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common among middle-aged individuals and women (van Hecke et al., 2014). There are two
main types of neuropathic pain based on the underlying cause: central and peripheral. Central
neuropathic pain arises from damage to the brain or spinal cord, while peripheral neuropathic
pain is caused by injury to the peripheral nervous system (Scholz et al., 2019). Peripheral
neuropathic pain is characterized by a wide range of clinical symptoms and a complex
pathophysiology. These mechanisms are distinct from the pain caused by tissue damage or
disease. Common symptoms include radicular pain, burning sensations, tingling, and
numbness (Meacham et al., 2017). In addition to persistent pain, patients often experience
sleep disturbances, depression, anxiety, and significant difficulties in daily life. These factors
collectively reduce the overall quality of life for individuals suffering from the condition (Smith
and Torrance, 2012). Furthermore, peripheral neuropathic pain often does not respond well
to standard analgesic treatments, which highlights the urgent need for more effective
therapeutic strategies (Finnerup et al., 2021).

Matrix metalloproteinase-9 (MMP-9), also known as gelatinase B, is a zinc-dependent
endopeptidase in the matrix metalloproteinase family. MMP-9 regulates interactions between
cells and the extracellular matrix by breaking down its components. This process influences
cell migration, inflammation, proliferation, and apoptosis (Cabral-Pacheco et al., 2020).
During inflammatory responses, MMP-9 plays a key role in the migration and activation of
leukocytes. Recent studies have highlighted its crucial involvement in the development and
progression of several neuropathic conditions, including trigeminal neuralgia, diabetic
neuropathy, postherpetic neuralgia, and chronic neuropathic pain following peripheral nerve
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injury (Yin et al,, 2019; Singh et al., 2020; Pan et al., 2018; Fan et al.,
2018). Elevated MMP-9 activity is closely linked to post-injury
inflammation, neuron-glia interactions, and pain signal transmission
(Umbricht, 2022; Huang et al, 2021; Remacle et al, 2015).
Consequently, MMP-9 has emerged as a key therapeutic target in
neuropathic pain research.

MMP-9 is encoded by the gelatinase B gene located on human
chromosome 20. This gene consists of 13 exons and 12 introns. The
protein encoded by MMP-9 has a complex structure, including a
signal peptide, propeptide, hinge region, catalytic domain, and a
hemopexin-like domain (Nagase et al., 2006). The catalytic domain
contains a fibronectin type II domain, an active site, and a zinc-
binding region that relies on zinc ions for its catalytic function.
MMP-9’s primary role is the degradation of the extracellular matrix
(ECM) (Agrawal et al., 2008). Its structure is shown in Figure 1.
Additionally, MMP-9 is involved in important biological processes
such as tissue remodeling, wound healing, skeletal development, and
immune responses (Qorri et al, 2018; Hingorani et al., 2018;
Malemud, 2006; Bratcher et al., 2012; McClellan et al., 2006).

The expression of MMP-9 is regulated at multiple levels, including
gene transcription and post-translational modifications. At the
transcriptional level, transcription factors like activator protein 1
(AP-1) and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) regulate MMP-9 expression in response to external
stimuli such as growth factors, cytokines, and stress signals (Wang
T. et al,, 2018; Li et al., 2020; Murthy et al., 2010). Epigenetic
modifications, including DNA methylation and histone acetylation,
also play a significant role in regulating MMP-9 expression
(Duraisamy et al., 2017; Yeh et al., 2016). At the post-translational
level, MMP-9 is secreted as an inactive proenzyme (Pro-MMP-9) and
is activated through cleavage by specific proteases. Membrane-type
matrix metalloproteinase removes the inhibitory sequence from the
proenzyme, thus activating its catalytic function (Dreier et al., 2004).
Furthermore, the activity of MMP-9 is tightly controlled by tissue
inhibitors of metalloproteinases (TIMPs), which bind to MMP-9 and
prevent its interaction with substrates. This regulation is critical for
maintaining the integrity of the extracellular matrix and preventing
excessive degradation (Filanti et al., 2000).

2 Role of MMP-9 in different types of
peripheral neuropathic pain

According to the latest classification system by the International
Association for the Study of Pain (IASP), this paper reviews several

10.3389/fnmol.2025.1647316

common subtypes of peripheral neuropathic pain. These include
trigeminal neuralgia, chronic neuropathic pain after peripheral nerve
injury, painful polyneuropathy, postherpetic neuralgia, and painful
radiculopathy (Treede et al.,, 2019).

2.1 Trigeminal neuralgia

(TN)
characterized by severe pain along the trigeminal nerve. It is typically

Trigeminal neuralgia is a well-known condition
categorized into three subtypes based on its cause: classical, secondary,
and idiopathic (Anonymous, 2018). The main symptom of TN is
sudden, sharp facial pain on one side of the face, often affecting one
or more branches of the trigeminal nerve (Edlich et al., 2006). Patients
often describe the pain as sharp, electric shock-like, or stabbing.
Episodes can last from a few seconds to a few minutes. Pain is
commonly triggered by mild stimuli such as light facial touch,
chewing, or even exposure to wind. In some cases, patients may also
experience involuntary facial muscle contractions or spasms (Jones
etal., 2019; Bendtsen et al., 2020). Epidemiological studies report an
annual incidence of TN ranging from 4.3 to 27 cases per 100,000
individuals. It is more common in people over 60 years old and more
prevalent in women, with an incidence rate of 5.9 per 100,000
compared to 3.4 per 100,000 in men (Shaefer et al., 2018).

In classical trigeminal neuralgia, the vascular compression
hypothesis is the most widely accepted explanation (Anonymous,
2018). Approximately 50% of cases are attributed to compression by
the superior cerebellar artery, while about 25% are caused by venous
compression (Hamlyn and King, 1992). Vascular compression, often
due to abnormal dilation of intracranial arteries or veins, leads to
demyelination of the trigeminal nerve root. This results in abnormal
nerve signaling and pain (Marinkovi¢ et al., 2009). Moreover, the
abnormal activation of specific sodium and potassium channels on
nerve membranes contributes to neuronal hyperexcitability and
ectopic discharges, key mechanisms in the pathophysiology of TN
(Liu et al., 2019; Ling et al., 2018). Secondary trigeminal neuralgia is
usually associated with facial trauma or surgeries involving the
trigeminal nerve or its branches (Renton et al., 2010). Other factors,
such as genetic predisposition, infections like postherpetic neuralgia,
and autoimmune disorders, can impair trigeminal nerve function and
trigger or worsen pain (Fernandez Rodriguez et al., 2019; Wang et al.,
2023; Ferreira et al., 2020).

The main treatment for TN is pharmacological, with
carbamazepine and other anticonvulsants being the first-line options.
Botulinum toxin and local anesthetics have also been found to provide

FIGURE 1
The structure of MMP9. This diagram shows the main structure of MMP9.
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quick and effective pain relief (Kowacs et al., 2015; Han et al., 2008).
More recently, novel sodium channel blockers have shown promising
results in clinical trials (Zakrzewska et al., 2017; Dunbar et al., 2020).
For patients who do not respond to medication, surgical options such
as microvascular decompression and nerve block procedures can
be effective and may be considered either as first-line or secondary
treatments following recurrence (Xia et al., 2014; Wang et al., 2022).
Recent studies using chronic constriction injury (CCI) models in
CD-1 mice have shown that MMP-9 and MMP-2 expression increases
significantly in the trigeminal ganglion at different time points. This
suggests that MMP-9, in particular, may play a crucial role in the onset
and progression of trigeminal neuralgia (Yin et al., 2019). In models
of spinal nerve ligation (SNL) and infraorbital nerve CCI (CCI-IoN),
blocking MMP-9/2 activity significantly reduces mechanical allodynia.
This indicates that targeting MMP-9/2 could be a promising strategy
for pain relief (Henry et al., 2015). Similarly, in a rat model of
temporomandibular joint arthritis, mechanical allodynia of the
trigeminal nerve was observed. This was accompanied by increased
MMP-9 expression and activity in both the limbic system and
trigeminal ganglion. These changes may be linked to a reduction in
immunoreactivity of the voltage-gated K + channel subtype 1.4 in
trigeminal ganglion neurons (Takeda et al., 2008; Nascimento et al.,
2021). Low-level laser therapy (LLLT) has been shown to reduce
MMP-9 levels in the trigeminal ganglion, decrease its gelatinolytic
activity, and alleviate both mechanical allodynia and orofacial
hyperalgesia. These results suggest that LLLT may aid in tissue repair
and limit extracellular matrix degradation (Desiderd et al., 2015;
Lemos et al., 2016). Taken together, these studies underline the central
role of MMP-9 in the development of trigeminal neuralgia and
provide a strong foundation for exploring new treatment options, with
MMP-9 inhibition emerging as a particularly promising approach.

2.2 Neuropathic pain following peripheral
nerve injury

Peripheral nerve injury causes both structural damage and
functional impairments, often accompanied by significant neuropathic
pain (Lopes et al., 2022). In response to injury, the affected nerve
region rapidly triggers an inflammatory reaction. This reaction
recruits immune cells, including macrophages, neutrophils, and
T-cells (Balog et al., 2023; Moalem et al., 2004). These immune cells
release proinflammatory mediators such as tumor necrosis factor-
alpha (TNF-a), interleukin-1 beta (IL-1p), interleukin-6 (IL-6), and
prostaglandins. These mediators amplify inflammation and increase
nerve sensitivity. As a result, pain intensity increases and persists
(Nadeau et al., 2011; Gui et al., 2016).

Recent studies have shown that MMP-9 plays a key role in the
development of neuropathic pain. MMP-9 influences the function of
the voltage-gated sodium channel subunit Nav1.7, which contributes
to pain onset. It also interacts with N-methyl-D-aspartate receptors
(NMDARSs), which regulate synaptic plasticity and memory formation
(Remacle et al., 2015; Wiera et al., 2017). Specifically, during
neurodevelopment, MMP-9 accelerates the functional inactivation of
the Navl.7 sodium channel by hydrolyzing its external exposed
region, particularly the structural region between the S5-S6
transmembrane segments. MMP-9 may also affect neuronal
conduction by modulating the extracellular matrix and relevant
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signaling pathways. For instance, MMP-9 might influence local
neuronal conduction properties through its actions on the
extracellular matrix. Additionally, MMP-9 activity may interact with
inflammatory response pathways, such as the NF-kB pathway. This
interaction further exacerbates plasticity changes in the nervous
system, contributing to pain regulation and other neurodegenerative
diseases (Hackel et al., 2012; Remacle et al., 2015; Wang et al., 2019).
In various pain models, MMP-9 has been shown to influence NMDA
receptors. For example, in the bone cancer pain model, the
upregulation of MMP-9 activates Ephrin type-B receptor 1. This
activation enhances the phosphorylation of NMDA receptor subunits
NR1 and NR2B, leading to increased Ca** influx. This amplifies
downstream signaling, promoting hyperalgesia and opioid tolerance
(Liu et al,, 2011). In a mouse plantar incision model, MMP-9 activity
significantly increases in the spinal cord and glial cells. This activity
contributes to postoperative hyperalgesia through the p38/IL-1p
signaling pathway (Li et al., 2023; Jiang et al., 2020; Gu et al., 2019).
Similarly, during the early stages of chronic sciatic nerve constriction
injury in rats, MMP-9 activity is strongly associated with elevated
levels of the chemokine C-X3-C motifligand 1 (CX3CL1) (Zhao et al.,
2020). In the sciatic nerve crush (SNC) rat model, overexpression of
MMP-9 is linked to excessive activation of the TRPV1 channel,
intensifying pain perception and inflammatory responses (Awad-
Igbaria et al., 2023). Inhibition of MMP-9 activity or expression has
been shown to effectively alleviate both postoperative and neuropathic
pain (Lv et al., 2018; Liu et al., 2017). These findings emphasize the
central role of MMP-9 in nerve injury and pain progression. Further
research into MMP-9-mediated mechanisms may offer valuable
insights into the molecular basis of pain and pave the way for
developing novel therapeutic strategies.

2.3 Painful polyneuropathy

Painful polyneuropathy is generally classified into two main types:
diabetic and non-diabetic (Scholz et al., 2019). Among these, painful
diabetic neuropathy (PDN) is the most common, affecting about
20-30% of people with diabetes (Abbott et al., 2011; Aronson et al.,
2021). Patients with PDN often report sharp, electric shock-like pain
in their feet. This pain can become chronic and significantly lower
their quality of life. In many cases, PDN is accompanied by
psychological issues such as anxiety, depression, and sleep problems
(Gylfadottir et al., 2020). Although the exact biological mechanisms
behind PDN remain unclear, treatment primarily focuses on symptom
relief. Common drugs include tricyclic antidepressants (TCAs),
duloxetine, pregabalin, and gabapentin (Javed et al., 2015; Igbal et al.,
2018). However, these medications often cause side effects like nausea,
drowsiness, and constipation. These adverse effects can reduce patient
compliance and overall satisfaction with treatment (Tesfaye et al.,
2022). Among non-diabetic causes of painful polyneuropathy,
chemotherapy-induced peripheral neuropathy (CIPN) is especially
common. It usually develops after treatment with chemotherapy
agents such as paclitaxel or cisplatin. Patients with CIPN often
experience persistent pain, numbness, and increased sensitivity to
temperature or touch. In severe cases, these symptoms greatly impact
daily functioning and quality of life (Hu et al., 2019).

PDN involves a complex interplay of multiple biological factors.
Research has shown the involvement of pro-inflammatory cytokines
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(such as TNF-a and IL-1/), ion channels in sensory neurons, T-type
calcium channels, as well as microglia and astrocytes (Yamakawa et al.,
2011; Hangping et al., 2020; Bierhaus et al., 2012; Orestes et al., 2013;
Liao etal., 2011). Additionally, the accumulation of harmful metabolic
byproducts—such as reactive oxygen species (ROS), inflammatory
transcription factors, and glutamate—can further drive the
progression of PDN (Rivera-Aponte et al., 2015; Rendra et al., 2019).
Due to the incomplete understanding of these mechanisms, no
standardized treatment for PDN has been established. CIPN shares
many of the same biological triggers. These include damage to
intraepidermal nerve fibers (IENF), oxidative stress, ion channel
activation, cytokine upregulation, and neuroimmune responses.
Current treatments mainly rely on anti-inflammatory and pain-relief
strategies to ease symptoms and improve patient comfort (Koskinen
etal,, 2011; Butturini et al., 2013; Zhang and Dougherty, 2014).

In preclinical studies, diabetic neuropathy models induced by
streptozotocin in rats show heightened pain sensitivity and altered
pain signaling. These models are widely used to explore PDN
mechanisms. Treatments targeting oxidative-nitrosative stress,
inflammatory cytokines, and MMP-9 activity have demonstrated
significant reductions in neuropathic symptoms (Singh et al., 2020).
More recent findings have highlighted a novel role for MMP-9 in
cleaving beta-dystroglycan (B-DG). Inhibiting MMP-9 also affects the
expression and localization of aquaporin-4 (AQP4) in the spinal cord’s
glymphatic system. This modulation may enhance the clearance of
metabolic waste in the central nervous system and offer a new
therapeutic pathway for PDN (Li et al., 2024). Furthermore, network
pharmacology studies have identified MMP-9 as a potential molecular
target of Dolastatin 16, a compound involved in the TNF signaling
pathway. Dolastatin 16 is associated with both diabetic foot ulcers and
PDN. As a potential MMP-9 inhibitor, it may also promote wound
healing in diabetic patients (Luthfiana and Utomo, 2023). Together,
these findings suggest that MMP-9 is not only involved in the
pathophysiology of PDN but also represents a promising target for
future treatment strategies.

Recent clinical and laboratory studies have also drawn attention
to the role of MMP-9 in CIPN. In patients receiving chemotherapy,
higher levels of MMP-9 and high-mobility group box 1 (HMGBI) in
the blood have been linked to more severe neuropathic symptoms
(Yang et al., 2023). In animal models, increased MMP-9 expression in
dorsal root ganglion (DRG) neurons has been associated with pain
sensitivity, oxidative damage, and inflammation. Mechanistically,
MMP-9 contributes to extracellular matrix remodeling, promotes
neuroinflammation, and worsens neuronal injury through pathways
like the HMGB1-TLR4-PI3K/Akt axis (Gu et al., 2020). Blocking
MMP-9—either through gene knockout or pharmacological
inhibition—has been shown to reduce CIPN severity in animal
models. This evidence points to MMP-9 as a viable therapeutic target.
Several strategies to inhibit MMP-9 have shown promise. These
include monoclonal antibodies targeting MMP-9 and small-molecule
inhibitors like N-acetylcysteine (NAC), which have successfully
reduced symptoms in preclinical models (Tonello et al., 2019). In
addition, chemotherapy drugs such as cisplatin can induce cellular
senescence in neurons. This senescence process is often marked by
increased MMP-9 expression and the release of inflammatory
molecules—a phenomenon known as the senescence-associated
secretory phenotype (SASP) (Acklin et al., 2020; Saleh et al., 2024).
Altogether, these results underline the central role of MMP-9 in both
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the onset and progression of CIPN. Targeting MMP-9 could open new
avenues for improving outcomes in cancer patients affected by this
challenging condition.

2.4 Painful radiculopathy

Painful radiculopathy is typically caused by lesions in the cervical,
thoracic, lumbar, or sacral nerve roots. Low back pain is the most
common symptom associated with this condition(Scholz et al., 2019).
Intervertebral disk herniation is a leading cause of low back pain,
affecting more than 70% of individuals and often worsening with age
(Hoy etal., 2010). In addition to severe discomfort, low back pain can
limit daily activities and lead to occupational disability. This imposes
a significant burden on patients, their families, and society (Will et al.,
2018). While many patients with acute low back pain recover without
long-term symptoms or functional impairment through conservative
treatments, such as education, pharmacological therapy, and physical
rehabilitation, about 30% experience a recurrence of pain within
1 year. In some cases, this can progress to chronic low back pain (da
Silva et al., 2017).

The underlying mechanisms of chronic low back pain remain
debated. It is generally believed that its onset is closely linked to
mechanical compression of nerve roots due to intervertebral disk
herniation, accompanied by local inflammatory responses (Erbiiyiin
etal., 2018). Chronic low back pain is often triggered by a combination
of neuropathic and nociceptive pain mechanisms (Freynhagen et al.,
2006; Kaki et al., 2005). Furthermore, intervertebral disk degeneration
is considered a key factor contributing to low back pain (Peng, 2013).
As individuals age, cellular senescence and phenotypic changes,
alongside dysfunction of the extracellular matrix (ECM), lead to early
degenerative changes in the intervertebral disks. These changes, in
turn, trigger inflammatory responses that contribute to the
progression of pain (Bermudez-Lekerika et al., 2022; Lyu et al., 2021).

Current clinical guidelines recommend maintaining physical
activity and engaging in regular exercise to manage chronic low back
pain. Analgesics can be used when necessary. Nonsteroidal anti-
inflammatory drugs (NSAIDs) are among the most commonly
prescribed treatments. Short-term use of NSAIDs has been shown to
alleviate pain effectively (Piccoliori et al., 2013). However, despite their
analgesic and anti-inflammatory effects, NSAIDs can cause
gastrointestinal and cardiovascular side effects (Sostres et al., 2013;
Wehling, 2014). Because chronic low back pain often involves both
neuropathic and nociceptive components, combining different types
of analgesics is a rational approach to treatment. Personalized
combination therapy can improve analgesic efficacy while minimizing
the risk of side effects by reducing the dosages of individual
medications (Miiller-Schwefe et al., 2017).

For patients with chronic low back pain due to identifiable causes,
such as nerve root compression from intervertebral disk herniation or
spinal stenosis, surgery may be considered, especially in cases of
severe pain. Lumbar fusion surgery has been shown to significantly
reduce pain and improve functional outcomes (Helm Ii et al., 2012;
Trescot et al., 2007). Some studies suggest that lumbar fusion surgery
may influence MMP-9 activity by altering the mechanical load on the
intervertebral disks or modulating the local inflammatory
environment (Omair et al., 2013; Zhang et al., 2018). However, despite
various surgical options, a thorough preoperative evaluation is
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essential (Chopko et al., 2014). Recent evidence suggests that long-
term outcomes of surgical and non-surgical treatments are similar,
highlighting the importance of carefully weighing the risks and high
costs associated with spinal surgery (Mannion et al., 2013). Therefore,
a comprehensive multidisciplinary rehabilitation program, combining
pharmacological treatment, physical rehabilitation, psychological
support, and addressing social and occupational factors, is
recommended for optimal outcomes in patients with chronic low back
pain (Guzman et al,, 2001).

Intervertebral disk degeneration (IDD) is characterized by cellular
loss, ECM degradation, and reduced spinal flexibility (Yabe et al.,
2015). Previous studies suggest that slowing ECM degradation may
help delay disk degeneration (Gao et al., 2024). MMP-9, a key enzyme
involved in ECM degradation, plays an important role in IDD, making
it a potential therapeutic target. Research has shown that MMP-9
expression is upregulated in degenerated intervertebral disks (Wang
W. J. et al., 2018). Inhibition of MMP-9 expression—via siRNA-
mediated gene silencing, small molecule inhibitors (e.g., SB-3CT), or
modulation through upstream signaling pathways such as miR-21/
PTEN/Akt/mTOR—has been shown to reduce ECM breakdown and
inflammatory responses in vitro NP cell models and in vivo rat models
of IDD (Li et al., 2017; Gong et al., 2023; Shin et al., 2016). These
findings suggest that controlling MMP-9 activity may slow the
progression of disk degeneration. Additionally, genetic polymorphisms
of MMP-9 have been identified as independent predictive factors for
chronic low back pain and may influence patient recovery (Bjorland
etal, 2019; Bjorland et al., 2017). MMP-9 also plays a significant role
in low back pain associated with pregnancy, likely due to changes in
the pelvic ligament ECM components caused by the rs17576 A > G
polymorphism in the MMP-9 gene (Mahmood et al., 2018). While
MMP-9 shows potential as a therapeutic target, its clinical feasibility
is still under investigation. The development of selective MMP-9
inhibitors suitable for clinical use has been limited by issues such as
off-target effects and poor bioavailability. Further studies using animal
models and clinical samples are needed to assess the long-term
efficacy and safety of these inhibitors (Kamieniak et al., 2019) (Table 1;
Figure 2).

3 Discussion

Peripheral neuropathic pain places a heavy burden on both the
body and mind. While current treatments can relieve some symptoms,
they often fall short due to limited effectiveness, drug resistance, or
side effects. As a result, there is an urgent need to uncover new
molecular mechanisms and develop more targeted therapies. Among
the molecules involved, matrix metalloproteinase-9 (MMP-9) has
drawn increasing attention over the past decades. It is known for its
key role in neuroinflammation and nerve remodeling in
neuropathic pain.

MMP-9 contributes to pain progression by degrading extracellular
matrix (ECM) components. This breakdown facilitates the infiltration
of inflammatory cells and enhances its own expression, creating a
feedback loop that worsens pain (Adams et al., 2015; Kwan et al,,
2019). In addition, MMP-9 influences neuron-glia interactions and
promotes nerve regeneration and axon growth, which are critical for
recovery after nerve injury (Kim et al., 2012; Lu et al,, 2022). It also
indirectly affects how pain signals are transmitted by regulating
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cytokines and chemokines. For example, MMP-9 can degrade nerve
growth factor (NGF) released by glial cells, which in turn affects pain
sensitivity (Osikowicz et al., 2013). Furthermore, MMP-9 increases
the permeability of the blood-brain barrier, allowing inflammatory
molecules to enter the central nervous system and activate central
pain pathways (Wang et al., 2024). The role of MMP-9 differs across
pain types. In mechanical allodynia, it activates the NLRP3
inflammasome, which promotes the release of IL-1/ and triggers a
strong inflammatory response in the central nervous system (Deng
etal., 2021). An imbalance between MMP-9 and its inhibitor TIMP1
has also been linked to pain. Disruption of the EZH2/TIMP1-MMP9
axis can activate the NLRP3 inflammasome and increase IL-1p
secretion, further amplifying pain, especially in chronic constriction
injury (CCI) models (Wan et al., 2025). MMP-9 also alters pain
signaling by disrupting neuroglial interactions, breaking down
neurotrophic factors such as NGEF, and regulating ion channels like
TRPV1 or transcription factors such as E74-like factor 1 (Li et al,,
2023; Zhang et al., 2023). In thermal hyperalgesia, its involvement in
nerve remodeling and pathways like PKC signaling appears more
pronounced (Moon et al., 2012; Kim et al., 2014). Overall, higher
levels of MMP-9 are often associated with more severe pain. Blocking
MMP-9 activity has been shown to relieve symptoms in multiple
experimental models, making it a promising therapeutic target
(Table 2).

The function of MMP-9 varies significantly between pain models.
This may be due to its presence in different cell types, such as neurons
and immune cells, and its interaction with specific ECM components
(Folgueras et al., 2009; Martins-Oliveira et al., 2009). These differences
suggest that treatments targeting MMP-9 should be tailored to the
specific form of neuropathic pain. For example, in trigeminal
neuralgia, which is often caused by vascular compression, the
inflammatory role of MMP-9 may be more relevant (Henry et al.,
2015). In contrast, in long-term neuropathic pain, its impact on nerve
remodeling and regeneration becomes more important (Tonello et al.,
2019). Optimizing drug development based on MMP-9’s specific
function in each condition is essential. Evidence from animal studies
shows that reducing MMP-9 activity can ease pain-related behaviors
and hyperalgesia after nerve injury (Chattopadhyay et al., 2007; Zhang
et al., 2016). Several inhibitors of MMP-9, such as BB-1101 and
SB-3CT, have shown strong results in preclinical models. They reduce
inflammation and protect neurons, contributing to pain relief
(Demestre et al., 2004; Yin et al., 2019). Recent small-scale clinical
studies echo these findings. For instance, Chu et al. (2020) found that
patients with greater reductions in plasma MMP-9 levels after video-
assisted thoracoscopic surgery reported less postoperative pain. This
clinical observation supports the theory that MMP-9 plays a key role
in pain regulation. Likewise, Ferianec et al. (2020) reported higher
MMP-9 levels in patients with chronic pain, suggesting a link between
circulating MMP-9 and pain severity. Taken together, both
experimental and clinical data highlight the importance of MMP-9 in
neuropathic pain. Targeting its activity could offer a new direction for
developing effective and personalized pain therapies (Ferianec et al.,
2020; Chu et al., 2020).

Recent studies have highlighted the role of MMP-9 in peripheral
neuropathic pain. MMP-9 inhibitors are now under investigation as
potential therapies. Several naturally derived compounds, such as
f-sitosterol, resveratrol, mangiferin, and epigallocatechin-3-gallate,
have shown analgesic effects in experimental models (Mohajeri et al.,
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TABLE 1 The role of MMP-9 in different peripheral neuropathic pain models (preclinical studies).

Neuropathic pain
model

MMP-9 expression

Mechanisms involved

Key findings

10.3389/fnmol.2025.1647316

Key references

Chronic constriction injury of

trigeminal nerve (mice)

MMP-9 was significantly
upregulated in the trigeminal
ganglion at early stages after
CCL

The TLR-4/NF-kB signaling
pathway and SOCS3-mediated
regulation were implicated in
MMP-9/2 activation and pain

sensitization.

Resveratrol pretreatment
reduced MMP-9/2 activation

and inflammatory cytokines

Yin et al. (2019)

Spinal nerve ligation model;
chronic constriction injury of

infraorbital nerve (rat)

Implicated indirectly via effect of
MMP-2/-9 inhibition; not

directly measured

Inhibition of MMP-2 and
MMP-9 was shown to reduce

mechanical allodynia

AQU-118, an MMP-2/9
inhibitor, demonstrated
comparable efficacy to

gabapentin

Henry et al. (2015)

Spinal nerve ligation (mice)

MMP-9 upregulated in spinal
cord and DRG during
neuroinflammation; Naru-3

reduces its expression

MMP-9/IL-1p signaling
pathway-mediated microglia
activation and inflammatory

loop via p38/IL-1p axis

MMP-9 and IL-1p are key
therapeutic targets of Naru-3’s

synergistic analgesic effects

Zhou et al. (2023)

Sciatic nerve crush (rat)

MMP-9 expression increased
after sciatic nerve crush;
significantly reduced by
Hyperbaric oxygen therapy in
DRG and spinal cord

MMP-9 involved in
inflammatory response;
Hyperbaric oxygen therapy
reduces MMP-9, TRPV1,
cytokines (TNFa, IL-6, IL-1p),
and mitochondrial stress

(TSPO)

Hyperbaric oxygen therapy
modulates inflammation and
mitochondrial function, reduces
neuronal apoptosis, and prevents
progression from acute to

chronic neuropathic pain

Awad-Igbaria et al. (2023)

Chronic constriction injury

(rat)

Upregulated rapidly (as early as
3 h post-CCI)

MMP-9 and MMP-2 mediate
TNF-a activation and receptor
modulation, contributing to
axonal degeneration and

endoneurial inflammation.

Targeting MMP-9 and MMP-2
may help prevent TNF-a-
mediated neuroinflammation
and pain in neuropathic

conditions.

Shubayev and Myers (2000)

Chronic constriction injury

(rat)

MMP-9 expression was
significantly upregulated by CCI

and downregulated following

GDNF mitigates neural injury
by inhibiting microglial

activation and inflammatory

GDNF shows anti-inflammatory
and neuroprotective effects,

making it a potential therapeutic

Chou et al. (2014)

(mice)

suppressed by anti-HMGB1
antibody

injured nerve; both contribute

to mechanical hypersensitivity

MMP-9 reduces neuropathic

pain

GDNF treatment. cytokines via p38 and PKC option for CCI-induced
signaling pathways. neuropathic pain.
Partial sciatic nerve ligation Upregulated after PSNL; HMGBI upregulates MMP-9 in | Blocking HMGBI or inhibiting Zhang et al. (2016)

Painful diabetic neuropathy
(rat)

MMP-9 expression was
significantly increased in PDN

rats

Inhibiting the expression of

MMP9 can alleviate PDN

MMP-9 is a potential therapeutic
target for improving PDN

Lietal. (2024)

20205 Lin et al., 2019; Tohge and Fernie, 2017; Yiemwattana et al.,
2019; Subedi and Gaire, 2021). These agents also show promise in
treating inflammatory and degenerative conditions. However, many
of them are not selective for MMP-9. Their pain-relieving effects likely
involve multiple mechanisms, including antioxidant and anti-
inflammatory actions. Thus, the observed benefits cannot be attributed
to MMP-9 inhibition alone.

Although MMP-9 is an attractive therapeutic target, its clinical
application remains challenging. It interacts with inflammatory
mediators such as IL-1f, TNF-a, and NMDA receptors, placing it
at the center of neuropathic pain regulation (Berta et al., 2012). A
deeper understanding of these interactions is needed to develop
effective combination strategies that reduce the drawbacks of
monotherapy. Another challenge comes from the dual role of
MMP-9 in nerve repair. After peripheral nerve injury, MMP-9
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supports regeneration by regulating communication between
neurons and glial cells (Kawasaki et al., 2008). Excessive inhibition
can ease pain, but over-inhibition may block repair (LeBert et al.,
2015). Therefore, strategies must strike a balance: suppressing pain
without halting neural recovery. MMP-9 also influences sodium
channels, such as Navl.7, and receptors including TRPV1, which
play major roles in neuropathic pain (Remacle et al., 2015; Awad-
Igbaria et al., 2023). E During neural repair, these interactions may
be critical for pain development (Kim et al., 2012). This indicates
that combining MMP-9 inhibitors with agents targeting sodium
channels, NMDA receptors, or TRPV1 may improve efficacy and
lower drug resistance. Still, most evidence so far comes from
rodent models. Differences in expression patterns, immune
responses, and pain phenotypes between species limit translation
to humans. In addition, studies

many rely on broad
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FIGURE 2
The Role and Mechanisms of Matrix Metalloproteinase-9 in Peripheral Neuropathic Pain. MMP9 plays distinct roles in different types of peripheral
neuropathic pain, particularly in conditions such as trigeminal neuralgia, neuropathic pain following peripheral nerve injury, painful polyneuropathy,
and painful radiculopathy. This diagram highlights its crucial involvement in the pathophysiological processes of these disorders, underscoring its key
role in their pathogenesis.

pharmacological inhibitors that carry off-target effects or trigger
compensatory activation of other MMPs, such as MMP-2. These
issues point to the need for selective genetic and proteomic
approaches to define MMP-9’s precise role.

Clinical research will also be critical. Current preclinical
findings show that MMP-9 inhibitors can reduce pain in animal
models (Kwan et al., 2019). However, our study has limitations.
Because we used non-selective compounds and broad-spectrum
inhibitors, we cannot conclude that MMP-9 alone drives the
observed effects. Future studies should use more selective tools—
such as monoclonal antibodies, gene knockouts, or highly specific
inhibitors—to clarify its exact contribution. Functional studies
with these tools would also help minimize off-target concerns.
Past failures of MMP inhibitors in clinical cancer trials remind us
of the risks. These drugs lacked specificity, produced unacceptable
side effects, and disrupted the function of MMPs with protective
roles (Vandenbroucke and Libert, 2014). To avoid repeating this
pattern, future success will depend on developing selective
inhibitors that target disease-relevant MMPs like MMP-9, while
sparing beneficial ones. Combining MMP-9 inhibition with agents
targeting sodium channels, NMDA receptors, or TRPV1 may also
offer synergistic benefits. In addition, advanced delivery systems,
such as nanoparticles, could improve localization and reduce
systemic toxicity. A clearer understanding of the context-specific
functions of MMP-9 will guide the design of these new
therapeutic strategies.
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To move MMP-9 closer to clinical use as a treatment target,
comprehensive and systematic clinical trials are needed to evaluate its
efficacy, safety, and long-term effects. Additionally, given the
variability among patients, precision medicine strategies based on
MMP-9 could represent a major breakthrough in treating neuropathic
pain. With rapid advancements in big data, artificial intelligence, and
precision medicine, many studies now integrate genomics, proteomics,
and clinical data to better understand MMP-9 and its pathways in
various neuropathic pain types. This approach offers more precise
evidence for personalized treatments (Knight et al., 2019; Osthues
et al., 2020). Moreover, network pharmacology has identified new
drug targets related to MMP-9, broadening the treatment options for
neuropathic pain (Jo et al., 2023). However, these methods are still in
early stages, and their clinical effectiveness has yet to be rigorously
tested in large patient populations. The lack of standardized
biomarkers for MMP-9 activity in human tissues makes it difficult to
categorize patients or track therapeutic responses. Additionally,
previous attempts to develop MMP inhibitors for cancer and
inflammatory diseases failed in clinical trials due to poor specificity
and adverse effects. These failures raise concerns about the safety and
feasibility of MMP-9 inhibitors in managing chronic pain. Therefore,
future clinical applications of MMP-9 inhibitors must be preceded by
developing highly selective agents and robust diagnostic tools to guide
targeted therapy.

In summary, MMP-9 plays a key role in the onset and
progression of various types of peripheral neuropathic pain.
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TABLE 2 Summary of major clinical studies.

Population

Intervention

Study design

Key findings

10.3389/fnmol.2025.1647316

Limitations

Key references

14 healthy participants

Acupuncture was applied at
specific points used in the
treatment of spinal cord

injury.

Interventional study

Acupuncture
significantly decreased
BDNF and MMP-9
levels in peripheral
blood.

Small sample size and lack
of clinical outcomes
related to spinal cord

injury.

Moldenhauer et al. (2010)

21 patients with Guillain-

Barré syndrome

Plasma MMP-9 levels

Observational

correlation study

Higher plasma MMP-9
levels were associated
with demyelination and
peripheral nerve
dysfunction in Guillain-

Barré syndrome.

Small sample size and lack

of causal inference.

Sharshar et al. (2002)

86 patients with refractory

diabetic dermal ulcers

Patients received either
standard wound care or
standard care plus topical
application of autologous
platelet-rich gel (APG).

Randomized controlled

trial

Topical APG
significantly reduced
ulcer area and improved
proteolytic balance by
lowering MMPs and
increasing TIMP-1.

Lacks long-term follow-up
and detailed analysis of

systemic effects.

He et al. (2012)

33 patients with chronic
diabetic foot lesions (UT

stage 2a)

Patients received either
standard wound care or
standard care plus daily
application of ORC/collagen

protease-inhibiting matrix.

Interventional study

The ORC/collagen
matrix reduced the

MMP-9/TIMP-2 ratio

Small sample size and
short follow-up duration

limited to 8 days

Lobmann et al. (2006)

12 patients with non-
healing diabetic foot

ulcers

Participants were
randomized to receive
non-contact low-frequency
ultrasound (NCLF-US)
either three times or once
per week, or no ultrasound

treatment.

Prospective randomized

clinical trial

Thrice-weekly NCLF-
US treatment
significantly reduced
wound area and was
associated with
decreased MMP-9,
pro-inflammatory

cytokines and improved

Small sample size, limiting
the generalizability of the

results

Yao et al. (2014)

ulcer healing rates and
reduced bacterial load
and MMP-9 activity

compared to controls.

healing.
24 patients with diabetic Topical propolis was applied | Controlled Clinical Topical propolis Small sample size, single- Henshaw et al. (2014)
foot ulcers to diabetic foot ulcers Trial significantly improved center design, and use of a

non-randomized control

group.

Although its clinical application is still in early stages, growing
clinical evidence supports its potential as both a biomarker and a
therapeutic target. Importantly, clinical studies have begun to
confirm mechanisms previously identified in preclinical models.
For example, clinical data show that patients who experienced
better postoperative analgesia after video-assisted thoracoscopic
surgery lobectomy also had lower plasma MMP-9 levels, indicating
its role in pain modulation (Chu et al., 2020). Other studies have
found correlations between plasma MMP-9 levels and symptom
severity in patients with acute coronary syndrome, suggesting that
MMP-9 could be used as a biomarker for disease progression and
patient stratification (Hamed and Fattah, 2015; Kobayashi et al.,
2011). Although these studies do not yet demonstrate direct
therapeutic modulation of MMP-9, they highlight its importance
in human disease and support further investigation in
precision medicine.
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Taken together, these findings highlight the complex role of
MMP-9 and other MMP isoforms in chronic pain. Targeted
inhibition of specific MMP isoforms—particularly MMP-2 and
MMP-9—has shown promise in reducing neuropathic pain while
preserving normal matrix remodeling. However, challenges remain
regarding specificity, pharmacokinetics, and off-target effects.
Additionally, the potential of MMPs as diagnostic and prognostic
further
distinguishing between inflammatory and neuropathic pain.

biomarkers requires validation, particularly for
MMPs also modulate glial activation and neuroimmune
interactions, making them key players in central sensitization and
the persistence of chronic pain. Innovative techniques such as gene
editing (e.g., CRISPR/Cas9) and RNA interference (e.g., siRNA,
miRNA) offer promising approaches to selectively suppress MMP
expression in targeted neural regions. These strategies could

overcome the limitations of traditional small-molecule inhibitors.
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At the same time, understanding the interactions between MMPs
and other pain-related pathways, such as Toll-like receptors,
pro-inflammatory cytokines, and ion channels, may uncover
additional targets for combination therapies. Future research
should integrate these mechanistic insights with translational
strategies, advancing MMP-targeted therapeutics that are not only
effective but also safe and clinically viable. Ultimately, deepening
our understanding of MMP biology in chronic pain will
be essential in bridging the gap between bench research and
clinical application.
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Glossary

AP-1 - Activator protein 1

AQP4 - Aquaporin 4

B-DG - Beta-dystroglycan

CX3CLI - C-X3-C motif chemokine ligand 1

CCI - Chronic constriction injury

CCI-IoN - Chronic constriction injury of the infraorbital nerve
CIPN - Chemotherapy-induced peripheral neuropathy
DRG - Dorsal root ganglion

ECM - Extracellular matrix

HMGBI1 - High-mobility group box 1

IASP - International Association for the Study of Pain
IDD - Intervertebral disk degeneration

IENF - Intraepidermal nerve fibers

IL-1f - Interleukin-1 beta

IL-6 - Interleukin-6

LLLT - Low-level laser therapy

MMP-9 - Matrix metalloproteinase-9
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MMPs - Matrix metalloproteinases

NGF - Nerve growth factor

NMDAR - N-methyl-D-aspartate receptors

NR1 - N-methyl-D-aspartate receptor subunit 1
NR2B - N-methyl-D-aspartate receptor subunit 2B
NSAIDs - Non-steroidal anti-inflammatory drugs
NEF-kB - Nuclear factor kappa-light-chain-enhancer of activated B cells
PDN - Painful diabetic neuropathy

ROS - Reactive oxygen species

SASP - Senescence-associated secretory phenotype
SNC - Sciatic nerve crush

SNL - Spinal nerve ligation

TCAs - Tricyclic antidepressants

TIMPs - Tissue inhibitor of metalloproteinases
TN - Trigeminal neuralgia

TNF-a - Tumor necrosis factor-alpha

TRPV1 - Transient receptor potential vanilloid 1

Navl.7 - Voltage-gated sodium channel subunit alpha-7
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