
TYPE Original Research 
PUBLISHED 03 September 2025 
DOI 10.3389/fnmol.2025.1616363 

OPEN ACCESS 

EDITED BY 

Linchun Shi, 
Chinese Academy of Medical Sciences and 
Peking Union Medical College, China 

REVIEWED BY 

Lorenz S. Neuwirth, 
State University of New York at Old Westbury, 
United States 
Andrew B. Caldwell, 
University of California, San Diego, 
United States 

*CORRESPONDENCE 

Siriluck Ponsuksili 
ponsuksili@fbn-dummerstorf.de 

RECEIVED 22 April 2025 
ACCEPTED 11 August 2025 
PUBLISHED 03 September 2025 

CITATION 

Iqbal MA, Hadlich F, Reyer H, Oster M, 
Trakooljul N, Wimmers K and Ponsuksili S 
(2025) A comprehensive analysis of 
allele-specific expression and transcriptomic 
profiling in pig limbic and endocrine tissues. 
Front. Mol. Neurosci. 18:1616363. 
doi: 10.3389/fnmol.2025.1616363 

COPYRIGHT 

© 2025 Iqbal, Hadlich, Reyer, Oster, 
Trakooljul, Wimmers and Ponsuksili. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms. 

A comprehensive analysis of 
allele-specific expression and 
transcriptomic profiling in pig 
limbic and endocrine tissues 

Muhammad Arsalan Iqbal1 , Frieder Hadlich1 , Henry Reyer1 , 
Michael Oster1 , Nares Trakooljul1 , Klaus Wimmers1,2 and 
Siriluck Ponsuksili1* 
1 Integrative Genomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany, 
2 Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany 

Introduction: Stress involves complex interactions between the brain and 
endocrine systems, but the gene-level processes and genetic factors mediating 
these responses remain unclear. This study investigates gene expression patterns 
and allele-specific expression (ASE) in key limbic, diencephalon and endocrine 
tissues to better understand stress adaptation at the molecular level. 
Methods: We performed RNA sequencing on 48 samples from six distinct tissues: 
amygdala, hippocampus, thalamus, hypothalamus, pituitary gland, and adrenal 
gland. These tissues were categorized into three functionally and anatomically 
distinct groups: limbic (amygdala, hippocampus), diencephalon (thalamus, 
hypothalamus), and endocrine (pituitary, adrenal). Differential expression 
analyses were conducted both between individual tissues and across these tissue 
groups. Weighted Gene Co-expression Network Analysis (WGCNA) was applied 
exclusively at the tissue group level to identify group-specific gene networks. 
Allele-specific expression (ASE) was analyzed at the individual tissue level to 
capture cis-regulatory variation with high resolution. 
Results: Thirty-three candidate genes were differentially expressed across all 
tissues, indicating a core set involved in stress responses. Weighted Gene 
Co-expression Network Analysis revealed limbic and diencephalon modules 
enriched in neural signaling pathways such as neuroactive ligand-receptor 
interaction and synaptic functions, while endocrine modules were enriched for 
hormone biosynthesis and secretion, including thyroid and growth hormone 
pathways. Over 1,000 genes per tissue showed ASE, with 37 genes consistently 
colocalized. Ten of these displayed differences in allelic ratios, with seven (PINK1, 
TTLL1, SLA-DRB1, HEBP1, ANKRD10, LCMT1, and  SDF2) identified as eQTLs in pig 
brain tissue within the FarmGTEx database. 
Conclusion: The findings reveal significant genetic regulation differences 
between brain and endocrine tissues, emphasizing the complexity of stress 
adaptation. By identifying key genes and pathways, this study provides insights 
that could aid in enhancing animal welfare and productivity through targeted 
modulation of stress-related molecular pathways. 
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1 Introduction 

Understanding pig stress responses is vital for improving 
animal welfare and productivity in farm settings. The cognitive 
and regulatory processes in a pig’s brain underlie a complex 
stress response system that enables the animal to assess and 
cope with environmental challenges. Stressors, which are external 
factors that compromise the animal’s physical or psychological 
condition, activate this system. These may include overcrowding, 
abrupt weaning, transportation, loud or unpredictable noise, rough 
handling, social isolation, and a lack of environmental enrichment 
(Lisowski et al., 2011; Perdomo-Sabogal et al., 2022; Papatsiros 
et al., 2024; Ajay et al., 2025). The process of controlling these stress 
responses is regulated by the coordination of the limbic system, 
including structures such as the amygdala, hippocampus, thalamus, 
hypothalamus, and the hypothalamus–pituitary–adrenal axis (HPA 
axis) (Mormède et al., 2007; Mormède, 2008). As mammals, pigs 
share these limbic structures with other species, including humans, 
reflecting an evolutionarily conserved mechanism underlying 
emotional and physiological responses to stress (Kanitz et al., 2019). 
This homology strengthens the translational value of pig models for 
studying stress-related neurobiological processes (Lind et al., 2007; 
Gimsa et al., 2018). Several studies have previously reported that 
the limbic system and endocrine glands are central to the health 
and optimal performance of farm animals, as they regulate stress 
responses, growth, and overall physiological balance (Manteuffel, 
2002; Smith and Vale, 2006; MohanKumar et al., 2012; Gley et al., 
2021). 

Advancements in high-throughput sequencing have greatly 
enhanced transcriptomic analysis, providing deeper insights into 
gene expression dynamics and driving interest in allele-specific 
expression (ASE) research. Pigs, as important farm animals with 
significant economic and biomedical relevance, present a need to 
better understand the genetic regulation underlying complex traits 
such as growth, reproduction, and disease resistance (Mote and 
Rothschild, 2020). Traditional genetic studies alone often fall short 
in explaining this regulatory complexity, prompting a demand 
for tools that offer finer-resolution insights into gene expression 
control (Connally et al., 2022). The use of RNA sequencing in 
livestock research has expanded beyond traditional gene expression 
profiling, enabling cost-effective variant detection. It offers an 
alternative to whole-genome sequencing while overcoming the 
limitations of exome sequencing technologies (Han et al., 2015; 
Jehl et al., 2021). By analyzing transcriptomic data, variants 
within expressed regions can be identified, allowing for the 
investigation of cis-regulated genes through ASE analysis, a 
method that has become widely used since the introduction of 
RNA-seq technology (Montgomery et al., 2010; Pickrell et al., 
2010; Battle et al., 2014; Deelen et al., 2015; GTEx Consortium, 
2020). The use of RNA sequencing enables the differentiation 
of transcripts derived from an individual’s two haplotypes using 
heterozygous markers, making ASE an effective tool for studying 
cis-regulatory variation. The strength of this approach lies in its 
ability to detect regulatory differences directly from transcribed 
regions, offering high-resolution, gene-specific insights in a cost-
effective manner even with modest sample sizes. This enables 

the identification of functional variants with greater precision 
than broader eQTL studies, supporting more informed breeding 
strategies and improved trait selection (Schliekelman, 2008; 
Chamberlain et al., 2015; Pirinen et al., 2015). 

Prior studies have well-documented that ASE detection from 
RNA sequencing is reliable when there is a heterozygous site in 
the gene’s cis-regulatory region (Jehl et al., 2021; Iqbal et al., 2023). 
Studies in mice and humans increasingly show that variations in 
regulatory mechanisms, affect gene expression levels, detected as 
an allele-specific expression or allelic imbalance (Serre et al., 2008). 
For instance, a study found that over 80% of mouse genes exhibit 
cis-regulatory variation (Crowley et al., 2015). A comprehensive 
human study by the GTEx Consortium used transcriptomic data 
from various tissues including 11 brain regions to investigate gene 
expression and ASE across tissues (GTEx Consortium et al., 2015). 
Similarly, the Farm Animal GTEx (FarmGTEx) project has created 
an atlas of regulatory variants for domestic animal species. Notably, 
PigGTEx resources are freely accessible at http://piggtex.farmgtex. 
org (Teng et al., 2024). 

ASE detection methods have evolved, from analyzing 
individual samples using tools like QuASAR (Harvey et al., 2015), 
to evaluating ASE across single nucleotide polymorphisms (SNPs) 
within a gene with methods like MBASED (Mayba et al., 2014) and 
GeneiASE (Edsgärd et al., 2016). Recently, ASEP (Allele-Specific 
Expression Analysis in a Population) has enabled ASE detection 
across multiple individuals, utilizing a generalized linear mixed-
effects model that accounts for correlations of SNPs within the 
same gene (Fan et al., 2020). 

In this study, we used RNA sequencing to analyze 
transcriptomic profiles and ASE across six tissues from the 
brain and endocrine system: amygdala (Amy), hippocampus (Hip), 
thalamus (Tal), hypothalamus (HT), pituitary gland (PG), and 
adrenal gland (AG). A total of 48 samples (8 per tissue) from the 
same animals minimized genetic variability and environmental 
noise, enhancing the robustness of our analysis. Differential 
expression analysis was performed both between individual tissues 
and between neuroanatomically and physiologically defined tissue 
groups (limbic, diencephalon, and endocrine). WGCNA was 
conducted at the tissue group, enabling broader detection of 
co-expression patterns and functional enrichments. ASE analysis 
at the individual tissue level revealed over 1,000 genes with allele-
specific expression per tissue, including 37 shared across tissues. 
These shared ASE genes were further assessed for tissue-specific 
allelic ratios and functional relevance. 

Through integrated analysis of gene expression, differential 
expression, WGCNA, ASE, and functional enrichment, our 
study uncovers distinct molecular signatures related to stress 
response, growth, and homeostasis across limbic, diencephalon, 
and endocrine tissue groups in livestock. We identified gene 
networks and pathways reflecting their specialized roles, such 
as neuronal signaling in limbic and diencephalon tissues and 
hormone biosynthesis in endocrine tissues. These insights offer 
valuable foundations for improving breeding and productivity 
while highlighting strategies to reduce environmental stress, 
enhance living conditions, and promote animal welfare and 
sustainable farming. 
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2 Materials and methods 

2.1 Tissue collection 

The study included 8 female German Landrace pigs, with an 
average age of 170 ± 14 days and weight of 105 ± 8 kg. The brain 
tissue and endocrine glands, including the Amy, Hip, Tal, HT, PG, 
and AG were swiftly removed, flash-frozen in liquid nitrogen, and 
preserved at −80 ◦C for subsequent analyses. The pig brain atlas 
was used to help with the dissection of different brain regions (Félix 
et al., 1999). 

2.2 RNA extraction, library preparation, and 
data pre-processing 

For consistency of the results, all tissue samples were taken 
from the left side of the organ, including the Amy, Hip, Hip, and 
Tal, while an entire organ of the PG and AG was used. Firstly, the 
tissue sample was finely ground into powder in liquid nitrogen. 
Total RNA was purified using the RNeasy Mini Kit (Qiagen, 
Germany) and DNase I treatment to remove trace genomic 
DNA contamination. A NanoDrop ND-1000 spectrophotometer 
(Peqlab) and a Bioanalyzer 2100 (Agilent Technologies) were used 
to determine the concentration and quality of RNA, respectively. 
One microgram (μg) of total RNA (RIN > 8) was used to 
generate the library using an Illumina Stranded mRNA Prep, 
Ligation with the kit with 11 cycles of PCR amplification as 
directed by the manufacturer’s recommendation (Illumina, USA). 
The adaptor-ligated DNA libraries uniquely tagged with Ilumina 
Unique Dual (UD) index were quality checked, normalized, pooled, 
and sequenced for 2 × 101 cycles paired-end reads at 750 pM final 
concentration on the NextSeq 2000 system using a P3 flowcell. 
Library preparation and sequencing have been carried out at the 
sequencing facility of the Research Institute for Farm Animal 
Biology (FBN), Dummerstorf, Germany. Raw sequencing reads 
(fastq) were generated using dragen bcl convert v3.10.11 and 
quality-checked using FastQC version 0.11.9 (Andrews, 2010). 

Data preprocessing was performed using Trim Galore (version 
0.6.10.). Low-quality reads (a mean Q-score < 30) and short 
reads (<20 bp) as well as adapter-like sequences at the 3-end of 
sequence reads were removed (Krueger, 2015). Afterward, high-
quality paired-end reads were then aligned to the Sscrofa11.1 
reference genome (ENSEMBL release 105) using nf-core rnaseq 
pipeline (version 3.4) with STAR aligner (version 2.7.8a) and 
Salmon (version 1.10.2) (Dobin et al., 2013; Patro et al., 2017; Ewels 
et al., 2020). The RNA sequencing data obtained were deposited in 
the ArrayExpress database under the provided accession: E-MTAB-
14452. 

2.3 Gene expression profiling and 
downstream analysis 

After pre-processing the count data, it was transformed 
into a variance-stabilized format. Principal Component Analysis 
(PCA) was subsequently performed on a variance-stabilized 

expression matrix using the prcomp() function in base R, which 
applies singular value decomposition (SVD) to identify orthogonal 
components that capture maximum variance. The first two 
principal components were used to visualize sample clustering and 
variance structure across tissues. PCA was performed both within 
individual tissues and across grouped tissue categories: limbic 
(Amy and Hip), diencephalon (Tal and HT), and endocrine (PG 
and AG), enabling broader detection of co-expression patterns and 
functional enrichments. Pairwise differential expression analysis 
was conducted using the DESeq2 package (version 1.42.0) in the 
R programming environment (Love et al., 2014). Two categories 
of comparisons were performed: (1) individual tissue comparisons 
(among each of the six distinct tissue types), and (2) tissue group 
comparisons (between biologically or functionally related tissue). 
The differential expression model was defined as: 

Y = β0 + β1 · Tissue or Tissues Group + E (1) 

Where Y is the gene expression level, β0 is the intercept, β1 
represents the effect of each tissue type or tissue group, and ε is the 
error term. 

Differential expression analysis was performed using the 
Wald test within DESeq2. For individual tissue comparisons, 
differentially expressed genes (DEGs) were identified based on an 
adjusted p-value (FDR) < 0.05. For tissue group comparisons, 
a more stringent threshold was applied: genes were considered 
differentially expressed if they met both FDR < 0.05 and an absolute 
log2 fold change (|log2FC|) ≥ 2. In total, 15 pairwise comparisons 
were conducted between individual tissues, resulting in 15,516 
unique DEGs. These genes were used to explore gene expression 
overlaps and similarities across tissues. Hierarchical clustering 
of these DEGs was performed using the heatmap.2() function 
from the gplots package (version 3.1.3) (Warnes et al., 2016) 
to identify co-expression patterns across tissues. These clustered 
genes underwent KEGG pathway enrichment analysis using the 
ClueGO (version 2.5.10) and CluePedia (version 1.5.10) plugins in 
Cytoscape (version 3.10.2) (Shannon et al., 2003; Bindea et al., 2009, 
2013) with pathway significance determined by a hypergeometric 
test followed by Benjamini–Hochberg correction (p < 0.05). 

To visualize overlaps between the 15 comparison groups, DEGs 
from each were analyzed with the EVenn web tool (Chen et al., 
2021). Flower plots were used to depict shared genes, which 
were further analyzed for expression patterns across tissues. Log 
fold change (logFC) for each gene was calculated relative to the 
average expression across all tissues, and this was visualized in 
a heatmap generated by the pheatmap package (version 1.02.12) 
within the R programming environment (Kolde and Kolde, 2015). 
The differentially expressed genes from each pairwise tissue group 
comparison were visualized using volcano plots generated with the 
ggplot2 package (version 3.5.1) (Wickham et al., 2016). 

2.4 Functional annotation of DEGs from 
tissue group pairwise comparisons 

Differentially expressed genes (DEGs) between brain tissue 
groups (limbic, diencephalon, and endocrine) were analyzed 
for functional enrichment with clusterProfiler package (version 
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4.12.6) within the R programming environment (Yu et al., 2012). 
The DEG sets for each pairwise comparison were divided into 
upregulated and downregulated genes based on log2 fold change. 
The KEGG pathway and Gene Ontology biological Process (GO 
BP) enrichment analyses were performed using the enrichKEGG() 
and enrichGO() functions, respectively, within the clusterProfiler 
package, using the pig genome. Subsequently, results were filtered 
to include only those with an adjusted p-value (Benjamini-
Hochberg correction) <0.05. For each significantly enriched 
pathway or GO term, enrichment scores were calculated as the 
negative log10 of the adjusted p-value (p.adj). These scores were 
used to construct tissue-specific composite enrichment scores for 
each term as follows: 

Let L vs. D, L vs. E, and D vs. E represent the enrichment 
scores for the pairwise comparisons between Limbic vs. 
Diencephalon, Limbic vs. Endocrine, and Diencephalon vs. 
Endocrine, respectively. Composite scores for each tissue group 
were calculated as follows: Limbic score = (L vs. D)  + (L vs. E), 
Diencephalon score = – (L vs. D) + (D vs. E), and Endocrine 
score = – (L vs. E) – (D vs. E). These composite scores capture the 
direction and magnitude of KEGG pathway and biological process 
enrichment for each tissue group relative to the others. A positive 
enrichment score in a pairwise comparison indicates greater 
enrichment in the first tissue listed. Heatmaps of the composite 
scores were generated using the pheatmap package (version 1.0.13) 
in R. 

2.5 Gene co-expression analysis with 
WGCNA 

An expression matrix of differentially expressed genes 
derived from the three pairwise tissue group comparisons was 
constructed. Co-expression network analysis was then performed 
using the Weighted Gene Co-expression Network Analysis 
(WGCNA) package (version 1.72-1) in the R programming 
environment (Langfelder and Horvath, 2008). To assess scale-free 
topology, the soft-thresholding power (β) was selected using the 
pickSoftThreshold() function. Network construction and module 
identification were carried out using the blockwiseModules() 
function, with the following parameters: power = 20, network type 
= signed, minimum module size = 100, and maximum block size 
= 1,500. 

Module eigengenes (MEs), representing the first principal 
component of each module’s gene expression profile, were 
computed using the moduleEigengenes() function. Pearson 
correlations between MEs and tissue group categories (limbic, 
diencephalon, and endocrine) were calculated using the cor() 
function. The significance of each correlation was assessed using 
Student’s t-distribution through the corPvalueStudent() function. 
Modules with a correlation p-value < 0.05 were considered tissue 
group-specific. Genes from these modules were analyzed for KEGG 
pathway enrichment using the clusterProfiler package (version 
4.12.6) within R, with the pig (Sus scrofa) database. Pathways with a 
false discovery rate (FDR) adjusted p-value < 0.05 were considered 
significantly enriched. 

2.6 RNA-seq-based variant identification 
with GATK 

Standard preprocessing of sequenced reads was performed 
according to Genome Analysis Toolkit (GATK, version 4.2.0.0) 
best practices guidelines, ensuring robust variant detection and 
genotype calling based on RNA sequencing data (Brouard et al., 
2019; Jehl et al., 2021). The alignment of sequencing reads to the Sus 
scrofa reference genome assembly (Sscrofa11.1, ENSEMBL release 
106) was performed using the STAR aligner (version 2.7.8a) with 
a 2-pass mode configuration (Dobin et al., 2013). Quality filtering 
was conducted on aligned BAM files to retain reads meeting the 
predefined quality criteria, and weighted analysis to account for 
selection and population structure (WASP) filtering was applied 
to select the high-quality alignment by samtools (version 1.12), as 
well as duplicate reads were identified and removed using “GATK 
MarkDuplicate” to obtain refined BAM files with unique and high-
quality alignments. After alignment and quality filtering, the reads 
with “NS” in their cigar strings were split using “SplitNCigarReads,” 
which enabled thorough analysis of the splicing events, and base 
recalibration was performed using known variants from Ensembl 
v102’s dbSNP (Hunt et al., 2018). 

For variant identification, the “GATK’s Haplotypecaller tool” 
was employed to detect single nucleotide polymorphisms (SNPs) 
and insertion/deletions (Indels) via the localized de novo assembly 
within active regions by applying a minimum-confidence threshold 
of 20, with the exclusion of soft-clipped bases (Van der Auwera 
et al., 2013). Subsequently, variant filtration was performed with 
“GATK’s VariantFiltration” tool, applying defined parameters, 
including cluster window size of 35, cluster size of 3, and filter 
expression for two specific annotation FS (Fisher Strand) > 30 and 
QD (Quality by Depth) < 2 for detection and exclusion of variants 
with strand bias and/or low quality. 

2.7 Analysis of allele-specific expression 

For ASE from the SNP variant, an additional iteration of the 
GATK best practice pipeline was implemented. SNPs identified 
in the initial round (aforementioned in Section 1.5), underwent 
N-masking within the reference genome using bedtools (version 
v2.27.1), a crucial step to enable unbiased STAR alignment by the 
inclusion of the masked SNPs in the mapping process. Alongside 
the quality control procedures performed earlier, SNPs subjected 
to ASE analysis underwent filtration based on their read coverage. 
Only biallelic loci with heterozygosity with a minimum of 50 
reads in total, at least 10 reads per allele, and with each allele 
contributing no <1% to the total read count as well as SNPs on 
sex chromosomes and unmapped regions were removed from the 
further downstream analysis. 

Additionally, tissue-specific gene-wise ASE analysis was 
performed in the Amy, Hip, Tal, HT, PG, and AG using the ASEP 
(Allele-Specific Expression Analysis in a Population, version 0.1.0) 
package within the R programming environment (Fan et al., 2020). 
The “ASE_detection()” functions were applied to identify gene-level 
ASE effects with statistical significance (p-value < 0.05) within 
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each tissue. The analyses were performed using unphased, adaptive 
configuration with a resampling rate of 1e4. The genes exhibiting 
ASE from six different tissues (Amy, Hip, Tal, HT, PG, and AG) 
were analyzed with the EVenn web tool (Flower plot) to visualize 
the overlapping genes across all tissues. Furthermore, differential 
ASE detection was applied to pairwise tissue comparisons, and 
resulting shared genes are visualized in a heatmap using the gplots 
package (version 3.1.3) within the R environment. 

Furthermore, to evaluate the overlap between ASE genes 
from the Amy, Hip, Tal, and AG (p < 0.05) and pig brain 
eQTLs, we accessed cis-eQTL data from the PigGTEx portal 
within the FarmGTEx database [Farm Animal Genotype-Tissue 
Expression database (Teng et al., 2024)]. We examined the 
PigGTEx_v0.permutations_eQTL file, specifically targeting the 
Brain.cis_qtl_fdr0.05 dataset, which was filtered for FDR < 0.05. 
Using a gene-matching strategy, we identified overlapping genes 
between the ASE genes in these tissues and the brain-specific 
eQTLs. Similarly, we sourced eQTL data for the hypothalamus 
and pituitary gland (FDR < 0.05) from the PigGTEx portal and 
confirmed the overlap between these eQTLs and the ASE genes 
identified in our study for HT and PG. The shared between eQTLs 
and the ASE genes identified from these tissues (Amy, Hip, Tal, HT, 
PG, and AG) were visualized using a circos plot, created with the 
circlize package (version 0.4.16) in the R environment (Gu et al., 
2024). 

2.8 Variance analysis of allelic ratios in ASE 
genes 

The allelic ratio (AR) for each gene within tissue samples was 
calculated by dividing the sum of reference allele counts by the sum 
of total allele counts across all SNPs in the gene. 

AR = 

 
Ref (a) 

 
Total(b) 

(2) 

Where 


Ref (a) is the sum of reference allele counts for all SNPs 
in the gene, and 


Total (b) is the sum of total allele counts for all 

SNPs in the gene. 
Genes with ASE overlapping across six tissues were selected, 

and their mean allelic ratio for each tissue was calculated to 
visualize the allele expression profile using a heatmap created with 
the pheatmap package (version 1.0.12) within the R environment. 
The “aov()” function in the R environment was applied to perform 
an analysis of variance (ANOVA) on the gene with ASE overlapped 
across six tissues (Amy, Hip, Tal, HT, PG, and AG) to evaluate the 
impact of tissue type on allelic ratio variation of each gene (St and 
Wold, 1989). Additionally, the mean allelic ratio and its standard 
deviation (SD) for shared genes were calculated across the six tissue 
types and used for pairwise comparisons through two-way ANOVA 
with Tukey’s multiple comparison tests, conducted in the GraphPad 
prism. The significant differences in pairwise comparison and/or 
overall tissue type impact on gene allelic ratio were determined 
with a threshold of p < 0.05. The bar plots were generated using 
GraphPad prism, highlighting the observed differences in mean 
allelic ratio across different tissue types (Wickham et al., 2016). 

3 Results 

A comprehensive analysis was performed on transcriptome 
data collected from the pig’s limbic system organs: Amy, Hip, Tal, 
HT, and the endocrine glands: PG and AG. A total of 1,128.8 
million raw reads were generated from the mRNA sequencing 
of 48 libraries. These libraries were equally divided among six 
tissues Amy, Hip, Tal, HT, PG, and AG with 8 samples per tissue. 
An average of 23.5 million reads per sample was aligned to the 
Sscrofa11.1 reference genome (ENSEMBL release 105). Of these, an 
average of 21.1 million reads per sample were aligned, with 89.7% 
of the reads mapped in Supplementary Table S1. The resulting 
30,635 genes (transcripts) that passed quality control were used 
for further analysis. Furthermore, two approaches were applied 
based on RNA-seq data: (1) gene expression analysis, which was 
used to identify expression changes between various tissues as 
well as among biologically or functionally related tissue groups, 
and (2) variant discovery analysis, which aimed to determine ASE 
within the tissues. Variance-stabilized expression values of a total 
of 30,635 genes underwent pairwise differential gene expression 
analysis across different tissues. Subsequently, a total of 95,033 
commonly identified SNPs across all tissues were then analyzed to 
assess the ASE within the tissues. 

3.1 Clustering of tissues based on 
transcriptomic data 

PCA based on variance-stabilized counts from six tissues (Amy, 
Hip, Tal, HT, PG, AG) revealed distinct clustering patterns. The 
PCA indicated that PC1 and PC2 represent 44.23% and 22.10% of 
the total variance, respectively (Figure 1A). The analysis revealed 
distinct clustering patterns across tissues, with limbic system 
organs (Amy, Hip, Tal, HT) tightly grouped, and endocrine tissues 
(PG and AG) forming a separate cluster. To explore higher-level 
transcriptional organization, tissues were categorized into three 
functional groups: limbic (Amy and Hip), diencephalon (Tal and 
HT), and endocrine (PG and AG). PCA performed on these groups 
showed that the limbic and diencephalon groups were relatively 
close but remained separated, while both were distinctly clustered 
from the endocrine group (Figure 1B). 

3.2 Expression clustering and pathway 
enrichment of DEGs across tissues 

Fifteen pairwise comparison groups were analyzed, including 
Amy vs. Hip, Amy vs. HT, Amy vs. PG, Amy vs. AG, Amy vs. 
Tal, Hip vs. HT, Hip vs. PG, Hip vs. AG, Hip vs. Tal, HT vs. PG, 
HT vs. AG, HT vs. Tal, PG vs. AG, PG vs. Tal, and AG vs. Tal. 
The number of genes significantly differentially expressed at an 
FDR < 0.05, or at FDR < 0.05 with a log2 fold change (|log2FC|) 
≥ 2, for each comparison group is shown in Table 1. Finally, the 
genes were aggregated, resulting in a total of 15,516 differentially 
expressed genes, covering all 15 of the comparison groups, outlined 
in Supplementary Table S2. 
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FIGURE 1 

Principal component analysis (PCA) of individual tissues and functional tissue groups. (A) The PCA plot illustrates the clustering of tissue using the 
variance stabilized gene expression data, with each limbic system tissue and endocrine system glands represented by a distinct color circle: blue 
(adrenal gland), red (amygdala), green (hippocampus), brown (hypothalamus), purple (pituitary gland), and yellow (thalamus). (B) PCA of grouped 
tissues based on shared functional roles: Limbic system (amygdala and hippocampus, red), Diencephalon (thalamus and hypothalamus, dark green), 
and Endocrine (adrenal gland and pituitary gland, blue), showing group-level clustering. 

TABLE 1 The number of differentially expressed genes between different 
tissues with FDR < 0.05 and |log2FC| ≥ 2. 

Pairwise 
comparison 
groups 

DEGs 
(FDR < 0.05) 

DEG (FDR < 0.05 
and |log2FC| ≥ 2) 

Amy vs. Hip 1,803 139 

Amy vs. HT 10,520 954 

Amy vs. PG 10,125 2,820 

Amy vs. AG 10,393 3,915 

Amy vs. Tal 3,792 754 

Hip vs. HT 11,548 1,323 

Hip vs. PG 10,615 3,008 

Hip vs. AG 10,308 3,809 

Hip vs. Tal 3,223 663 

HT vs. PG 10,273 2,462 

HT vs. AG 12,119 4,349 

HT vs. Tal 8,991 700 

PG vs. AG 10,320 2,900 

PG vs. Tal 9,177 2,883 

AG vs. Tal 9,349 3,666 

Amy, Amygdala; Hip, Hippocampus; Tal, Thalamus; HT, Hypothalamus; PG, Pituitary Gland; 
AG, Adrenal Gland. 

Using a hierarchical clustering heatmap to identify expression 
patterns across six different tissues, a total of 1,039 genes were 
grouped into three clusters based on their expression profiles, with 
a cutoff criteria of log2FC ≥ 2 and FDR < 0.05. Cluster one (C1) 
includes 692 genes, cluster two (C2) includes 121 genes, and cluster 
three (C3) includes 226 genes, as shown in Figure 2, and a list of 
cluster genes was provided in Supplementary Table S3. Moreover, 

the analysis suggests that the genes in C1 demonstrated similar 
expression patterns (higher expression) in the Amy, Hip, Tal, and 
HT as compared to the PG and AG. The genes in C2 show higher 
expression only in the pituitary gland compared to other tissues, 
while genes in C3 show upregulation in both the pituitary gland 
and adrenal gland compared to other tissues. 

The KEGG pathway enrichment analysis was performed 
on genes from each cluster of the heatmap (C1: 692 genes, 
C2: 121 genes, and C3: 226 genes) using ClueGO (version 
2.5.10) and Cluepedia (version 1.5.10) plugin in Cytoscape 
(version 3.10.2) environment. A total of 15 KEGG pathways 
were significantly enriched with a threshold of p-value < 
0.05. These pathways include calcium signaling pathway, 
insulin secretion, cortisol synthesis and secretion, steroid 
hormone biosynthesis, neuroactive ligand-receptor interaction, 
cAMP signaling pathway, long-term potentiation, tyrosine 
metabolism, hippo signaling pathway, long-term depression, 
thyroid hormone synthesis, regulation of lipolysis in adipocytes, 
oxytocin signaling pathway, GABAergic synapse, and GnRH 
signaling pathway (Figure 3). Details on cluster proportion 
and gene counts within enriched pathways were provided in 
Supplementary Table S4. 

Interestingly, the genes in cluster one (C1), which show 
higher expression levels in the amygdala, hippocampus, thalamus, 
and hypothalamus but lower expression in the pituitary and 
adrenal glands (Figure 2), are enriched in pathways such as 
oxytocin signaling, cAMP signaling, long-term potentiation, 
GABAergic synapse, long-term depression, Hippo signaling, 
and neuroactive ligand-receptor interaction. These pathways 
play a crucial role in regulating limbic system function. The 
genes from cluster two (C2) and cluster three (C3) that 
show higher expression in the PG and AG were enriched in 
cortisol synthesis and secretion, steroid hormone biosynthesis, 
and tyrosine metabolism. These pathways were involved in 
regulating the hormonal functions within the endocrine system 
(Figure 3). 
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FIGURE 2 

Comparative gene expression patterns among tissues. The heatmap was generated using hierarchical clustering, illustrating the gene expression 
variation across different tissues. The genes were categorized into three clusters: C1 (red), C2 (green), and C3 (blue). The tissues were represented by 
specific colors: the amygdala (darksalmon), hippocampus (yellow), thalamus (cyan), hypothalamus (green), pituitary gland (orange), and adrenal 
gland (darkpink). In the color key, red color indicates upregulation, green indicates downregulation, and black signifies no change in expression. 

3.3 Shared DEGs across multiple pairwise 
comparisons 

The identification of core DEGs that overlapped across all 
15 pairwise comparison groups revealed 33 genes that were 
consistently differentially expressed across all groups, as shown 
in Figure 4A. Additionally, the expression patterns of these 33 
genes across all six tissues were visualized by a heatmap. In 
the amygdala and hippocampus, 3/33 genes include CUGBP 
Elav-Like Family Member 5 (CELF5), Hippocalcin Like 4 
(HPCAL4), and Cortexin 1 (CTXN1) were genes that exhibit 
higher expression levels in the amygdala, while WASL interacting 
protein family member 3 (WIPF3) and Calcium Voltage-
Gated Channel Auxiliary Subunit Gamma 8 (CACNG8) were 
genes that demonstrated higher expression in the hippocampus. 
Additionally, Phytanoyl-CoA Dioxygenase Domain-Containing 
Protein 1 (PHYHIP), and Storkhead Box Homolog 1 (STUM) 
exhibit similar higher expression patterns in both the amygdala 
and hippocampus. Among the 33 common genes, 6 genes 
exhibited notably higher expression specifically in the thalamus, 
including Leucine Rich Repeat Transmembrane Neuronal 1 
(LRRTM1), Secretin Receptor Transmembrane Adaptor 1 (SCRT1), 

C-type Lectin Domain Family 2 Member L (CLEC2L), Histamine 
Receptor H3 (HRH3), Cartilage Acidic Protein 1 (CRTAC1), 
and Proline-Rich 5 Like (PRR5L). Also, 4/33 genes including 
Acetylcholinesterase (ACHE), Gap Junction Protein Gamma 
2 (GJC2), Myelin Basic Protein (MBP), and Kelch Domain 
Containing 8A (KLHDC8A), were genes that showed higher 
expression levels in both the thalamus and hypothalamus 
(Figure 4B). 

In the adrenal gland and pituitary gland, 7/33 genes, 
encompassing Family with sequence similarity 210 member 
B (FAM210B), Golgin A7 (GOLGA7), Neuroblastoma MYC 
Oncogene (MYCN), Neuronal Pentraxin 1 (NPTX1), Dual 
Specificity Phosphatase 9 (DUSP9), Chordin (CHRD), and 
Potassium Calcium-Activated Channel Subfamily N Member 2 
(KCNN2), indicating higher expression levels in the adrenal gland, 
whereas in pituitary gland the following four genes showed 
higher expression: Secreted Phosphoprotein 2 (SPP2), Janus Kinase 
and Microtubule-Interacting Protein 1 (JAKMIP1), p21-Activated 
Kinase 6 (PAK6), and Neuronal Synaptogyrin 2 (NSG2). Only the 
Cerebellar Degeneration-Related Protein 2 (CDR2) gene indicated 
higher expression in both the adrenal gland and pituitary gland 
(Figure 4B). 
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FIGURE 3 

KEGG pathways enrichment network. The network illustrates the enrichment of the KEGG pathway for each cluster identified in the heatmap. The pie 
charts highlight gene count and their proportion in clusters C1, C2, and C3 across enriched pathways. The red ellipse indicated the genes associated 
with Cluster 1 (692 genes), the green ellipse indicated the genes in Cluster 2 (121 genes) and the blue ellipse indicated the genes in Cluster 3 (226 
genes). 

3.4 Differential gene expression and 
functional enrichment in pairwise tissue 
group comparisons 

For a more comprehensive transcriptome analysis of six 
pig tissues, we categorized them into three groups based on 

their functional and anatomical characteristics: the limbic group 

(Amy and Hip), the diencephalon group (Tal and HT), and 

the endocrine group (PG and AG). PCA based on variance-
stabilized counts revealed distinct clustering patterns among tissue 
groups in each pairwise comparison (Figures 5A–C). Pairwise 
differential expression analyses were conducted between the three 
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FIGURE 4 

Overlapping genes and their expression across multiple tissues. (A) The flower plot depicts the core genes common across all pairwise tissue 
comparisons. Each petal of the flower represents differentially expressed genes between tissues, with the inner circle highlighting the core genes 
shared among all comparison groups. (B) The heatmap illustrates the expression patterns of these core genes across six different tissues. The color 
scheme is red for upregulation, green for downregulation, and white for no change. 

tissue groups: limbic vs. diencephalon, limbic vs. endocrine, and 
diencephalon vs. endocrine. Genes were considered significantly 
differentially expressed if they met the criteria of false discovery 
rate (FDR) < 0.05 and |log2 fold change| ≥ 2, as illustrated 
in Figures 5D–F. A total of 4,954 differentially expressed genes 
(DEGs) were identified across all group comparisons. The 
highest number of DEGs was observed in the limbic vs. 
endocrine comparison (3,963 transcripts, Figure 5E), followed by 
diencephalon vs. endocrine (3,670 transcripts, Figure 5F), and 
limbic vs. diencephalon (603 transcripts, Figure 5D). Summary 
statistics for all DEGs (log2FC, FDR, baseMean) are provided in 
Supplementary Table S5. 

Furthermore, to elucidate the biological relevance of 
transcriptional differences among tissue groups, we performed 
gene ontology (GO) and KEGG pathway enrichment analyses 
using DEGs identified from pairwise comparisons. All significantly 
enriched terms and pathways were considered based on an FDR 
< 0.05, and results were visualized using enrichment scores, 
which capture the direction and magnitude of functional bias 
across tissue groups (Figures 5G, H). GO enrichment analysis of 
genes upregulated in limbic and diencephalon tissues compared 

to endocrine revealed strong enrichment for neurodevelopmental 
and neuronal signaling processes, including synaptic signaling, 
neurogenesis, axon guidance, and regulation of neurotransmitter 
secretion. These terms reflect the neural specialization of these 
brain regions. In contrast, genes upregulated in the Endocrine 
tissue were significantly enriched for biological processes 
such as hormone response, steroid metabolic process, gland 
development, and endocrine system development, reflecting the 
tissue’s specialized hormonal and secretory functions, as shown in 
Figures 5G, H. 

Consistently, KEGG pathway enrichment analysis revealed 
that the upregulated DEGs were associated with neuronal 
function-related pathways, including neuroactive ligand-receptor 
interaction, glutamatergic and GABAergic synapses, long-term 
potentiation, as well as calcium and cAMP signaling. These 
pathways are essential for synaptic transmission, neural plasticity, 
and intracellular signaling. Distinctly, DEGs upregulated in 
endocrine tissues were significantly enriched in pathways 
including ECM-receptor interaction, complement and coagulation 
cascade, cholesterol metabolism, PI3K-Akt signaling, and 
hormone biosynthesis and secretion (e.g., cortisol synthesis, 
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FIGURE 5 

PCA and differential expression analysis of functional tissue groups. Principal component analysis (PCA) of variance-stabilized gene expression 
showing separation between tissue groups (A) Limbic and Diencephalon, (B) Limbic and Endocrine, (C) Diencephalon and Endocrine. Groups are 
color-coded: red (Limbic), dark green (Diencephalon), and blue (Endocrine). Volcano plots show differentially expressed genes (DEGs) for the 
pairwise tissue group comparisons (D) Limbic vs. Diencephalon (red: upregulated in Limbic; dark green: downregulated), (E) Limbic vs. Endocrine 
(red: upregulated in Limbic; blue: downregulated), and (F) Diencephalon vs. Endocrine (dark green: upregulated in Diencephalon; blue: 
downregulated). DEGs in each tissue group pairwise comparison are identified based on an FDR < 0.05 and |log2 FC| > 2. Heatmaps illustrate the 
functional enrichment of differentially expressed genes (DEGs) identified from pairwise tissue group comparisons: (G) gene ontology (GO) biological 
processes and (H) KEGG pathways, both with FDR < 0.05. Red indicates positive enrichment scores representing processes and pathways enriched 
by genes upregulated in the limbic and diencephalon groups, while green indicates negative enrichment scores corresponding to genes upregulated 
in the Endocrine group. 
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ovarian steroidogenesis, and thyroid hormone synthesis). These 
enrichments suggest active structural remodeling, immune 
system involvement, and endocrine functional regulation 
(Figures 5G, H). Complete enrichment results are available in 
Supplementary Table S6. 

3.5 Tissue group-specific co-expression 
modules and functional enrichment 

The weighted gene co-expression network analysis (WGCNA) 
was employed to explore the biological relationships and functional 
relevance of 4,954 differentially expressed genes (FDR < 0.05, 
|log2FC| ≥ 2) identified from pairwise comparisons among the 
three tissue groups: limbic, diencephalon, and endocrine. After 
evaluating the indices and mean connectivity across the powers 
ranging from 1 to 20, a soft thresholding value (β) of 20  
was selected, corresponding to (R2 = 0.9), signifying a robust 
fit to the scale-free topology model and effectively balances 
scale independence and lower mean connectivity (Figures 6A, B). 
Furthermore, the gene co-expression modules were identified 
through hierarchical clustering by computing dissimilarity between 
genes derived from the transformed topological matrix (Figure 6C). 
A total of seven gene co-expression modules were identified as 
gold2, seagreen, purple, cyan3, darkgreen, orange4, and brown1, 
and the number of genes in each module ranged from 250 to 1,300 
(Figure 6D, Supplementary Table S7). 

To explore tissue group–driven gene co-expression patterns, we 
correlated the eigengenes of the seven identified modules with each 
of the three tissue groups: limbic, diencephalon, and endocrine. 
Modules were considered group-specific if the correlation was 
statistically significant (P < 0.05). The analysis revealed that 
all seven modules displayed significant group-specific expression 
patterns, characterized by both positive and negative correlations. 
Positive correlations indicated upregulation in the corresponding 
tissue group, whereas negative correlations reflected relative 
downregulation. Among the identified modules, the seagreen1 
module (858 genes) exhibited a strong positive correlation with the 
limbic group (r = 0.88, P = 3 × 10−16) and a strong negative 
correlation with the endocrine group (r = −0.81, P = 2 × 
10−12 , Figure 7A). It was enriched in Neuroactive ligand-receptor 
interaction (adjusted p = 1.84× 10−23), Hormone signaling, and 
Calcium signaling pathway (Figure 7B). The darkgreen module 
(748 genes) showed moderate positive correlations with the 
limbic (r = 0.41, P < 0.01) and diencephalon (r = 0.53, P 
< 0.001) groups, and a strong negative correlation with the 
endocrine group (r = −0.95, P < 1 × 10−24 , Figure 7A). It was 
enriched in Neuroactive ligand-receptor interaction (adjusted p 
= 5.01 × 10−13), Glutamatergic synapse, GABAergic synapse, 
Calcium signaling pathway, Dopaminergic synapse, Long-term 
potentiation, and Serotonergic synapse (Figure 7B). Purple module 
(804 genes) exhibited moderate positive correlations with the 
limbic (r = 0.44, P < 0.01) and diencephalon (r = 0.51, P 
< 0.001) groups, and a strong negative correlation with the 
endocrine group (r = −0.95, P < 1 × 10−25 , Figure 7A). It was 
enriched in Neuroactive ligand-receptor interaction (adjusted p = 
7.7 × 10−12), Glutamatergic synapse, GnRH secretion, Long-term 

potentiation, and Oxytocin signaling pathway (Figure 7B). Cyan3 
module (770 genes) exhibited strong positive correlations with 
the endocrine group (r = 0.74, P = 2 × 10−09). It was enriched 
in Complement and coagulation cascades (adjusted p = 3.29 × 
10−10), Cholesterol metabolism, Cortisol synthesis and secretion, 
Ovarian steroidogenesis, Steroid hormone biosynthesis, and PPAR 
signaling pathway. The gold2 module (1,207 genes) exhibited a 
very strong positive correlation with the endocrine group (r = 
0.99, P = 2.41 × 10−38) and was enriched in Thyroid hormone 
synthesis (adjusted p < 0.01) PI3K-Akt signaling pathway, cAMP 
signaling pathway, and Growth hormone synthesis, secretion and 
action, as shown in Figures 7A, B. Notably, no significant enriched 
pathways were identified for the orange4 (294 genes) and brown1 
(273 genes) modules despite their strong positive correlation with 
the endocrine group. The detailed enrichment results are provided 
in Supplementary Table S8. 

3.6 Gene-based ASE analysis within tissues 
across individuals in the population 

The data were analyzed using the “ASE_detection()” function 
for one-condition analysis from the ASEP package within the R 
environment, which conducts gene-level ASE analysis within the 
six tissues derived from the same population of eight animals. 
Significant ASE effects were identified in the following number of 
genes for each tissue: Amy (1,137), Hip (1,135), Tal (1,456), HT 
(1,122), PG (1,179), and AG (1,289), all at a significance level of P < 
0.05. The detailed results are provided in Supplementary Table S9. 
We further examined the gene names that were shared across 
the different tissues. The distribution and quantity of shared ASE 
gene names between different tissues are summarized in Figure 8A. 
Additionally, we identified 37 genes that exhibited ASE and were 
shared across all examined tissues, as illustrated in Figure 8B. 
These genes were specifically selected for a detailed analysis, with 
the mean allelic ratio calculated for each tissue to reveal their 
expression profiles across diverse tissue environments (Figure 8C). 

In addition, a variance analysis was conducted on these 
37 genes with ASE to assess the overall impact of tissue type 
on allelic ratio variation. Pairwise comparisons between tissue 
types were also performed for each gene to examine differences 
in mean allelic ratios across tissues. Interestingly, 7 of the 37 
genes showed a significant tissue-wide effect on allelic ratio 
(Supplementary Table S10). Furthermore, 10/37 genes in pairwise 
comparisons revealed significant differences in mean allelic ratio 
across tissues. The PINK1 exhibits significant mean allelic ratio 
variation in all comparisons with the AG, including the comparison 
with the HT (P = 9.89e-05), Hip (P = 0.00041), Tal (P = 0.00045), 
PG (P = 0.0013), and Amy (P = 0.03). The mean allelic ratio 
differences for the Leucine Carboxyl Methyltransferase 1 (LCMT1) 
were determined in all comparisons with the Amy, including the 
comparison with the Tal (P = 0.0009), Hip (P = 0.0015), HT (P 
= 0.0043), AG (P = 0.0135), and PG (P = 0.022). The allelic ratio 
differences for the Zinc Finger And BTB Domain Containing 22 
(ZBTB22) were observed in the Amy vs. PG (P < 0.0001), Hip vs. 
PG (P < 0.0001), Tal vs. PG (P < 0.0001), HT vs. PG (P < 0.0001), 
and HT vs. AG (P = 0.0003). Also, significant variations in the 
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FIGURE 6 

Selection of soft thresholding power and module detection. (A) Scale independence plot illustrating the determination of soft thresholding. The 
y-axis represents the scale-free topology, while the x-axis indicates the soft thresholding power. The red dotted line indicates the selected 
soft-thresholding power of (β = 20) where the scale-free topology fit index reached 0.9. (B) The mean connectivity plot shows the mean connectivity 
on the y-axis as a function of soft-thresholding power on the x-axis. (C) The cluster dendrogram of genes indicating the dissimilarity based on the 
topological overlap is utilized for module detection through dynamic tree cutting. Each color in the horizontal module colors bar below the 
dendrogram signifies a different module. (D) The bar plot illustrates each module, with the color of each bar indicating the module’s color (x-axis) 
and its size representing the gene count (y-axis) within the module. 

mean allelic ratio were observed for the PPL3 gene between the AG 
vs. PG (P = 0.001) and AG vs. Amy (P = 0.02). The mean allelic 
ratio differences for the HEBP1 were observed only in the HT vs. 
PG comparison (P = 0.013). Interestingly, 7/10 genes, including 
PINK1, TTLL1, SLA-DRB1, HEBP1, ANKRD10, LCMT1, and SDF2, 
exhibited ASE and were also recognized as eQTLs in brain tissue 
according to data from the PigGTEx portal within the FarmGTEx 
database, as outlined in Supplementary Table S10. 

Additionally, TTL1, NEFL, SDF2, and SLA-DRB1 demonstrated 
notable differences in mean allelic ratio across analyzed tissues. 
TTL1, showed pronounced variations in comparisons such as Tal 
vs. Amy (P < 0.0001), Tal vs. Hip (P < 0.0001), Tal vs. HT (P 
= 0.0028), Tal vs. PG (P < 0.0001), Tal vs. AG (P < 0.0001), 
Amy  vs. HT (P = 0.01), Hip vs. AG (P = 0.0007), HT vs. PG (P 

= 0.0091), and HT vs. AG (P < 0.0001, Figure 9A). The NEFL 
demonstrates the mean allelic ratio variation between Amy vs. PG 
(P = 0.0043), Amy vs. AG (P < 0.0001), Hip  vs. PG (P = 0.01), 
and Hip vs. AG (P < 0.0001), Tal vs. PG (P = 0.03), Tal vs. AG 
(P < 0.0001), HT vs. AG (P < 0.0001), and PG vs. AG (P < 
0.0001, Figure 9B). The Stromal Cell Derived Factor 2 (SDF2) gene 
demonstrates notable variations in mean allelic ratio across various 
brain regions and glands. Significant differences were observed in 
comparisons between the Amy and both the Hip (P = 0.0035) 
and HT (P < 0.0001). Similarly, the significant differences were 
determined in the Hip vs. Tal (P = 0.0084), Hip vs. PG (P = 0.009), 
Hip vs. AG (P = 0.01), Tal vs. HT (P < 0.0001), HT vs. PG (P 
< 0.0001), and HT vs. AG (P < 0.0001, Figure 9C). The Swine 
Leukocyte Antigen Class II, DR Beta 1 (SLA-DRB1) gene exhibits 
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FIGURE 7 

Heatmap of module eigengene-tissue group correlation. (A) The heatmap of eigengene adjacency shows the correlation between module 
eigengenes and tissue groups. The y-axis is labeled with color bars for modules (seagreen1, darkgreen, purple, brown1, cyan3, orange4, and gold2). 
Positive correlations are depicted in red shades, while negative correlations are indicated in blue shades. The color intensity corresponds to 
correlation strength, as indicated by the correlation bar. The significance of the correlation is represented by the p-values shown in brackets 
alongside with correlation value. (B) Each dot represents a KEGG pathway enriched in a different gene modules (cyan3, darkgreen, gold2, purple, and 
segreen1). The color of each dot represents the FDR-adjusted p-value and the size of the dot corresponds to the number of genes associated with 
each enriched pathway. 
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FIGURE 8 

Consistent ASE patterns across different tissues. (A) The block plot displays the total number of ASE genes and overlapped genes between the tissues. 
The diagonal block in unique colors indicates the total number of ASE genes within each tissue. The off-diagonal yellow blocks represent the 
number of common genes between the tissues. (B) The flower plot represented the shared significant ASE genes across all tissues. Each petal 
corresponds to tissue-specific ASE genes and the inner circle depicts the overlapped genes. (C) The heatmap depicts the variation in allelic ratios of 
shared genes across all six tissues. The color bar indicates the strength of these differences, where red indicates higher allelic ratios and blue 
indicates lower allelic ratios. Significant genes are marked with a star for both tissue comparisons and overall tissue effects. 

significant mean allelic ratio variation in all comparisons with the 
Amy, including the comparison with the Hip (P < 0.0001), Tal (P 
= 0.0014), HT (P < 0.0001) PG (P = 0.0004), and AG (P < 0.0001, 
Figure 9D). 

3.7 Tissue-specific ASE gene overlaps with 
brain, hypothalamus, and pituitary gland 
eQTLs from the PigGTEx database 

Our tissue-specific ASE analysis revealed that over a thousand 
genes exhibit allele-specific expression in brain tissues and 
endocrine glands, with a significance threshold of P < 0.05. We 
employed a gene-matching strategy to demonstrate that ASE genes 
from the Amy, Hip, Tal, and AG overlapped with brain tissue 
eQTLs data, from the PigGTEx portal, filtered at an FDR < 0.05. 
In Amy, 1,137 genes exhibited significant ASE, with 497 (43.7%) 
genes overlapping with brain eQTLs. The Hip had 1,135 genes 

with significant ASE, of which 492 (43.3%) were common with 
brain eQTLs. In the Tal, 1,456 genes exhibited significant ASE, with 
619 (42.5%) genes shared with brain eQTLs. The AG had 1,289 
genes with significant ASE, of which 544 (42.3%) were common 
with brain eQTLs, as shown in Figure 10A. In the HT, 1,122 genes 
with significant ASE, of which 213 (18.9%) were common with 
hypothalamus tissue eQTLs from the PigGTEx portal, were filtered 
at an FDR < 0.05. Similarly, the PG had 1,179 genes with significant 
ASE, of which 49 (4.1%) genes shared with pituitary gland eQTLs 
from the PigGTEx portal, filtered at an FDR < 0.05 (Figure 10B); 
detailed results are outlined in Supplementary Table S9. 

4 Discussion 

This study highlights the variation in genetic regulation 
between brain and endocrine tissues, emphasizing the complex 
interplay of genetic and regulatory mechanisms underlying stress 
adaptation and endocrine function. While previous studies on ASE 
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FIGURE 9 

Mean allelic ratio variability across tissues for significant genes. Each bar plot (a–d) represents the significant mean allelic ratio differences of genes 
across the Amy, Hip, Tal, HT, PG, and AG. Subplot (A) depicts TTLL1, (B) NEFL, (C) SDF2, and  (D) SLA-DRB1. Differences in the mean allelic ratio 
between tissues were represented by unique letters (“a”–“f”), where shared letters indicated non-significant differences from each other at P < 0.05. 
The error bars represent the standard deviation of the mean allelic ratio within each tissue. 

in livestock have focused on tissues like the liver and muscle (Yang 
et al., 2016; Khansefid et al., 2018; Guillocheau et al., 2019; de 
Souza et al., 2020; Liu et al., 2020), our study extends these findings 
to limbic and endocrine tissues, revealing distinct ASE patterns 
indicative of tissue-specific regulation. Differential gene expression 
profiles across these tissues were identified, including co-expression 
network analysis. 

Hierarchical clustering of differentially expressed genes across 
six tissues showed higher expression in limbic tissues compared 
to endocrine glands, with significant enrichment in pathways such 
as oxytocin signaling, GABAergic synapse, long-term depression 
(LTD), and long-term potentiation (LTP). Previous research has 
consistently shown that oxytocin signaling plays a critical role 
in modulating the limbic forebrain network, influencing stress 
responses, emotional behavior, and social interactions (Burkett 
et al., 2016; Bakos et al., 2018; Ferrer-Pérez et al., 2020; Triana-
Del Rio et al., 2022). Additional studies have found that oxytocin 
alters synaptic plasticity through its effects on LTP and LTD, and 
promotes LTD in the amygdala via Gαq/11-coupled PLC and 
EGFR pathways which are essential for synaptic plasticity in the 
hippocampus (Lin et al., 2012; Gur et al., 2014), and modulates 
GABAergic activity in the mPFC, aiding in threat extinction in 
both humans and rodents (Sabihi et al., 2017; Eckstein et al., 
2019). Our findings support these studies by demonstrating that 
oxytocin signaling and its related pathways are crucial for stress 
resilience and emotional health. Additionally, prior research has 
established cortisol’s key role in stress response and physiological 

balance (McEwen, 1998; Smith and Vale, 2006; Knezevic et al., 
2023). Consistent with these, we identified genes highly expressed 
in the pituitary and adrenal glands that are enriched in pathways for 
cortisol synthesis and steroid hormone biosynthesis, highlighting 
their importance in stress resilience. 

The identification of a core set of 33 genes differentially 
expressed across all tissue comparisons, emphasizes their 
involvement in neural activity and stress regulation. In the 
amygdala, both CELF5 and HPCAL4 exhibited notably high 
expression. CELF5, a member of a gene family involved in 
RNA regulation and synaptic plasticity, is likely to contribute 
to emotional regulation (Bryant and Yazdani, 2016; Parra and 
Johnston, 2022; Peng et al., 2024). Recent single-cell transcriptomic 
analysis of the mouse brain supports this, showing that CELF1 is 
broadly expressed, CELF2 is enriched in neurons, and CELF3–6 
are variably present in neurons and neuroblast cells (La Manno 
et al., 2021). Likewise, HPCAL4, a key calcium-binding protein 
involved in neurotransmitter release and LTP critical for learning 
and memory (Burgoyne, 2007; Alvaro et al., 2020), aligns with 
its observed higher expression in this region, supporting its 
role in neural function. In the hippocampus, high expression 
levels of WIPF3 and CACNG8 were observed. WIPF3, which 
complexes with N-WASP, plays a critical role in regulating the 
actin cytoskeleton (Juszczak and Stankiewicz, 2018), a process 
essential for synaptic function, learning, and memory (Lamprecht, 
2011, 2014, 2021), increased WIPF3 expression may be enhanced 
WIPF3-N-WASP complex activity, potentially influencing synaptic 
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FIGURE 10 

Identification of overlaps between tissue-specific ASE genes and PigGTEx database eQTLs. (A) The first circos plot illustrates the overlap of 
tissue-specific ASE genes with eQTLs from pig brain tissues in the PigGTEx database. Each of the four concentric layers represents a distinct tissue: 
red lines for the Amy, sea-green lines for the Hip, brown lines for the Tal, and cyan lines for the AG. (B) The subsequent circos plot focuses on the HT 
and PG. The green lines represent HTASE genes that overlap with hypothalamus eQTLs, while the purple lines denote PG ASE genes that overlap with 
pituitary gland eQTLs. The gray lines signify ASE genes not classified as eQTLs. 

plasticity and memory formation. Similarly, bioinformatics and 
functional studies have shown that members of the CACNG 
protein family (CACNG1–CACNG8) are co-expressed in adult 
brains to regulate Ca2+ channel activity (Burgess et al., 2001; 
Guan et al., 2016), suggesting that CACNG8 may also contribute 
to synaptic transmission, plasticity, and the adaptation of neural 
networks. Our analysis revealed high LRRTM1 expression in the 
thalamus, highlighting its significant role in neural connectivity 
and thalamic function. LRRTM1 is essential for synaptic adhesion 
and signaling, which are critical for effective sensory processing, 
a finding consistent with previous studies showing its high 
abundance in the thalamus, particularly in the mediodorsal 
nucleus across multiple species (Laurén et al., 2003; Francks 
et al., 2007; Sjostedt et al., 2020). Furthermore, knockout studies 
have demonstrated that deletion of LRRTM1 results in notable 
alterations in synapse morphology, impairments in novel object 
recognition and social interaction (Takashima et al., 2011), and 
visual behavior abnormalities due to disrupted retinothalamic 
connections (Monavarfeshani et al., 2018). Collectively, these 
results emphasize LRRTM1’s critical role in thalamic functionality 
and its broader implications in neural processes. Previous studies 
have shown that severe inflammatory conditions, such as sepsis, 
significantly reduce ACHE activity in the hypothalamus, evidenced 
by notable decreases 5 days post-cecal ligation and puncture 
in rats, indicating cholinergic disruption (Santos-Junior et al., 
2018). Similarly, low-dose LPS administration in mice leads 

to neuroinflammation and diminished cortical ACHE activity, 
emphasizing the vulnerability of the cholinergic system (Lykhmus 
et al., 2016). In contrast, our observation of elevated baseline 
ACHE expression in the hypothalamus suggests a critical role 
in maintaining cholinergic stability and potentially managing 
inflammatory disturbances. 

The MKK6/p38 pathway stimulates PAK6, a key regulator 
of cellular stress responses (Kaur et al., 2005). Its elevated 
expression in the pituitary suggests a critical role in stress response 
mechanisms and endocrine regulation. Similarly, increased SPP1 
expression in the pituitary may modulate function via activation of 
the MAPK signaling pathway, known for its roles in inflammation 
and neuroprotection (Meller et al., 2005). In the adrenal gland, 
elevated levels of DUSP9, a key modulator of MAPK signaling 
linked to cellular stress and insulin resistance, suggest a role 
in regulating stress-related signaling and metabolic processes. 
Furthermore, our observation of increased KCNN2 expression 
aligns with studies showing that overexpression of the SK2 channel 
reduces stress-induced corticosterone secretion (Morel et al., 
2019; Zhang et al., 2019), while SK2 infusion leads to lower 
corticosterone levels (Mitra et al., 2009). Together, these results 
offer a comprehensive view of gene expression across tissues and 
highlight the coordinated roles these genes play in neural activity, 
synaptic adaptation, and stress regulation. 

Our comparative DEG analysis between the limbic 
diencephalon and endocrine groups highlights extensive 
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transcriptional differentiation, indicative of their respective 
roles in neural circuitry and endocrine signaling. Previous 
studies have shown that learning and memory rely on synaptic 
plasticity mediated by activity-dependent calcium influx through 
NMDA and AMPA receptors (Hunt and Castillo, 2012; Kennedy, 
2016; Wang and Peng, 2016). Consistent with this, our KEGG 
pathway enrichment analysis showed that DEGs upregulated in 
the limbic and diencephalon groups were significantly enriched 
in pathways involved in synaptic signaling and plasticity, 
including glutamatergic synapse, calcium signaling, and long-term 
potentiation, highlighting the molecular specialization of these 
brain regions for cognitive and neural processing functions. 
Within the neuroendocrine axis, the intermediate transcriptional 
state of the diencephalon group supports its integrative role in 
neurohormonal regulation. As a center of the limbic system, 
the hypothalamus links the endocrine and nervous systems to 
maintain homeostasis and regulate stress, immune responses, 
autonomic functions, and hormone-driven processes such as 
growth, fluid balance, and lactation (Kullmann et al., 2014; 
Soto-Tinoco et al., 2016). In line with these functions, our 
analysis revealed enrichment of neuroactive ligand–receptor 
interaction, calcium signaling, and synaptic plasticity pathways in 
the diencephalon group. These findings reflect the hypothalamus’s 
ability to integrate signals from multiple brain regions and convert 
them into hormonal outputs that guide pituitary regulation 
of thyroid, adrenal, and reproductive organs. Furthermore, the 
observed enrichment of ECM–receptor interaction pathways in our 
endocrine tissues aligns with evidence from a rodent study showing 
that extracellular matrix proteins and integrin signaling enhance 
ACTH-induced cortisol secretion in adrenocortical cells (Otis et al., 
2007). This suggests that in pigs, ECM remodeling and integrin-
mediated signaling may similarly support adrenal responsiveness 
to ACTH stimulation, facilitating rapid glucocorticoid release 
during stress. Also, our analysis showed increased PI3K–Akt 
signaling and cholesterol metabolism in endocrine tissues, key 
pathways for steroid hormone production and stress response. 
Similarly, a sheep study found that PI3K–Akt and MEK/ERK 
pathways regulate ACTH-driven cortisol release and eNOS 
activity, highlighting their importance in adapting to stress (Newby 
et al., 2015). Overall, these enrichment results demonstrate the 
pivotal role of the hypothalamic–pituitary–adrenal (HPA) axis in 
cortisol regulation and stress resilience, reflecting the specialized 
transcriptional profiles that support neuroendocrine function 
in pigs. 

Our weighted gene co-expression network analysis 
demonstrates a strong tissue-driven organization of co-expression 
networks within the limbic-diencephalon-endocrine axis. The 
significant enrichment of synaptic signaling pathways (Neuroactive 
ligand-receptor interactions, Glutamatergic/GABAergic synapses, 
Calcium signaling) within modules positively correlated with 
limbic/diencephalon groups (seagreen1, darkgreen, purple) 
robustly supports previous findings that identify these pathways 
as essential for neural communication and plasticity in these 
brain regions (Lein et al., 2007; Südhof, 2018). Also, the strong 
negative correlations observed with the endocrine group suggest 
a transcriptional trade-off that highlights the distinct functional 
roles of neural vs. endocrine pathways (Miller et al., 2014; 

Hodge et al., 2019). The significant enrichment of cortisol 
synthesis and secretion within the endocrine-correlated cyan3 
module (r = 0.74, P = 2 ×10−9) is particularly notable, as cortisol 
represents the primary glucocorticoid mediating vertebrate stress 
adaptation (Dedovic et al., 2009). The co-enrichment of cholesterol 
metabolism (a cortisol precursor) (Gomez-Sanchez and Gomez-
Sanchez, 2024) and PPAR signaling (involved in metabolic stress 
regulation) (Camps et al., 2012), within this module, suggests 
coordinated transcriptional regulation of integrated stress response 
pathways. Similarly, the gold2 module (r = 0.99, P = 2.41 ×10−38) 
is enriched for cAMP signaling a key second messenger involved 
in stress hormone secretion (Kutsukake et al., 2023) as well 
as pathways related to growth hormone and thyroid hormone 
synthesis, all of which contribute to metabolic stress adaptation 
(Tavares et al., 2023). These pathways offer key molecular targets 
to improve stress resilience in pigs, with direct benefits for animal 
welfare and production efficiency under challenging conditions. 

Among the 37 genes showing ASE across all tissues, seven 
demonstrated a significant overall tissue effect, while 10 showed 
tissue-specific differences. The remaining 27 genes exhibited 
consistent ASE due to general allelic imbalances or uniform 
regulatory mechanisms across tissues. Notably, the differential 
PINK1 allelic ratios between the adrenal gland and other tissues 
(HT, Hip, Tal, PG, Amy) suggest tissue-specific genetic regulation. 
This is supported by strong correlations between PINK1 expression 
and stress hormones (corticosterone: r = 0.879; adrenaline: r 
= 0.881), as well as evidence that PINK1-deficient mice are 
more vulnerable to corticosterone-induced depression (Agnihotri 
et al., 2019). Furthermore, PINK1 is recognized as an eQTL 
in pig brain tissue (Teng et al., 2024), further emphasizing its 
involvement in stress and hormonal responses. Similarly, LCMT1 
showed significant mean allelic ratio differences in the amygdala 
compared to other tissues, suggesting its role in neuroprotection 
and stress response. As an eQTL in pig brain tissue (Teng et al., 
2024), LCMT1 is also implicated in neurodegenerative diseases 
such as Alzheimer’s (Nicholls et al., 2016) and manganese-related 
neurotoxicity (Xu et al., 2021; Zhang et al., 2023), highlighting 
its importance for brain function and neuroprotection (Sontag 
et al., 2008; Gnanaprakash et al., 2021). In our study, LCMT1 
exhibited a mean allelic ratio variation in the amygdala (65% 
vs. 35%), which may influence its role in neuroprotection and 
stress resilience, especially in the amygdala, a key region for 
emotional regulation. 

The allelic imbalance of ZBTB22 in the pituitary (68% vs. 
32%) and adrenal glands (61% vs. 39%) suggests a potential 
impact on endocrine function and stress pathways, in line with 
its known roles in cellular metabolism and oxidative stress (Guo 
et al., 2023; Liu et al., 2023). TTL1 exhibited significant mean 
allelic ratio variations across multiple brain regions with P < 
0.01. Its critical role in neural development is highlighted by 
TTL1-null mice, which exhibit severe developmental defects and 
early post-natal death due to disorganized neuronal networks 
(Erck et al., 2005; Fukushima et al., 2009). Additionally, TTL1 
is identified as an eQTL in pig brain tissue (Teng et al., 2024), 
suggesting that its allelic variation may influence gene regulation 
across regions, consistent with our findings. Furthermore, the 
mean allelic ratio variations of NEFL in the adrenal and pituitary 
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glands align with previous findings showing elevated levels of 
neurofilaments (NEFL, NEFM, NEFH) in chronically stressed 
mice and the cerebrospinal fluid of trauma-exposed individuals 
(Zetterberg et al., 2013), suggesting a role for NEFL in regulating the 
hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have 
shown that ER stress in the hypothalamus disrupts energy balance 
by affecting leptin signaling, leading to sympathetic nervous system 
inhibition, reduced brown adipose tissue (BAT) thermogenesis, 
and weight gain (Contreras et al., 2014; González-García et al., 
2017; Cakir and Nillni, 2019). Similarly, in the hippocampus, ER 
stress is associated with impaired insulin signaling and increased 
inflammation, particularly with high-fat diets (Nakandakari et al., 
2019). The ASE of SDF2, observed at 70:30 in the hypothalamus 
and 63:37 in the hippocampus in our study, along with its 
identification as a pig brain eQTL (Teng et al., 2024), suggests it 
may help mitigate ER stress, preserve leptin signaling, and reduce 
inflammation and insulin resistance. Finally, the significant allelic 
ratio variation of SLA-DRB1 in the amygdala, combined with its 
known importance in regulating pro-inflammatory cytokines (e.g., 
IL-1β, IL-6, TNF-α) and microglial activation (Harrison et al., 2009; 
Inagaki et al., 2012; Hu et al., 2022; Nazir et al., 2022), supports 
its involvement in immune regulation and stress-related mood 
disorders. SLA-DRB1 is also recognized as an eQTL in pig brain 
tissue (Teng et al., 2024), further emphasizing its potential impact 
on gene regulation in stress responses. The overarching goal of 
incorporating ASE alongside DEG and WGCNA is to gain a multi-
layered understanding of gene regulation in pig stress biology. 
While DEG and WGCNA highlight transcriptional changes and 
gene co-regulation, ASE uncovers cis-regulatory variants that may 
drive tissue-specific expression. Together, these approaches help 
identify robust candidate genes and pathways for improving animal 
welfare and breeding strategies. 

5 Conclusions 

Our findings underscore the molecular basis of stress 
regulation in pigs by highlighting gene expression and 
allele-specific activity across both individual tissues and 
functional groups, including the limbic, diencephalon, and 
endocrine regions. Through a multifaceted analysis of gene 
expression, co-expression, and ASE, we identified key genes and 
regulatory modules involved in stress processing, growth, and 
hormonal signaling—insights that have practical implications 
for improving animal welfare. Specifically, critical pathways 
such as MAPK, JAK-STAT, and NF-κB were found to play 
central roles in stress and inflammatory responses. Genes 
including CELF5, PINK1, and LRRTM1 exhibited tissue-
specific roles related to synaptic plasticity, neuroprotection, 
and hormonal regulation. 

In addition, the discovery of significant allelic ratio variations 
across tissues highlights underlying genetic factors that may 
influence stress resilience in a tissue-specific manner. Notably, 
genes such as LCMT1, TTL1, SLA-DRB1, and SDF2 not only 
showed ASE but are also classified as eQTLs in the PigGTEx 
portal (FarmGTEx database), suggesting their functional 
regulatory relevance. Identifying stress-responsive pathways 
and cis-regulatory variation offers valuable opportunities 

to breed more resilient animals, enhance environmental 
enrichment strategies, and tailor dietary interventions. These 
approaches, rooted in molecular insights, can help reduce 
chronic stress, improve growth and reproductive outcomes, 
and ultimately support more sustainable and ethical pig 
farming practices. 
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