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Background: Diabetic foot ulcers (DFU) are one of the most common and severe
complications of diabetes, closely associated with high amputation rates and
mortality, and the clinical treatment research is still limited. Previous studies
have demonstrated that resveratrol exerts positive effects in wound healing.
Therefore, it is necessary to investigate its molecular mechanisms in treating
DFU to improve clinical management of this condition.

Methods: This study obtained DFU-related omics data from the GEO database
and predicted targets for Resveratrol from TCMSP, PharmMapper, and Swiss
Target Prediction. Differential analysis, weighted gene co-expression network
analysis (WGCNA), and machine learning were used to jointly identify hub
Resveratrol/DFU genes (RDGs). SsSGSEA analysis was employed to investigate the
relationship between RDGs and the DFU immune microenvironment. Single-
cell RNA-seq was employed to investigate cellular heterogeneity of RDGs
expression. Molecular docking studies examined interactions between RDGs
and resveratrol. Finally, immunohistochemistry validated RDGs expression.
Results: First, bioinformatics analyses and machine learning algorithms
identified Cytidine deaminase (CDA) and Ornithine Decarboxylase 1 (ODC1) as
RDGs. Second, ROC curves demonstrated RDGs' strong diagnostic performance
for DFU. The ssGSEA algorithm revealed that RDGs partially mediate the immune
microenvironment of DFU. Subsequently, scRNA-seq results demonstrated
cellular heterogeneity of RDGs expression, which mediates alterations in
the pathological microenvironment of DFU and consequently influences
its progression. Subsequently, molecular docking revealed strong binding
affinity between resveratrol and RDGs, suggesting resveratrol may exert
therapeutic effects on DFU by regulating RDG activity through binding. Finally,
immunohistochemistry further validated RDG expression, providing strong
evidence for RDGs as novel therapeutic targets for DFU.

Conclusion: Overall, this study identified RDGs as a key therapeutic target
for resveratrol acting on DFU through a series of bioinformatics analyses and
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machine learning algorithms. Which not only fills the gap in the molecular
mechanism of resveratrol treatment for DFU but also provides a novel
therapeutic target for DFU.
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Diabetic foot ulcers, resveratrol, ScCRNA-seq, bioinformatics, molecular docking,

machine learning

1 Introduction

Diabetic foot ulcers (DFU) represent the most disabling chronic
complication of diabetes, characterized by full-thickness tissue loss
in the foot accompanied by persistent inflammation and non-
healing wounds, its pathological essence being a cascade amplification
effect of neuropathy, vascular disease, and infection induced by a
hyperglycemic microenvironment (Jeffc et al., 2024; Armstrong et al.,
2023). Currently, DFU treatment poses a formidable challenge to
global public health systems. From a health economics perspective,
the United States incurs annual direct costs of $273 billion and
indirect costs of $90 billion for diabetes care, with foot complications
being the primary cost driver, adding 50%-200% in annual additional
expenditures (McDermott et al., 2023). Epidemiological data further
indicates that approximately one-third of diabetes patients worldwide
will develop DFU, with 18.6 million new cases occurring annually
(Armstrong et al., 2023). Additionally, approximately 20% of patients
with diabetic foot ulcers ultimately require lower limb amputation,
with a 5-year mortality rate as high as 50% post-surgery. This severely
erodes patients quality of life and consumes healthcare resources
(Ruder, 2024). Current multidisciplinary management strategies
for DFU include surgical debridement, novel wound dressings,
interventions targeting lower extremity ischemia, management of
foot infections, intravenous antibiotic administration, and alleviation
of ulcer weight-bearing pressure, and hyperbaric oxygen therapy
(Jeftc et al., 2024; Tan et al, 2024; Everett and Mathioudakis,
2018). Although these approaches promote ulcer healing to some
extent, they remain mired in the “high cost-low efficiency-high
recurrence” dilemma (Kamaraj et al., 2024). Therefore, identifying
natural bioactive molecules that can precisely regulate wound healing
while offering both safety and cost-effectiveness has become an urgent
task in the clinical treatment of DFU.

Resveratrol is a natural polyphenolic compound widely found in
over 70 plant species, including grapes and peanuts (Malaguarnera,
2019; Bi et al., 2023). Resveratrol exhibits multiple significant
biological properties, including anti-aging, anti-tumor, anti-
inflammatory, anti-oxidative stress, and immunomodulatory effects
(Ding et al, 2022; Ren et al, 2021). During DFU treatment,

Abbreviations: DFU, Diabetic foot ulcers; RDGs, hub Resveratrol/DFU
genes; CDA, Cytidine deaminase; ODC1, Ornithine Decarboxylase 1; PCA,
Principal component analysis; DEGs, Differentially expressed genes; GO,
Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; SVM-
RFE, Support vector machine recursive feature elimination; LASSO, Least
absolute shrinkage and selection operator; RF, Random forest; ROC,
Receiver operating characteristic; AUC, Area under roc curve; ssGSEA,
Single-sample genome enrichment analysis; WGCNA, Weighted gene co-
expression network analysis; SMILES, Simplified molecular input line entry
system; TCMSP, Traditional chinese medicine systematic pharmacology.
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resveratrol can improve the pathological state of diabetic wounds
characterized by ‘uncontrolled inflammation and stalled repair’
through multiple mechanisms, including reducing inflammatory
infiltration and promoting angiogenesis, thereby accelerating
wound healing (Zhu et al., 2022; Zhang et al., 2022; Zhou et al,,
2021; Wang A. etal., 2025). DFU wound repair involves multicellular
cooperative processes such as fibroblast proliferation, keratinocyte
migration, and immune cell polarization. However, how resveratrol
modulates the complex networks mentioned above through multi-
target, multi-pathway synergistic regulation remains unknown,
and its systemic mechanism of action lacks comprehensive
elucidation (Ye et al., 2025). Therefore, further investigation into the
mechanism of action of resveratrol in the treatment of diabetic foot
ulcers is crucial for developing more effective therapeutic strategies.

Network pharmacology, as a core technology in systems biology,
constructs interaction networks linking “drug active components-
disease targets-signaling pathways.” This enables a holistic analysis
of the synergistic therapeutic mechanisms of natural compounds,
effectively circumventing the limitations of traditional single-target
research (Liang et al, 2025; Hopkins, 2008). This technology
demonstrates unique advantages in studying complex diseases
driven by multiple factors, such as DFU. By identifying core modular
proteins of the disease, it enables precise prediction of synergistic
action targets for natural molecules, thereby providing technical
support for elucidating the “multi-component-multi-target-multi-
pathway” therapeutic model (Chen et al., 2023; Noor et al., 2022;
Nogales et al., 2022). Additionally, network pharmacology serves as
a core technology in target identification, widely applied in research
related to identifying targets for drug treatment of specific diseases
and elucidating their molecular mechanisms. For instance, Ji et al.
identified key targets for Scutellariae Radix-Coptidis Rhizoma
in atherosclerosis through network pharmacology, suggesting
its potential multi-component, multi-target, and multi-pathway
therapeutic effects against atherosclerosis (Ji et al, 2023). Gu
etal. used network pharmacology to identify CX3CRI1 as a key
target for the Traditional Chinese medicine prescription Sini
Decoction in sepsis (Gu et al, 2024). He etal. identified key
targets of curcumin in colon cancer through network pharmacology,
including CDK2, HSP90AA1, AURKB, etc. (He et al, 2023).
Based on this, the present study employs a network pharmacology
strategy integrating database mining, bioinformatics analysis, and
experimental validation to systematically screen potential core
targets and key signaling pathways for resveratrol intervention
in DFU. This aims to reveal its multidimensional therapeutic
mechanisms and provide theoretical basis for developing novel
targeted therapeutic strategies for DFU.

Collectively, the present study identified key therapeutic targets
for resveratrol treatment of diabetic foot ulcers through a series
of bioinformatics analyses and machine learning algorithms.
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Specifically, differential expression analysis and WGCNA identified
673 differentially expressed genes (DEGs) associated with diabetic
foot ulcers, while multiple databases predicted 391 resveratrol-
related targets. The intersection of these two sets revealed 30
overlapping genes. Enrichment analysis revealed these genes primarily
participate in immune or inflammation-related pathways, suggesting
their potential involvement in the pathogenesis of diabetic foot
ulcers. Subsequently, multiple machine learning algorithms identified
CDA and ODCI1 as RDGs. Then, the single-gene diagnostic
ROC curve performance of RDGs demonstrated diagnostic efficacy
exceeding 0.9. Single-cell RNA sequencing revealed heterogeneous
expression of RDGs in DFU tissues, potentially mediating
pathological microenvironment alterations that influence disease
progression. Finally, immunohistochemical validation confirmed
abnormal expression of RDGs in DFU, providing strong evidence
for their potential as novel DFU biomarkers.

2 Materials and methods

2.1 Acquisition of resveratrol-related
targets

This study retrieved the chemical structure and Simplified
Molecular Input Line Entry System (SMILES) of resveratrol
[SMILES: C1 = CC(=CC = C1/C=C/C2 = CC(=CC(=C2)0)0)0]
from the PubChem database (https://pubchem.ncbinlm.nih.gov/
). Subsequently, the species was specified as “Homo sapiens,
and databases such as Traditional Chinese Medicine Systematic

Pharmacology ~ (TCMSP,  https://old.tcmsp-e.com/tcmsp.php),
PharmMapper (https://lilab-ecust.cn/pharmmapper/), and
Swiss Target Prediction (http://swisstargetprediction.ch/) to

identify potential resveratrol targets (Zhan and Shi, 2025; Yi-
Fan and Jian-Rong, 2025; Ru et al, 2014). Next, this study
used the Uniprot database to standardize the names of the
obtained targets (Hong et al., 2024).

2.2 Acquisition of transcriptomic data

The transcriptomic data related to DFU wused in this
study were downloaded from the GEO database (https://
www.ncbinlm.nih.gov/geo/). Specifically, we searched the GEO
database by typing “Diabetic foot ulcer” and “Homo sapiens”
as keywords. The datasets were included in the analysis based
on the following criteria: (1) the dataset is expected to contain
unbiased gene expression data, complete annotation information;
(2) the sequencing type should be RNA-Seq; (3) the complete
clinical and subgroup information; (4) the data was freely available
for download. Based on the above inclusion criteria, we finally
selected two datasets, namely GSE134431 and GSE80178. It is
worth noting that GSE134431 and GSE80178 have also been
employed in previous studies for target identification related to
DFU phenotypes, such as glutamine metabolism-related targets,
extracellular matrix-related targets, immune-related targets, and
exosome-related targets, which further validating the importance
and suitability of GSE134431 and GSE80178 for target identification
in the present study (Gao et al., 2025; Li et al., 2025; Wu et al., 2024;

Frontiers in Molecular Biosciences

03

10.3389/fmolb.2025.1708426

Shi H. et al,, 2024). Meanwhile, we used “ComBat” in the R package
“sva” to remove the batch effect from the cohort of GSE134431 and
GSE80178 merged (Leck et al., 2012).

2.3 Differential analysis of gene expression

In this study, we used the R package “limma” to identify
differentially expressed genes (DEGs) between the DFU group and
diabetic foot skins (DFS) group (Ritchie et al., 2015). Specifically, we
first extracted the expression profiles from the cohort of GSE134431
and GSE80178 merged, and then grouped the samples according to
their clinical information. Finally, the DEGs between the two groups
were calculated using the R package “limma” with a threshold value
of p < 0.05.

2.4 WGCNA analysis

We used WGCNA analysis to screen for DFU-
related DEGs (Langfelder and Horvath, 2008). Specifically, the
data of samples and genes were firstly quality assessed and pre-
processed, including detection of missing values, sample clustering,
and data matching. Then, the optimal soft threshold was calculated
by the network topology analysis function, and the correlation
matrix was converted into a weighted adjacency matrix. From
the adjacency matrix, a topological overlap matrix is constructed
to take topological similarity into account, and a corresponding
dissimilarity matrix is built to form clusters. Hierarchical clustering
is performed using hclust function utilizing different matrices.
Finally, hierarchical clustering was performed based on topological
overlap matrices, and the minimum number of genes per module
was set to 500 according to the dynamic hybrid cut method,
and genes with similar expression patterns were classified into
the same module by average association hierarchical clustering.
Clinical information was correlated with module characteristic
gene expression and gene significance was determined. Then, the
correlation of module characteristic genes with DFU was assessed,
and modules meeting the study objectives were identified based on
the degree of correlation.

2.5 Functional enrichment analysis

To explore the biological processes and functions of the
resveratrol target-DEGs, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using
the R package “clusterProfiler” (Yu et al., 2012), specifying “Homo
sapiens” as the biological species. All results from this analysis were
statistically significant, with a P-value of less than 0.05.

2.6 Construction of PPl network

Initially, the biological species was set to “homo sapiens” and the
30 resveratrol target-DEGs were imported into the string database,
and the interaction score was set to medium confidence (0.400)
(https://cnustringdb.org/) (Szklarczyk et al., 2019). To create a PPI
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network, the outcomes of the string database were then loaded
into the Cytoscape software. The imported genes were then scored
using the CytoHubba plugin in Cytoscape (Yu et al, 2023), and
the top 20 scoring genes with the highest scores were chosen for
further analysis.

2.7 Machine learning algorithms

We used multiple machine learning algorithms to identify
RDGs, namely, least absolute shrinkage and selection operator
(LASSO), random forest (RF) and support vector machine recursive
feature elimination (SVM-RFE) (Wang H. et al.,, 2025). It is worth
noting that the combination of these three algorithms plays a
crucial role in target identification processes within the biomedical
field. They are widely applied in the discovery of novel targets
for DFU and various other diseases, such as ulcerative colitis,
osteoarthritis, endometriosis, and celiac disease, etc (Tan et al., 2024;
Shen et al,, 2023; Luan et al., 2023; Shi S. et al., 2024; Guo et al,,
20245 Jiang et al, 2024). LASSO is a linear regression method
characterized by variable selection and complexity regularization
(Vasquezetal., 2016). The present study uses the R package “glmnet”
to implement the LASSO analysis and selects the optimal value of
A through a ten-fold cross-validation in order to achieve the best
balance between bias and variance. RF utilizes integrated learning
to construct multiple decision trees and integrate the prediction
results, focusing on evaluating the importance of each variable in
the model by rating its importance (Paul et al., 2018). The present
study uses the R package “randomForest” to calculate the number
of decision trees and the error rate, and when the error rate is
stable, the optimal number of decision trees is selected and the
candidate genes are ranked in terms of importance. SVM-RFE is a
feature selection method based on support vector machines, where
all the features are trained and evaluated through multiple iterations
using support vector machines in each iteration (Noble, 2006). The
present study used the R package “e1071” for SVM-RFE analysis,
and selected key features by performing ten-fold cross-validation
and weighted summing of the number of gene occurrences and
the order of importance. Then, we used venn diagrams to intersect
the candidate genes screened by the above three algorithms as hub
Resveratrol/DFU genes (RDGs).

2.8 Evaluation of diagnostic performance
of RDGs

To evaluate the diagnostic performance of RDGs in DFU, we
employed receiver operating characteristic (ROC) analysis using the
“pROC” library in R. The “roc” function was utilized to generate the

curves, while the “ci” function computed the final area under the
ROC curve (AUC) values.

2.9 Immune cells infiltration analysis

The present study used ssGSEA to assess immune cell
infiltration (Hanzelmann et al., 2013). Specifically, we performed
ssGSEA analysis in R, employing the “GSVA” and “GSEABase”
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packages to evaluate the immunological profiles of DFU patients. To
compare the abundance of various immune cell infiltrates between
DFS group and DFU group, the Wilcoxon test was applied for
statistical comparisons. Following this, the “ggplot” package in R
was employed to graphically represent the relationship between
immune cell infiltration levels and RDGs expression.

2.10 scRNA-seq analysis

The DFU-related scRNA-seq used in this study was obtained
from the previous work of Theocharidis et al. (2022), and analyzed
using the R software package “Seurat” (Satija et al, 2015).
Specifically, this study was analyzed using the following process:
(1) Filter out low-quality cells using the following thresholds:
nFeature_ RNA >300, nFeature RNA <7500, mt_percent <10; (2)
“NormalizeData” was used to standardize expression levels; (3)
“ElbowPlot” was used to determine the PCA dimension, and then
the top 20 principal components were extracted; (4) cell clustering
using “FindNeighbors” and “FindClusters”; (5) dimensionality
reduction visualization using “RunUMAP”; (6) annotation of cell
subpopulations based on known marker genes (Theocharidis et al.,
2022; Reynolds et al., 2021; Lu et al., 2023; He et al., 2020).

2.11 Molecular docking

Molecular docking is a common method used in drug
discovery to accurately predict protein binding sites and small
molecule ligand conformations, and to assess the binding
affinity between them (Xiao et al, 2024). Specifically, we
firstly downloaded the small molecule ligand files from
the PubChem database (http://pubchem.ncbi.nlm.nih.gov/).
We downloaded the PDB files of RDGs target proteins from
the PDB database
molecules, small-molecule ligands using the Pymol software, and

(https://www.rcsb.org/), removed water
hydrogenated, calculated charges, and set rigid molecules using the
AutoDocKTools software. Subsequently, AutoDocKTools software
was run to hydrogenate the target protein and other processes, and
the target protein and ligand small molecules were converted to
pdbqt format, respectively. Finally, a command prompt was run
to dock the target protein and ligand as well as to calculate the
binding energy.

2.12 Patient screening and clinical
specimen collection

The specimens were obtained from diabetic patients admitted
to Shenzhen Guangming District People’s Hospital who met the
following criteria. This study enrolled patients with diabetic foot
skin (DFS) and diabetic foot ulcers (DFU). The inclusion criteria
were as follows: meeting the diabetes diagnostic criteria established
by the World Health Organization (WHO), being aged between
18 and 75 years, and voluntarily signing an informed consent
form. Patients with the following conditions were excluded: severe
uncontrolled systemic infection, allergy to operations related to
specimen collection, severe liver function abnormalities, malignant
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tumors, New York Heart Association (NYHA) cardiac function
class II-IV, coagulation disorders, being pregnant or lactating,
and having mental illnesses. Specimen collection strictly followed
aseptic operation procedures. Residual DFS skin tissues after
patients underwent operations (such as debridement) and skin
tissue specimens from the edges of DFU ulcers after surgical
treatment were collected.

2.13 Immunohistochemistry

Immunohistochemical experiments were performed on the
collected postoperative skin tissue specimens of DFS and DFU:
the specimens were fixed with 4% paraformaldehyde, embedded in
paraffin, and sectioned. After dewaxing to water, antigen retrieval
was performed with citrate buffer (pH 6.0) by heat. Then, they
were incubated with 3% hydrogen peroxide at room temperature
for 10 min to block endogenous peroxidase activity; after blocking
with 5% bovine serum albumin at 37 °C for 30 min, ODC1 antibody
(1:100, Zenbio, China) and CDA antibody (1:100, Zenbio, China)
were added dropwise respectively and incubated overnight at 4 °C;
after rewarming the next day, they were washed with PBS 3 times
(5 min each time), then HRP-labeled secondary antibody (1:500) was
added dropwise and incubated at 37 °C for 60 min. After washing
again, the color reaction was carried out using a DAB chromogenicKkit,
followed by hematoxylin counterstaining of cell nuclei. After gradient
ethanol dehydration and xylene transparency, the sections were sealed
with neutral gum. Observe through an inverted microscope.

2.14 Statistical analysis

In this study, the statistical analysis and visualization were
performed in R language, and the Wilcoxon rank sum test was used
to compare the two groups, with P < 0.05 indicating a statistically
significant difference.

3 Results

3.1 Identification of differentially expressed
genes in DFU

In this study, GSE134431 and GSE80178 were used as training
cohorts. However, there are batch effects between the different datasets
included in this study due to different sequencing platforms, etc.
Therefore, we need to eliminate the batch effects in the training
cohort for subsequent analysis. We used the Combat function in the
R package “sva” to remove the batch effect in the training cohort after
combining GSE134431 and GSE80178. The result after removing the
batch shows that the samples are evenly dispersed and can be used for
subsequent analysis (Figure 1A). Immediately after that, we used the
RNA-seq of the training cohort as the expression profile, combined
with the clinical information of the samples, that is, DFSs and DFU
as two different subgroups for differential gene expression analysis.
Eventually, we obtained 1727 DEGs, of which 864 were downregulated
expressed genesand 863 were upregulated expressed genes (Figure 1B),
and the overall expression landscapes of these DEGs were visualized

Frontiers in Molecular Biosciences

05

10.3389/fmolb.2025.1708426

asshownin Figures 1C,D, thatis, the expression was obviously different
between the two groups and evenly dispersed on each chromosome.

3.2 ldentification of DFU-related DEGs
through WGCNA analysis

Gene expression is associated with a diverse range of signaling
pathways and biochemical responses in the body, and abnormalities
in these pathways and responses can lead to the development
of a variety of diseases in certain conditions. To identify DFU-
related DEGs, we performed WGCNA analysis based on RNA-
seq from the training cohort. Specifically, we categorized the
genes into six independent co-expression modules based on
their expression patterns in the training cohort (Figures 2A,B).
Subsequently, we combined the clinical information of the samples
in the training cohort, and the results showed that the DFU samples
were highly distinguishable from the DFS samples (Figure 2C).
The correlogram of module-trait relationships showed that the
turquoise module, which contains 673 DEGs, had the highest
correlation with DFU (Figure 2D).

3.3 ldentification of resveratrol
target-genes dysregulately expressed in
DFU

Firstly, we obtained 391 resveratrol predict-targets through the
TCMSP, PharmMapper and Swiss Target Prediction databases.
Immediately after that, we cross-analyzed the 673 DFU-related
DEGs identified in the above results with the 391 resveratrol predict-
targets obtained in this study, resulting in 30 overlapped genes
(Figure 3A). Subsequently, we performed functional enrichment
analysis on these 30 overlapped genes, in which KEGG enrichment
analysis showed that they were related to immune/metabolism,

»

such as “IL-17 signaling pathway”, “NF-kappa B signaling pathway”,

“Glutathione metabolism” “Nitrogen metabolism” “Tyrosine

metabolism”, “Tryptophan metabolism”, and “Phenylalanine
metabolism” (Figure 3B). The results of GO enrichment analyses
were similar to those of KEGG enrichment analyses, showing that
they are mainly associated with immune/inflammatory responses,

T cell

T cell activation”, “acute inflammatory response’,

» o«

such as “leukocyte homeostasis’, “B cell homeostasis”,

» o«

homeostasis”,

» o«

“B cell activation”,

5» .

T cell proliferation”, “interleukin-6-mediated
signaling pathway (Figure 3C). In summary, the pathogenesis
of DFU may be related to the metabolism pathway and the
immune/inflammatory response.

Certainly, the identification of key genes is determined by
multiple factors. In addition to the analysis of gene expression
patterns mentioned above, the interaction between genes cannot
be ignored. Specifically, we included these 30 overlapped genes
in the PPI analysis. We evaluated these 30 overlapped genes
comprehensively in Cytoscape using CytoHubba plugin and
selected the top 20 scoring genes with the highest scores
(Figure 4A). Given the functional interdependence between genes,
we conducted correlation analysis on the top 20 highest-scoring
genes. The results revealed significant co-expression patterns among
these genes (Figure 4B), indicating that the dysregulated expression
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of resveratrol targets in DFU forms a coordinated network that likely
contributes to DFU pathogenesis and progression.

3.4 ldentification of RDGs based on
multiple machine learning algorithms

In order to identify RDGs that play a pivotal role in the
pathogenesis of DFU, we applied SVM-RFE, LASSO and RF
to analyze and identify the top 20 scoring genes. Specifically,
we obtained 5 candidate genes by LASSO algorithm, including
ODCI1, ALDH2, MAOA, CDA, and BAKI1 (Figure 5A), 6 candidate
genes by SVM-RFE algorithm, including CDA, TYR, BAKI,
RPS6, BCL2, and ODCl1 (Figure 5B), and 5 candidate genes
by RF algorithm, including CDA, GSTP1, TYR, ODCI, and
CCNEI1 (Figure 5C). Then, the candidate genes identified by the
above three machine learning algorithms were taken to intersect,
resulting in two hub Resveratrol/DFU genes (RDGs), namely,
CDA and ODCI1 (Figure 5D).

3.5 Diagnostic performance of RDGs for
DFU

The above-mentioned studies indicate that RDGs are key targets
for resveratrol in DFU. Therefore, it is necessary to investigate
whether they have the potential to be used as diagnostic targets for
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DFU. Specifically, this study integrated the included bulk RNA-seq
data to investigate the expression levels of RDGs. The results showed
that RDGs were significantly upregulated in DFU (Figures 6A,B),
which provides strong evidence for their use as diagnostic targets for
DFU. Subsequently, this study used RDGs for single-gene diagnostic
analysis of DFU, with DFS and DFU as diagnostic binary variables.
ROC results showed that the diagnostic ROC values of RDGs for
DFU all exceeded 0.9 (Figure 6C), indicating that RDGs have the
potential to become novel diagnostic targets for DFU.

3.6 Immune cell infiltration analysis

We utilized the ssGSEA algorithm to assess the immunological
characteristics of the DFU samples. Figure 7A shows the overall
immune cell infiltration between the two groups of DFU samples
and DFS samples, and the results indicate that there is a significant
difference in immune cell infiltration between these two groups.
The abundance of immune cell infiltration was significantly higher
in DFU patients compared to DFS samples, and the immune
infiltration analysis showed that a total of 5 types of immune cells
were more abundant in the DFU group than those in the DFS
group, including Type 17 T helper cell, CD56dim natural killer cell,
Activated dendritic cell, Eosinophil, and Neutrophil (Figure 7B).
This suggests that the immune microenvironment disturbance may
also be a contributor to the development of DFU. Certainly, it
is necessary to explore the relationship between the dysregulated
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Identification of DFU-related DEGs by WGCNA. (A,B) Clustering dendrogram of DEGs. (C) Clustering dendrogram of DFU and DFS samples. (D)

expression of RDGs and the immune microenvironment. Next, we
investigated the relationship between the expression of RDGs and
the abundance of immune cells by correlation analysis. The result
showed a significant correlation between the expression of RDGs
and the abundance of a variety of immune cells (Figure 7C), which
suggests that RDGs may have a potential role in regulating the DFU
immune microenvironment.

3.7 ScRNA-seq profiling analysis of DFU

Initially, we performed clustering analysis on the scRNA-seq
data obtained from DFU patients using the UMAP algorithm,
which delineated 17 clusters (Figure 8A). These clusters were
subsequently annotated based on known markers (Figure 8B). Our
scRNA-seq profiling identified a total of eight major celltypes, with
their respective single-cell transcriptomic landscapes illustrated
in Figure 8C. To assess disease-associated cellular heterogeneity,
we stratified the single-cell data by clinical status (Figure 8D).
Cell proportion analysis demonstrated a significant enrichment
of smooth muscle cells, T/B lymphocytes, and macrophages in
DFU samples (Figure 8E), suggesting that this altered cellular
distribution may contribute to the chronic inflammatory and
ulcerative microenvironment characteristic of DFU. Given the
potential involvement of RDGs in disease pathogenesis, we
further investigated their expression patterns at single-cell level.
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Notably, RDGs exhibited elevated expression levels in DFU
patients (Figure 8F), consistent with the dysregulation observed
in bulk RNA-seq analyses. Expression heatmap confirmed
detectable RDG activity across multiple cell types, with prominent
enrichment in vascular endothelial cells, epithelial cells, and
fibroblasts (Figure 8G). Collectively, these findings highlight the
heterogeneous expression of RDGs at single-cell level, reinforcing
their potential as key regulators in DFU progression and therapeutic
targets for intervention.

3.8 Molecular docking between resveratrol
and RDGs

This study conducted comprehensive molecular docking
simulations to further elucidate the interactions between resveratrol
and RDGs. Specifically, RDGs was used as the receptor and resveratrol
as the ligand, and AutoDock software was employed to generate
docking results for them. The molecular docking results indicated
that RDGs exhibit binding capacity with resveratrol (binding energy
<0 kcal/mol). Specifically, the results showed that the binding affinities
of resveratrol docked to RDGs were —6.72 kcal/mol (Target: ODC1)
and -9.62 kcal/mol (Target: CDA), respectively (Figures 9A,B).
Altogether, the docking results suggest that resveratrol may be able
to interact with RDGs with higher binding energies and thus achieve
therapeutic or palliative effects on DFU symptoms.
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3.9 The expression of RDGs in human DFU
samples

The above-mentioned study has demonstrated from multiple
dimensions that RDGs are the hub targets of resveratrol acting
on DFU. Certainly, the significance of RDGs still needs to be
verified through experiments. The analysis results of bulk RNA-seq
of DFU showed that RDGs were significantly upregulated in DFU
compared with DFS. Therefore, in this study, the expression of RDGs
was verified by combining clinical DFU samples and using IHC
experiments. Specifically, the results of IHC indicated that RDGs
were highly expressed in the clinical tissues of DFU (Figure 10),
which was consistent with the above transcriptome analysis results
and further provided strong evidence for the hub targets of this
study. Taken together, these results suggested the potential role of
RDGs in the pathogenesis of DFU.

4 Discussion

Diabetic foot ulcers (DFU) represent one of the most
serious and prevalent complications of diabetes, defined as
chronic, non-healing wounds occurring on the lower limbs of
diabetic patients (Armstrong et al, 2023; Jeyam et al, 2020).
Epidemiological studies indicate that DFU constitute a significant
global public health burden. Currently, 15%-25% of diabetic
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patients will develop foot ulcers during their lifetime, and
nearly 20% of patients ultimately require lower limb amputation
due to uncontrolled infection or tissue necrosis (Xia et al,
2025; Zhao et al., 2025). Beyond physical suffering, foot ulcers
impose a substantial socioeconomic burden, further diminishing
patients’ quality of life (Rathnayake et al., 2020). Clinically, DFU
present major challenges in both diagnosis and treatment. At
present, the clinical diagnostic workflow for DFU primarily
centers on the assessment of lower limb vasculopathy and
peripheral neuropathy (Sloan et al., 2021). The diagnosis of
lower extremity vasculopathy relies on the fulfillment of the
following diagnostic parameters: (1) confirmation of diabetes
mellitus diagnosis; (2) presence of clinical signs and symptoms
indicative of lower extremity ischemia; (3) auxiliary examination
results suggesting lower extremity vasculopathy. The diagnosis
of peripheral neuropathy is guided by the presence of the
following abnormal findings: (1) disturbed thermal sensation;
(2) diminished or absent plantar sensation detected via nylon
monofilament testing; (3) abnormal vibratory perception; (4)
absent ankle reflexes; (5) slowing down of 2 or more items of
nerve conduction velocity (Tan et al., 2024). Conventional clinical
assessments lack sufficient sensitivity to subtle changes in the
wound microenvironment, hindering early diagnosis. Meanwhile,
advanced diagnostic tools such as imaging or biomarker testing
remain underutilized in primary care settings (Zhou et al,
2022). Traditional therapies, including surgical debridement,
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novel wound dressings, interventions targeting lower extremity

ischemia, management of foot infections, intravenous antibiotic

administration, and alleviation of ulcer weight-bearing pressure, and

hyperbaric oxygen therapy—continue to have inherent limitations
(Jeffc et al., 2024; Tan et al., 2024; Everett and Mathioudakis, 2018).
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Even advanced approaches like negative pressure wound therapy

remain limited by high costs, technical complexity, and inconsistent

efficacy across patient subgroups (Bandyk, 2018; Shu et al,

2018). Given these unmet clinical needs, there is an urgent

requirement to develop novel therapeutic agents targeting the
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multidimensional pathophysiological mechanisms of diabetic foot
ulcers.

Resveratrol is a natural polyphenolic compound widely
found in plants such as grapes and peanuts. It has garnered
significant attention for its diverse biological activities, including
anti-aging, anti-tumor, anti—inﬂammatory, anti-oxidative stress,
and immune-modulating effects (Malaguarnera, 2019; Bi et al,
2023; Ding et al, 2022; Ren et al, 2021). In the treatment
of diabetic foot ulcers (DFU), studies have demonstrated that
resveratrol can improve the pathological state of ‘inflammatory
dysregulation - repair arrest’ in diabetic wounds through multiple
pathways. These include reducing oxidative stress, alleviating
inflammatory infiltration, promoting angiogenesis, and inhibiting
ferroptosis, thereby accelerating wound healing (Zhu et al., 2022;
Zhang et al., 2022; Zhou et al., 2021; Wang A. et al., 2025). However,
DFU wound repair involves a multi-cellular cooperative process
encompassing fibroblast proliferation, keratinocyte migration, and
immune cell polarization. The precise molecular mechanisms
by which resveratrol modulates this complex biological network
through multi-target, multi-pathway regulation to exert therapeutic
effects remain to be ascertained, necessitating systematic and
comprehensive in-depth research.

To elucidate the multidimensional mechanisms of resveratrol
in treating DFU, this study integrated a series of bioinformatics
First, DFU-related
transcriptome data were obtained from the GEO database, and

techniques and experimental methods.
the R package “limma” identified 1,727 differentially expressed
genes (DEGs) in DFU, comprising 864 downregulated genes and
863 upregulated genes. Subsequently, weighted gene co-expression
network analysis (WGCNA) was employed to mine DFU-associated
DEGs. To ascertain potential target sites for resveratrol in DFU,
predicted targets for resveratrol were first obtained from the
TCMSP, PharmMapper, and Swiss Target Prediction databases.
These were then cross-analyzed with DFU-related DEGs to identify
overlapping genes. Subsequently, functional enrichment analysis
of these overlapping genes using the R package “clusterProfiler”
revealed their primary involvement in immune/metabolic pathways

(e.g., IL-17 signaling, NF-xB signaling, glutathione metabolism) and
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immune/inflammatory responses (e.g., leukocyte homeostasis, T/B
cell activation, acute inflammatory response). This provides crucial
insights into the potential mechanisms of resveratrol in DFU. To
further identify core targets, this study employed multiple machine
learning algorithms, ultimately identifying two RDGs: Cytidine
deaminase (CDA) and Ornithine Decarboxylase 1 (ODCI).

CDA and ODCI have been identified as RDGs, a finding
supported by previous evidence. These studies indicate that both
genes are closely associated with wound healing, inflammation
regulation, and metabolic processes—core mechanisms in the
pathogenesis of DFU (Durr et al,, 2025). As a key enzyme in
pyrimidine metabolism, CDA plays a vital role in regulating
nucleotide homeostasis and immune cell function (Ligasova et al.,
2025; Lv et al, 2025). In chronic wounds like DFU, disrupted
nucleotide metabolism interferes with immune cell activation and
proliferation, thereby hindering inflammation resolution and tissue
repair (Liao et al, 2025). Previous studies have revealed that
CDA expression undergoes alterations in inflammatory states,
with changes in its activity influencing the balance between pro-
inflammatory and anti-inflammatory mediators (Lu et al., 2023).
For example, in skin inflammation models, CDA deficiency leads
to enhanced inflammatory cell infiltration and delayed wound
healing, fully demonstrating its role in regulating the inflammatory
microenvironment (Reynolds et al, 2021; Naso et al, 2023).
ODCI is the rate-limiting enzyme in polyamine biosynthesis, and
polyamines are crucial for cell proliferation, migration, and tissue
regeneration—all key processes in wound healing (Gao et al., 2024;
Bhalla and Lee, 2025). Studies indicate that dysregulated ODC1
expression in diabetic wounds leads to reduced polyamine levels,
resulting in impaired fibroblast function and decreased keratinocyte
migration (He etal., 2020; Li et al., 2024). In diabetic animal models,
restoring ODCI activity or supplementing polyamines accelerates
wound healing by promoting cell proliferation and angiogenesis,
highlighting ODC1 as a potential therapeutic target for DFU
(Theocharidis et al.,, 2022; Kaur et al., 2025). Collectively, these
findings indicate that CDA and ODCI not only participate in core
pathological processes of DFU but may also serve as potential
therapeutic targets.
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Immune cell infiltration analysis. (A) Heatmap showing the overall landscape of immune cell abundance. (B) Box diagram showing the differences in
immune cell infiltration abundance between the DFS and DFU. (C) Correlation analysis between the expression of RDGs and immune cell infiltration

abundance. (*p < 0.05,*p < 0.01,***p < 0.001)

In this study, we further confirmed that CDA and ODCI1
hold potential as diagnostic markers and therapeutic targets for
DFU, along with their interactive relationship with resveratrol. To
elaborate, receiver operating characteristic (ROC) analyses were
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performed using the R package “pROC”. The findings showed that
both CDA and ODCI1 displayed superior diagnostic capabilities for
DFU, with area under the ROC curve (AUC) values surpassing
0.9. This high AUC indicates their strong ability to differentiate
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between DFU and DFS samples, thereby offering robust support for
their potential as new diagnostic biomarkers for DFU (Guo et al.,
2024). Moreover, molecular docking experiments conducted via
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AutoDock software demonstrated that resveratrol has a strong
binding capacity with these two key regulatory genes (RDGs).
Specifically, the binding energies of resveratrol with ODC1 and
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FIGURE 9

3D views of the interacted interface between RDGs and resveratrol. (A) The structure of the complex formed by the docking of resveratrol with ODC1.
(B) The structure of the complexes formed by the docking of resveratrol with CDA.

CDA-Resveratrol (-9.62 kcal/mol)

FIGURE 10

Immunohistochemical staining of RDGs from human’s DFU samples and DFS samples.

CDA were —6.72 kcal/mol and —9.62 kcal/mol, respectively. Both
values being below 0 kcal/mol suggests the presence of stable
intermolecular interactions between resveratrol and these two
proteins (Shen et al., 2023; Xiao et al., 2024; Aguiar and Camps,
2024). These results imply that resveratrol might exert its therapeutic
effects on DFU by binding to CDA and ODC1, thereby modulating
their biological activities.

Although this study obtained several valuable findings, it
must be acknowledged that certain limitations remain. First,
while multiple bioinformatics methods and machine learning
algorithms were employed to identify and validate CDA and
ODC1 as RDGs, the specific functional mechanisms underlying the
interaction between resveratrol and these two genes require further
elucidation through in-depth in vitro experiments. Second, while
immunohistochemical staining confirmed the expression of CDA
and ODCl in clinical diabetic foot ulcer samples, the limited sample
size necessitates larger cohort studies to validate their diagnostic
value and clinical significance. In summary, subsequent research
should integrate in vitro and in vivo experiments to ascertain
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the precise mechanisms by which resveratrol regulates CDA and
ODCI.

5 Conclusion

In summary, this study identified RDGs as key therapeutic
targets for resveratrol in treating DFU through a series of
bioinformatics analyses and machine learning algorithms, and
validated the importance of RDGs for DFU across multiple
dimensions. This research not only elucidates the molecular
mechanism underlying resveratrol therapy for DFU but also
provides novel targets for DFU treatment.
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