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Small extracellular vesicles (sEVs) are vesicles of 15-150 nm in diameter
secreted by cells and contain biological compounds that aid in cell growth,
proliferation, and communication. Over the years, their role in oncogenesis
has become prominent, especially in modulating the tumor microenvironment,
facilitating epithelial-mesenchymal transition, and promoting metastasis. These
oncosomes serve as unique diagnostic markers that can be used to detect
specific types of cancer. Their stable lipid bilayer is composed of various
classes of lipids, including phosphatidylserine, sphingomyelin, ceramides,
and sterols. Alterations in the lipid profile of sEVs have been found in
various chronic diseases, including cancers, making them suitable biomarkers
and therapeutic targets. Natural compounds (NCs) derived from plants and
microbes exhibit antitumorigenic properties. They have been recognized in
contemporary medicine for their capacity to modulate sEV synthesis, secretion,
and composition. However, there is limited research on the effects of NCs on
the lipid panel of extracellular vesicles, as most studies have focused on proteins
and microRNAs. Considering that NCs can influence key regulatory enzymes
involved in lipogenesis and degradation, this suggests a potential impact on
the lipid composition of sEVs. Therefore, we summarized the direct effects of
NCs on sEVs and lipid-related enzymes, highlighting the potential for natural
compound-mediated lipid modulation in sEVs.

KEYWORDS
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1 Introduction

Extracellular vesicles (EVs) are membrane-bound, spherical particles containing
functional cargo: proteins, nucleic acids, and lipids. They play crucial roles in intercellular
and interorgan communication. EVs are classified into different subtypes, based on their
size and biological function. The formation and release of EVs are controlled by various
mechanisms, primarily the endosomal sorting complex required for transport (ESCRT).
ESCRT is a highly conserved molecular machinery composed of five different ESCRT
complexes (ESCRT-O0, -1, -II, -IIT and Vps4) (Gurung et al., 2021). ESCRT-0 recognizes the
ubiquitinated cargoes and recruits them to endosomal microdomains, which are mediated
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by binding to 3-phosphoinosides. ESCRT-I and ESCRT-II
subsequently drive inward budding of the endosomal membrane,
forming intraluminal vesicles inside multivesicular bodies. Next,
ESCRT-III transiently assembles on endosomal membrane for
the final step of vesicle formation. ESCRT-III is believed to
have two major functions: cargo sequestration and membrane
budding and scission (Schmidt and Teis, 2012; Colombo et al,
2013). Along with the ESCRT-dependent pathway, lipids also
act an essential role in EVs' formation, secretion, and stability
maintenance. Ceramide, an essential lipid involved in cellular
signaling, has been shown to trigger budding of exosomes without
the ESCRT system (Trajkovic et al., 2008). Other lipids (cholesterol,
sphingomyelin, and phosphatidylserine) have also been shown to
participate in the formation, secretion, signaling, and uptake of
exosomes. This highlights the role of lipids in EVs' formation and
secretion (Record et al., 2014).

According to the International Society for Extracellular Vesicles
guideline, small extracellular vesicles (sEVs) refer to vesicles
with a diameter smaller than 200 nm (Théry et al., 2018).
SEVS are released from cells and are often found to contain
biologically active compounds that trigger transformation in
recipient cells either through paracrine signaling or released directly
into the bloodstream, encouraging intercellular communication.
The development of EV-based biomarkers depending on the various
types of cargos they carry can be beneficial for diagnosing diseases,
such as cancer, neurological diseases and metabolic diseases.
Beyond their diagnostic potential, sEVs also actively participate
in tumor progression by transporting oncogenic proteins, lipids,
and genetic materials, resulting in metabolic modifications in
microenvironment.

Natural compounds are bioactive substances naturally found in
organisms. They are widely used in traditional medicine, particularly
in East Asia, and are now increasingly recognized for their anti-
cancer potential.

This mini review summarizes the role of sEVs in development
of cancer and its therapeutic potential, while highlighting NCs
as modulators that influence vesicle biogenesis, composition, and
function of sEVs. Moreover, sEVs themselves serve as promising
drug delivery tools, enhancing cellular uptake while decreasing side
effects due to low specificity.

2 Role of sEVs in development of
cancer

Cancerous cells prompt to release sEVs containing pro-

tumorigenic biological compounds, resulting in induction

of oncogenesis in recipient cells and promote epithelial to

Abbreviations: ACC, Acetyl-CoA carboxylase; CBD, Cannabidiol; CPT-1,
Carnitine—palmitoyltransferase-1; CRPC, Castration-resistant prostate
cancer; DHA, Dihydroartemisinin; ESCRT, Endosomal sorting complex
required for transport; EVs, Extracellular vesicles; FAS, Fatty acid
synthase; FTase, Farnesyltransferase; HSP, Heat shock proteins; MA,
Manumycin A; MCAD, Medium-chain acyl-CoA dehydrogenase; MMP,
Matrix metalloproteinases; NCs, Natural compounds; PS, Phospholipid
phosphatidylserine; sEVs, Small extracellular vesicles; SCD-1, Stearoyl-CoA
desaturase-1; SREBP-1c, Sterol regulatory element-binding protein-1c.
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mesenchymal transitions (Peinado et al., 2012; Zhang and Grizzle,
2011). This includes RAS, KRAS, EGFR, mutant EGFR variant III,
heat shock proteins (HSP), chaperonins, matrix metalloproteinases
(MMP), endoplasmins, integrins, epithelial CAMs and PD-L1. Such
oncogenic sEVs are often known as oncosomes, which result in
the formation of tumor microenvironment and maintenance of
premetastatic niche (Kalluri and LeBleu, 2020).

Macrophages localized in the tumor microenvironment termed
tumor associated macrophages (TAMS) are key players in cancer
development. M2 phenotype TAMS secretes exosomes that
contribute to metastasis of GC cells via the ApoE-activating PI3-
Akt signaling pathway leading to favorable cytoskeleton remodeling
to support migration (Qian and Pollard, 2010).

The phospholipid phosphatidylserine (PS) is present abundantly
in the inner leaflet of the cell membrane and is also found
primarily in the sEVs released as observed in ex vivo tumoroid
cells which mimic mammalian tumors and their environment
(Skotland et al., 2020). sEVs mediates transfer of multifunctional
proteins like MMP and HSP. MMP are involved in cancer stem cell
associated premetastatic niche formation, specific endopeptidases
like MMP-3 are involved in transcellular signaling which promotes
tumorigenesis via activation of the connective tissue growth factor
when taken up by recipient cells. Meanwhile HSP90 is mainly
involved in intracellular signaling via sSEVs and is abundant in highly
metastatic cancers (Shimoda and Khokha, 2017). HSP90 alpha
specifically is found to promotes EMT. In addition, chaperonins
such as HSP60 are found abundantly in gliomas and cancers of the
large bowel.

3 Natural compounds and
extracellular vesicles: modulators of
oncogenic vesicles and tools for drug
delivery

Natural compounds (NCs) are produced naturally by living
organisms and have been broadly used in tranditional medicine.
Studies have shown that NCs plays an essential role in regulating
hypertension, inflammation, pain, and cancer progression (Seca and
Moujir, 2020). Their anticancer mechanisms includes facilitating
lipid peroxidation, triggering cell deaths (apoptosis and ferroptosis),
and reduction of sEV oncogenic cargo production (Tang et al,
20245 Fyfe etal., 2023). Additionally, NCs have been reported to
influence lipid-metabolizing enzymes that could affect vesicular
formation (Table 1). Table 1 summarizes the effects of natural
compounds on lipid metabolism, extracellular vesicles, and their
overall regulatory effects.

3.1 Natural compound with direct effects
on extracellular vesicles

3.1.1 Manumycin A

Manumycin A (MA) is an antibiotic derivative of streptomyces
species with well-established antitumor effects (Cho et al., 2015).
MA significantly reduced of exosome secretion (10 fold) in
castration-resistant prostate cancer (CRPC) cells by shutting down
endosomal sorting complex required for transport and inhibit
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TABLE 1 Natural compounds modulating extracellular vesicles (EVs) and lipid metabolism, with overall regulated effects on lipid related pathway.

Compound Primary effects on Effects on lipid Regulatory effect Reference
EVs metabolism
Manumycin A Decreased exosome secretion; FTase inhibition; decreased Downregulated Cho et al. (2015), Datta et al.
ESCRT inhibition; Ras/Rheb prenylation; (2017)
Ras/Raf/ERK1/2 blockade; downregulation ofmTOR and
decreased hnRNP H1 MAPK signaling; reduced
lipogenesis
Cannabidiol Reduced exosome and Decreased FAS activity; altered Downregulated (Kosgodage et al., 2018;
microvesicle release; increased sphingolipid metabolism Kosgodage et al., 2019;
miR-126, decreased miR-21; Fu et al., 2025;
decreased prohibitin Konstantynowicz-
expression Nowicka et al., 2025)
Resveratrol Reduced exosome secretion Decreased FAS,SCD1, and Downregulated (Tong et al., 2024; Becer et al.,
(via decreased Rab27a in Huh7 ACC expression; reduced de 2024; Ardid-Ruiz et al., 2019;
cells); increased CD63 and novo lipogenesis Gimeno-Mallench et al., 2019)
Ago2 in COLO320 cells;
decreased elF2a in COLO741
cells
Honokiol - Decreased SREBP-1c Mixed (inhibits lipogenesis, Seo et al. (2015)
maturation,SCD1, andFAS; activates AMPK)
Increased AMPK
phosphorylation
Dihydroarteminisin - Decreased expression of Downregulated Hu W et al. (2021)
c-Myc,ACC,FAS,CPT-1, and
MCAD
Curcumin Increased exosomal TCF21; Increased ceramide synthesis; Upregulated (Taverna et al., 2015;
enhanced Reduced endolysosomal lipid Garcia-Seisdedos et al., 2020)
exosome/microvesicle release accumulation
EGCG (Epigallocatechin Increased exosomal miR-16 Decreased FAS and ACC Mixed (downregulates (Jang et al., 2013; Wang et al.,
Gallate) expression expression; IncreasedCPT-1 lipogenesis, upregulates 2021)
activity; Reduced lipid droplet B-oxidation
formation

ACC, acetyl-CoA carboxylase; CPT-1, Carnitine-palmitoyltransferase-1; ESCRT, endosomal sorting complex required for transport; FAS, fatty acid synthase; FTase, farnesyltransferase;
MCAD, Medium-chain acyl-CoA, dehydrogenase; SCD1, stearoyl-CoA, desaturase-1; SREBP-1c, sterol regulatory element-binding protein-1c; TCE, transcription factor.

Ras/Raf/ERK1/2 signaling and hnRNP H1 expression, while normal
prostate cells were not affected (Datta et al., 2017). Suppression
of Ras pathway also caused CRPC to become more sensitized
to enzalutamide, making MA a potential candidate for CRPC
treatment.

3.1.2 Cannabidiol

Cannabidiol (CBD), a phytocannabinoid found in Cannabis
sativa, has been reported to directly modulate exosome and
microvesicle release in multiple cancer cell lines including prostate
cancer (PC3), hepatocellular carcinoma (HEPG2) and breast
adenocarcinoma (MDA-MB-231) (Kosgodage et al, 2018). In
glioblastoma multiforme cells, CBD reduced exosome release and
altered the level of microRNA (increase in miR-126 and decrease
in miR-21). Since level of miR-126 directly corresponds to the
survival rate and duration in glioblastoma multiforme patient, CBD-
mediated microRNA may act as promising therapeutic agent. CBD
also inhibits prohibitin, which is known to be a chaperoning protein
associated with chemoresistance (Kosgodage et al., 2019). Besides
direct effect of CBD on exosomes and its vesicular content, camel
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milk-derived exosomes enhanced cytotoxic efficacy of CBD against
doxorubicin-resistance breast cancer by improving bioavailability,
making sEVs a good candidate for drug delivery (Aare et al., 2024).

3.1.3 Resveratrol

Resveratrol is a natural polyphenol with antioxidant
characteristics. It has been used to prevent multiple chronic
diseases, including cancer (Ko et al., 2017). The study by Tong et al.
(2024) showed that resveratrol blocked exosome secretion by
downregulating Rab27a in Huh7 cells. The declines in exosome
secretion further results in antiproliferation and decreased
migration ability in Huh7 cells. Resveratrol also increases CD63
and Ago2 levels in COLO320 (primary colorectal adenocarcinoma),
while reducing eIF2a in COLO741 cell line (metastatic colorectal

adenocarcinoma) (Becer et al., 2024).

3.1.4 Honokiol

Honokiol is a vital bioactive compound isolated from genus
Magnolia (Banik et al., 2019). In preliminary research, honokiol
demonstrated anticancer activity across multiple cancer models.
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It has been shown to increase bioavailability after sonication
with exosomes secreted by mesenchymal stem cells, facilitating
the delivery to cancer cells by increasing cellular uptake, while
reducing the toxicity to normal cells (Kanchanapally et al., 2020).
In addition to its role as an exosome-loaded therapeutic agent,
honokiol was identified as P-glycoprotein (P-gp) inhibitor. It
was shown by using inside-out orientation extracellular vesicles
encapsulating magnetic nanoparticles (IOVMNPs) as a novel
screening platform (Zhang et al., 2023). The direct effects of
honokiol on sEVs remain to be explored.

3.1.5 Dihydroartemisinin
Dihydroartemisinin  (DHA), the

artemisinin, is a sesquiterpene lactone well known for its potent

active metabolite of
antimalarial activity. DHA was reported to downregulate the
expression of HSP70 in prostate cancer (PC3) cells (Kong et al.,
2019). As HSP70 is a common marker associated with small
extracellular vesicles (sEVs), this may suggest that DHA may lower
oncosome formation, blocking intracellular communication of
tumor promoting factors. Nevertheless, the exact effect of DHA
remains unknown. Kumar et al. (2025) showed that exosomal
formulation of DHA improved in the efficacy of DHA in melanoma
cell model compared to DHA alone.

3.2 Natural compound modulating
lipid-metabolizing enzymes relevant to EV
synthesis

Although few studies have directly explored the NCs effects
on EVs’ lipid composition, many of them are known to regulate
key enzymes related to lipid-synthesis or degradation, which
are essential for vesicle formation. Manumycin A inhibits
farnesyltransferase (FTase), a protein-modifying enzyme that
attaches hydrophobic lipid tail to the protein. FTase is crucial
for signaling and trafficking of vesicles, by farnesylating Ras and
Rheb, thereby modulating the mTOR and MAPK. These pathways
indirectly effect ESCRT-dependent EV biogenesis, which is needed
to vesicular excretion. Cannabidiol decreases fatty acid synthase
(FAS) activity and alters sphingolipid metabolism (Fu et al., 2025;
Konstantynowicz-Nowicka et al., 2025). Resveratrol downregulates
fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1),
suppressing de novo lipogenesis (Ardid-Ruiz et al., 2019). Acetyl-
CoA carboxylase (ACC) and its products are also suppressed
2019).
Honokiol inhibits sterol regulatory element-binding protein-1c
(SREBP-1c) maturation and reduces SCD-1 and FAS expression
(Seo et al, 2015). Dihydroartemisinin downregulates c-Myc,

after resveratrol treatment (Gimeno-Mallench et al,

an oncogenic driver in various cancers. The reduction in c-
Myc expression resulted in decreased formation of ACC, FAS,
carnitine-palmitoyltransferase-1 (CPT-1), and medium-chain acyl-
CoA dehydrogenase (MCAD) (Hu X etal,, 2021). In summary, these
enzymes are key regulators of lipid homeostasis, suggesting that NCs
indirectly affect EV biogenesis and biological function by altering
lipid metabolism.
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4 Therapeutic applications and
challenges

4.1 Inhibition of sEV secretion pathways

The release of sEV from the cells is dependent on two
pathways. (ESCRT-dependent and ESCRT-independent). ESCRT-
independent pathway uses neutral sphingomyelinase 2, which
hydrolyzes sphingomyelin to produce active ceramides. Since sEV's
are also involved in transmission of pathogenic diseases, drugs
targeting the cellular pathways involved in the secretion of sEV are
of importance. Manumycin A and tipifarnib inhibit ESCRT and
interfere with sEVs release. Treatment with tipifarnib reduced the
release of sEVs in renal cell carcinoma patients, while manumycin
also reduced the release of sEVs in patients diagnosed with
castration-resistant prostate cancer.

4.2 Oncogenic miRNA

Cancer cells release sEVs containing oncogenic miRNAs.
MiRNAs such as miRNA18la and miRNA -199a regulate the
progression of glioma and increases the sensitivity of glioma cells
to temozolomide respectively. They are currently being explored
as novel therapeutic strategies when delivered via sEVs (Li et al,
2019). Among these, miRNA-199a-3p suppresses glioma cell
proliferation by targeting the AKT/mTOR signaling pathway, a
key regulator of cell growth, survival, and metabolism in cancer
(Shen et al, 2015). Thymoquinone has shown to upregulate
microRNA-199a-3p expression in Human A549 lung carcinoma
cells, making it a potential adjuvant compound for miRNA
based therapy (Khan et al., 2025).

4.3 Biomarker and function of
cancer-derived sEVs

Women remain at an increased risk of developing breast cancer
for up to 5years after pregnancy. Mammary gland cell-derived
sEVs present in breast milk contain TGF-B2, which promotes
EMT in both MCF-7 and MCF-10A breast cancer cells. Patients
with poor prognosis of BC had sEVs with mRNAs coding for
NANOG, NEUROD1, HTR?7, KISSIR, and HOXC6 amongst over
100 miRNAs that were identified as BC biomarkers. sEV's are stable
due to their lipid bilayer configuration, typical characteristic of
an exosome (Loric et al., 2023).

In prostate cancer patients, cancer cells secrete sEVs containing
adrenomedullin which upregulates fatty acid oxidation via ERK1/2
and p38 MAPK axis contributing to the early weight loss
associated with prostate cancer patients (Sagar et al., 2016). In
addition, cancer-associated cachexia can also secrete adipokines
and adipocytokines to aid in tumor cell growth and development.
This elucidates the importance of sEVs in cancer and how
therapeutic intervention targeting sEVs can be very beneficial in
treatment of cancer. Lysophosphatidylcholine, phosphatidylcholine,
and phosphatidylethanolamine are also biomarkers for pancreatic
cancer. Contrasting this, there is decreased levels of sphingosine-
1-phosphate, elaidic carnitine and palmitoyl carnitine found in
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patients suffering from melanoma and hepatocellular carcinoma
(Bland et al., 2018; Zhou et al., 2012).

4.4 Challenge of targeted delivery using
engineered exosomes

One of the major drawbacks in developing therapeutic treatment
using exosomes is targeting drug delivery to specific tissues instead
of all tissues. Considering non-specific uptake of engineered
exosomes being taken up by the liver, this may exert great stress
on its xenobiotic system. Current research is aiming to solve
this problem by focusing on membrane proteins incorporated in
exosomes and attention has been drawn to LAMP2B. LAMP2B
isoform is a transmembrane protein abundantly present in
exosomes and when utilized as target for fusion with specific
tissue types, success has been documented (Hung and Leonard,
2016). IL-3 and LAMP2B fused exosomes loaded with imatinib
were able to selectively deliver medication to chronic myeloid
leukemia and inhibit tumorigenesis (Bellavia et al., 2017). Similar
engineered exosomes were also used in treatment of glioblastoma,
anaplastic thyroid carcinoma, osteoarthritis, cardiac hypertrophy,
myocardial infarction, chronic kidney diseases, and brain and
cardiac infections.

5 Discussion

Small of
lipids, including phosphatidylserine, phosphatidylcholine (PC),
phosphatidylinositol ~ (PI), phosphatidylethanolamines (PE),
ceramides, gangliosides, sterol lipids, sphingomyelin, and
cholesterol (Llorente et al, 2013). Lipid profiles of sEVs are
important as they contribute to fusion of sEVs with recipient cells

extracellular vesicles contain various classes

(Donoso-Quezada et al., 2021). The composition of these lipid
profiles is altered in many types of chronic diseases, including
cancer, and enable them to be used as biomarkers (Blandin et al.,
2023; Perpind-Clérigues et al., 2024). For instance, in ovarian cancer
cells derived sEVs, there is an increase in zymosterol, gangliosides-
3, lyso derivatives of PS, PC, phosphatidylglycerol (PG), and PI
along with cholesterol esters (Cheng et al., 2020). Similar elevation
of sEVs lipid composition is also observed in colorectal cancer
(elevated levels of sphingolipids, glycolipids and sterols) and
hepatocellular carcinoma (elevated levels of Lyso derivatives of PS,
PI, PG, cardiolipins and saturated fatty acids (Elmallah et al., 2022;
Sanchez et al., 2021).

Alternations in lipid composition also serve a role in an immune
evasion. sEVs derived from cancer cells can modulate immune
cells in the tumor microenvironment. The CD36 receptor mediates
the uptake of fatty acids from sEVs by macrophages in the TME,
influencing lipid metabolism within these cells and preventing them
from activating CD8" T cells. (Yang et al., 2022).

sEVs also modulate lipid metabolism in cancer by upregulating
X-inactive specific transcript (XIST), which suppresses miR-655
and activates downstream signaling pathways that increase ATP
citrate lyase (ACLY) expression. Additionally, sSEVs enhance lipolysis
in cancer-associated adipocytes, supplying energy and nutrients
to support tumor growth. Cancer associated fibroblasts (CAF)
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secrete SEV containing acetates to promote formation of acetyl-
coA, precursor of de novo fatty acid synthesis (Zhao et al., 2016). In
addition, CAF derived sEVs aid in shunting carbon skeletons used
in glycolytic pathway to reductive glutamine formation. This results
in increased availability of citrate for use by ACLY, the rate limiting
enzyme in fatty acid synthesis.

The Warburg effect contributes to decreased availability of
acetyl-CoA as lactic acid is produced in hypoxia instead and sEVs
aid in lipid deposition in cancer cells (Zhao et al., 2016). Cargos
delivered by cancer cells can also promote beta oxidation instead
of de novo fatty acid synthesis. This occurs in correlation with
cancer-associated cachexia, which provides lots of free fatty acids
that can be used by cancer cells to obtain energy via fatty acid
oxidation pathways. Cancer cachexia is a syndrome characterized
by a continuous loss of muscle mass, with or without loss of adipose
tissue, resulting from a negative energy balance caused by the rapid
proliferation of tumor cells. EVs from tumor cells can promote
cachexia by fatty acid oxidation, which lead to negative impacts on
cancer treatment (Hu X et al., 2021).

Moreover, changes in sEVs lipid composition may trigger
lipid-associated cell death, such as ferroptosis (Liu et al, 2024;
Reinicke et al., 2022). Ferroptosis is a type of programmed cell
death mediated by iron accumulation and lipid peroxidation.
Under oxidative stress, parent cells tend to secrete EVs containing
antioxidants which have a protective role in recipient cells
(Yarana et al., 2022). However, when parent cells have undergone
ferroptosis, the EVs it releases promote ferroptosis associated
pathways in recipient cells (Alarcon-Veleiro et al., 2023). Iron has
also been identified as an important regulator of cell plasticity
particularly for tumors and immune cells. Cancer stem cells
have a high demand for iron uptake and storage. However,
under oxidative stress, ferritin degradation occurs in lysosomes,
leading to increased free iron levels. This has paved the way
for use of ferroptosis inducers engineered as part of EVs to
kill cancer cells alongside delivery of chemotherapeutic drugs
(Liu et al., 2025).

Cancer-derivate EVs show alternations in their membrane lipid
composition, indicating their potential as biomarker and therapeutic
targets. While EV lipid composition is essential for vesicular stability
and function, the direct effects of NCs on EVs lipid panel remain
unexplored. Most of EVs’ studies about NCs describe its impact
on vesicular cargo, such as proteins and miRNAs, rather than on
lipids or lipid composition. However, numerous NCs demonstrate
regulatory activity on enzymes essential for lipid synthesis and
metabolism, such as sphingomyelinases, ceramide synthases, and
ceramidases. These enzymes are directly involved in vesicular
biogenesis, suggesting their potential to influence vesicular lipid
composition. Therefore, future research should not be limited to the
analysis of EV-associated nucleic acid and protein. Expanding the
scope of EV studies to lipid panel after NCs treatment may reveal
novel mechanisms on intercellular communication and cancer
progression.

Future studies should integrate lipidomics analysis with protein
and miRNA studies on NCs’ effects on EVs. Moreover, studies on
how lipid alteration affects EV release and uptake in cancer cells
could reveal new therapeutic directions (Azparren-Angulo et al.,
2024). Together, these approaches may identify the lipid role in
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cancer progress and contribute to the development of lipid-targeted,
EV-based interventions in oncology.

6 Conclusion

Small extracellular vesicles dominate oncogenesis by altering
the tumor microenvironment and promoting metastasis. Oncogenic
cells release sEVs with a unique composition specific to each
cancer type and it play a key role in intercellular communication
between cancer cells. They are useful biomarkers that help monitor
cancer progression and prognosis non-invasively. Meanwhile,
NCs like Manumycin A, Cannabidiol, Resveratrol, Honokiol
and Dihydroartemisinin have mechanism of action that strongly
correlates with cancer-derivate sEVs biogenesis and composition,
making them a potential candidate in cancer treatment. Lipid as
the fundamental structural unit of EV membranes, are essential
for vesicle formation. Some NCs have been shown to interfere
with lipogenesis, leading to imbalanced lipid homeostasis and
indirectly affecting vesicular formation. Together, combination of
NCs and sEV lipid profiling is a promising direction for cancer
research.
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