe65a, Rgr) were upregulated in knock-out eyes, consistent with
compensatory responses to reduced 11-cis retinoids (Fehilly et
al., 2025).
RDH12, a
photoreceptor inner segment, is another visual cycle component

retinol dehydrogenase expressed in the
that was also studied in zebrafish. In the rdhl2 mutants
mislocalized rhodopsin was detected in inner segments, which
implies impaired opsin trafficking and is an early sign of
photoreceptor degeneration. Moreover, the mutant RPE had
enlarged phagosomes, indicative of defects in outer segment
phagocytosis and disrupted retinoid recycling. Interestingly, the
oxidative-stress related superoxide dismutase sod2 gene expression
was significantly reduced in mutant retinas, indicative of
beginning neurodegeneration (Sarkar et al., 2021).

Babino and colleagues reported that the 11-cis-RE pools in the
RPE provide a reserve for visual pigment storage in cone-dominant
retinas that they innovatively visualized with 2-photon microscopy.
Pharmacological blockage of the canonical visual cycle or by
eliminating rods in the zebrafish larva proved that these 11-RE pools
sustain cone vision in varying light conditions (Babino et al., 2015).
Pharmacological and genetic perturbations were also used in the
context of visual pigment recycling to investigate photopic vision.
They recorded OKR of zebrafish larvae that had been treated with
Emixustat, an RPE65 inhibitor, or fenretinide, which inhibits the
retinol binding protein (RBP4) and DES], and subsequently supplied
with 9-cis-retinal, which was able to rescue the inhibitor-induced
defects (Ward et al., 2020). Their assay, performed in a cone-dominant
retina, revealed potential side effects on photopic vision. They further
demonstrated that RPE65-mediated isomerization is essential for the
immediate response to light, whereas sustained vision under bright
light can be supported by photoisomerization, now known to be
mediated by RGR.

Conclusion

Within just a few decades of extensive research, significant
progress has been made in understanding pigment recycling in cone
photoreceptors. However, important gaps in knowledge remain. Key
questions still to be addressed include (a) the identification of all
components of the cone-specific pathway and its intermediates (b) the
dynamics between the two pathways in varying light conditions and
(c) the impact of defects in the cone-private pathways in the
physiology of cones and rods.

The zebrafish offers unique advantages to bridge this gap of
knowledge in cone pigment recycling. As a well-established
model organism, it provides a state-of-the-art genetic toolkit and
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two cone-dominant retinal mosaics. The larval mosaic
(Figure 1C) consists exclusively of physiologically responsive
cones, whereas in the juvenile and adult mosaic (Figure 1D),
rods are present but cones remain predominant. These features,
together with the potential for high-throughput drug screening,
make zebrafish as a powerful system to resolve current
discrepancies in the cone physiology. There are plenty of visual
pigment recycling drugs in clinical trials tested solely in
rod-dominant species for RP. These experiments should also be
conducted in cone-dominant retinas to increase their
translational relevance to the human retina. We suggest
additional screening using zebrafish RP models for assessment
of these visual pigment recycling inhibitors/modulators (Swigris
et al., 2025; Zaluski et al., 2025).

Ultimately, findings from zebrafish cone-dominant retina along
with other models from different species will collectively help us
dissect the dynamics of the visual pigment recycling and get a better

understanding of cone physiology.
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