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Introduction: Stress involves complex interactions between the brain and
endocrine systems, but the gene-level processes and genetic factors mediating
these responses remain unclear. This study investigates gene expression patterns
and allele-specific expression (ASE) in key limbic, diencephalon and endocrine
tissues to better understand stress adaptation at the molecular level.

Methods: We performed RNA sequencing on 48 samples from six distinct tissues:
amygdala, hippocampus, thalamus, hypothalamus, pituitary gland, and adrenal
gland. These tissues were categorized into three functionally and anatomically
distinct groups: limbic (amygdala, hippocampus), diencephalon (thalamus,
hypothalamus), and endocrine (pituitary, adrenal). Differential expression
analyses were conducted both between individual tissues and across these tissue
groups. Weighted Gene Co-expression Network Analysis (WGCNA) was applied
exclusively at the tissue group level to identify group-specific gene networks.
Allele-specific expression (ASE) was analyzed at the individual tissue level to
capture cis-regulatory variation with high resolution.

Results: Thirty-three candidate genes were differentially expressed across all
tissues, indicating a core set involved in stress responses. Weighted Gene
Co-expression Network Analysis revealed limbic and diencephalon modules
enriched in neural signaling pathways such as neuroactive ligand-receptor
interaction and synaptic functions, while endocrine modules were enriched for
hormone biosynthesis and secretion, including thyroid and growth hormone
pathways. Over 1,000 genes per tissue showed ASE, with 37 genes consistently
colocalized. Ten of these displayed differences in allelic ratios, with seven (PINK1,
TTLL1,SLA-DRB1,HEBP1,ANKRD10, LCMT1, and SDF2) identified as eQTLs in pig
brain tissue within the FarmGTEx database.

Conclusion: The findings reveal significant genetic regulation differences
between brain and endocrine tissues, emphasizing the complexity of stress
adaptation. By identifying key genes and pathways, this study provides insights
that could aid in enhancing animal welfare and productivity through targeted
modulation of stress-related molecular pathways.
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1 Introduction

Understanding pig stress responses is vital for improving
animal welfare and productivity in farm settings. The cognitive
and regulatory processes in a pig’s brain underlie a complex
stress response system that enables the animal to assess and
cope with environmental challenges. Stressors, which are external
factors that compromise the animal’s physical or psychological
condition, activate this system. These may include overcrowding,
abrupt weaning, transportation, loud or unpredictable noise, rough
handling, social isolation, and a lack of environmental enrichment
(Lisowski et al., 2011; Perdomo-Sabogal et al., 2022; Papatsiros
etal., 2024; Ajay et al., 2025). The process of controlling these stress
responses is regulated by the coordination of the limbic system,
including structures such as the amygdala, hippocampus, thalamus,
hypothalamus, and the hypothalamus-pituitary—adrenal axis (HPA
axis) (Mormede et al., 2007; Mormede, 2008). As mammals, pigs
share these limbic structures with other species, including humans,
reflecting an evolutionarily conserved mechanism underlying
emotional and physiological responses to stress (Kanitz et al., 2019).
This homology strengthens the translational value of pig models for
studying stress-related neurobiological processes (Lind et al., 2007;
Gimsa et al,, 2018). Several studies have previously reported that
the limbic system and endocrine glands are central to the health
and optimal performance of farm animals, as they regulate stress
responses, growth, and overall physiological balance (Manteuffel,
2002; Smith and Vale, 2006; MohanKumar et al., 2012; Gley et al.,
2021).

Advancements in high-throughput sequencing have greatly
enhanced transcriptomic analysis, providing deeper insights into
gene expression dynamics and driving interest in allele-specific
expression (ASE) research. Pigs, as important farm animals with
significant economic and biomedical relevance, present a need to
better understand the genetic regulation underlying complex traits
such as growth, reproduction, and disease resistance (Mote and
Rothschild, 2020). Traditional genetic studies alone often fall short
in explaining this regulatory complexity, prompting a demand
for tools that offer finer-resolution insights into gene expression
control (Connally et al., 2022). The use of RNA sequencing in
livestock research has expanded beyond traditional gene expression
profiling, enabling cost-effective variant detection. It offers an
alternative to whole-genome sequencing while overcoming the
limitations of exome sequencing technologies (Han et al., 2015;
Jehl et al, 2021). By analyzing transcriptomic data, variants
within expressed regions can be identified, allowing for the
investigation of cis-regulated genes through ASE analysis, a
method that has become widely used since the introduction of
RNA-seq technology (Montgomery et al., 2010; Pickrell et al,
2010; Battle et al., 2014; Deelen et al., 2015; GTEx Consortium,
2020). The use of RNA sequencing enables the differentiation
of transcripts derived from an individual’s two haplotypes using
heterozygous markers, making ASE an effective tool for studying
cis-regulatory variation. The strength of this approach lies in its
ability to detect regulatory differences directly from transcribed
regions, offering high-resolution, gene-specific insights in a cost-
effective manner even with modest sample sizes. This enables
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the identification of functional variants with greater precision
than broader eQTL studies, supporting more informed breeding
strategies and improved trait selection (Schliekelman, 2008;
Chamberlain et al., 2015; Pirinen et al., 2015).

Prior studies have well-documented that ASE detection from
RNA sequencing is reliable when there is a heterozygous site in
the gene’s cis-regulatory region (Jehl et al., 2021; Igbal et al., 2023).
Studies in mice and humans increasingly show that variations in
regulatory mechanisms, affect gene expression levels, detected as
an allele-specific expression or allelic imbalance (Serre et al., 2008).
For instance, a study found that over 80% of mouse genes exhibit
cis-regulatory variation (Crowley et al., 2015). A comprehensive
human study by the GTEx Consortium used transcriptomic data
from various tissues including 11 brain regions to investigate gene
expression and ASE across tissues (GTEx Consortium et al., 2015).
Similarly, the Farm Animal GTEx (FarmGTEXx) project has created
an atlas of regulatory variants for domestic animal species. Notably,
PigGTEx resources are freely accessible at http://piggtex.farmgtex.
org (Teng et al., 2024).

ASE detection methods have evolved, from analyzing
individual samples using tools like QuASAR (Harvey et al., 2015),
to evaluating ASE across single nucleotide polymorphisms (SNPs)
within a gene with methods like MBASED (Mayba et al., 2014) and
GeneiASE (Edsgard et al., 2016). Recently, ASEP (Allele-Specific
Expression Analysis in a Population) has enabled ASE detection
across multiple individuals, utilizing a generalized linear mixed-
effects model that accounts for correlations of SNPs within the
same gene (Fan et al., 2020).

In this study, we used RNA sequencing to analyze
transcriptomic profiles and ASE across six tissues from the
brain and endocrine system: amygdala (Amy), hippocampus (Hip),
thalamus (Tal), hypothalamus (HT), pituitary gland (PG), and
adrenal gland (AG). A total of 48 samples (8 per tissue) from the
same animals minimized genetic variability and environmental
noise, enhancing the robustness of our analysis. Differential
expression analysis was performed both between individual tissues
and between neuroanatomically and physiologically defined tissue
groups (limbic, diencephalon, and endocrine). WGCNA was
conducted at the tissue group, enabling broader detection of
co-expression patterns and functional enrichments. ASE analysis
at the individual tissue level revealed over 1,000 genes with allele-
specific expression per tissue, including 37 shared across tissues.
These shared ASE genes were further assessed for tissue-specific
allelic ratios and functional relevance.

Through integrated analysis of gene expression, differential
expression, WGCNA, ASE, and functional enrichment, our
study uncovers distinct molecular signatures related to stress
response, growth, and homeostasis across limbic, diencephalon,
and endocrine tissue groups in livestock. We identified gene
networks and pathways reflecting their specialized roles, such
as neuronal signaling in limbic and diencephalon tissues and
hormone biosynthesis in endocrine tissues. These insights offer
valuable foundations for improving breeding and productivity
while highlighting strategies to reduce environmental stress,
enhance living conditions, and promote animal welfare and
sustainable farming.
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2 Materials and methods

2.1 Tissue collection

The study included 8 female German Landrace pigs, with an
average age of 170 £ 14 days and weight of 105 £ 8 kg. The brain
tissue and endocrine glands, including the Amy, Hip, Tal, HT, PG,
and AG were swiftly removed, flash-frozen in liquid nitrogen, and
preserved at —80 °C for subsequent analyses. The pig brain atlas
was used to help with the dissection of different brain regions (Félix
etal., 1999).

2.2 RNA extraction, library preparation, and
data pre-processing

For consistency of the results, all tissue samples were taken
from the left side of the organ, including the Amy, Hip, Hip, and
Tal, while an entire organ of the PG and AG was used. Firstly, the
tissue sample was finely ground into powder in liquid nitrogen.
Total RNA was purified using the RNeasy Mini Kit (Qiagen,
Germany) and DNase I treatment to remove trace genomic
DNA contamination. A NanoDrop ND-1000 spectrophotometer
(Peqlab) and a Bioanalyzer 2100 (Agilent Technologies) were used
to determine the concentration and quality of RNA, respectively.
One microgram (g) of total RNA (RIN > 8) was used to
generate the library using an Illumina Stranded mRNA Prep,
Ligation with the kit with 11 cycles of PCR amplification as
directed by the manufacturer’s recommendation (Illumina, USA).
The adaptor-ligated DNA libraries uniquely tagged with Ilumina
Unique Dual (UD) index were quality checked, normalized, pooled,
and sequenced for 2 x 101 cycles paired-end reads at 750 pM final
concentration on the NextSeq 2000 system using a P3 flowcell.
Library preparation and sequencing have been carried out at the
sequencing facility of the Research Institute for Farm Animal
Biology (FBN), Dummerstorf, Germany. Raw sequencing reads
(fastq) were generated using dragen bcl convert v3.10.11 and
quality-checked using FastQC version 0.11.9 (Andrews, 2010).

Data preprocessing was performed using Trim Galore (version
0.6.10.). Low-quality reads (a mean Q-score < 30) and short
reads (<20 bp) as well as adapter-like sequences at the 3/-end of
sequence reads were removed (Krueger, 2015). Afterward, high-
quality paired-end reads were then aligned to the Sscrofall.l
reference genome (ENSEMBL release 105) using nf-core rnaseq
pipeline (version 3.4) with STAR aligner (version 2.7.8a) and
Salmon (version 1.10.2) (Dobin et al., 2013; Patro et al., 2017; Ewels
et al,, 2020). The RNA sequencing data obtained were deposited in
the ArrayExpress database under the provided accession: E-MTAB-
14452.

2.3 Gene expression profiling and
downstream analysis

After pre-processing the count data, it was transformed

into a variance-stabilized format. Principal Component Analysis
(PCA) was subsequently performed on a variance-stabilized
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expression matrix using the prcomp() function in base R, which
applies singular value decomposition (SVD) to identify orthogonal
components that capture maximum variance. The first two
principal components were used to visualize sample clustering and
variance structure across tissues. PCA was performed both within
individual tissues and across grouped tissue categories: limbic
(Amy and Hip), diencephalon (Tal and HT), and endocrine (PG
and AG), enabling broader detection of co-expression patterns and
functional enrichments. Pairwise differential expression analysis
was conducted using the DESeq2 package (version 1.42.0) in the
R programming environment (Love et al., 2014). Two categories
of comparisons were performed: (1) individual tissue comparisons
(among each of the six distinct tissue types), and (2) tissue group
comparisons (between biologically or functionally related tissue).
The differential expression model was defined as:

Y = B0+ B1- Tissue or Tissues Group + & (1)

Where Y is the gene expression level, B0 is the intercept, B1
represents the effect of each tissue type or tissue group, and ¢ is the
error term.

Differential expression analysis was performed using the
Wald test within DESeq2. For individual tissue comparisons,
differentially expressed genes (DEGs) were identified based on an
adjusted p-value (FDR) < 0.05. For tissue group comparisons,
a more stringent threshold was applied: genes were considered
differentially expressed if they met both FDR < 0.05 and an absolute
log2 fold change (]logo FC|) > 2. In total, 15 pairwise comparisons
were conducted between individual tissues, resulting in 15,516
unique DEGs. These genes were used to explore gene expression
overlaps and similarities across tissues. Hierarchical clustering
of these DEGs was performed using the heatmap.2() function
from the gplots package (version 3.1.3) (Warnes et al., 2016)
to identify co-expression patterns across tissues. These clustered
genes underwent KEGG pathway enrichment analysis using the
ClueGO (version 2.5.10) and CluePedia (version 1.5.10) plugins in
Cytoscape (version 3.10.2) (Shannon et al., 2003; Bindea et al., 2009,
2013) with pathway significance determined by a hypergeometric
test followed by Benjamini-Hochberg correction (p < 0.05).

To visualize overlaps between the 15 comparison groups, DEGs
from each were analyzed with the EVenn web tool (Chen et al,
2021). Flower plots were used to depict shared genes, which
were further analyzed for expression patterns across tissues. Log
fold change (logFC) for each gene was calculated relative to the
average expression across all tissues, and this was visualized in
a heatmap generated by the pheatmap package (version 1.02.12)
within the R programming environment (Kolde and Kolde, 2015).
The differentially expressed genes from each pairwise tissue group
comparison were visualized using volcano plots generated with the
ggplot2 package (version 3.5.1) (Wickham et al., 2016).

2.4 Functional annotation of DEGs from
tissue group pairwise comparisons
Differentially expressed genes (DEGs) between brain tissue

groups (limbic, diencephalon, and endocrine) were analyzed
for functional enrichment with clusterProfiler package (version
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4.12.6) within the R programming environment (Yu et al., 2012).
The DEG sets for each pairwise comparison were divided into
upregulated and downregulated genes based on log2 fold change.
The KEGG pathway and Gene Ontology biological Process (GO
BP) enrichment analyses were performed using the enrichKEGG()
and enrichGO() functions, respectively, within the clusterProfiler
package, using the pig genome. Subsequently, results were filtered
to include only those with an adjusted p-value (Benjamini-
Hochberg correction) <0.05. For each significantly enriched
pathway or GO term, enrichment scores were calculated as the
negative logl0 of the adjusted p-value (p.adj). These scores were
used to construct tissue-specific composite enrichment scores for
each term as follows:

Let L vs. D, L vs. E, and D vs. E represent the enrichment
scores for the pairwise comparisons between Limbic vs.
Diencephalon, Limbic vs. Endocrine, and Diencephalon vs.
Endocrine, respectively. Composite scores for each tissue group
were calculated as follows: Limbic score = (L vs. D) + (L vs. E),
Diencephalon score = - (L vs. D) 4+ (D vs. E), and Endocrine
score = — (L vs. E) - (D vs. E). These composite scores capture the
direction and magnitude of KEGG pathway and biological process
enrichment for each tissue group relative to the others. A positive
enrichment score in a pairwise comparison indicates greater
enrichment in the first tissue listed. Heatmaps of the composite
scores were generated using the pheatmap package (version 1.0.13)
inR.

2.5 Gene co-expression analysis with
WGCNA

An expression matrix of differentially expressed genes
derived from the three pairwise tissue group comparisons was
constructed. Co-expression network analysis was then performed
using the Weighted Gene Co-expression Network Analysis
(WGCNA) package (version 1.72-1) in the R programming
environment (Langfelder and Horvath, 2008). To assess scale-free
topology, the soft-thresholding power (B) was selected using the
pickSoftThreshold() function. Network construction and module
identification were carried out using the blockwiseModules()
function, with the following parameters: power = 20, network type
= signed, minimum module size = 100, and maximum block size
= 1,500.

Module eigengenes (MEs), representing the first principal
component of each module’s gene expression profile, were
computed using the moduleEigengenes() function. Pearson
correlations between MEs and tissue group categories (limbic,
diencephalon, and endocrine) were calculated using the cor()
function. The significance of each correlation was assessed using
Student’s ¢-distribution through the corPvalueStudent() function.
Modules with a correlation p-value < 0.05 were considered tissue
group-specific. Genes from these modules were analyzed for KEGG
pathway enrichment using the clusterProfiler package (version
4.12.6) within R, with the pig (Sus scrofa) database. Pathways with a
false discovery rate (FDR) adjusted p-value < 0.05 were considered
significantly enriched.
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2.6 RNA-seqg-based variant identification
with GATK

Standard preprocessing of sequenced reads was performed
according to Genome Analysis Toolkit (GATK, version 4.2.0.0)
best practices guidelines, ensuring robust variant detection and
genotype calling based on RNA sequencing data (Brouard et al,
2019; Jehl etal.,, 2021). The alignment of sequencing reads to the Sus
scrofa reference genome assembly (Sscrofall.l, ENSEMBL release
106) was performed using the STAR aligner (version 2.7.8a) with
a 2-pass mode configuration (Dobin et al., 2013). Quality filtering
was conducted on aligned BAM files to retain reads meeting the
predefined quality criteria, and weighted analysis to account for
selection and population structure (WASP) filtering was applied
to select the high-quality alignment by samtools (version 1.12), as
well as duplicate reads were identified and removed using “GATK
MarkDuplicate” to obtain refined BAM files with unique and high-
quality alignments. After alignment and quality filtering, the reads
with “NS” in their cigar strings were split using “SplitNCigarReads,”
which enabled thorough analysis of the splicing events, and base
recalibration was performed using known variants from Ensembl
v102’s dbSNP (Hunt et al., 2018).

For variant identification, the “GATK’s Haplotypecaller tool”
was employed to detect single nucleotide polymorphisms (SNPs)
and insertion/deletions (Indels) via the localized de novo assembly
within active regions by applying a minimum-confidence threshold
of 20, with the exclusion of soft-clipped bases (Van der Auwera
et al., 2013). Subsequently, variant filtration was performed with
“GATK’s VariantFiltration” tool, applying defined parameters,
including cluster window size of 35, cluster size of 3, and filter
expression for two specific annotation FS (Fisher Strand) > 30 and
QD (Quality by Depth) < 2 for detection and exclusion of variants
with strand bias and/or low quality.

2.7 Analysis of allele-specific expression

For ASE from the SNP variant, an additional iteration of the
GATK best practice pipeline was implemented. SNPs identified
in the initial round (aforementioned in Section 1.5), underwent
N-masking within the reference genome using bedtools (version
v2.27.1), a crucial step to enable unbiased STAR alignment by the
inclusion of the masked SNPs in the mapping process. Alongside
the quality control procedures performed earlier, SNPs subjected
to ASE analysis underwent filtration based on their read coverage.
Only biallelic loci with heterozygosity with a minimum of 50
reads in total, at least 10 reads per allele, and with each allele
contributing no <1% to the total read count as well as SNPs on
sex chromosomes and unmapped regions were removed from the
further downstream analysis.

Additionally, tissue-specific gene-wise ASE analysis was
performed in the Amy, Hip, Tal, HT, PG, and AG using the ASEP
(Allele-Specific Expression Analysis in a Population, version 0.1.0)
package within the R programming environment (Fan et al., 2020).
The “ASE_detection()” functions were applied to identify gene-level
ASE effects with statistical significance (p-value < 0.05) within
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each tissue. The analyses were performed using unphased, adaptive
configuration with a resampling rate of le4. The genes exhibiting
ASE from six different tissues (Amy, Hip, Tal, HT, PG, and AG)
were analyzed with the EVenn web tool (Flower plot) to visualize
the overlapping genes across all tissues. Furthermore, differential
ASE detection was applied to pairwise tissue comparisons, and
resulting shared genes are visualized in a heatmap using the gplots
package (version 3.1.3) within the R environment.

Furthermore, to evaluate the overlap between ASE genes
from the Amy, Hip, Tal, and AG (p < 0.05) and pig brain
eQTLs, we accessed cis-eQTL data from the PigGTEx portal
within the FarmGTEx database [Farm Animal Genotype-Tissue
Expression database (Teng et al, 2024)]. We examined the
PigGTEx_v0.permutations_eQTL file, specifically targeting the
Brain.cis_qtl_fdr0.05 dataset, which was filtered for FDR < 0.05.
Using a gene-matching strategy, we identified overlapping genes
between the ASE genes in these tissues and the brain-specific
eQTLs. Similarly, we sourced eQTL data for the hypothalamus
and pituitary gland (FDR < 0.05) from the PigGTEx portal and
confirmed the overlap between these eQTLs and the ASE genes
identified in our study for HT and PG. The shared between eQTLs
and the ASE genes identified from these tissues (Amy, Hip, Tal, HT,
PG, and AG) were visualized using a circos plot, created with the
circlize package (version 0.4.16) in the R environment (Gu et al,,
2024).

2.8 Variance analysis of allelic ratios in ASE
genes

The allelic ratio (AR) for each gene within tissue samples was
calculated by dividing the sum of reference allele counts by the sum
of total allele counts across all SNPs in the gene.

B > Ref (a)

AR= > Total(b)

2

Where ) Ref (a) is the sum of reference allele counts for all SNPs
in the gene, and ) _Total (b) is the sum of total allele counts for all
SNPs in the gene.

Genes with ASE overlapping across six tissues were selected,
and their mean allelic ratio for each tissue was calculated to
visualize the allele expression profile using a heatmap created with
the pheatmap package (version 1.0.12) within the R environment.
The “aov()” function in the R environment was applied to perform
an analysis of variance (ANOVA) on the gene with ASE overlapped
across six tissues (Amy, Hip, Tal, HT, PG, and AG) to evaluate the
impact of tissue type on allelic ratio variation of each gene (St and
Wold, 1989). Additionally, the mean allelic ratio and its standard
deviation (SD) for shared genes were calculated across the six tissue
types and used for pairwise comparisons through two-way ANOVA
with Tukey’s multiple comparison tests, conducted in the GraphPad
prism. The significant differences in pairwise comparison and/or
overall tissue type impact on gene allelic ratio were determined
with a threshold of p < 0.05. The bar plots were generated using
GraphPad prism, highlighting the observed differences in mean
allelic ratio across different tissue types (Wickham et al., 2016).
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3 Results

A comprehensive analysis was performed on transcriptome
data collected from the pig’s limbic system organs: Amy, Hip, Tal,
HT, and the endocrine glands: PG and AG. A total of 1,128.8
million raw reads were generated from the mRNA sequencing
of 48 libraries. These libraries were equally divided among six
tissues Amy, Hip, Tal, HT, PG, and AG with 8 samples per tissue.
An average of 23.5 million reads per sample was aligned to the
Sscrofall.l reference genome (ENSEMBL release 105). Of these, an
average of 21.1 million reads per sample were aligned, with 89.7%
of the reads mapped in Supplementary Table S1. The resulting
30,635 genes (transcripts) that passed quality control were used
for further analysis. Furthermore, two approaches were applied
based on RNA-seq data: (1) gene expression analysis, which was
used to identify expression changes between various tissues as
well as among biologically or functionally related tissue groups,
and (2) variant discovery analysis, which aimed to determine ASE
within the tissues. Variance-stabilized expression values of a total
of 30,635 genes underwent pairwise differential gene expression
analysis across different tissues. Subsequently, a total of 95,033
commonly identified SNPs across all tissues were then analyzed to
assess the ASE within the tissues.

3.1 Clustering of tissues based on
transcriptomic data

PCA based on variance-stabilized counts from six tissues (Amy,
Hip, Tal, HT, PG, AG) revealed distinct clustering patterns. The
PCA indicated that PC1 and PC2 represent 44.23% and 22.10% of
the total variance, respectively (Figure 1A). The analysis revealed
distinct clustering patterns across tissues, with limbic system
organs (Amy, Hip, Tal, HT) tightly grouped, and endocrine tissues
(PG and AG) forming a separate cluster. To explore higher-level
transcriptional organization, tissues were categorized into three
functional groups: limbic (Amy and Hip), diencephalon (Tal and
HT), and endocrine (PG and AG). PCA performed on these groups
showed that the limbic and diencephalon groups were relatively
close but remained separated, while both were distinctly clustered
from the endocrine group (Figure 1B).

3.2 Expression clustering and pathway
enrichment of DEGs across tissues

Fifteen pairwise comparison groups were analyzed, including
Amy vs. Hip, Amy vs. HT, Amy vs. PG, Amy vs. AG, Amy vs.
Tal, Hip vs. HT, Hip vs. PG, Hip vs. AG, Hip vs. Tal, HT vs. PG,
HT vs. AG, HT vs. Tal, PG vs. AG, PG vs. Tal, and AG vs. Tal.
The number of genes significantly differentially expressed at an
FDR < 0.05, or at FDR < 0.05 with a log, fold change (|log,FC]|)
> 2, for each comparison group is shown in Table 1. Finally, the
genes were aggregated, resulting in a total of 15,516 differentially
expressed genes, covering all 15 of the comparison groups, outlined
in Supplementary Table S2.
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tissues based on shared functional roles: Limbic system (amygdala and hippocampus, red), Diencephalon (thalamus and hypothalamus, dark green),
and Endocrine (adrenal gland and pituitary gland, blue), showing group-level clustering.
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TABLE 1 The number of differentially expressed genes between different
tissues with FDR < 0.05 and |log,FC| > 2.

Pairwise DEGs DEG (FDR < 0.05
comparison (FDR < 0.05) and |log;FC| > 2)
groups

Amy vs. Hip 1,803 139

Amy vs. HT 10,520 954

Amy vs. PG 10,125 2,820

Amy vs. AG 10,393 3,915

Amy vs. Tal 3,792 754

Hip vs. HT 11,548 1,323

Hip vs. PG 10,615 3,008

Hip vs. AG 10,308 3,809

Hip vs. Tal 3,223 663

HT vs. PG 10,273 2,462

HT vs. AG 12,119 4,349

HT vs. Tal 8,991 700

PG vs. AG 10,320 2,900

PG vs. Tal 9,177 2,883

AG vs. Tal 9,349 3,666

Amy, Amygdala; Hip, Hippocampus; Tal, Thalamus; HT, Hypothalamus; PG, Pituitary Gland;

AG, Adrenal Gland.

Using a hierarchical clustering heatmap to identify expression

patterns across six different tissues, a total of 1,039 genes were
grouped into three clusters based on their expression profiles, with
a cutoff criteria of log2FC > 2 and FDR < 0.05. Cluster one (C1)
includes 692 genes, cluster two (C2) includes 121 genes, and cluster
three (C3) includes 226 genes, as shown in Figure 2, and a list of
cluster genes was provided in Supplementary Table S3. Moreover,
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the analysis suggests that the genes in Cl1 demonstrated similar
expression patterns (higher expression) in the Amy, Hip, Tal, and
HT as compared to the PG and AG. The genes in C2 show higher
expression only in the pituitary gland compared to other tissues,
while genes in C3 show upregulation in both the pituitary gland
and adrenal gland compared to other tissues.

The KEGG pathway enrichment analysis was performed
on genes from each cluster of the heatmap (Cl: 692 genes,
C2: 121 genes, and C3: 226 genes) using ClueGO (version
2.5.10) and Cluepedia (version 1.5.10) plugin in Cytoscape
(version 3.10.2) environment. A total of 15 KEGG pathways
were significantly enriched with a threshold of p-value <
0.05. These pathways include calcium signaling pathway,
insulin secretion, cortisol synthesis and secretion, steroid
hormone biosynthesis, neuroactive ligand-receptor interaction,
cAMP signaling pathway, long-term potentiation, tyrosine
metabolism, hippo signaling pathway, long-term depression,
thyroid hormone synthesis, regulation of lipolysis in adipocytes,
oxytocin signaling pathway, GABAergic synapse, and GnRH
signaling pathway (Figure 3). Details on cluster proportion
and gene counts within enriched pathways were provided in
Supplementary Table S4.

Interestingly, the genes in cluster one (Cl), which show
higher expression levels in the amygdala, hippocampus, thalamus,
and hypothalamus but lower expression in the pituitary and
adrenal glands (Figure 2), are enriched in pathways such as
oxytocin signaling, cAMP signaling, long-term potentiation,
GABAergic synapse, long-term depression, Hippo signaling,
and neuroactive ligand-receptor interaction. These pathways
play a crucial role in regulating limbic system function. The
genes from cluster two (C2) and cluster three (C3) that
show higher expression in the PG and AG were enriched in
cortisol synthesis and secretion, steroid hormone biosynthesis,
and tyrosine metabolism. These pathways were involved in
regulating the hormonal functions within the endocrine system
(Figure 3).
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FIGURE 2

Comparative gene expression patterns among tissues. The heatmap was generated using hierarchical

clustering, illustrating the gene expression
variation across different tissues. The genes were categorized into three clusters: C1 (red), C2 (green), and C3 (blue). The tissues were represented by
specific colors: the amygdala (darksalmon), hippocampus (yellow), thalamus (cyan), hypothalamus (green), pituitary gland (orange), and adrenal
gland (darkpink). In the color key, red color indicates upregulation, green indicates downregulation, and black signifies no change in expression

3.3 Shared DEGs across multiple pairwise
comparisons

The identification of core DEGs that overlapped across all
15 pairwise comparison groups revealed 33 genes that were
consistently differentially expressed across all groups, as shown
in Figure 4A. Additionally, the expression patterns of these 33
genes across all six tissues were visualized by a heatmap. In
the amygdala and hippocampus, 3/33 genes include CUGBP
Elav-Like Family Member 5 (CELF5), Hippocalcin Like 4
(HPCAL4), and Cortexin 1 (CTXNI) were genes that exhibit
higher expression levels in the amygdala, while WASL interacting
protein family member 3 (WIPF3) and Calcium Voltage-
Gated Channel Auxiliary Subunit Gamma 8 (CACNGS8) were
genes that demonstrated higher expression in the hippocampus.
Additionally, Phytanoyl-CoA Dioxygenase Domain-Containing
Protein 1 (PHYHIP), and Storkhead Box Homolog 1 (STUM)
exhibit similar higher expression patterns in both the amygdala
and hippocampus. Among the 33 common genes, 6 genes
exhibited notably higher expression specifically in the thalamus,
including Leucine Rich Repeat Transmembrane Neuronal 1
(LRRTM1), Secretin Receptor Transmembrane Adaptor 1 (SCRT1),
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C-type Lectin Domain Family 2 Member L (CLEC2L), Histamine
Receptor H3 (HRH3), Cartilage Acidic Protein 1 (CRTACI),
and Proline-Rich 5 Like (PRR5L). Also, 4/33 genes including
Acetylcholinesterase (ACHE), Gap Junction Protein Gamma
2 (GJC2), Myelin Basic Protein (MBP), and Kelch Domain
Containing 8A (KLHDCS8A), were genes that showed higher
expression levels in both the thalamus and hypothalamus
(Figure 4B).

In the adrenal gland and pituitary gland, 7/33 genes,
encompassing Family with sequence similarity 210 member
B (FAM210B), Golgin A7 (GOLGA7), Neuroblastoma MYC
Oncogene (MYCN), Neuronal Pentraxin 1 (NPTXI), Dual
Specificity Phosphatase 9 (DUSP9), Chordin (CHRD), and
Potassium Calcium-Activated Channel Subfamily N Member 2
(KCNN2), indicating higher expression levels in the adrenal gland,
whereas in pituitary gland the following four genes showed
higher expression: Secreted Phosphoprotein 2 (SPP2), Janus Kinase
and Microtubule-Interacting Protein 1 (JAKMIP1), p21-Activated
Kinase 6 (PAK6), and Neuronal Synaptogyrin 2 (NSG2). Only the
Cerebellar Degeneration-Related Protein 2 (CDR2) gene indicated
higher expression in both the adrenal gland and pituitary gland
(Figure 4B).
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FIGURE 3
KEGG pathways enrichment network. The network illustrates the enrichment of the KEGG pathway for each cluster identified in the heatmap. The pie
charts highlight gene count and their proportion in clusters C1, C2, and C3 across enriched pathways. The red ellipse indicated the genes associated
with Cluster 1 (692 genes), the green ellipse indicated the genes in Cluster 2 (121 genes) and the blue ellipse indicated the genes in Cluster 3 (226
genes).

3.4 Differential gene expression and
functional enrichment in pairwise tissue
group comparisons

For a more comprehensive transcriptome analysis of six
pig tissues, we categorized them into three groups based on
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their functional and anatomical characteristics: the limbic group
(Amy and Hip), the diencephalon group (Tal and HT), and
the endocrine group (PG and AG). PCA based on variance-
stabilized counts revealed distinct clustering patterns among tissue
groups in each pairwise comparison (Figures 5A-C). Pairwise
differential expression analyses were conducted between the three

08 frontiersin.org


https://doi.org/10.3389/fnmol.2025.1616363
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org

Igbal et al.

10.3389/fnmol.2025.1616363

(A)

1
Z
3
=
T

Amy vs AG

“‘ Core gene 33 :
Amy vs Tal

=
=
g
a5
as

PG vs AG

LRRTMI
SCRTI
CLEC2L
HRH3
BCASI
CRTACI
PHYHIP
sTUM
ACHE
GJjc2
MBP
FAM210B
GOLGA7
CDR2
SIPAIL?
KLHDCSA
PRRSL
seri
MYCN
NPTX1
WIPF3
DUSPY
CHRD
KCNN2
JAKMIPI
PAK6
CELFS
HPCAL4
NSG2
FAMIS$941
CACNGS
CTXNI

0.37 0.17 | <075 | ~1.23

(B)

0.23 =0.65 | —0.30 | =0.92

0.48 046 | —0.49
0.71

0.23

-129

0.10 0.56 0.59
0.53

0.34

0.07

o.n —0.41

0.55
log2FC

2
]

B

0.31 =1.26

-028 | 077

=1.00 | —0.32

=093 | —0.05 045

=1.26| 0.06

0.72

0.25 0.12

=0.17 0.55 0.09

0.26 =0.22

HT vs Tal

—0.56 =101

~0.88 0.57

—1.00
=0.79
~0.63

=0.90 =0.30

—0.96 -1.09

-0.28

=037

0.11

s
5

-0.72

e
&
>
=

E £
S

—0.83 038

Amy: Amygdala Hip: Hippocampus PG: Pituitary gland

Tal: Thalamus HT: Hypothalamus  AG: Adrenal gland

erepS wy
sndwesoddiy | §
snwrepeyJ |
snweeypodAy
puerS Lreymiig
pueS [euaapy

FIGURE 4

Overlapping genes and their expression across multiple tissues. (A) The flower plot depicts the core genes common across all pairwise tissue
comparisons. Each petal of the flower represents differentially expressed genes between tissues, with the inner circle highlighting the core genes
shared among all comparison groups. (B) The heatmap illustrates the expression patterns of these core genes across six different tissues. The color
scheme is red for upregulation, green for downregulation, and white for no change.

tissue groups: limbic vs. diencephalon, limbic vs. endocrine, and
diencephalon vs. endocrine. Genes were considered significantly
differentially expressed if they met the criteria of false discovery
rate (FDR) < 0.05 and |log, fold change| > 2, as illustrated
in Figures 5D-F. A total of 4,954 differentially expressed genes
(DEGs) were identified across all group comparisons. The
highest number of DEGs was observed in the limbic vs.
endocrine comparison (3,963 transcripts, Figure 5E), followed by
diencephalon vs. endocrine (3,670 transcripts, Figure 5F), and
limbic vs. diencephalon (603 transcripts, Figure 5D). Summary
statistics for all DEGs (log,FC, FDR, baseMean) are provided in
Supplementary Table S5.

Furthermore, to elucidate the biological
transcriptional differences among tissue groups, we performed
gene ontology (GO) and KEGG pathway enrichment analyses
using DEGs identified from pairwise comparisons. All significantly
enriched terms and pathways were considered based on an FDR
< 0.05, and results were visualized using enrichment scores,
which capture the direction and magnitude of functional bias
across tissue groups (Figures 5G, H). GO enrichment analysis of
genes upregulated in limbic and diencephalon tissues compared

relevance of
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to endocrine revealed strong enrichment for neurodevelopmental
and neuronal signaling processes, including synaptic signaling,
neurogenesis, axon guidance, and regulation of neurotransmitter
secretion. These terms reflect the neural specialization of these
brain regions. In contrast, genes upregulated in the Endocrine
tissue were significantly enriched for biological processes
such as hormone response, steroid metabolic process, gland
development, and endocrine system development, reflecting the
tissue’s specialized hormonal and secretory functions, as shown in
Figures 5G, H.

Consistently, KEGG pathway enrichment analysis revealed
that the upregulated DEGs were associated with neuronal
function-related pathways, including neuroactive ligand-receptor
interaction, glutamatergic and GABAergic synapses, long-term
potentiation, as well as calcium and cAMP signaling. These
pathways are essential for synaptic transmission, neural plasticity,
and intracellular signaling. Distinctly, DEGs upregulated in
endocrine tissues were significantly enriched in pathways
including ECM-receptor interaction, complement and coagulation
cascade, cholesterol metabolism, PI3K-Akt signaling, and
hormone biosynthesis and secretion (e.g., cortisol synthesis,
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FIGURE 5

PCA and differential expression analysis of functional tissue groups. Principal component analysis (PCA) of variance-stabilized gene expression
showing separation between tissue groups (A) Limbic and Diencephalon, (B) Limbic and Endocrine, (C) Diencephalon and Endocrine. Groups are
color-coded: red (Limbic), dark green (Diencephalon), and blue (Endocrine). Volcano plots show differentially expressed genes (DEGs) for the
pairwise tissue group comparisons (D) Limbic vs. Diencephalon (red: upregulated in Limbic; dark green: downregulated), (E) Limbic vs. Endocrine
(red: upregulated in Limbic; blue: downregulated), and (F) Diencephalon vs. Endocrine (dark green: upregulated in Diencephalon; blue:
downregulated). DEGs in each tissue group pairwise comparison are identified based on an FDR < 0.05 and [log,FC| > 2. Heatmaps illustrate the
functional enrichment of differentially expressed genes (DEGs) identified from pairwise tissue group comparisons: (G) gene ontology (GO) biological
processes and (H) KEGG pathways, both with FDR < 0.05. Red indicates positive enrichment scores representing processes and pathways enriched
by genes upregulated in the limbic and diencephalon groups, while green indicates negative enrichment scores corresponding to genes upregulated
in the Endocrine group.
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ovarian steroidogenesis, and thyroid hormone synthesis). These
enrichments suggest active structural remodeling, immune
system involvement, and endocrine functional regulation
(Figures 5G, H). Complete enrichment results are available in

Supplementary Table S6.

3.5 Tissue group-specific co-expression
modules and functional enrichment

The weighted gene co-expression network analysis (WGCNA)
was employed to explore the biological relationships and functional
relevance of 4,954 differentially expressed genes (FDR < 0.05,
[log,FC| > 2) identified from pairwise comparisons among the
three tissue groups: limbic, diencephalon, and endocrine. After
evaluating the indices and mean connectivity across the powers
ranging from 1 to 20, a soft thresholding value (B) of 20
was selected, corresponding to (R*> = 0.9), signifying a robust
fit to the scale-free topology model and effectively balances
scale independence and lower mean connectivity (Figures 6A, B).
Furthermore, the gene co-expression modules were identified
through hierarchical clustering by computing dissimilarity between
genes derived from the transformed topological matrix (Figure 6C).
A total of seven gene co-expression modules were identified as
gold2, seagreen, purple, cyan3, darkgreen, orange4, and brownl,
and the number of genes in each module ranged from 250 to 1,300
(Figure 6D, Supplementary Table S7).

To explore tissue group—driven gene co-expression patterns, we
correlated the eigengenes of the seven identified modules with each
of the three tissue groups: limbic, diencephalon, and endocrine.
Modules were considered group-specific if the correlation was
statistically significant (P < 0.05). The analysis revealed that
all seven modules displayed significant group-specific expression
patterns, characterized by both positive and negative correlations.
Positive correlations indicated upregulation in the corresponding
tissue group, whereas negative correlations reflected relative
downregulation. Among the identified modules, the seagreenl
module (858 genes) exhibited a strong positive correlation with the
limbic group (r = 0.88, P = 3 x 107'°) and a strong negative
—081, P = 2 x
10712, Figure 7A). It was enriched in Neuroactive ligand-receptor

correlation with the endocrine group (r

interaction (adjusted p = 1.84x 1072%), Hormone signaling, and
Calcium signaling pathway (Figure 7B). The darkgreen module
(748 genes) showed moderate positive correlations with the
0.41, P < 0.01) and diencephalon (r 0.53, P
< 0.001) groups, and a strong negative correlation with the

limbic (r
endocrine group (r = —0.95, P < 1 x 10724, Figure 7A). It was
enriched in Neuroactive ligand-receptor interaction (adjusted p
= 501 x 1071, Glutamatergic synapse, GABAergic synapse,
Calcium signaling pathway, Dopaminergic synapse, Long-term
potentiation, and Serotonergic synapse (Figure 7B). Purple module
(804 genes) exhibited moderate positive correlations with the
0.44, P < 0.01) and diencephalon (r 0.51, P
< 0.001) groups, and a strong negative correlation with the

limbic (r
endocrine group (r = —0.95, P < 1 x 1072%, Figure 7A). It was

enriched in Neuroactive ligand-receptor interaction (adjusted p =
7.7 X 10_12), Glutamatergic synapse, GnRH secretion, Long-term
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potentiation, and Oxytocin signaling pathway (Figure 7B). Cyan3
module (770 genes) exhibited strong positive correlations with
the endocrine group (r = 0.74, P = 2 x 10~%). It was enriched
in Complement and coagulation cascades (adjusted p = 3.29 x
10719), Cholesterol metabolism, Cortisol synthesis and secretion,
Ovarian steroidogenesis, Steroid hormone biosynthesis, and PPAR
signaling pathway. The gold2 module (1,207 genes) exhibited a
very strong positive correlation with the endocrine group (r =
0.99, P = 2.41 x '0-3%) and was enriched in Thyroid hormone
synthesis (adjusted p < 0.01) PI3K-Akt signaling pathway, cAMP
signaling pathway, and Growth hormone synthesis, secretion and
action, as shown in Figures 7A, B. Notably, no significant enriched
pathways were identified for the orange4 (294 genes) and brownl
(273 genes) modules despite their strong positive correlation with
the endocrine group. The detailed enrichment results are provided
in Supplementary Table S8.

3.6 Gene-based ASE analysis within tissues
across individuals in the population

The data were analyzed using the “ASE_detection()” function
for one-condition analysis from the ASEP package within the R
environment, which conducts gene-level ASE analysis within the
six tissues derived from the same population of eight animals.
Significant ASE effects were identified in the following number of
genes for each tissue: Amy (1,137), Hip (1,135), Tal (1,456), HT
(1,122), PG (1,179), and AG (1,289), all at a significance level of P <
0.05. The detailed results are provided in Supplementary Table S9.
We further examined the gene names that were shared across
the different tissues. The distribution and quantity of shared ASE
gene names between different tissues are summarized in Figure 8A.
Additionally, we identified 37 genes that exhibited ASE and were
shared across all examined tissues, as illustrated in Figure 8B.
These genes were specifically selected for a detailed analysis, with
the mean allelic ratio calculated for each tissue to reveal their
expression profiles across diverse tissue environments (Figure 8C).

In addition, a variance analysis was conducted on these
37 genes with ASE to assess the overall impact of tissue type
on allelic ratio variation. Pairwise comparisons between tissue
types were also performed for each gene to examine differences
in mean allelic ratios across tissues. Interestingly, 7 of the 37
genes showed a significant tissue-wide effect on allelic ratio
(Supplementary Table §10). Furthermore, 10/37 genes in pairwise
comparisons revealed significant differences in mean allelic ratio
across tissues. The PINKI exhibits significant mean allelic ratio
variation in all comparisons with the AG, including the comparison
with the HT (P = 9.89¢-05), Hip (P = 0.00041), Tal (P = 0.00045),
PG (P = 0.0013), and Amy (P = 0.03). The mean allelic ratio
differences for the Leucine Carboxyl Methyltransferase 1 (LCMT1)
were determined in all comparisons with the Amy, including the
comparison with the Tal (P = 0.0009), Hip (P = 0.0015), HT (P
=0.0043), AG (P = 0.0135), and PG (P = 0.022). The allelic ratio
differences for the Zinc Finger And BTB Domain Containing 22
(ZBTB22) were observed in the Amy vs. PG (P < 0.0001), Hip vs.
PG (P < 0.0001), Tal vs. PG (P < 0.0001), HT vs. PG (P < 0.0001),
and HT vs. AG (P = 0.0003). Also, significant variations in the
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Selection of soft thresholding power and module detection. (A) Scale independence plot illustrating the determination of soft thresholding. The
y-axis represents the scale-free topology, while the x-axis indicates the soft thresholding power. The red dotted line indicates the selected
soft-thresholding power of (8 = 20) where the scale-free topology fit index reached 0.9. (B) The mean connectivity plot shows the mean connectivity
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topological overlap is utilized for module detection through dynamic tree cutting. Each color in the horizontal module colors bar below the
dendrogram signifies a different module. (D) The bar plot illustrates each module, with the color of each bar indicating the module’s color (x-axis)
and its size representing the gene count (y-axis) within the module.

mean allelic ratio were observed for the PPL3 gene between the AG
vs. PG (P = 0.001) and AG vs. Amy (P = 0.02). The mean allelic
ratio differences for the HEBPI1 were observed only in the HT vs.
PG comparison (P = 0.013). Interestingly, 7/10 genes, including
PINK1, TTLL1, SLA-DRBI, HEBPI1, ANKRD10, LCMT1, and SDF2,
exhibited ASE and were also recognized as eQTLs in brain tissue
according to data from the PigGTEx portal within the FarmGTEx
database, as outlined in Supplementary Table S10.

Additionally, TTL1, NEFL, SDF2, and SLA-DRBI demonstrated
notable differences in mean allelic ratio across analyzed tissues.
TTLI, showed pronounced variations in comparisons such as Tal
vs. Amy (P < 0.0001), Tal vs. Hip (P < 0.0001), Tal vs. HT (P
= 0.0028), Tal vs. PG (P < 0.0001), Tal vs. AG (P < 0.0001),
Amy vs. HT (P = 0.01), Hip vs. AG (P = 0.0007), HT vs. PG (P
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= 0.0091), and HT vs. AG (P < 0.0001, Figure 9A). The NEFL
demonstrates the mean allelic ratio variation between Amy vs. PG
(P = 0.0043), Amy vs. AG (P < 0.0001), Hip vs. PG (P = 0.01),
and Hip vs. AG (P < 0.0001), Tal vs. PG (P = 0.03), Tal vs. AG
(P < 0.0001), HT vs. AG (P < 0.0001), and PG vs. AG (P <
0.0001, Figure 9B). The Stromal Cell Derived Factor 2 (SDF2) gene
demonstrates notable variations in mean allelic ratio across various
brain regions and glands. Significant differences were observed in
comparisons between the Amy and both the Hip (P = 0.0035)
and HT (P < 0.0001). Similarly, the significant differences were
determined in the Hip vs. Tal (P = 0.0084), Hip vs. PG (P = 0.009),
Hip vs. AG (P = 0.01), Tal vs. HT (P < 0.0001), HT vs. PG (P
< 0.0001), and HT vs. AG (P < 0.0001, Figure 9C). The Swine
Leukocyte Antigen Class II, DR Beta 1 (SLA-DRBI) gene exhibits
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eigengenes and tissue groups. The y-axis is labeled with color bars for modules (seagreenl, darkgreen, purple, brownl, cyan3, orange4, and gold2).
Positive correlations are depicted in red shades, while negative correlations are indicated in blue shades. The color intensity corresponds to
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alongside with correlation value. (B) Each dot represents a KEGG pathway enriched in a different gene modules (cyan3, darkgreen, gold2, purple, and
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significant mean allelic ratio variation in all comparisons with the
Amy, including the comparison with the Hip (P < 0.0001), Tal (P
=0.0014), HT (P < 0.0001) PG (P = 0.0004), and AG (P < 0.0001,
Figure 9D).

3.7 Tissue-specific ASE gene overlaps with
brain, hypothalamus, and pituitary gland
eQTLs from the PigGTEx database

Our tissue-specific ASE analysis revealed that over a thousand
genes exhibit allele-specific expression in brain tissues and
endocrine glands, with a significance threshold of P < 0.05. We
employed a gene-matching strategy to demonstrate that ASE genes
from the Amy, Hip, Tal, and AG overlapped with brain tissue
eQTLs data, from the PigGTEx portal, filtered at an FDR < 0.05.
In Amy, 1,137 genes exhibited significant ASE, with 497 (43.7%)
genes overlapping with brain eQTLs. The Hip had 1,135 genes
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with significant ASE, of which 492 (43.3%) were common with
brain eQTLs. In the Tal, 1,456 genes exhibited significant ASE, with
619 (42.5%) genes shared with brain eQTLs. The AG had 1,289
genes with significant ASE, of which 544 (42.3%) were common
with brain eQTLs, as shown in Figure 10A. In the HT, 1,122 genes
with significant ASE, of which 213 (18.9%) were common with
hypothalamus tissue eQTLs from the PigGTEXx portal, were filtered
atan FDR < 0.05. Similarly, the PG had 1,179 genes with significant
ASE, of which 49 (4.1%) genes shared with pituitary gland eQTLs
from the PigGTEx portal, filtered at an FDR < 0.05 (Figure 10B);
detailed results are outlined in Supplementary Table S9.

4 Discussion

This study highlights the variation in genetic regulation
between brain and endocrine tissues, emphasizing the complex
interplay of genetic and regulatory mechanisms underlying stress
adaptation and endocrine function. While previous studies on ASE
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in livestock have focused on tissues like the liver and muscle (Yang
et al., 2016; Khansefid et al., 2018; Guillocheau et al., 2019; de
Souza et al., 2020; Liu et al., 2020), our study extends these findings
to limbic and endocrine tissues, revealing distinct ASE patterns
indicative of tissue-specific regulation. Differential gene expression
profiles across these tissues were identified, including co-expression
network analysis.

Hierarchical clustering of differentially expressed genes across
six tissues showed higher expression in limbic tissues compared
to endocrine glands, with significant enrichment in pathways such
as oxytocin signaling, GABAergic synapse, long-term depression
(LTD), and long-term potentiation (LTP). Previous research has
consistently shown that oxytocin signaling plays a critical role
in modulating the limbic forebrain network, influencing stress
responses, emotional behavior, and social interactions (Burkett
et al., 2016; Bakos et al., 2018; Ferrer-Pérez et al., 2020; Triana-
Del Rio et al., 2022). Additional studies have found that oxytocin
alters synaptic plasticity through its effects on LTP and LTD, and
promotes LTD in the amygdala via Gagq/11-coupled PLC and
EGFR pathways which are essential for synaptic plasticity in the
hippocampus (Lin et al., 2012; Gur et al.,, 2014), and modulates
GABAergic activity in the mPFC, aiding in threat extinction in
both humans and rodents (Sabihi et al., 2017; Eckstein et al,
2019). Our findings support these studies by demonstrating that
oxytocin signaling and its related pathways are crucial for stress
resilience and emotional health. Additionally, prior research has
established cortisol’s key role in stress response and physiological
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balance (McEwen, 1998; Smith and Vale, 2006; Knezevic et al,,
2023). Consistent with these, we identified genes highly expressed
in the pituitary and adrenal glands that are enriched in pathways for
cortisol synthesis and steroid hormone biosynthesis, highlighting
their importance in stress resilience.

The identification of a core set of 33 genes differentially
their
involvement in neural activity and stress regulation. In the
amygdala, both CELF5 and HPCAL4 exhibited notably high
expression. CELF5, a member of a gene family involved in
RNA regulation and synaptic plasticity, is likely to contribute
to emotional regulation (Bryant and Yazdani, 2016; Parra and

expressed across all tissue comparisons, emphasizes

Johnston, 2022; Peng et al., 2024). Recent single-cell transcriptomic
analysis of the mouse brain supports this, showing that CELFI is
broadly expressed, CELF2 is enriched in neurons, and CELF3-6
are variably present in neurons and neuroblast cells (La Manno
et al., 2021). Likewise, HPCAL4, a key calcium-binding protein
involved in neurotransmitter release and LTP critical for learning
and memory (Burgoyne, 2007; Alvaro et al., 2020), aligns with
its observed higher expression in this region, supporting its
role in neural function. In the hippocampus, high expression
levels of WIPF3 and CACNG8 were observed. WIPF3, which
complexes with N-WASP, plays a critical role in regulating the
actin cytoskeleton (Juszczak and Stankiewicz, 2018), a process
essential for synaptic function, learning, and memory (Lamprecht,
2011, 2014, 2021), increased WIPF3 expression may be enhanced
WIPF3-N-WASP complex activity, potentially influencing synaptic
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Identification of overlaps between tissue-specific ASE genes and PigGTEx database eQTLs. (A) The first circos plot illustrates the overlap of
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plasticity and memory formation. Similarly, bioinformatics and
functional studies have shown that members of the CACNG
protein family (CACNGI-CACNGS) are co-expressed in adult
brains to regulate Ca?* channel activity (Burgess et al, 2001;
Guan et al,, 2016), suggesting that CACNG8 may also contribute
to synaptic transmission, plasticity, and the adaptation of neural
networks. Our analysis revealed high LRRTM1 expression in the
thalamus, highlighting its significant role in neural connectivity
and thalamic function. LRRTMI is essential for synaptic adhesion
and signaling, which are critical for effective sensory processing,
a finding consistent with previous studies showing its high
abundance in the thalamus, particularly in the mediodorsal
nucleus across multiple species (Laurén et al, 2003; Francks
et al., 2007; Sjostedt et al., 2020). Furthermore, knockout studies
have demonstrated that deletion of LRRTMI results in notable
alterations in synapse morphology, impairments in novel object
recognition and social interaction (Takashima et al, 2011), and
visual behavior abnormalities due to disrupted retinothalamic
connections (Monavarfeshani et al, 2018). Collectively, these
results emphasize LRRTM1’s critical role in thalamic functionality
and its broader implications in neural processes. Previous studies
have shown that severe inflammatory conditions, such as sepsis,
significantly reduce ACHE activity in the hypothalamus, evidenced
by notable decreases 5 days post-cecal ligation and puncture
in rats, indicating cholinergic disruption (Santos-Junior et al,
2018). Similarly, low-dose LPS administration in mice leads
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to neuroinflammation and diminished cortical ACHE activity,
emphasizing the vulnerability of the cholinergic system (Lykhmus
et al, 2016). In contrast, our observation of elevated baseline
ACHE expression in the hypothalamus suggests a critical role
in maintaining cholinergic stability and potentially managing
inflammatory disturbances.

The MKK6/p38 pathway stimulates PAK6, a key regulator
of cellular stress responses (Kaur et al, 2005). Its elevated
expression in the pituitary suggests a critical role in stress response
mechanisms and endocrine regulation. Similarly, increased SPP1I
expression in the pituitary may modulate function via activation of
the MAPK signaling pathway, known for its roles in inflammation
and neuroprotection (Meller et al., 2005). In the adrenal gland,
elevated levels of DUSPY, a key modulator of MAPK signaling
linked to cellular stress and insulin resistance, suggest a role
in regulating stress-related signaling and metabolic processes.
Furthermore, our observation of increased KCNN2 expression
aligns with studies showing that overexpression of the SK2 channel
reduces stress-induced corticosterone secretion (Morel et al.,
2019; Zhang et al, 2019), while SK2 infusion leads to lower
corticosterone levels (Mitra et al., 2009). Together, these results
offer a comprehensive view of gene expression across tissues and
highlight the coordinated roles these genes play in neural activity,
synaptic adaptation, and stress regulation.

Our DEG
diencephalon and endocrine

between the limbic

highlights

comparative analysis

groups extensive
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transcriptional differentiation, indicative of their respective
roles in neural circuitry and endocrine signaling. Previous
studies have shown that learning and memory rely on synaptic
plasticity mediated by activity-dependent calcium influx through
NMDA and AMPA receptors (Hunt and Castillo, 2012; Kennedy,
2016; Wang and Peng, 2016). Consistent with this, our KEGG
pathway enrichment analysis showed that DEGs upregulated in
the limbic and diencephalon groups were significantly enriched
in pathways involved in synaptic signaling and plasticity,
including glutamatergic synapse, calcium signaling, and long-term
potentiation, highlighting the molecular specialization of these
brain regions for cognitive and neural processing functions.
Within the neuroendocrine axis, the intermediate transcriptional
state of the diencephalon group supports its integrative role in
neurohormonal regulation. As a center of the limbic system,
the hypothalamus links the endocrine and nervous systems to
maintain homeostasis and regulate stress, immune responses,
autonomic functions, and hormone-driven processes such as
growth, fluid balance, and lactation (Kullmann et al., 2014;
Soto-Tinoco et al,, 2016). In line with these functions, our
analysis revealed enrichment of neuroactive ligand-receptor
interaction, calcium signaling, and synaptic plasticity pathways in
the diencephalon group. These findings reflect the hypothalamus’s
ability to integrate signals from multiple brain regions and convert
them into hormonal outputs that guide pituitary regulation
of thyroid, adrenal, and reproductive organs. Furthermore, the
observed enrichment of ECM-receptor interaction pathways in our
endocrine tissues aligns with evidence from a rodent study showing
that extracellular matrix proteins and integrin signaling enhance
ACTH-induced cortisol secretion in adrenocortical cells (Otis et al.,
2007). This suggests that in pigs, ECM remodeling and integrin-
mediated signaling may similarly support adrenal responsiveness
to ACTH stimulation, facilitating rapid glucocorticoid release
during stress. Also, our analysis showed increased PI3K-Akt
signaling and cholesterol metabolism in endocrine tissues, key
pathways for steroid hormone production and stress response.
Similarly, a sheep study found that PI3K-Akt and MEK/ERK
pathways regulate ACTH-driven cortisol release and eNOS
activity, highlighting their importance in adapting to stress (Newby
et al.,, 2015). Overall, these enrichment results demonstrate the
pivotal role of the hypothalamic—pituitary—adrenal (HPA) axis in
cortisol regulation and stress resilience, reflecting the specialized
transcriptional profiles that support neuroendocrine function
in pigs.

Our
demonstrates a strong tissue-driven organization of co-expression

weighted gene co-expression network analysis
networks within the limbic-diencephalon-endocrine axis. The
significant enrichment of synaptic signaling pathways (Neuroactive
ligand-receptor interactions, Glutamatergic/GABAergic synapses,
Calcium signaling) within modules positively correlated with
purple)
robustly supports previous findings that identify these pathways

limbic/diencephalon groups (seagreenl, darkgreen,
as essential for neural communication and plasticity in these
brain regions (Lein et al., 2007; Stidhof, 2018). Also, the strong
negative correlations observed with the endocrine group suggest
a transcriptional trade-off that highlights the distinct functional

roles of neural vs. endocrine pathways (Miller et al., 2014;
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Hodge et al., 2019). The enrichment of cortisol

synthesis and secretion within the endocrine-correlated cyan3

significant

module (r = 0.74, P =2 x107°) is particularly notable, as cortisol
represents the primary glucocorticoid mediating vertebrate stress
adaptation (Dedovic et al., 2009). The co-enrichment of cholesterol
metabolism (a cortisol precursor) (Gomez-Sanchez and Gomez-
Sanchez, 2024) and PPAR signaling (involved in metabolic stress
regulation) (Camps et al, 2012), within this module, suggests
coordinated transcriptional regulation of integrated stress response
pathways. Similarly, the gold2 module (r = 0.99, P = 2.41 x10738)
is enriched for cAMP signaling a key second messenger involved
in stress hormone secretion (Kutsukake et al, 2023) as well
as pathways related to growth hormone and thyroid hormone
synthesis, all of which contribute to metabolic stress adaptation
(Tavares et al., 2023). These pathways offer key molecular targets
to improve stress resilience in pigs, with direct benefits for animal
welfare and production efficiency under challenging conditions.

Among the 37 genes showing ASE across all tissues, seven
demonstrated a significant overall tissue effect, while 10 showed
tissue-specific differences. The remaining 27 genes exhibited
consistent ASE due to general allelic imbalances or uniform
regulatory mechanisms across tissues. Notably, the differential
PINKI allelic ratios between the adrenal gland and other tissues
(HT, Hip, Tal, PG, Amy) suggest tissue-specific genetic regulation.
This is supported by strong correlations between PINKI expression
and stress hormones (corticosterone: r = 0.879; adrenaline: r
= 0.881), as well as evidence that PINKI-deficient mice are
more vulnerable to corticosterone-induced depression (Agnihotri
et al, 2019). Furthermore, PINKI is recognized as an eQTL
in pig brain tissue (Teng et al., 2024), further emphasizing its
involvement in stress and hormonal responses. Similarly, LCMT1
showed significant mean allelic ratio differences in the amygdala
compared to other tissues, suggesting its role in neuroprotection
and stress response. As an eQTL in pig brain tissue (Teng et al.,
2024), LCMTI is also implicated in neurodegenerative diseases
such as Alzheimer’s (Nicholls et al., 2016) and manganese-related
neurotoxicity (Xu et al., 2021; Zhang et al., 2023), highlighting
its importance for brain function and neuroprotection (Sontag
et al., 2008; Gnanaprakash et al,, 2021). In our study, LCMT1
exhibited a mean allelic ratio variation in the amygdala (65%
vs. 35%), which may influence its role in neuroprotection and
stress resilience, especially in the amygdala, a key region for
emotional regulation.

The allelic imbalance of ZBTB22 in the pituitary (68% vs.
32%) and adrenal glands (61% vs. 39%) suggests a potential
impact on endocrine function and stress pathways, in line with
its known roles in cellular metabolism and oxidative stress (Guo
et al., 2023; Liu et al, 2023). TTLI exhibited significant mean
allelic ratio variations across multiple brain regions with P <
0.01. Its critical role in neural development is highlighted by
TTLI-null mice, which exhibit severe developmental defects and
early post-natal death due to disorganized neuronal networks
(Erck et al., 2005; Fukushima et al., 2009). Additionally, TTLI
is identified as an eQTL in pig brain tissue (Teng et al.,, 2024),
suggesting that its allelic variation may influence gene regulation
across regions, consistent with our findings. Furthermore, the
mean allelic ratio variations of NEFL in the adrenal and pituitary
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glands align with previous findings showing elevated levels of
neurofilaments (NEFL, NEFM, NEFH) in chronically stressed
mice and the cerebrospinal fluid of trauma-exposed individuals
(Zetterberg et al., 2013), suggesting a role for NEFL in regulating the
hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have
shown that ER stress in the hypothalamus disrupts energy balance
by affecting leptin signaling, leading to sympathetic nervous system
inhibition, reduced brown adipose tissue (BAT) thermogenesis,
and weight gain (Contreras et al.,, 2014; Gonzalez-Garcia et al,
2017; Cakir and Nillni, 2019). Similarly, in the hippocampus, ER
stress is associated with impaired insulin signaling and increased
inflammation, particularly with high-fat diets (Nakandakari et al.,
2019). The ASE of SDF2, observed at 70:30 in the hypothalamus
and 63:37 in the hippocampus in our study, along with its
identification as a pig brain eQTL (Teng et al., 2024), suggests it
may help mitigate ER stress, preserve leptin signaling, and reduce
inflammation and insulin resistance. Finally, the significant allelic
ratio variation of SLA-DRBI in the amygdala, combined with its
known importance in regulating pro-inflammatory cytokines (e.g.,
IL-1B, IL-6, TNF-a) and microglial activation (Harrison et al., 2009;
Inagaki et al., 2012; Hu et al., 2022; Nazir et al., 2022), supports
its involvement in immune regulation and stress-related mood
disorders. SLA-DRBI is also recognized as an eQTL in pig brain
tissue (Teng et al., 2024), further emphasizing its potential impact
on gene regulation in stress responses. The overarching goal of
incorporating ASE alongside DEG and WGCNA is to gain a multi-
layered understanding of gene regulation in pig stress biology.
While DEG and WGCNA highlight transcriptional changes and
gene co-regulation, ASE uncovers cis-regulatory variants that may
drive tissue-specific expression. Together, these approaches help
identify robust candidate genes and pathways for improving animal
welfare and breeding strategies.

5 Conclusions

Our findings underscore the molecular basis of stress
regulation in pigs by highlighting gene expression and
both

functional groups, including the limbic, diencephalon, and

allele-specific ~activity across individual tissues and
endocrine regions. Through a multifaceted analysis of gene
expression, co-expression, and ASE, we identified key genes and
regulatory modules involved in stress processing, growth, and
hormonal signaling—insights that have practical implications
for improving animal welfare. Specifically, critical pathways
such as MAPK, JAK-STAT, and NF-kB were found to play
central roles in stress and inflammatory responses. Genes
including CELF5, PINKI, and LRRTMI

specific roles related to synaptic plasticity, neuroprotection,

exhibited tissue-

and hormonal regulation.

In addition, the discovery of significant allelic ratio variations
across tissues highlights underlying genetic factors that may
influence stress resilience in a tissue-specific manner. Notably,
genes such as LCMTI1, TTLI, SLA-DRBI, and SDF2 not only
showed ASE but are also classified as eQTLs in the PigGTEx
portal (FarmGTEx database), suggesting their
regulatory relevance. Identifying stress-responsive pathways

functional

and cis-regulatory variation offers valuable opportunities
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to breed more resilient animals, enhance environmental
enrichment strategies, and tailor dietary interventions. These
approaches, rooted in molecular insights, can help reduce
chronic stress, improve growth and reproductive outcomes,
and ultimately support more sustainable and ethical pig

farming practices.
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