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Neurodegenerative disorders pose an increasing burden in the aging society.
These conditions share several molecular pathomechanisms, some of which
may offer opportunities for therapeutic intervention. In this review, we
explore a representative selection of sporadic and hereditary neurodegenerative
diseases—namely Alzheimer's disease, cerebral amyloid angiopathy, and the
polyQ disorders spinocerebellar ataxia types 2 and 3, as well as Huntington'’s
disease—which all feature the accumulation of intra- or extracellular protein
deposits as a hallmark. We place particular emphasis on dysregulations in
proteostasis—underlying the formation of these aggregates—and the less
commonly addressed disturbances in lipid metabolism. By highlighting potential
mechanistic links across different classes of neurodegenerative diseases, we aim
to provide new insights that may guide the identification of shared druggable
targets and the development of broad-spectrum therapeutic strategies.

KEYWORDS

apolipoprotein E, ApoE, aggregates, autophagy, amyloid B, cholesterol, plaques,
polyglutamine

1 Introduction

With increasing life expectancy, the heterogeneous group of neurodegenerative
disorders presents a significant and growing challenge to healthcare systems worldwide.
Despite decades of intensive research, effective treatment options remain limited,
underscoring the need for a deeper understanding of the diverse molecular mechanisms
that ultimately lead to irreversible neuronal damage and death. This is likely due to
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the high heterogenicity of such conditions, which encompass
both sporadic forms, such as most manifestations of Alzheimer’s
Disease (AD), Amyotrophic Lateral Sclerosis (ALS) or Parkinson’s
Disease (PD), and monogenic forms such as the hereditary
triplet repeat disorders, including the polyglutamine (polyQ)
diseases. These conditions vary in their age of onset, affected
tissues, clinical manifestations, and underlying molecular pathways
(Wilson et al., 2023; Kelser et al., 2024). For instance, while
AD primarily affects memory and cognition through cortical and
hippocampal pathology, PD is characterized by motor symptoms
driven by dopaminergic neurodegeneration in the substantia nigra,
and spinocerebellar ataxias (SCAs) predominantly impair motor
circuits through cerebellar degeneration (Knopman et al., 2021;
Poewe et al., 2017; Klockgether et al., 2019). This clinical and
pathological diversity complicates diagnosis, treatment, and the
development of broadly effective therapies.

Current treatment options remain largely symptomatic and
disease-specific. In AD, acetylcholinesterase inhibitors and the
NMDA receptor antagonist memantine can provide modest
symptomatic relief but do not alter disease progression (Zhang
et al, 2024). PD management relies heavily on dopaminergic
replacement therapies such as levodopa, which improve motor
symptoms but often lose effectiveness over time and do not halt
neurodegeneration (Charvin et al., 2018). In ALS, drugs such as
riluzole and edaravone extend survival only modestly (Jaiswal,
2019). For hereditary polyQ disorders like Huntington’s disease
(HD) and SCAs, unfortunately, no approved disease-modifying
treatments exist to date (Tenchov et al., 2024). Collectively, these
limitations highlight the urgent need for therapies that address the
root causes of neurodegeneration.

At the molecular level, several pathogenic processes have been
identified, including dysfunctional proteostasis leading to protein
aggregation, mitochondrial and synaptic dysfunction, oxidative
stress, neuroinflammation, and disturbances in lipid metabolism
(Knopman et al., 2021; Poewe et al., 2017; Klockgether et al., 2019).
While these mechanisms are well-studied individually, a major gap
remains in understanding how they converge and interact across
different neurodegenerative conditions.

In this review, we examine a selection of neurodegenerative
disorders encompassing both sporadic and monogenic forms with
proteopathic characteristics. By focusing on shared molecular
features—particularly dysfunctional proteostasis as the driver of the
hallmark protein aggregation—we draw attention to dysregulated
lipid metabolism as a common contributor for this impairment.
Through this perspective, we aim to support ongoing efforts
toward the development of unifying therapeutic strategies capable
of targeting multiple neurodegenerative conditions.

2 Neurodegenerative disorders

Neurodegenerative disorders are caused by progressive
neuronal loss across multiple brain regions. With variable clinical
and pathological presentations, this group consists of largely
sporadic disorders such as Alzheimers and Parkinson’s disease
(AD and PD, respectively) (Bali et al., 2012; Schulze et al., 2018) and
other inherited diseases such as the polyglutamine disorders, which
result from constitutional mutations of single genes, thus named
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monogenic hereditary disorders (Pihlstrom et al., 2017). One of
the most common hallmarks of neurodegenerative disorders is
the aggregation of misfolded proteins into insoluble inclusion
bodies within the nucleus or cytoplasm, such as Lewy bodies in
PD, neurofibrillary tangles in AD, or polyQ aggregates in HD, as
well as the formation of extracellular deposits in neuronal tissue,
including neuritic amyloid plaques in AD (Klockgether et al., 2019;
Knopman et al., 2021; Ross and Poirier, 2004). These deposits are
a consequence of disruptions in a process collectively known as
proteostasis—an intricate network of mechanisms that regulate
protein synthesis, folding, trafficking, and degradation to maintain
cellular protein homeostasis. Numerous molecular pathways
involved in proteostasis have been identified and characterized in
the context of neurodegeneration, either contributing to disease
pathogenesis or acting as disease modifiers (Yerbury et al., 2016).
One potential, yet not fully understood, contributor is lipid
metabolism, which is essential for both neuronal and glial function.
When disturbed, it increases the risk of neurological disease, as
strikingly demonstrated by the association of the apolipoprotein E
(ApoE) allele €4 (APOE ¢4) with late-onset AD (Strittmatter et al.,
1993; Kawade and Yamanaka, 2024; Yang et al., 2023). Although
a direct link between protein aggregation and lipid metabolism in
neurodegeneration may not be immediately apparent, emerging
intersections suggest a relevant interplay (Hernandez-Diaz and
Soukup, 2020), which will be explored in the following sections.

2.1 Sporadic neurodegenerative disorders

The vast majority of neurodegenerative disorders have a
sporadic etiology, with only about 10% of cases considered
hereditary (Dilliott et al., 2021). Non-genetic components—such
as lifestyle and environmental factors—have been reported
to either contribute to or protect against the development
of common neurodegenerative conditions in the elderly,
including AD, PD, and cerebral amyloid angiopathy (CAA)
(Jakel et al., 2022; Mentis et al., 2021).

Given the well-established role of lipid metabolism and
ApoE in neurodegenerative dementias, we focus on AD and
CAA as prototypical examples of predominantly sporadic
neurodegenerative disorders, which are further characterized by
the deposition of amyloidogenic proteins.

2.1.1 Alzheimer's disease (AD)

AD, the most common form of dementia, is characterized by
cognitive impairment and neuronal loss that progress through
several stages, each defined by distinct pathological and clinical
features. AD is estimated to affect around 130 million individuals
by 2050 if no therapies become available (Ju and Tam, 2022). A
histopathological hallmark of AD is the accumulation of abnormal
protein aggregates, particularly intracellular neurofibrillary tangles
formed by hyperphosphorylated tau and extracellular amyloid-B
(AB) plaques—composed of AP peptides generated by proteolytic
cleavage of the amyloid precursor protein—in the limbic and
neocortical regions (Chen et al, 2017; Zhao and Huai, 2023)
(Figure 1). The microtubule-stabilizing protein tau exists in six
isoforms generated by alternative splicing of the MAPT gene.
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FIGURE 1

Illustration of pathogenic protein aggregate sites in the monogenic and sporadic neurodegenerative disorders covered in this review, and the known
contribution of lipid metabolism and ApoE in the respective disorders. (A) In Alzheimer's disease (AD), neurofibrillary tangles composed of
hyperphosphorylated tau accumulate within neurons, while A deposits in the form of amyloid plaques are found in the extracellular space, where
activated astrocytes may contribute to their uptake and removal. In cerebral amyloid angiopathy (CAA), amyloid plagues accumulate in the walls of
blood vessels. (B) In Huntington's disease (HD) and spinocerebellar ataxias (SCAs) types 2 and 3, the respective disease-associated polyglutamine
(polyQ)-expanded proteins form intracellular aggregates in the cytoplasm or nucleus of affected neurons. Characteristic events are numbered and
described in the respective panel. AC, astrocyte; NC, neuronal cell; OC, oligodendrocyte; LBS, lipid biosynthesis; CBS, cholesterol biosynthesis; BV,
blood vessel; EC, endothelial cells; VSMC, vascular smooth muscle cells; LRP1, lipoprotein receptor-related protein 1.

Frontiersin Molecular Neuroscience 03 frontiersin.org


https://doi.org/10.3389/fnmol.2025.1681079
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org

Pereira Sena et al.

Under physiological conditions, the ratio of three-repeat (3R) to
four-repeat (4R) tau isoforms is tightly regulated, but this balance
becomes disrupted in tau-related neurodegenerative disorders,
altering tau’s phosphorylation status and aggregation propensity
(Rawat et al., 2022). Hyperphosphorylation causes tau to dissociate
from microtubules, after which it aggregates into tangles with
neurotoxic properties. Among the 85 identified phosphorylation
sites, threonine 217 has emerged as a particularly important
biomarker in AD. Phosphorylation at this residue produces p-
tau217, whose elevated plasma levels are associated with early stages
of the disease and correlate with cognitive decline. These findings
suggest that p-tau217 not only reflects underlying tau pathology
but also offers promise for early diagnosis and monitoring of
disease progression (Hirota et al., 2025; Martin et al., 2013). The
impairment of AP clearance mechanisms seems to be a major
contributor to the accumulation of AP and tau in the brain,
thus reflecting a failure of the cellular machinery responsible
for protein quality control (Mawuenyega et al, 2010). The
development of these plaques and tangles can also be a result of
an imbalance between the production and degradation of proteins
(He et al., 2020).

In neurons, whose functionality greatly depends on an
exactly maintained proteome, disruption of proteostasis and
accumulation of toxic aggregates is particularly detrimental, as it
impairs crucial cellular functions and renders neurons vulnerable
to stressors such as oxidative stress, chronic inflammation,
and endogenous neurotoxins (e.g., quinolinic acid), which can
precipitate neurodegeneration. Over the past decade, research has
increasingly focused on elucidating the molecular consequences of
proteostasis disturbances in AD. For example, impairment of key
intracellular mechanisms such as the ubiquitin-proteasome system
(UPS) reduces the degradation of misfolded proteins, notably
AP and tau, as evidenced by decreased proteasomal complex
subunits and defective nuclear localization of Nrfl, which normally
promotes proteasome gene expression. Concurrently, molecular
chaperones show diminished activity, further compromising
proper protein folding and facilitating aggregation (Batko et al,
2024). Together, these molecular failures exacerbate proteotoxic
stress, contributing to a vicious cycle of neuronal dysfunction and
degeneration, and highlighting potential therapeutic targets aimed
at restoring UPS activity and chaperone function.

Aging is a major risk factor for AD and is closely associated
with a decline in proteostasis capacity (Meller and Shalgi, 2021).
As organisms age, the efficiency of protein folding, trafficking,
and degradation decreases, creating an environment that supports
the accumulation of misfolded proteins such as AP, tau, a-
synuclein, and TAR DNA-binding protein 43 (TDP43) (Wolozin
and Ivanov, 2019). Major processes, including oxidative stress,
mitochondrial dysfunction, and neuroinflammation, are connected
to this malfunction of proteostasis mechanisms and can lead to
cell death (Jellinger, 2010). The dysfunction of protein degradation
pathways, such as the UPS and autophagy, contributes to the
increase of misfolded proteins in neurodegenerative diseases,
including AD (Jiang et al., 2025; Nixon and Rubinsztein, 2024;
Nixon and Yang, 2011; Rao et al., 2015).

Lipid metabolism and cholesterol homeostasis play a significant
role in AD pathogenesis. Disruption of these processes—including
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altered lipid composition and cholesterol transport—have been
linked to AD pathology and disease progression. Such disturbances
may exacerbate AP accumulation and tau phosphorylation, and
contribute to neuroinflammation as well as myelin abnormalities
(Ahmed et al.,, 2024; He et al., 2025; Kawade and Yamanaka,
2024; Mi et al, 2023). Importantly, restoring dysregulated lipid
metabolism has been demonstrated to ameliorate AD-related
pathologies (He et al., 2025; Litvinchuk et al., 2024).

One crucial modifying factor in AD is the fat-binding protein
ApoE, which is central in transporting cholesterol and other lipids
from astrocytes to neurons (Raulin et al., 2022; Windham and
Cohen, 2024). Variants in the coding APOE gene have significant
implications for AD and its treatment, especially in its late-onset
sporadic form which occurs after the age of 65, where APOE is a
key genetic risk factor (Islam et al., 2025). The three primary APOE
allelic variants differ in two amino acid residues at positions 112
and 158 in the encoded protein ApoE — €2 (Cys112; Cys158), 3
(Cys112; Argl58), and €4 (Argl12; Argl58) (Serrano-Pozo et al.,
2021). Strong evidence from clinical and basic research indicates
that the APOE e4 allele is associated with an increased risk of
AD (Corder et al., 1993), while the APOE &2 allele is linked to a
decreased risk compared to the more common APOE &3 allele (Bu,
2009; Corder et al., 1994; Farrer et al., 1997). Mechanistically, APOE
¢4 was implicated in disturbances of the lipid metabolism, primarily
associated with impaired function in lipid and cholesterol efflux
from astrocytes and neurons, leading to detrimental accumulation
of lipid deposits (Lin et al., 2018; Raulin et al., 2022; Sienski et al.,
2021). Notably, ApoE is known to accumulate in AB plaques and
trigger tau hyperphosphorylation as well as its deposition (Hou
et al., 2020; Namba et al., 1991; Therriault et al., 2020; Xia et al.,
2024). Moreover, ApoE seems to play a protective role by mediating
the removal of A via receptor-mediated clearance and extracellular
proteolytic machineries, while the ApoE €4 presented impaired
functionality in these pathways, contributing to disease-associated
accumulation of extracellular plaques (Jiang et al., 2008; Kanekiyo
et al., 2013; Van Acker et al., 2019).

The variations in ApoE, particularly the protective effects of the
APOE g2 allele and the risk associated with APOE €4, present critical
insights for AD research. Understanding these genetic factors
can enhance diagnostic precision and guide the development of
targeted therapies, offering significant potential for more effective
treatment strategies (Hou et al., 2020; Namba et al., 1991; Therriault
et al., 2020; Xia et al., 2024).

From the perspective of AD progression, all the factors
mentioned above contribute and define the pathological stages
of this disorder. In the asymptomatic phase, amyloid-beta (AB)
plaques begin to accumulate, a process strongly influenced by
lipid metabolism and ApoE function (Raulin et al, 2022).
During the prodromal or mild cognitive impairment (MCI)
phase, tau pathology emerges, and subtle cognitive deficits
appear, with ongoing ApoE- and lipid-mediated effects on protein
clearance, membrane composition, and synaptic function. In the
dementia phase, widespread neuronal loss, synaptic dysfunction,
and cognitive decline occur, with dysregulated ApoE and
lipid homeostasis further exacerbating proteostasis impairment,
inflammation, and neurodegeneration (Jack et al., 2010; Dubois
etal., 2016; Zhang et al., 2024).
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2.1.2 Cerebral amyloid angiopathy (CAA)

CAA is one of the main causes of lobar intracerebral
hemorrhage (ICH) in the elderly, causing 5-20% of spontaneous
ICH in older adults (de Bruin et al., 2024). The prevalence of CAA
increases significantly with age and is observed in approximately
80-90% of individuals with AD pathology (Yamada, 2015). CAA
is characterized by vascular deposition of A in the walls of
small leptomeningeal arteries and cortical blood vessels (de Bruin
et al., 2024) (Figure 1). Despite its close pathological overlap with
AD, CAA shows distinct clinical features and may thus act as a
pathological bridge linking cerebrovascular dysfunction with other
neurodegenerative diseases (Cordonnier and van der Flier, 2011).

Structurally, CAA differs from AD in terms of the predominant
AB isoforms involved. Unlike in AD, shorter Ap fragments are more
abundantly deposited in CAA. While AP42 is primarily deposited
in parenchymal neuritic plaques in AD, CAA is characterized by the
more abundant deposition of AB40. Moreover, several studies have
demonstrated that shorter Af isoforms—such as AB37, AB38, and
AB39—are also present in vascular deposits (Kakuda et al., 2017;
Reinert et al., 2016). These more soluble isoforms are thought to
follow perivascular drainage pathways, which may contribute to
their selective vascular accumulation (Greenberg et al., 2020; van
den Berg et al,, 2024). Over time, AP accumulation leads to the
loss of vascular smooth muscle cells (VSMCs). These contractile
cells, believed to be of mesenchymal origin (Sinha et al., 2014),
are located in the tunica media (middle layer) of small arteries and
arterioles, where they play a crucial role in maintaining vessel tone,
regulating cerebral blood flow, and preserving vascular integrity. In
CAA, their gradual depletion—particularly in leptomeningeal and
cortical arteries—weakens the vessel wall and increases its risk of
rupture. Despite these changes, the precise trigger initiating peptide
deposition remains unknown. However, it is widely believed that
these deposits result from impaired AP clearance, rather than
overproduction, in the vascular walls, ultimately compromising
vessel integrity (Koemans et al., 2023; Qi and Ma, 2017).

Similar to observations in AD, proteostasis and proteolytic
mechanisms critical for AP generation and clearance are disrupted
in CAA (Krohn et al., 2011; Ma et al., 2010; Monro et al., 2002; Savar
et al., 2024; Qi and Ma, 2017). Moreover, vascular Ap accumulation
appears to involve lipid components (de Oliveira et al., 2025) and
autophagy, an essential mechanism that maintains cellular health
and homeostasis by removing damaged proteins and organelles
(Liu et al., 2023).

Autophagy is characterized by membrane structures that
form the autophagosomes—double-membrane vesicles that engulf
cellular material for degradation. The fusion of autophagosomes
with lysosomes vesicles containing hydrolytic enzymes enables
the breakdown of cellular components (He and Klionsky, 2009).
Experimental studies suggest that activating autophagy may have
beneficial effects in CAA (Ma et al., 2010). This is mediated by
the transmembrane lipoprotein receptor-related protein 1 (LRP1),
which plays a key role in AB uptake and lysosomal degradation
(Bell et al,, 2009; Cheung et al,, 2014; Kanekiyo et al., 2012).
Notably, LRP1 is also a major neuronal ApoE receptor and is
involved in modulating AB pathology (Na et al., 2023; Shinohara
et al., 2017; Strickland and Holtzman, 2019; Tachibana et al., 2019).
Previous in vitro and in vivo studies have shown that the ApoE
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protein influences multiple aspects of AB pathology, including
its accumulation, clearance, conformational state, and toxicity
(Rannikmaie et al., 2013). The APOE ¢4 allele is associated with an
increased risk of CAA, as it impairs A clearance from the brain and
promotes vascular deposition. In contrast, the €2 allele—although
considered protective in AD—may increase the risk of vessel wall
fragility in CAA due to AP accumulation, thus predisposing to
ICH recurrence. Interestingly, individuals with the APOE €2/e4
genotype may experience a compounded pathological effect, with
both enhanced AP deposition and increased vascular fragility,
leading to a higher risk of early ICH recurrence (Greenberg et al.,
2020; Yang et al., 2025).

These findings show that the APOE gene influences the
development of CAA and could be important for diagnosis as well
as potential treatment.

2.2 Inherited neurodegenerative disorders

Strictly hereditary neurodegenerative disorders, which account
for approximately 10% of all cases, are genetically heterogeneous
and involve mutations in genes such as presenilin-1 (PSENI)
in familial AD, leucine-rich repeat kinase 2 (LRRK2) and parkin
(PRKN) in dominant or recessive forms of PD, and C9orf72
in Fronto Temporal Dementia (FTD) and amyotrophic lateral
sclerosis (ALS) (Dilliott et al., 2021; Pihlstrom et al., 2017).
A distinct group within inherited neurodegenerative diseases
comprise the so-called polyglutamine (polyQ) disorders, which
include the following nine conditions: spinobulbar muscular
atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA),
Huntington’s disease (HD), and six spinocerebellar ataxias (SCA1,
SCA2,SCA3,SCA6,SCA7, and SCA17). All of these diseases follow
an autosomal dominant pattern of transmission, except for SBMA,
which is X-linked recessive (Orr and Zoghbi, 2007).

2.2.1 Polyglutamine (polyQ) disorders

PolyQ diseases are characterized by a CAG trinucleotide
expansion in the coding region of the affected gene, leading to
an elongated polyQ tract in the translated protein. The length of
the CAG repeat directly influences the age at onset, with longer
CAG repeat expansions correlating with earlier disease onset and
more severe manifestation of symptoms (Tandon et al., 2024).
The polyQ expansion alters properties of the affected protein,
induces its misfolding, and results ultimately in its accumulation
in the form of neuronal intracellular aggregates (Figure 1). These
aggregates may contain not only the entire protein or its polyQ
stretch-containing fragments, but also additional components such
as chaperones, ubiquitin, ubiquitin-binding proteins, proteasomal
subunits, and other vital factors such as transcription-related
proteins (Havel et al., 2009; Lieberman et al., 2019). Although the
disease-causative proteins of all polyQ diseases are ubiquitously
expressed across different cell types, aggregate formation and cell
loss is restricted to neurons, while the affected brain region differs
depending on the disease. Apart from the expanded polyQ stretch,
the affected proteins lack sequence homology and participate in
diverse cellular processes, including transcription regulation, RNA
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metabolism, protein homeostasis, and protein-protein interactions
(Maiuri et al., 2017; Paulson et al., 2017). Despite differences in the
affected neuronal subpopulations and the varied functions of the
disease-causing proteins, polyQ diseases share several pathological
features (Figure 1B), which may represent common targets for
therapeutic development.

Below, we present a selected overview of spinocerebellar ataxias
(SCAs) 2 and 3, along with HD, as representative polyQ disorders,
and highlight their common targetable pathways, with a focus
on the impact of ApoE and lipid metabolism on pathology
and proteostasis.

2.2.2 Spinocerebellar ataxia type 2 (SCA2)

SCA2 (OMIM: #183090) is caused by an expansion of a CAG
tract in exon 1 of the ATXN2 gene that encodes the protein
ataxin-2 (Pulst, 1993). Repeat lengths up to 31 CAG repeats are
considered normal alleles (de Castilhos et al., 2014; Gardiner et al.,
2019), with a high prevalence of 22 CAG repeats, being found
in 90.1% of the general population (Andrés et al., 2003), while
expansions of 33 and above are considered as fully penetrant for
SCA2. Repeat lengths around this threshold and CAA interruptions
have been additionally associated with other neurodegenerative
disorders, causing recessive SCA2 or representing a risk factor
for ALS and PD (Charles et al., 2007; Elden et al., 2010; Gwinn-
Hardy et al.,, 2000; Tojima et al., 2018). Expanded CAG repeats
and consequently longer polyQ tracts in ataxin-2 lead to toxicity
and neurodegeneration in the cerebellum and brainstem (Bunting
etal, 2022). Clinical symptoms frequently observed are progressive
ataxia and dysarthria, slow saccadic eye movements, and peripheral
neuropathy (Pulst, 1993).

The known physiological role of wild-type ataxin-2 includes
its posttranscriptional regulatory function in RNA metabolism and
translation, and its involvement in cytoplasmic stress granules
(Carmo-Silva et al.,, 2017; Costa et al.,, 2024). While the polyQ
expansion in ataxin-2 likely alters its function, promoting toxicity
and aggregation, the role of ataxin-2 aggregates—primarily due
to their infrequent nuclear localization—was initially considered
of minor pathological relevance. Notably, neuronal loss and
intranuclear inclusions are not necessarily concomitant in SCA2
(Huynh et al.,, 2000; Koyano et al., 2014). However, the presence
of cytoplasmic aggregated polyQ-expanded ataxin-2, visible as
granular staining, has been shown to correlate with disease
progression in the SCA2 patient brain (Koyano et al., 2014; Seidel
et al,, 2017). Dysregulation of autophagy has been observed in
both SCA2 mouse models and patient-derived samples, indicating
disease-related disruptions that may impair the toxic protein
clearance and promote aggregation. Conversely, activation of this
degradation pathway or its upstream regulators was found to
ameliorate SCA2 pathology (Afonso et al., 2022; Liu et al., 2024;
Marcelo et al., 2021; Paul et al., 2018; Wardman et al., 2020).

Ataxin-2 also plays a role in lipid metabolism. Knockout
models revealed various perturbations, including deficits in lipid
and cholesterol metabolism (Lastres-Becker et al, 2008). In
the brains of SCA2 knock-in mice, reduced levels of myelin
lipids and downregulation of enzymes essential for cholesterol
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biosynthesis were observed, accompanied by decreased levels of
cholesterol precursor metabolites (Canet-Pons et al., 2021; Sen
etal., 2019). Similarly, the primary cholesterol elimination product,
24S-hydroxycholesterol, was found to be reduced in the brains of
SCA2 patients (Locci et al., 2023). However, little is known about
the involvement of ApoE in SCA2, although some studies have
reported increased ApoE protein or expression levels in patient
blood or fibroblasts (Cornelius et al., 2017; Swarup et al., 2013).

2.2.3 Spinocerebellar ataxia type 3
(SCA3)/Machado-Joseph disease (MJD)

SCA3, or Machado-Joseph disease (MJD) (OMIM: #109150),
represents the second most common polyQ disease after HD, and
the most common SCA worldwide (Durr, 2010; Gardiner et al,,
2019; Klockgether et al, 2019). It is caused by a CAG repeat
expansion in exon 10 of the ATXN3 gene. Repeat lengths of 12
to 44 CAGs are found in non-affected individuals, while around
56 to 87 repeats are associated with clinical manifestation of the
disease. For intermediate repeat lengths, incomplete penetrance of
symptoms has been reported (McLoughlin et al., 2020). Symptoms
include progressive cerebellar ataxia with motor deficiencies such
as gait abnormalities, coordination problems, impaired balance or
oculomotor impairments, but can also include parkinsonism, sleep
disturbances or sensory damage (Riib et al., 2013).

At the molecular level, the polyQ-expanded SCA3 disease-
related protein ataxin-3 is abnormally folded and accumulates as
intracellular protein aggregates, which works as a bait for other
proteins, ultimately disrupting multiple cellular processes (Yang
et al., 2014). Ataxin-3 is a deubiquitinase and mediates protein
quality control pathways such as autophagy and the UPS, which
are compromised in SCA3 and can be targeted for improving
the molecular phenotype (Ashkenazi et al.,, 2017; Blount et al,
2014; Costa Mdo and Paulson, 2012; Menzies et al., 2010; Onofre
et al., 20165 Pereira Sena et al.,, 2021). Apart from this function,
ataxin-3 has also been associated with DNA damage repair (Gao
et al., 2015; Pfeiffer et al., 2017) and transcriptional regulation (Li
et al.,, 2002). Therefore, the ramifications of mutant ataxin-3 on
protein homeostasis are not limited to aggregation and aberrant
degradation of the actual disease protein but also impact the
turnover of multiple other cellular proteins.

Studies on pathological dysfunctions in lipid and cholesterol
metabolism in SCA3 remain limited but consistently highlight
their significant impact, as demonstrated in various models and
patient materials (Campos et al., 2022; Putka et al., 2025; Toonen
et al,, 2018). Notably, restoration of cholesterol levels by viral
administration of cholesterol 24-hydroxylase (CYP46A1) in SCA3
mice activated autophagy, enhanced aggregate clearance, and
concurrently alleviated both neuropathology and motor deficits
(Nobrega et al., 2019).

While the main factor contributing to age at onset is the length
of the CAG repeat, genetic modifiers have been identified in SCA3
(de Mattos et al.,, 2019; Raposo et al., 2022; Weber et al., 2024),
including the APOE genotype. It was demonstrated that carriers
of the APOE &2 allele present an earlier disease onset (Bettencourt
etal, 2011a; Peng et al., 2014), although a later study did not come
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to this conclusion (Zhou et al., 2014). There is, however, evidence
that the APOE ¢4 allele is associated with better performance in
language and visual memory in SCA3 patients, while being also
associated with rather severe speech disturbances (Chen et al,
2025). A further case report of two SCA3 patients presenting
parkinsonism identified a common ApoE genotype, namely APOE
€2/e3 (Bettencourt et al., 2011b). Since APOE €2 has previously
been associated with PD (Huang et al., 2004; Jo et al., 2021; Pang
et al., 2018), it is reasonable to suggest that APOE €2 is linked
to parkinsonism in SCA3. However, the exact repercussions of
the APOE genotype on the molecular pathogenesis of SCA3, in
particular in the proteostatic networks, have not been addressed yet.

2.2.4 Huntington's disease (HD)

With an estimated global prevalence of 4.88 per 100,000
individuals, HD (OMIM: #143100) is the most common inherited
neurodegenerative disease and polyQ disorder (Arrasate and
Finkbeiner, 2012; Medina et al., 2022). An aberrant expansion of
the glutamine-coding CAG repeat region in exon 1 of the HT'T gene
leads to disease onset, with full disease penetrance to be expected
above 39 CAG repeats (Jiang et al., 2023). Although symptoms
vary between affected patients, HD is typically characterized
by progressive motor disability and cognitive decline, chorea,
personality changes and mood disorders, speech difficulties, and
impaired gait, balance, and coordination (Lieberman et al., 2019;
Saudou and Humbert, 2016). Neuropathologically, HD involves
early degeneration of striatal GABAergic medium spiny neurons,
leading to striatal atrophy and cortical thinning years before
symptom onset (Aylward et al., 2011; Ehrlich, 2012; Rosas et al.,
2008; Ross and Tabrizi, 2011).

The precise molecular function of wild-type HTT protein is still
unknown. However, it is suggested to be a multivalent structural
scaffolding hub for proteins by mediating crucial intra- and inter-
molecular protein interactions via its HEAT domains (Saudou
and Humbert, 2016). The interplay of these interactors with HTT
dictates its physiological role in vesicle trafficking and recycling, cell
division, ciliogenesis, endocytosis, autophagy, and transcriptional
regulation, with many of these pathways being compromised upon
polyQ expansion (Ehrnhoefer et al., 2011; Saudou and Humbert,
2016).

In the nucleus and cytoplasm of HD brain neurons, large
intracellular aggregates of polyQ-expanded HT'T, termed inclusion
bodies, were reported (Difiglia et al., 1997; Gutekunst et al., 1999).
Although aggregates are generally believed to have detrimental
effects on cell viability, a causative relation between aggregate
formation and cell death has not yet been drawn. However, it
is hypothesized that inclusion bodies may mediate their toxic
function through their sequestration of important cellular proteins,
such as transcription factors or UPS-components, essentially
rendering them dysfunctional (Leverenz et al., 2007; Lutz and Peng,
2018; Riguet et al,, 2021; Shahmoradian et al., 2019; Stewart and
Radford, 2017).

Consequently, multiple studies have investigated ways to
activate autophagy or the UPS to eliminate detrimental soluble or
aggregated forms of the polyQ-expanded HTT (Bailus et al., 2021;
Bhat et al., 2014; Ravikumar et al., 2004; Williams et al., 2008).
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As the CAG repeat length explains only 50% of the total
variance in age at HD onset, other factors, such as a perturbed
lipid metabolism and, in particular, ApoE, have been proposed
to contribute to HD progression and molecular pathogenesis
(Figure 1B) (Block et al., 2010; Panas et al., 1999). Interestingly,
clinical data on HD revealed that the APOE ¢4 allele in patient
carriers delayed the age at onset of HD by a mean difference of 13.6
years, compared to €3/e3 patients (Panas et al., 1999). Regardless
of specific isoforms, a reduction of ApoE synthesis and secretion
in HD astrocytes were found in various rodent models of HD
(Valenza etal., 2010, 2015). As neurons in the adult brain are mostly
dependent on astrocyte synthesis and efflux of cholesterol (Saher
and Stumpf, 2015), increasing ApoE-mediated cholesterol efflux
from astrocytes could potentially lessen cholesterol-dependent
neuronal damage in HD (Valenza et al., 2010). Furthermore,
gene-therapeutic delivery of CYP46Al into the striatum of HD
affected mice not only improves disease pathology and reduces
mutant HTT aggregates, but also enhances cholesterol metabolism
by upregulating the expression of cholesterogenic enzymes and
ApoE (Boussicault et al., 2016; Kacher et al, 2019, 2022).
Additionally, dysregulation of cholesterol metabolism in HD
models has been shown to alter mitochondrial membrane (MM)
fluidity, whereas administration of the neuroprotective cholesterol
derivative olesoxime exerted restorative effects, potentially by
enhancing MM cholesterol levels (Eckmann et al., 2014; Weber
et al,, 2019). HTT itself has been found to associate with lipids
and undergo lipidation, and its interactions with cholesterol, lipids,
or lipid membranes have been shown to influence its aggregation
(Beasley et al., 2021; Lemarié et al., 2023; Stonebraker et al., 2023).
These findings in HD models suggest a potentially broader link
between lipid metabolism, ApoE, and proteostasis.

3 Potential points of intervention

Although still incurable, multiple therapeutic strategies have
been explored for the sporadic and monogenic neurodegenerative
disorders discussed in this review. These approaches include
molecules acting on known dysregulated neuronal signaling
pathways, small molecules targeting protein aggregation,
antisense oligonucleotides or RNA-based therapies to reduce
toxic protein expression, gene therapy strategies aimed at restoring
normal protein function, and immunotherapies directed against
extracellular aggregates (Zhang et al., 2024; de Sousa-Lourenco
et al., 2024; Tenchov et al,, 2024). Notably, a recent report from
the pharmaceutical company UniQure announced a first-time
slowdown in HD progression by 75% using a surgical, microRNA-
based strategy aiming at lowering the mutant HT'T protein (https://
www.clinicaltrials.gov/study/NCT04120493). Despite promising
preclinical and early clinical results, most of these interventions
have yet to achieve clear disease-modifying effects in patients in a
practicable manner.

Since protein aggregation is a hallmark across multiple sporadic
and monogenic neurodegenerative disorders, current efforts focus
on reducing these intra- or extracellular deposits or their sources.
Strategies to activate often-compromised proteolytic systems, such

as autophagy and the UPS, include genetic and pharmacologic
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TABLE 1 Selected pathway implications, ApoE involvement, and experimental therapeutic strategies targeting lipid homeostasis in sporadic and
monogenic neurodegenerative disorders.

Disease Impaired pathways of interest LH-targeting therapeutic strategy for
(etiological form) . enhancing proteostasis
Proteostasis LH ApoE
AD X X X Yes Rescue of lipid metabolism He et al., 2025; Litvinchuk et al., 2024
(sporadic)
CAA X (X) Yes N/A
(sporadic)
SCA2 X X X N/A N/A
(monogenic)
SCA3 X (X) Yes Restoration of cholesterol levels via CYP46A1 Nobrega et al., 2019
(monogenic)
HD X X X Yes Restoration of cholesterol levels via CYP46A1 Boussicault et al.,
(monogenic) 2016; Kacher et al., 2019, 2022
Olesoxime administration Eckmann et al., 2014; Weber et al., 2019

AD, Alzheimer’s disease; CAA, cerebral amyloid angiopathy; SCA2, spinocerebellar ataxia type 2; SCA3, spinocerebellar ataxia type 3; HD, Huntington’s disease; GM, genetic modifier; LH, lipid

homeostasis; N/A, not available; X, implicated; (X), limited implication.

manipulation of pathway-related genes, modification of their
upstream regulators or effector elements, and the targeting of
substrate proteins via posttranslational modifications (Dantuma
and Bott, 2014; Le Guerroué and Youle, 2021; Nixon and
Rubinsztein, 2024). However, thinking beyond conventional
approaches by including additional dysregulated, targetable
pathways can broaden the strategic range. This may enable the
development of novel, potentially more feasible interventions, that
not only restore proteostasis but also address other pathologically
impaired molecular mechanisms. Here, observations in monogenic
diseases with a clearer molecular etiology can offer an advantage
in assessing the robustness of identified points of action. One
such compromised, broader pathway may be lipid metabolism—
particularly the involvement of one of its key components,
ApoE, across various neurodegenerative disorders (Estes et al,
2021; Fernandez-Calle et al, 2022). Numerous studies have
demonstrated that lipid metabolism and autophagy modulate each
other reciprocally, a relationship that becomes especially apparent
when considering that autophagosomes and lysosomes are lipid-
membrane vesicles, and that one autophagy protein, LC3, requires
lipidation for activation (Jarocki et al., 2024; Xie et al., 2020). The
regulatory effects of lipids on the UPS are less well understood.
However, ubiquitination and the UPS play important roles in
regulating lipid biosynthesis and turnover (Jiang and Song, 2014;
Loix et al., 2024). Consequently, direct or indirect enhancement
of autophagy may alleviate the burden on an overwhelmed UPS
by restoring proteostasis—while simultaneously exerting beneficial
effects on UPS-controlled lipid homeostasis. Exemplary studies
conducted in SCA3, HD and, to a lesser extent, SCA2 models
convincingly demonstrated that modifying cholesterol biosynthesis
can ameliorate disease symptoms in vivo by enhancing autophagy
and the UPS (Kacher et al., 2019; Nobrega et al., 2019) (Table 1).
Similarly beneficial effects were observed with small molecules
that counteracted the autophagy-suppressing influence of the
ApoE €4 allele (Balasubramaniam et al., 2024; Parcon et al,
2018).
Pursuing different
neurodegenerative diseases and rigorously evaluating their

comparable  strategies  across
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effects and involved pathways will be essential to assess their
potential as targets for unified therapeutic approaches.

4 Conclusion

The complexity and heterogeneity of the pathways affected
in neurodegenerative disorders present major challenges for
therapeutic development, contributing to the ongoing lack of
effective treatments for many of these diseases. While pathways are
well elaborated for AD, monogenic models such as polyQ disorders
represent a better paradigm for analyzing molecular pathogenesis,
since they are likely less challenging to be reproduced in cell and
animal models.

The identification of common molecular targets—such as
ApoE—across interconnected pathways like lipid homeostasis and
proteostasis, and across multiple disorders (Table 1), has renewed
interest in the search for effective therapies. A key challenge in
this context will be to unravel the distinct contributions of ApoE’s
different variants to the disruption or maintenance of proteostasis,
specially in monogenic neurodegenerative disorders—where the
role of lipid metabolism and ApoE still remain underinvestigated.
Once clarified, ApoE may emerge as a central player and promising
target for therapeutic intervention in neurodegeneration.
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