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Peripheral neuropathic pain is a chronic, secondary pain state caused by damage 
or diseases of the peripheral nervous system, typically accompanied by edema, 
inflammatory responses, increased neuronal excitability, and glutamate accumulation. 
Matrix metalloproteinase-9 (MMP-9), an important enzyme, plays a key role in various 
physiological and pathological processes, primarily by degrading the extracellular 
matrix. Recent studies have shown that MMP-9 plays a crucial role in the onset 
and progression of central nervous system disorders, particularly neuropathic 
pain. This review discusses the mechanisms underlying the involvement of MMP-
9 in various models of peripheral neuropathic pain, with the aim of exploring its 
potential as a therapeutic target.
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1 Introduction

Neuropathic pain is a complex condition that results from damage or dysfunction within 
the somatosensory nervous system. It affects about 7–10% of people globally and is particularly 
common among middle-aged individuals and women (van Hecke et al., 2014). There are two 
main types of neuropathic pain based on the underlying cause: central and peripheral. Central 
neuropathic pain arises from damage to the brain or spinal cord, while peripheral neuropathic 
pain is caused by injury to the peripheral nervous system (Scholz et al., 2019). Peripheral 
neuropathic pain is characterized by a wide range of clinical symptoms and a complex 
pathophysiology. These mechanisms are distinct from the pain caused by tissue damage or 
disease. Common symptoms include radicular pain, burning sensations, tingling, and 
numbness (Meacham et al., 2017). In addition to persistent pain, patients often experience 
sleep disturbances, depression, anxiety, and significant difficulties in daily life. These factors 
collectively reduce the overall quality of life for individuals suffering from the condition (Smith 
and Torrance, 2012). Furthermore, peripheral neuropathic pain often does not respond well 
to standard analgesic treatments, which highlights the urgent need for more effective 
therapeutic strategies (Finnerup et al., 2021).

Matrix metalloproteinase-9 (MMP-9), also known as gelatinase B, is a zinc-dependent 
endopeptidase in the matrix metalloproteinase family. MMP-9 regulates interactions between 
cells and the extracellular matrix by breaking down its components. This process influences 
cell migration, inflammation, proliferation, and apoptosis (Cabral-Pacheco et  al., 2020). 
During inflammatory responses, MMP-9 plays a key role in the migration and activation of 
leukocytes. Recent studies have highlighted its crucial involvement in the development and 
progression of several neuropathic conditions, including trigeminal neuralgia, diabetic 
neuropathy, postherpetic neuralgia, and chronic neuropathic pain following peripheral nerve 
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injury (Yin et al., 2019; Singh et al., 2020; Pan et al., 2018; Fan et al., 
2018). Elevated MMP-9 activity is closely linked to post-injury 
inflammation, neuron–glia interactions, and pain signal transmission 
(Umbricht, 2022; Huang et  al., 2021; Remacle et  al., 2015). 
Consequently, MMP-9 has emerged as a key therapeutic target in 
neuropathic pain research.

MMP-9 is encoded by the gelatinase B gene located on human 
chromosome 20. This gene consists of 13 exons and 12 introns. The 
protein encoded by MMP-9 has a complex structure, including a 
signal peptide, propeptide, hinge region, catalytic domain, and a 
hemopexin-like domain (Nagase et al., 2006). The catalytic domain 
contains a fibronectin type II domain, an active site, and a zinc-
binding region that relies on zinc ions for its catalytic function. 
MMP-9’s primary role is the degradation of the extracellular matrix 
(ECM) (Agrawal et  al., 2008). Its structure is shown in Figure  1. 
Additionally, MMP-9 is involved in important biological processes 
such as tissue remodeling, wound healing, skeletal development, and 
immune responses (Qorri et  al., 2018; Hingorani et  al., 2018; 
Malemud, 2006; Bratcher et al., 2012; McClellan et al., 2006).

The expression of MMP-9 is regulated at multiple levels, including 
gene transcription and post-translational modifications. At the 
transcriptional level, transcription factors like activator protein 1 
(AP-1) and nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) regulate MMP-9 expression in response to external 
stimuli such as growth factors, cytokines, and stress signals (Wang 
T. et  al., 2018; Li et  al., 2020; Murthy et  al., 2010). Epigenetic 
modifications, including DNA methylation and histone acetylation, 
also play a significant role in regulating MMP-9 expression 
(Duraisamy et al., 2017; Yeh et al., 2016). At the post-translational 
level, MMP-9 is secreted as an inactive proenzyme (Pro-MMP-9) and 
is activated through cleavage by specific proteases. Membrane-type 
matrix metalloproteinase removes the inhibitory sequence from the 
proenzyme, thus activating its catalytic function (Dreier et al., 2004). 
Furthermore, the activity of MMP-9 is tightly controlled by tissue 
inhibitors of metalloproteinases (TIMPs), which bind to MMP-9 and 
prevent its interaction with substrates. This regulation is critical for 
maintaining the integrity of the extracellular matrix and preventing 
excessive degradation (Filanti et al., 2000).

2 Role of MMP-9 in different types of 
peripheral neuropathic pain

According to the latest classification system by the International 
Association for the Study of Pain (IASP), this paper reviews several 

common subtypes of peripheral neuropathic pain. These include 
trigeminal neuralgia, chronic neuropathic pain after peripheral nerve 
injury, painful polyneuropathy, postherpetic neuralgia, and painful 
radiculopathy (Treede et al., 2019).

2.1 Trigeminal neuralgia

Trigeminal neuralgia (TN) is a well-known condition 
characterized by severe pain along the trigeminal nerve. It is typically 
categorized into three subtypes based on its cause: classical, secondary, 
and idiopathic (Anonymous, 2018). The main symptom of TN is 
sudden, sharp facial pain on one side of the face, often affecting one 
or more branches of the trigeminal nerve (Edlich et al., 2006). Patients 
often describe the pain as sharp, electric shock-like, or stabbing. 
Episodes can last from a few seconds to a few minutes. Pain is 
commonly triggered by mild stimuli such as light facial touch, 
chewing, or even exposure to wind. In some cases, patients may also 
experience involuntary facial muscle contractions or spasms (Jones 
et al., 2019; Bendtsen et al., 2020). Epidemiological studies report an 
annual incidence of TN ranging from 4.3 to 27 cases per 100,000 
individuals. It is more common in people over 60 years old and more 
prevalent in women, with an incidence rate of 5.9 per 100,000 
compared to 3.4 per 100,000 in men (Shaefer et al., 2018).

In classical trigeminal neuralgia, the vascular compression 
hypothesis is the most widely accepted explanation (Anonymous, 
2018). Approximately 50% of cases are attributed to compression by 
the superior cerebellar artery, while about 25% are caused by venous 
compression (Hamlyn and King, 1992). Vascular compression, often 
due to abnormal dilation of intracranial arteries or veins, leads to 
demyelination of the trigeminal nerve root. This results in abnormal 
nerve signaling and pain (Marinković et al., 2009). Moreover, the 
abnormal activation of specific sodium and potassium channels on 
nerve membranes contributes to neuronal hyperexcitability and 
ectopic discharges, key mechanisms in the pathophysiology of TN 
(Liu et al., 2019; Ling et al., 2018). Secondary trigeminal neuralgia is 
usually associated with facial trauma or surgeries involving the 
trigeminal nerve or its branches (Renton et al., 2010). Other factors, 
such as genetic predisposition, infections like postherpetic neuralgia, 
and autoimmune disorders, can impair trigeminal nerve function and 
trigger or worsen pain (Fernández Rodríguez et al., 2019; Wang et al., 
2023; Ferreira et al., 2020).

The main treatment for TN is pharmacological, with 
carbamazepine and other anticonvulsants being the first-line options. 
Botulinum toxin and local anesthetics have also been found to provide 

FIGURE 1

The structure of MMP9. This diagram shows the main structure of MMP9.

https://doi.org/10.3389/fnmol.2025.1647316
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Jia et al.� 10.3389/fnmol.2025.1647316

Frontiers in Molecular Neuroscience 03 frontiersin.org

quick and effective pain relief (Kowacs et al., 2015; Han et al., 2008). 
More recently, novel sodium channel blockers have shown promising 
results in clinical trials (Zakrzewska et al., 2017; Dunbar et al., 2020). 
For patients who do not respond to medication, surgical options such 
as microvascular decompression and nerve block procedures can 
be effective and may be considered either as first-line or secondary 
treatments following recurrence (Xia et al., 2014; Wang et al., 2022).

Recent studies using chronic constriction injury (CCI) models in 
CD-1 mice have shown that MMP-9 and MMP-2 expression increases 
significantly in the trigeminal ganglion at different time points. This 
suggests that MMP-9, in particular, may play a crucial role in the onset 
and progression of trigeminal neuralgia (Yin et al., 2019). In models 
of spinal nerve ligation (SNL) and infraorbital nerve CCI (CCI-IoN), 
blocking MMP-9/2 activity significantly reduces mechanical allodynia. 
This indicates that targeting MMP-9/2 could be a promising strategy 
for pain relief (Henry et  al., 2015). Similarly, in a rat model of 
temporomandibular joint arthritis, mechanical allodynia of the 
trigeminal nerve was observed. This was accompanied by increased 
MMP-9 expression and activity in both the limbic system and 
trigeminal ganglion. These changes may be linked to a reduction in 
immunoreactivity of the voltage-gated K + channel subtype 1.4  in 
trigeminal ganglion neurons (Takeda et al., 2008; Nascimento et al., 
2021). Low-level laser therapy (LLLT) has been shown to reduce 
MMP-9 levels in the trigeminal ganglion, decrease its gelatinolytic 
activity, and alleviate both mechanical allodynia and orofacial 
hyperalgesia. These results suggest that LLLT may aid in tissue repair 
and limit extracellular matrix degradation (Desiderá et  al., 2015; 
Lemos et al., 2016). Taken together, these studies underline the central 
role of MMP-9  in the development of trigeminal neuralgia and 
provide a strong foundation for exploring new treatment options, with 
MMP-9 inhibition emerging as a particularly promising approach.

2.2 Neuropathic pain following peripheral 
nerve injury

Peripheral nerve injury causes both structural damage and 
functional impairments, often accompanied by significant neuropathic 
pain (Lopes et al., 2022). In response to injury, the affected nerve 
region rapidly triggers an inflammatory reaction. This reaction 
recruits immune cells, including macrophages, neutrophils, and 
T-cells (Balog et al., 2023; Moalem et al., 2004). These immune cells 
release proinflammatory mediators such as tumor necrosis factor-
alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and 
prostaglandins. These mediators amplify inflammation and increase 
nerve sensitivity. As a result, pain intensity increases and persists 
(Nadeau et al., 2011; Gui et al., 2016).

Recent studies have shown that MMP-9 plays a key role in the 
development of neuropathic pain. MMP-9 influences the function of 
the voltage-gated sodium channel subunit Nav1.7, which contributes 
to pain onset. It also interacts with N-methyl-D-aspartate receptors 
(NMDARs), which regulate synaptic plasticity and memory formation 
(Remacle et  al., 2015; Wiera et  al., 2017). Specifically, during 
neurodevelopment, MMP-9 accelerates the functional inactivation of 
the Nav1.7 sodium channel by hydrolyzing its external exposed 
region, particularly the structural region between the S5-S6 
transmembrane segments. MMP-9 may also affect neuronal 
conduction by modulating the extracellular matrix and relevant 

signaling pathways. For instance, MMP-9 might influence local 
neuronal conduction properties through its actions on the 
extracellular matrix. Additionally, MMP-9 activity may interact with 
inflammatory response pathways, such as the NF-κB pathway. This 
interaction further exacerbates plasticity changes in the nervous 
system, contributing to pain regulation and other neurodegenerative 
diseases (Hackel et al., 2012; Remacle et al., 2015; Wang et al., 2019). 
In various pain models, MMP-9 has been shown to influence NMDA 
receptors. For example, in the bone cancer pain model, the 
upregulation of MMP-9 activates Ephrin type-B receptor 1. This 
activation enhances the phosphorylation of NMDA receptor subunits 
NR1 and NR2B, leading to increased Ca2+ influx. This amplifies 
downstream signaling, promoting hyperalgesia and opioid tolerance 
(Liu et al., 2011). In a mouse plantar incision model, MMP-9 activity 
significantly increases in the spinal cord and glial cells. This activity 
contributes to postoperative hyperalgesia through the p38/IL-1β 
signaling pathway (Li et al., 2023; Jiang et al., 2020; Gu et al., 2019). 
Similarly, during the early stages of chronic sciatic nerve constriction 
injury in rats, MMP-9 activity is strongly associated with elevated 
levels of the chemokine C-X3-C motif ligand 1 (CX3CL1) (Zhao et al., 
2020). In the sciatic nerve crush (SNC) rat model, overexpression of 
MMP-9 is linked to excessive activation of the TRPV1 channel, 
intensifying pain perception and inflammatory responses (Awad-
Igbaria et al., 2023). Inhibition of MMP-9 activity or expression has 
been shown to effectively alleviate both postoperative and neuropathic 
pain (Lv et al., 2018; Liu et al., 2017). These findings emphasize the 
central role of MMP-9 in nerve injury and pain progression. Further 
research into MMP-9-mediated mechanisms may offer valuable 
insights into the molecular basis of pain and pave the way for 
developing novel therapeutic strategies.

2.3 Painful polyneuropathy

Painful polyneuropathy is generally classified into two main types: 
diabetic and non-diabetic (Scholz et al., 2019). Among these, painful 
diabetic neuropathy (PDN) is the most common, affecting about 
20–30% of people with diabetes (Abbott et al., 2011; Aronson et al., 
2021). Patients with PDN often report sharp, electric shock-like pain 
in their feet. This pain can become chronic and significantly lower 
their quality of life. In many cases, PDN is accompanied by 
psychological issues such as anxiety, depression, and sleep problems 
(Gylfadottir et al., 2020). Although the exact biological mechanisms 
behind PDN remain unclear, treatment primarily focuses on symptom 
relief. Common drugs include tricyclic antidepressants (TCAs), 
duloxetine, pregabalin, and gabapentin (Javed et al., 2015; Iqbal et al., 
2018). However, these medications often cause side effects like nausea, 
drowsiness, and constipation. These adverse effects can reduce patient 
compliance and overall satisfaction with treatment (Tesfaye et al., 
2022). Among non-diabetic causes of painful polyneuropathy, 
chemotherapy-induced peripheral neuropathy (CIPN) is especially 
common. It usually develops after treatment with chemotherapy 
agents such as paclitaxel or cisplatin. Patients with CIPN often 
experience persistent pain, numbness, and increased sensitivity to 
temperature or touch. In severe cases, these symptoms greatly impact 
daily functioning and quality of life (Hu et al., 2019).

PDN involves a complex interplay of multiple biological factors. 
Research has shown the involvement of pro-inflammatory cytokines 
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(such as TNF-α and IL-1β), ion channels in sensory neurons, T-type 
calcium channels, as well as microglia and astrocytes (Yamakawa et al., 
2011; Hangping et al., 2020; Bierhaus et al., 2012; Orestes et al., 2013; 
Liao et al., 2011). Additionally, the accumulation of harmful metabolic 
byproducts—such as reactive oxygen species (ROS), inflammatory 
transcription factors, and glutamate—can further drive the 
progression of PDN (Rivera-Aponte et al., 2015; Rendra et al., 2019). 
Due to the incomplete understanding of these mechanisms, no 
standardized treatment for PDN has been established. CIPN shares 
many of the same biological triggers. These include damage to 
intraepidermal nerve fibers (IENF), oxidative stress, ion channel 
activation, cytokine upregulation, and neuroimmune responses. 
Current treatments mainly rely on anti-inflammatory and pain-relief 
strategies to ease symptoms and improve patient comfort (Koskinen 
et al., 2011; Butturini et al., 2013; Zhang and Dougherty, 2014).

In preclinical studies, diabetic neuropathy models induced by 
streptozotocin in rats show heightened pain sensitivity and altered 
pain signaling. These models are widely used to explore PDN 
mechanisms. Treatments targeting oxidative-nitrosative stress, 
inflammatory cytokines, and MMP-9 activity have demonstrated 
significant reductions in neuropathic symptoms (Singh et al., 2020). 
More recent findings have highlighted a novel role for MMP-9  in 
cleaving beta-dystroglycan (β-DG). Inhibiting MMP-9 also affects the 
expression and localization of aquaporin-4 (AQP4) in the spinal cord’s 
glymphatic system. This modulation may enhance the clearance of 
metabolic waste in the central nervous system and offer a new 
therapeutic pathway for PDN (Li et al., 2024). Furthermore, network 
pharmacology studies have identified MMP-9 as a potential molecular 
target of Dolastatin 16, a compound involved in the TNF signaling 
pathway. Dolastatin 16 is associated with both diabetic foot ulcers and 
PDN. As a potential MMP-9 inhibitor, it may also promote wound 
healing in diabetic patients (Luthfiana and Utomo, 2023). Together, 
these findings suggest that MMP-9 is not only involved in the 
pathophysiology of PDN but also represents a promising target for 
future treatment strategies.

Recent clinical and laboratory studies have also drawn attention 
to the role of MMP-9 in CIPN. In patients receiving chemotherapy, 
higher levels of MMP-9 and high-mobility group box 1 (HMGB1) in 
the blood have been linked to more severe neuropathic symptoms 
(Yang et al., 2023). In animal models, increased MMP-9 expression in 
dorsal root ganglion (DRG) neurons has been associated with pain 
sensitivity, oxidative damage, and inflammation. Mechanistically, 
MMP-9 contributes to extracellular matrix remodeling, promotes 
neuroinflammation, and worsens neuronal injury through pathways 
like the HMGB1–TLR4–PI3K/Akt axis (Gu et al., 2020). Blocking 
MMP-9—either through gene knockout or pharmacological 
inhibition—has been shown to reduce CIPN severity in animal 
models. This evidence points to MMP-9 as a viable therapeutic target. 
Several strategies to inhibit MMP-9 have shown promise. These 
include monoclonal antibodies targeting MMP-9 and small-molecule 
inhibitors like N-acetylcysteine (NAC), which have successfully 
reduced symptoms in preclinical models (Tonello et al., 2019). In 
addition, chemotherapy drugs such as cisplatin can induce cellular 
senescence in neurons. This senescence process is often marked by 
increased MMP-9 expression and the release of inflammatory 
molecules—a phenomenon known as the senescence-associated 
secretory phenotype (SASP) (Acklin et al., 2020; Saleh et al., 2024). 
Altogether, these results underline the central role of MMP-9 in both 

the onset and progression of CIPN. Targeting MMP-9 could open new 
avenues for improving outcomes in cancer patients affected by this 
challenging condition.

2.4 Painful radiculopathy

Painful radiculopathy is typically caused by lesions in the cervical, 
thoracic, lumbar, or sacral nerve roots. Low back pain is the most 
common symptom associated with this condition(Scholz et al., 2019). 
Intervertebral disk herniation is a leading cause of low back pain, 
affecting more than 70% of individuals and often worsening with age 
(Hoy et al., 2010). In addition to severe discomfort, low back pain can 
limit daily activities and lead to occupational disability. This imposes 
a significant burden on patients, their families, and society (Will et al., 
2018). While many patients with acute low back pain recover without 
long-term symptoms or functional impairment through conservative 
treatments, such as education, pharmacological therapy, and physical 
rehabilitation, about 30% experience a recurrence of pain within 
1 year. In some cases, this can progress to chronic low back pain (da 
Silva et al., 2017).

The underlying mechanisms of chronic low back pain remain 
debated. It is generally believed that its onset is closely linked to 
mechanical compression of nerve roots due to intervertebral disk 
herniation, accompanied by local inflammatory responses (Erbüyün 
et al., 2018). Chronic low back pain is often triggered by a combination 
of neuropathic and nociceptive pain mechanisms (Freynhagen et al., 
2006; Kaki et al., 2005). Furthermore, intervertebral disk degeneration 
is considered a key factor contributing to low back pain (Peng, 2013). 
As individuals age, cellular senescence and phenotypic changes, 
alongside dysfunction of the extracellular matrix (ECM), lead to early 
degenerative changes in the intervertebral disks. These changes, in 
turn, trigger inflammatory responses that contribute to the 
progression of pain (Bermudez-Lekerika et al., 2022; Lyu et al., 2021).

Current clinical guidelines recommend maintaining physical 
activity and engaging in regular exercise to manage chronic low back 
pain. Analgesics can be  used when necessary. Nonsteroidal anti-
inflammatory drugs (NSAIDs) are among the most commonly 
prescribed treatments. Short-term use of NSAIDs has been shown to 
alleviate pain effectively (Piccoliori et al., 2013). However, despite their 
analgesic and anti-inflammatory effects, NSAIDs can cause 
gastrointestinal and cardiovascular side effects (Sostres et al., 2013; 
Wehling, 2014). Because chronic low back pain often involves both 
neuropathic and nociceptive components, combining different types 
of analgesics is a rational approach to treatment. Personalized 
combination therapy can improve analgesic efficacy while minimizing 
the risk of side effects by reducing the dosages of individual 
medications (Müller-Schwefe et al., 2017).

For patients with chronic low back pain due to identifiable causes, 
such as nerve root compression from intervertebral disk herniation or 
spinal stenosis, surgery may be  considered, especially in cases of 
severe pain. Lumbar fusion surgery has been shown to significantly 
reduce pain and improve functional outcomes (Helm Ii et al., 2012; 
Trescot et al., 2007). Some studies suggest that lumbar fusion surgery 
may influence MMP-9 activity by altering the mechanical load on the 
intervertebral disks or modulating the local inflammatory 
environment (Omair et al., 2013; Zhang et al., 2018). However, despite 
various surgical options, a thorough preoperative evaluation is 
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essential (Chopko et al., 2014). Recent evidence suggests that long-
term outcomes of surgical and non-surgical treatments are similar, 
highlighting the importance of carefully weighing the risks and high 
costs associated with spinal surgery (Mannion et al., 2013). Therefore, 
a comprehensive multidisciplinary rehabilitation program, combining 
pharmacological treatment, physical rehabilitation, psychological 
support, and addressing social and occupational factors, is 
recommended for optimal outcomes in patients with chronic low back 
pain (Guzmán et al., 2001).

Intervertebral disk degeneration (IDD) is characterized by cellular 
loss, ECM degradation, and reduced spinal flexibility (Yabe et al., 
2015). Previous studies suggest that slowing ECM degradation may 
help delay disk degeneration (Gao et al., 2024). MMP-9, a key enzyme 
involved in ECM degradation, plays an important role in IDD, making 
it a potential therapeutic target. Research has shown that MMP-9 
expression is upregulated in degenerated intervertebral disks (Wang 
W. J. et  al., 2018). Inhibition of MMP-9 expression—via siRNA-
mediated gene silencing, small molecule inhibitors (e.g., SB-3CT), or 
modulation through upstream signaling pathways such as miR-21/
PTEN/Akt/mTOR—has been shown to reduce ECM breakdown and 
inflammatory responses in vitro NP cell models and in vivo rat models 
of IDD (Li et al., 2017; Gong et al., 2023; Shin et al., 2016). These 
findings suggest that controlling MMP-9 activity may slow the 
progression of disk degeneration. Additionally, genetic polymorphisms 
of MMP-9 have been identified as independent predictive factors for 
chronic low back pain and may influence patient recovery (Bjorland 
et al., 2019; Bjorland et al., 2017). MMP-9 also plays a significant role 
in low back pain associated with pregnancy, likely due to changes in 
the pelvic ligament ECM components caused by the rs17576 A > G 
polymorphism in the MMP-9 gene (Mahmood et al., 2018). While 
MMP-9 shows potential as a therapeutic target, its clinical feasibility 
is still under investigation. The development of selective MMP-9 
inhibitors suitable for clinical use has been limited by issues such as 
off-target effects and poor bioavailability. Further studies using animal 
models and clinical samples are needed to assess the long-term 
efficacy and safety of these inhibitors (Kamieniak et al., 2019) (Table 1; 
Figure 2).

3 Discussion

Peripheral neuropathic pain places a heavy burden on both the 
body and mind. While current treatments can relieve some symptoms, 
they often fall short due to limited effectiveness, drug resistance, or 
side effects. As a result, there is an urgent need to uncover new 
molecular mechanisms and develop more targeted therapies. Among 
the molecules involved, matrix metalloproteinase-9 (MMP-9) has 
drawn increasing attention over the past decades. It is known for its 
key role in neuroinflammation and nerve remodeling in 
neuropathic pain.

MMP-9 contributes to pain progression by degrading extracellular 
matrix (ECM) components. This breakdown facilitates the infiltration 
of inflammatory cells and enhances its own expression, creating a 
feedback loop that worsens pain (Adams et al., 2015; Kwan et al., 
2019). In addition, MMP-9 influences neuron–glia interactions and 
promotes nerve regeneration and axon growth, which are critical for 
recovery after nerve injury (Kim et al., 2012; Lu et al., 2022). It also 
indirectly affects how pain signals are transmitted by regulating 

cytokines and chemokines. For example, MMP-9 can degrade nerve 
growth factor (NGF) released by glial cells, which in turn affects pain 
sensitivity (Osikowicz et al., 2013). Furthermore, MMP-9 increases 
the permeability of the blood–brain barrier, allowing inflammatory 
molecules to enter the central nervous system and activate central 
pain pathways (Wang et al., 2024). The role of MMP-9 differs across 
pain types. In mechanical allodynia, it activates the NLRP3 
inflammasome, which promotes the release of IL-1β and triggers a 
strong inflammatory response in the central nervous system (Deng 
et al., 2021). An imbalance between MMP-9 and its inhibitor TIMP1 
has also been linked to pain. Disruption of the EZH2/TIMP1-MMP9 
axis can activate the NLRP3 inflammasome and increase IL-1β 
secretion, further amplifying pain, especially in chronic constriction 
injury (CCI) models (Wan et  al., 2025). MMP-9 also alters pain 
signaling by disrupting neuroglial interactions, breaking down 
neurotrophic factors such as NGF, and regulating ion channels like 
TRPV1 or transcription factors such as E74-like factor 1 (Li et al., 
2023; Zhang et al., 2023). In thermal hyperalgesia, its involvement in 
nerve remodeling and pathways like PKC signaling appears more 
pronounced (Moon et al., 2012; Kim et al., 2014). Overall, higher 
levels of MMP-9 are often associated with more severe pain. Blocking 
MMP-9 activity has been shown to relieve symptoms in multiple 
experimental models, making it a promising therapeutic target 
(Table 2).

The function of MMP-9 varies significantly between pain models. 
This may be due to its presence in different cell types, such as neurons 
and immune cells, and its interaction with specific ECM components 
(Folgueras et al., 2009; Martins-Oliveira et al., 2009). These differences 
suggest that treatments targeting MMP-9 should be tailored to the 
specific form of neuropathic pain. For example, in trigeminal 
neuralgia, which is often caused by vascular compression, the 
inflammatory role of MMP-9 may be more relevant (Henry et al., 
2015). In contrast, in long-term neuropathic pain, its impact on nerve 
remodeling and regeneration becomes more important (Tonello et al., 
2019). Optimizing drug development based on MMP-9’s specific 
function in each condition is essential. Evidence from animal studies 
shows that reducing MMP-9 activity can ease pain-related behaviors 
and hyperalgesia after nerve injury (Chattopadhyay et al., 2007; Zhang 
et  al., 2016). Several inhibitors of MMP-9, such as BB-1101 and 
SB-3CT, have shown strong results in preclinical models. They reduce 
inflammation and protect neurons, contributing to pain relief 
(Demestre et al., 2004; Yin et al., 2019). Recent small-scale clinical 
studies echo these findings. For instance, Chu et al. (2020) found that 
patients with greater reductions in plasma MMP-9 levels after video-
assisted thoracoscopic surgery reported less postoperative pain. This 
clinical observation supports the theory that MMP-9 plays a key role 
in pain regulation. Likewise, Ferianec et al. (2020) reported higher 
MMP-9 levels in patients with chronic pain, suggesting a link between 
circulating MMP-9 and pain severity. Taken together, both 
experimental and clinical data highlight the importance of MMP-9 in 
neuropathic pain. Targeting its activity could offer a new direction for 
developing effective and personalized pain therapies (Ferianec et al., 
2020; Chu et al., 2020).

Recent studies have highlighted the role of MMP-9 in peripheral 
neuropathic pain. MMP-9 inhibitors are now under investigation as 
potential therapies. Several naturally derived compounds, such as 
β-sitosterol, resveratrol, mangiferin, and epigallocatechin-3-gallate, 
have shown analgesic effects in experimental models (Mohajeri et al., 
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2020; Lin et al., 2019; Tohge and Fernie, 2017; Yiemwattana et al., 
2019; Subedi and Gaire, 2021). These agents also show promise in 
treating inflammatory and degenerative conditions. However, many 
of them are not selective for MMP-9. Their pain-relieving effects likely 
involve multiple mechanisms, including antioxidant and anti-
inflammatory actions. Thus, the observed benefits cannot be attributed 
to MMP-9 inhibition alone.

Although MMP-9 is an attractive therapeutic target, its clinical 
application remains challenging. It interacts with inflammatory 
mediators such as IL-1β, TNF-α, and NMDA receptors, placing it 
at the center of neuropathic pain regulation (Berta et al., 2012). A 
deeper understanding of these interactions is needed to develop 
effective combination strategies that reduce the drawbacks of 
monotherapy. Another challenge comes from the dual role of 
MMP-9  in nerve repair. After peripheral nerve injury, MMP-9 

supports regeneration by regulating communication between 
neurons and glial cells (Kawasaki et al., 2008). Excessive inhibition 
can ease pain, but over-inhibition may block repair (LeBert et al., 
2015). Therefore, strategies must strike a balance: suppressing pain 
without halting neural recovery. MMP-9 also influences sodium 
channels, such as Nav1.7, and receptors including TRPV1, which 
play major roles in neuropathic pain (Remacle et al., 2015; Awad-
Igbaria et al., 2023). E During neural repair, these interactions may 
be critical for pain development (Kim et al., 2012). This indicates 
that combining MMP-9 inhibitors with agents targeting sodium 
channels, NMDA receptors, or TRPV1 may improve efficacy and 
lower drug resistance. Still, most evidence so far comes from 
rodent models. Differences in expression patterns, immune 
responses, and pain phenotypes between species limit translation 
to humans. In addition, many studies rely on broad 

TABLE 1  The role of MMP-9 in different peripheral neuropathic pain models (preclinical studies).

Neuropathic pain 
model

MMP-9 expression Mechanisms involved Key findings Key references

Chronic constriction injury of 

trigeminal nerve (mice)

MMP-9 was significantly 

upregulated in the trigeminal 

ganglion at early stages after 

CCI.

The TLR-4/NF-κB signaling 

pathway and SOCS3-mediated 

regulation were implicated in 

MMP-9/2 activation and pain 

sensitization.

Resveratrol pretreatment 

reduced MMP-9/2 activation 

and inflammatory cytokines

Yin et al. (2019)

Spinal nerve ligation model; 

chronic constriction injury of 

infraorbital nerve (rat)

Implicated indirectly via effect of 

MMP-2/−9 inhibition; not 

directly measured

Inhibition of MMP-2 and 

MMP-9 was shown to reduce 

mechanical allodynia

AQU-118, an MMP-2/9 

inhibitor, demonstrated 

comparable efficacy to 

gabapentin

Henry et al. (2015)

Spinal nerve ligation (mice) MMP-9 upregulated in spinal 

cord and DRG during 

neuroinflammation; Naru-3 

reduces its expression

MMP-9/IL-1β signaling 

pathway-mediated microglia 

activation and inflammatory 

loop via p38/IL-1β axis

MMP-9 and IL-1β are key 

therapeutic targets of Naru-3’s 

synergistic analgesic effects

Zhou et al. (2023)

Sciatic nerve crush (rat) MMP-9 expression increased 

after sciatic nerve crush; 

significantly reduced by 

Hyperbaric oxygen therapy in 

DRG and spinal cord

MMP-9 involved in 

inflammatory response; 

Hyperbaric oxygen therapy 

reduces MMP-9, TRPV1, 

cytokines (TNFα, IL-6, IL-1β), 

and mitochondrial stress 

(TSPO)

Hyperbaric oxygen therapy 

modulates inflammation and 

mitochondrial function, reduces 

neuronal apoptosis, and prevents 

progression from acute to 

chronic neuropathic pain

Awad-Igbaria et al. (2023)

Chronic constriction injury 

(rat)

Upregulated rapidly (as early as 

3 h post-CCI)

MMP-9 and MMP-2 mediate 

TNF-α activation and receptor 

modulation, contributing to 

axonal degeneration and 

endoneurial inflammation.

Targeting MMP-9 and MMP-2 

may help prevent TNF-α-

mediated neuroinflammation 

and pain in neuropathic 

conditions.

Shubayev and Myers (2000)

Chronic constriction injury 

(rat)

MMP-9 expression was 

significantly upregulated by CCI 

and downregulated following 

GDNF treatment.

GDNF mitigates neural injury 

by inhibiting microglial 

activation and inflammatory 

cytokines via p38 and PKC 

signaling pathways.

GDNF shows anti-inflammatory 

and neuroprotective effects, 

making it a potential therapeutic 

option for CCI-induced 

neuropathic pain.

Chou et al. (2014)

Partial sciatic nerve ligation 

(mice)

Upregulated after PSNL; 

suppressed by anti-HMGB1 

antibody

HMGB1 upregulates MMP-9 in 

injured nerve; both contribute 

to mechanical hypersensitivity

Blocking HMGB1 or inhibiting 

MMP-9 reduces neuropathic 

pain

Zhang et al. (2016)

Painful diabetic neuropathy 

(rat)

MMP-9 expression was 

significantly increased in PDN 

rats

Inhibiting the expression of 

MMP9 can alleviate PDN

MMP-9 is a potential therapeutic 

target for improving PDN

Li et al. (2024)

https://doi.org/10.3389/fnmol.2025.1647316
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Jia et al.� 10.3389/fnmol.2025.1647316

Frontiers in Molecular Neuroscience 07 frontiersin.org

pharmacological inhibitors that carry off-target effects or trigger 
compensatory activation of other MMPs, such as MMP-2. These 
issues point to the need for selective genetic and proteomic 
approaches to define MMP-9’s precise role.

Clinical research will also be  critical. Current preclinical 
findings show that MMP-9 inhibitors can reduce pain in animal 
models (Kwan et al., 2019). However, our study has limitations. 
Because we used non-selective compounds and broad-spectrum 
inhibitors, we  cannot conclude that MMP-9 alone drives the 
observed effects. Future studies should use more selective tools—
such as monoclonal antibodies, gene knockouts, or highly specific 
inhibitors—to clarify its exact contribution. Functional studies 
with these tools would also help minimize off-target concerns. 
Past failures of MMP inhibitors in clinical cancer trials remind us 
of the risks. These drugs lacked specificity, produced unacceptable 
side effects, and disrupted the function of MMPs with protective 
roles (Vandenbroucke and Libert, 2014). To avoid repeating this 
pattern, future success will depend on developing selective 
inhibitors that target disease-relevant MMPs like MMP-9, while 
sparing beneficial ones. Combining MMP-9 inhibition with agents 
targeting sodium channels, NMDA receptors, or TRPV1 may also 
offer synergistic benefits. In addition, advanced delivery systems, 
such as nanoparticles, could improve localization and reduce 
systemic toxicity. A clearer understanding of the context-specific 
functions of MMP-9 will guide the design of these new 
therapeutic strategies.

To move MMP-9 closer to clinical use as a treatment target, 
comprehensive and systematic clinical trials are needed to evaluate its 
efficacy, safety, and long-term effects. Additionally, given the 
variability among patients, precision medicine strategies based on 
MMP-9 could represent a major breakthrough in treating neuropathic 
pain. With rapid advancements in big data, artificial intelligence, and 
precision medicine, many studies now integrate genomics, proteomics, 
and clinical data to better understand MMP-9 and its pathways in 
various neuropathic pain types. This approach offers more precise 
evidence for personalized treatments (Knight et al., 2019; Osthues 
et al., 2020). Moreover, network pharmacology has identified new 
drug targets related to MMP-9, broadening the treatment options for 
neuropathic pain (Jo et al., 2023). However, these methods are still in 
early stages, and their clinical effectiveness has yet to be rigorously 
tested in large patient populations. The lack of standardized 
biomarkers for MMP-9 activity in human tissues makes it difficult to 
categorize patients or track therapeutic responses. Additionally, 
previous attempts to develop MMP inhibitors for cancer and 
inflammatory diseases failed in clinical trials due to poor specificity 
and adverse effects. These failures raise concerns about the safety and 
feasibility of MMP-9 inhibitors in managing chronic pain. Therefore, 
future clinical applications of MMP-9 inhibitors must be preceded by 
developing highly selective agents and robust diagnostic tools to guide 
targeted therapy.

In summary, MMP-9 plays a key role in the onset and 
progression of various types of peripheral neuropathic pain. 

FIGURE 2

The Role and Mechanisms of Matrix Metalloproteinase-9 in Peripheral Neuropathic Pain. MMP9 plays distinct roles in different types of peripheral 
neuropathic pain, particularly in conditions such as trigeminal neuralgia, neuropathic pain following peripheral nerve injury, painful polyneuropathy, 
and painful radiculopathy. This diagram highlights its crucial involvement in the pathophysiological processes of these disorders, underscoring its key 
role in their pathogenesis.

https://doi.org/10.3389/fnmol.2025.1647316
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Jia et al.� 10.3389/fnmol.2025.1647316

Frontiers in Molecular Neuroscience 08 frontiersin.org

Although its clinical application is still in early stages, growing 
clinical evidence supports its potential as both a biomarker and a 
therapeutic target. Importantly, clinical studies have begun to 
confirm mechanisms previously identified in preclinical models. 
For example, clinical data show that patients who experienced 
better postoperative analgesia after video-assisted thoracoscopic 
surgery lobectomy also had lower plasma MMP-9 levels, indicating 
its role in pain modulation (Chu et al., 2020). Other studies have 
found correlations between plasma MMP-9 levels and symptom 
severity in patients with acute coronary syndrome, suggesting that 
MMP-9 could be used as a biomarker for disease progression and 
patient stratification (Hamed and Fattah, 2015; Kobayashi et al., 
2011). Although these studies do not yet demonstrate direct 
therapeutic modulation of MMP-9, they highlight its importance 
in human disease and support further investigation in 
precision medicine.

Taken together, these findings highlight the complex role of 
MMP-9 and other MMP isoforms in chronic pain. Targeted 
inhibition of specific MMP isoforms—particularly MMP-2 and 
MMP-9—has shown promise in reducing neuropathic pain while 
preserving normal matrix remodeling. However, challenges remain 
regarding specificity, pharmacokinetics, and off-target effects. 
Additionally, the potential of MMPs as diagnostic and prognostic 
biomarkers requires further validation, particularly for 
distinguishing between inflammatory and neuropathic pain. 
MMPs also modulate glial activation and neuroimmune 
interactions, making them key players in central sensitization and 
the persistence of chronic pain. Innovative techniques such as gene 
editing (e.g., CRISPR/Cas9) and RNA interference (e.g., siRNA, 
miRNA) offer promising approaches to selectively suppress MMP 
expression in targeted neural regions. These strategies could 
overcome the limitations of traditional small-molecule inhibitors. 

TABLE 2  Summary of major clinical studies.

Population Intervention Study design Key findings Limitations Key references

14 healthy participants Acupuncture was applied at 

specific points used in the 

treatment of spinal cord 

injury.

Interventional study Acupuncture 

significantly decreased 

BDNF and MMP-9 

levels in peripheral 

blood.

Small sample size and lack 

of clinical outcomes 

related to spinal cord 

injury.

Moldenhauer et al. (2010)

21 patients with Guillain-

Barré syndrome

Plasma MMP-9 levels Observational 

correlation study

Higher plasma MMP-9 

levels were associated 

with demyelination and 

peripheral nerve 

dysfunction in Guillain-

Barré syndrome.

Small sample size and lack 

of causal inference.

Sharshar et al. (2002)

86 patients with refractory 

diabetic dermal ulcers

Patients received either 

standard wound care or 

standard care plus topical 

application of autologous 

platelet-rich gel (APG).

Randomized controlled 

trial

Topical APG 

significantly reduced 

ulcer area and improved 

proteolytic balance by 

lowering MMPs and 

increasing TIMP-1.

Lacks long-term follow-up 

and detailed analysis of 

systemic effects.

He et al. (2012)

33 patients with chronic 

diabetic foot lesions (UT 

stage 2a)

Patients received either 

standard wound care or 

standard care plus daily 

application of ORC/collagen 

protease-inhibiting matrix.

Interventional study The ORC/collagen 

matrix reduced the 

MMP-9/TIMP-2 ratio

Small sample size and 

short follow-up duration 

limited to 8 days

Lobmann et al. (2006)

12 patients with non-

healing diabetic foot 

ulcers

Participants were 

randomized to receive 

non-contact low-frequency 

ultrasound (NCLF-US) 

either three times or once 

per week, or no ultrasound 

treatment.

Prospective randomized 

clinical trial

Thrice-weekly NCLF-

US treatment 

significantly reduced 

wound area and was 

associated with 

decreased MMP-9, 

pro-inflammatory 

cytokines and improved 

healing.

Small sample size, limiting 

the generalizability of the 

results

Yao et al. (2014)

24 patients with diabetic 

foot ulcers

Topical propolis was applied 

to diabetic foot ulcers

Controlled Clinical 

Trial

Topical propolis 

significantly improved 

ulcer healing rates and 

reduced bacterial load 

and MMP-9 activity 

compared to controls.

Small sample size, single-

center design, and use of a 

non-randomized control 

group.

Henshaw et al. (2014)
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At the same time, understanding the interactions between MMPs 
and other pain-related pathways, such as Toll-like receptors, 
pro-inflammatory cytokines, and ion channels, may uncover 
additional targets for combination therapies. Future research 
should integrate these mechanistic insights with translational 
strategies, advancing MMP-targeted therapeutics that are not only 
effective but also safe and clinically viable. Ultimately, deepening 
our understanding of MMP biology in chronic pain will 
be  essential in bridging the gap between bench research and 
clinical application.
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Glossary

AP-1 - Activator protein 1

AQP4 - Aquaporin 4

β-DG - Beta-dystroglycan

CX3CL1 - C-X3-C motif chemokine ligand 1

CCI - Chronic constriction injury

CCI-IoN - Chronic constriction injury of the infraorbital nerve

CIPN - Chemotherapy-induced peripheral neuropathy

DRG - Dorsal root ganglion

ECM - Extracellular matrix

HMGB1 - High-mobility group box 1

IASP - International Association for the Study of Pain

IDD - Intervertebral disk degeneration

IENF - Intraepidermal nerve fibers

IL-1β - Interleukin-1 beta

IL-6 - Interleukin-6

LLLT - Low-level laser therapy

MMP-9 - Matrix metalloproteinase-9

MMPs - Matrix metalloproteinases

NGF - Nerve growth factor

NMDAR - N-methyl-D-aspartate receptors

NR1 - N-methyl-D-aspartate receptor subunit 1

NR2B - N-methyl-D-aspartate receptor subunit 2B

NSAIDs - Non-steroidal anti-inflammatory drugs

NF-κB - Nuclear factor kappa-light-chain-enhancer of activated B cells

PDN - Painful diabetic neuropathy

ROS - Reactive oxygen species

SASP - Senescence-associated secretory phenotype

SNC - Sciatic nerve crush

SNL - Spinal nerve ligation

TCAs - Tricyclic antidepressants

TIMPs - Tissue inhibitor of metalloproteinases

TN - Trigeminal neuralgia

TNF-α - Tumor necrosis factor-alpha

TRPV1 - Transient receptor potential vanilloid 1

Nav1.7 - Voltage-gated sodium channel subunit alpha-7
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