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Background: Diabetic foot ulcers (DFU) are one of the most common and severe 
complications of diabetes, closely associated with high amputation rates and 
mortality, and the clinical treatment research is still limited. Previous studies 
have demonstrated that resveratrol exerts positive effects in wound healing. 
Therefore, it is necessary to investigate its molecular mechanisms in treating 
DFU to improve clinical management of this condition.
Methods: This study obtained DFU-related omics data from the GEO database 
and predicted targets for Resveratrol from TCMSP, PharmMapper, and Swiss 
Target Prediction. Differential analysis, weighted gene co-expression network 
analysis (WGCNA), and machine learning were used to jointly identify hub 
Resveratrol/DFU genes (RDGs). SsGSEA analysis was employed to investigate the 
relationship between RDGs and the DFU immune microenvironment. Single-
cell RNA-seq was employed to investigate cellular heterogeneity of RDGs 
expression. Molecular docking studies examined interactions between RDGs 
and resveratrol. Finally, immunohistochemistry validated RDGs expression.
Results: First, bioinformatics analyses and machine learning algorithms 
identified Cytidine deaminase (CDA) and Ornithine Decarboxylase 1 (ODC1) as 
RDGs. Second, ROC curves demonstrated RDGs’ strong diagnostic performance 
for DFU. The ssGSEA algorithm revealed that RDGs partially mediate the immune 
microenvironment of DFU. Subsequently, scRNA-seq results demonstrated 
cellular heterogeneity of RDGs expression, which mediates alterations in 
the pathological microenvironment of DFU and consequently influences 
its progression. Subsequently, molecular docking revealed strong binding 
affinity between resveratrol and RDGs, suggesting resveratrol may exert 
therapeutic effects on DFU by regulating RDG activity through binding. Finally, 
immunohistochemistry further validated RDG expression, providing strong 
evidence for RDGs as novel therapeutic targets for DFU.
Conclusion: Overall, this study identified RDGs as a key therapeutic target 
for resveratrol acting on DFU through a series of bioinformatics analyses and
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machine learning algorithms. Which not only fills the gap in the molecular 
mechanism of resveratrol treatment for DFU but also provides a novel 
therapeutic target for DFU.

KEYWORDS

Diabetic foot ulcers, resveratrol, ScRNA-seq, bioinformatics, molecular docking, 
machine learning 

1 Introduction

 Diabetic foot ulcers (DFU) represent the most disabling chronic 
complication of diabetes, characterized by full-thickness tissue loss 
in the foot accompanied by persistent inflammation and non-
healing wounds, its pathological essence being a cascade amplification 
effect of neuropathy, vascular disease, and infection induced by a 
hyperglycemic microenvironment (Jeffc et al., 2024; Armstrong et al., 
2023). Currently, DFU treatment poses a formidable challenge to 
global public health systems. From a health economics perspective, 
the United States incurs annual direct costs of $273 billion and 
indirect costs of $90 billion for diabetes care, with foot complications 
being the primary cost driver, adding 50%–200% in annual additional 
expenditures (McDermott et al., 2023). Epidemiological data further 
indicates that approximately one-third of diabetes patients worldwide 
will develop DFU, with 18.6 million new cases occurring annually 
(Armstrong et al., 2023). Additionally, approximately 20% of patients 
with diabetic foot ulcers ultimately require lower limb amputation, 
with a 5-year mortality rate as high as 50% post-surgery. This severely 
erodes patients’ quality of life and consumes healthcare resources 
(Ruder, 2024). Current multidisciplinary management strategies 
for DFU include surgical debridement, novel wound dressings, 
interventions targeting lower extremity ischemia, management of 
foot infections, intravenous antibiotic administration, and alleviation 
of ulcer weight-bearing pressure, and hyperbaric oxygen therapy 
(Jeffc et al., 2024; Tan et al., 2024; Everett and Mathioudakis, 
2018). Although these approaches promote ulcer healing to some 
extent, they remain mired in the “high cost-low efficiency-high 
recurrence” dilemma (Kamaraj et al., 2024). Therefore, identifying 
natural bioactive molecules that can precisely regulate wound healing 
while offering both safety and cost-effectiveness has become an urgent 
task in the clinical treatment of DFU. 

Resveratrol is a natural polyphenolic compound widely found in 
over 70 plant species, including grapes and peanuts (Malaguarnera, 
2019; Bi et al., 2023). Resveratrol exhibits multiple significant 
biological properties, including anti-aging, anti-tumor, anti-
inflammatory, anti-oxidative stress, and immunomodulatory effects 
(Ding et al., 2022; Ren et al., 2021). During DFU treatment, 

Abbreviations: DFU, Diabetic foot ulcers; RDGs, hub Resveratrol/DFU 
genes; CDA, Cytidine deaminase; ODC1, Ornithine Decarboxylase 1; PCA, 
Principal component analysis; DEGs, Differentially expressed genes; GO, 
Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; SVM-
RFE, Support vector machine recursive feature elimination; LASSO, Least 
absolute shrinkage and selection operator; RF, Random forest; ROC, 
Receiver operating characteristic; AUC, Area under roc curve; ssGSEA, 
Single-sample genome enrichment analysis; WGCNA, Weighted gene co-
expression network analysis; SMILES, Simplified molecular input line entry 
system; TCMSP, Traditional chinese medicine systematic pharmacology.

resveratrol can improve the pathological state of diabetic wounds 
characterized by ‘uncontrolled inflammation and stalled repair’ 
through multiple mechanisms, including reducing inflammatory 
infiltration and promoting angiogenesis, thereby accelerating 
wound healing (Zhu et al., 2022; Zhang et al., 2022; Zhou et al., 
2021; Wang A. et al., 2025). DFU wound repair involves multicellular 
cooperative processes such as fibroblast proliferation, keratinocyte 
migration, and immune cell polarization. However, how resveratrol 
modulates the complex networks mentioned above through multi-
target, multi-pathway synergistic regulation remains unknown, 
and its systemic mechanism of action lacks comprehensive 
elucidation (Ye et al., 2025). Therefore, further investigation into the 
mechanism of action of resveratrol in the treatment of diabetic foot 
ulcers is crucial for developing more effective therapeutic strategies.

Network pharmacology, as a core technology in systems biology, 
constructs interaction networks linking “drug active components-
disease targets-signaling pathways.” This enables a holistic analysis 
of the synergistic therapeutic mechanisms of natural compounds, 
effectively circumventing the limitations of traditional single-target 
research (Liang et al., 2025; Hopkins, 2008). This technology 
demonstrates unique advantages in studying complex diseases 
driven by multiple factors, such as DFU. By identifying core modular 
proteins of the disease, it enables precise prediction of synergistic 
action targets for natural molecules, thereby providing technical 
support for elucidating the “multi-component-multi-target-multi-
pathway” therapeutic model (Chen et al., 2023; Noor et al., 2022; 
Nogales et al., 2022). Additionally, network pharmacology serves as 
a core technology in target identification, widely applied in research 
related to identifying targets for drug treatment of specific diseases 
and elucidating their molecular mechanisms. For instance, Ji et al. 
identified key targets for Scutellariae Radix-Coptidis Rhizoma 
in atherosclerosis through network pharmacology, suggesting 
its potential multi-component, multi-target, and multi-pathway 
therapeutic effects against atherosclerosis (Ji et al., 2023). Gu 
et al. used network pharmacology to identify CX3CR1 as a key 
target for the Traditional Chinese medicine prescription Sini 
Decoction in sepsis (Gu et al., 2024). He et al. identified key 
targets of curcumin in colon cancer through network pharmacology, 
including CDK2, HSP90AA1, AURKB, etc. (He et al., 2023). 
Based on this, the present study employs a network pharmacology 
strategy integrating database mining, bioinformatics analysis, and 
experimental validation to systematically screen potential core 
targets and key signaling pathways for resveratrol intervention 
in DFU. This aims to reveal its multidimensional therapeutic 
mechanisms and provide theoretical basis for developing novel 
targeted therapeutic strategies for DFU.

Collectively, the present study identified key therapeutic targets 
for resveratrol treatment of diabetic foot ulcers through a series 
of bioinformatics analyses and machine learning algorithms. 
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Specifically, differential expression analysis and WGCNA identified 
673 differentially expressed genes (DEGs) associated with diabetic 
foot ulcers, while multiple databases predicted 391 resveratrol-
related targets. The intersection of these two sets revealed 30 
overlapping genes. Enrichment analysis revealed these genes primarily 
participate in immune or inflammation-related pathways, suggesting 
their potential involvement in the pathogenesis of diabetic foot 
ulcers. Subsequently, multiple machine learning algorithms identified 
CDA and ODC1 as RDGs. Then, the single-gene diagnostic 
ROC curve performance of RDGs demonstrated diagnostic efficacy 
exceeding 0.9. Single-cell RNA sequencing revealed heterogeneous 
expression of RDGs in DFU tissues, potentially mediating 
pathological microenvironment alterations that influence disease 
progression. Finally, immunohistochemical validation confirmed 
abnormal expression of RDGs in DFU, providing strong evidence 
for their potential as novel DFU biomarkers. 

2 Materials and methods

2.1 Acquisition of resveratrol-related 
targets

This study retrieved the chemical structure and Simplified 
Molecular Input Line Entry System (SMILES) of resveratrol 
[SMILES: C1 = CC(=CC = C1/C=C/C2 = CC(=CC(=C2)O)O)O] 
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
). Subsequently, the species was specified as “Homo sapiens,” 
and databases such as Traditional Chinese Medicine Systematic 
Pharmacology (TCMSP, https://old.tcmsp-e.com/tcmsp.php), 
PharmMapper (https://lilab-ecust.cn/pharmmapper/), and 
Swiss Target Prediction (http://swisstargetprediction.ch/) to 
identify potential resveratrol targets (Zhan and Shi, 2025; Yi-
Fan and Jian-Rong, 2025; Ru et al., 2014). Next, this study 
used the Uniprot database to standardize the names of the 
obtained targets (Hong et al., 2024). 

2.2 Acquisition of transcriptomic data

The transcriptomic data related to DFU used in this 
study were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). Specifically, we searched the GEO 
database by typing “Diabetic foot ulcer” and “Homo sapiens” 
as keywords. The datasets were included in the analysis based 
on the following criteria: (1) the dataset is expected to contain 
unbiased gene expression data, complete annotation information; 
(2) the sequencing type should be RNA-Seq; (3) the complete 
clinical and subgroup information; (4) the data was freely available 
for download. Based on the above inclusion criteria, we finally 
selected two datasets, namely GSE134431 and GSE80178. It is 
worth noting that GSE134431 and GSE80178 have also been 
employed in previous studies for target identification related to 
DFU phenotypes, such as glutamine metabolism-related targets, 
extracellular matrix-related targets, immune-related targets, and 
exosome-related targets, which further validating the importance 
and suitability of GSE134431 and GSE80178 for target identification 
in the present study (Gao et al., 2025; Li et al., 2025; Wu et al., 2024; 

Shi H. et al., 2024). Meanwhile, we used “ComBat” in the R package 
“sva” to remove the batch effect from the cohort of GSE134431 and 
GSE80178 merged (Leek et al., 2012). 

2.3 Differential analysis of gene expression

In this study, we used the R package “limma” to identify 
differentially expressed genes (DEGs) between the DFU group and 
diabetic foot skins (DFS) group (Ritchie et al., 2015). Specifically, we 
first extracted the expression profiles from the cohort of GSE134431 
and GSE80178 merged, and then grouped the samples according to 
their clinical information. Finally, the DEGs between the two groups 
were calculated using the R package “limma” with a threshold value 
of p < 0.05. 

2.4 WGCNA analysis

We used WGCNA analysis to screen for DFU-
related DEGs (Langfelder and Horvath, 2008). Specifically, the 
data of samples and genes were firstly quality assessed and pre-
processed, including detection of missing values, sample clustering, 
and data matching. Then, the optimal soft threshold was calculated 
by the network topology analysis function, and the correlation 
matrix was converted into a weighted adjacency matrix. From 
the adjacency matrix, a topological overlap matrix is constructed 
to take topological similarity into account, and a corresponding 
dissimilarity matrix is built to form clusters. Hierarchical clustering 
is performed using hclust function utilizing different matrices. 
Finally, hierarchical clustering was performed based on topological 
overlap matrices, and the minimum number of genes per module 
was set to 500 according to the dynamic hybrid cut method, 
and genes with similar expression patterns were classified into 
the same module by average association hierarchical clustering. 
Clinical information was correlated with module characteristic 
gene expression and gene significance was determined. Then, the 
correlation of module characteristic genes with DFU was assessed, 
and modules meeting the study objectives were identified based on 
the degree of correlation. 

2.5 Functional enrichment analysis

To explore the biological processes and functions of the 
resveratrol target-DEGs, we conducted Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using 
the R package “clusterProfiler” (Yu et al., 2012), specifying “Homo 
sapiens” as the biological species. All results from this analysis were 
statistically significant, with a P-value of less than 0.05. 

2.6 Construction of PPI network

Initially, the biological species was set to “homo sapiens” and the 
30 resveratrol target-DEGs were imported into the string database, 
and the interaction score was set to medium confidence (0.400) 
(https://cn.stringdb.org/) (Szklarczyk et al., 2019). To create a PPI 
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network, the outcomes of the string database were then loaded 
into the Cytoscape software. The imported genes were then scored 
using the CytoHubba plugin in Cytoscape (Yu et al., 2023), and 
the top 20 scoring genes with the highest scores were chosen for 
further analysis. 

2.7 Machine learning algorithms

We used multiple machine learning algorithms to identify 
RDGs, namely, least absolute shrinkage and selection operator 
(LASSO), random forest (RF) and support vector machine recursive 
feature elimination (SVM-RFE) (Wang H. et al., 2025). It is worth 
noting that the combination of these three algorithms plays a 
crucial role in target identification processes within the biomedical 
field. They are widely applied in the discovery of novel targets 
for DFU and various other diseases, such as ulcerative colitis, 
osteoarthritis, endometriosis, and celiac disease, etc (Tan et al., 2024; 
Shen et al., 2023; Luan et al., 2023; Shi S. et al., 2024; Guo et al., 
2024; Jiang et al., 2024). LASSO is a linear regression method 
characterized by variable selection and complexity regularization 
(Vasquez et al., 2016). The present study uses the R package “glmnet” 
to implement the LASSO analysis and selects the optimal value of 
λ through a ten-fold cross-validation in order to achieve the best 
balance between bias and variance. RF utilizes integrated learning 
to construct multiple decision trees and integrate the prediction 
results, focusing on evaluating the importance of each variable in 
the model by rating its importance (Paul et al., 2018). The present 
study uses the R package “randomForest” to calculate the number 
of decision trees and the error rate, and when the error rate is 
stable, the optimal number of decision trees is selected and the 
candidate genes are ranked in terms of importance. SVM-RFE is a 
feature selection method based on support vector machines, where 
all the features are trained and evaluated through multiple iterations 
using support vector machines in each iteration (Noble, 2006). The 
present study used the R package “e1071” for SVM-RFE analysis, 
and selected key features by performing ten-fold cross-validation 
and weighted summing of the number of gene occurrences and 
the order of importance. Then, we used venn diagrams to intersect 
the candidate genes screened by the above three algorithms as hub 
Resveratrol/DFU genes (RDGs). 

2.8 Evaluation of diagnostic performance 
of RDGs

To evaluate the diagnostic performance of RDGs in DFU, we 
employed receiver operating characteristic (ROC) analysis using the 
“pROC” library in R. The “roc” function was utilized to generate the 
curves, while the “ci” function computed the final area under the 
ROC curve (AUC) values. 

2.9 Immune cells infiltration analysis

The present study used ssGSEA to assess immune cell 
infiltration (Hänzelmann et al., 2013). Specifically, we performed 
ssGSEA analysis in R, employing the “GSVA” and “GSEABase” 

packages to evaluate the immunological profiles of DFU patients. To 
compare the abundance of various immune cell infiltrates between 
DFS group and DFU group, the Wilcoxon test was applied for 
statistical comparisons. Following this, the “ggplot” package in R 
was employed to graphically represent the relationship between 
immune cell infiltration levels and RDGs expression. 

2.10 scRNA-seq analysis

The DFU-related scRNA-seq used in this study was obtained 
from the previous work of Theocharidis et al. (2022), and analyzed 
using the R software package “Seurat” (Satija et al., 2015). 
Specifically, this study was analyzed using the following process: 
(1) Filter out low-quality cells using the following thresholds: 
nFeature_RNA >300, nFeature_RNA <7500, mt_percent <10; (2) 
“NormalizeData” was used to standardize expression levels; (3) 
“ElbowPlot” was used to determine the PCA dimension, and then 
the top 20 principal components were extracted; (4) cell clustering 
using “FindNeighbors” and “FindClusters”; (5) dimensionality 
reduction visualization using “RunUMAP”; (6) annotation of cell 
subpopulations based on known marker genes (Theocharidis et al., 
2022; Reynolds et al., 2021; Lu et al., 2023; He et al., 2020). 

2.11 Molecular docking

Molecular docking is a common method used in drug 
discovery to accurately predict protein binding sites and small 
molecule ligand conformations, and to assess the binding 
affinity between them (Xiao et al., 2024). Specifically, we 
firstly downloaded the small molecule ligand files from 
the PubChem database (http://pubchem.ncbi.nlm.nih.gov/).
We downloaded the PDB files of RDGs target proteins from 
the PDB database (https://www.rcsb.org/), removed water 
molecules, small-molecule ligands using the Pymol software, and 
hydrogenated, calculated charges, and set rigid molecules using the 
AutoDocKTools software. Subsequently, AutoDocKTools software 
was run to hydrogenate the target protein and other processes, and 
the target protein and ligand small molecules were converted to 
pdbqt format, respectively. Finally, a command prompt was run 
to dock the target protein and ligand as well as to calculate the 
binding energy. 

2.12 Patient screening and clinical 
specimen collection

The specimens were obtained from diabetic patients admitted 
to Shenzhen Guangming District People’s Hospital who met the 
following criteria. This study enrolled patients with diabetic foot 
skin (DFS) and diabetic foot ulcers (DFU). The inclusion criteria 
were as follows: meeting the diabetes diagnostic criteria established 
by the World Health Organization (WHO), being aged between 
18 and 75 years, and voluntarily signing an informed consent 
form. Patients with the following conditions were excluded: severe 
uncontrolled systemic infection, allergy to operations related to 
specimen collection, severe liver function abnormalities, malignant 
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tumors, New York Heart Association (NYHA) cardiac function 
class Ⅲ-Ⅳ, coagulation disorders, being pregnant or lactating, 
and having mental illnesses. Specimen collection strictly followed 
aseptic operation procedures. Residual DFS skin tissues after 
patients underwent operations (such as debridement) and skin 
tissue specimens from the edges of DFU ulcers after surgical 
treatment were collected. 

2.13 Immunohistochemistry

Immunohistochemical experiments were performed on the 
collected postoperative skin tissue specimens of DFS and DFU: 
the specimens were fixed with 4% paraformaldehyde, embedded in 
paraffin, and sectioned. After dewaxing to water, antigen retrieval 
was performed with citrate buffer (pH 6.0) by heat. Then, they 
were incubated with 3% hydrogen peroxide at room temperature 
for 10 min to block endogenous peroxidase activity; after blocking 
with 5% bovine serum albumin at 37 °C for 30 min, ODC1 antibody 
(1:100, Zenbio, China) and CDA antibody (1:100, Zenbio, China) 
were added dropwise respectively and incubated overnight at 4 °C; 
after rewarming the next day, they were washed with PBS 3 times 
(5 min each time), then HRP-labeled secondary antibody (1:500) was 
added dropwise and incubated at 37 °C for 60 min. After washing 
again, the color reaction was carried out using a DAB chromogenic kit, 
followed by hematoxylin counterstaining of cell nuclei. After gradient 
ethanol dehydration and xylene transparency, the sections were sealed 
with neutral gum. Observe through an inverted microscope. 

2.14 Statistical analysis

In this study, the statistical analysis and visualization were 
performed in R language, and the Wilcoxon rank sum test was used 
to compare the two groups, with P < 0.05 indicating a statistically 
significant difference. 

3 Results

3.1 Identification of differentially expressed 
genes in DFU

In this study, GSE134431 and GSE80178 were used as training 
cohorts. However, there are batch effects between the different datasets 
included in this study due to different sequencing platforms, etc. 
Therefore, we need to eliminate the batch effects in the training 
cohort for subsequent analysis. We used the Combat function in the 
R package “sva” to remove the batch effect in the training cohort after 
combining GSE134431 and GSE80178. The result after removing the 
batch shows that the samples are evenly dispersed and can be used for 
subsequent analysis (Figure 1A). Immediately after that, we used the 
RNA-seq of the training cohort as the expression profile, combined 
with the clinical information of the samples, that is, DFSs and DFU 
as two different subgroups for differential gene expression analysis. 
Eventually, we obtained 1727 DEGs, of which 864 were downregulated 
expressed genes and 863 were upregulated expressed genes (Figure 1B), 
and the overall expression landscapes of these DEGs were visualized 

as shown in Figures 1C,D, that is, the expression was obviously different 
between the two groups and evenly dispersed on each chromosome. 

3.2 Identification of DFU-related DEGs 
through WGCNA analysis

Gene expression is associated with a diverse range of signaling 
pathways and biochemical responses in the body, and abnormalities 
in these pathways and responses can lead to the development 
of a variety of diseases in certain conditions. To identify DFU-
related DEGs, we performed WGCNA analysis based on RNA-
seq from the training cohort. Specifically, we categorized the 
genes into six independent co-expression modules based on 
their expression patterns in the training cohort (Figures 2A,B). 
Subsequently, we combined the clinical information of the samples 
in the training cohort, and the results showed that the DFU samples 
were highly distinguishable from the DFS samples (Figure 2C). 
The correlogram of module-trait relationships showed that the 
turquoise module, which contains 673 DEGs, had the highest 
correlation with DFU (Figure 2D).

3.3 Identification of resveratrol 
target-genes dysregulately expressed in 
DFU

Firstly, we obtained 391 resveratrol predict-targets through the 
TCMSP, PharmMapper and Swiss Target Prediction databases. 
Immediately after that, we cross-analyzed the 673 DFU-related 
DEGs identified in the above results with the 391 resveratrol predict-
targets obtained in this study, resulting in 30 overlapped genes 
(Figure 3A). Subsequently, we performed functional enrichment 
analysis on these 30 overlapped genes, in which KEGG enrichment 
analysis showed that they were related to immune/metabolism, 
such as “IL-17 signaling pathway”, “NF-kappa B signaling pathway”, 
“Glutathione metabolism”, “Nitrogen metabolism”, “Tyrosine 
metabolism”, “Tryptophan metabolism”, and “Phenylalanine 
metabolism” (Figure 3B). The results of GO enrichment analyses 
were similar to those of KEGG enrichment analyses, showing that 
they are mainly associated with immune/inflammatory responses, 
such as “leukocyte homeostasis”, “B cell homeostasis”, “T cell 
homeostasis”, “T cell activation”, “acute inflammatory response”, 
“B cell activation”, “T cell proliferation”, “interleukin-6-mediated 
signaling pathway (Figure 3C). In summary, the pathogenesis 
of DFU may be related to the metabolism pathway and the 
immune/inflammatory response.

Certainly, the identification of key genes is determined by 
multiple factors. In addition to the analysis of gene expression 
patterns mentioned above, the interaction between genes cannot 
be ignored. Specifically, we included these 30 overlapped genes 
in the PPI analysis. We evaluated these 30 overlapped genes 
comprehensively in Cytoscape using CytoHubba plugin and 
selected the top 20 scoring genes with the highest scores 
(Figure 4A). Given the functional interdependence between genes, 
we conducted correlation analysis on the top 20 highest-scoring 
genes. The results revealed significant co-expression patterns among 
these genes (Figure 4B), indicating that the dysregulated expression 
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FIGURE 1
Data processing and identification of DEGs. (A) Elimination of batch effects in the training cohort (GSE134431 and GSE80178). (B) Volcano diagram 
showing DEGs between the two subgroups. (C) Heatmap showing the overall landscape of DEGs expression between the two subgroups. (D)
Chromosome map showing the distribution of DEGs on chromosomes.

of resveratrol targets in DFU forms a coordinated network that likely 
contributes to DFU pathogenesis and progression.

3.4 Identification of RDGs based on 
multiple machine learning algorithms

In order to identify RDGs that play a pivotal role in the 
pathogenesis of DFU, we applied SVM-RFE, LASSO and RF 
to analyze and identify the top 20 scoring genes. Specifically, 
we obtained 5 candidate genes by LASSO algorithm, including 
ODC1, ALDH2, MAOA, CDA, and BAK1 (Figure 5A), 6 candidate 
genes by SVM-RFE algorithm, including CDA, TYR, BAK1, 
RPS6, BCL2, and ODC1 (Figure 5B), and 5 candidate genes 
by RF algorithm, including CDA, GSTP1, TYR, ODC1, and 
CCNE1 (Figure 5C). Then, the candidate genes identified by the 
above three machine learning algorithms were taken to intersect, 
resulting in two hub Resveratrol/DFU genes (RDGs), namely, 
CDA and ODC1 (Figure 5D).

3.5 Diagnostic performance of RDGs for 
DFU

The above-mentioned studies indicate that RDGs are key targets 
for resveratrol in DFU. Therefore, it is necessary to investigate 
whether they have the potential to be used as diagnostic targets for 

DFU. Specifically, this study integrated the included bulk RNA-seq 
data to investigate the expression levels of RDGs. The results showed 
that RDGs were significantly upregulated in DFU (Figures 6A,B), 
which provides strong evidence for their use as diagnostic targets for 
DFU. Subsequently, this study used RDGs for single-gene diagnostic 
analysis of DFU, with DFS and DFU as diagnostic binary variables. 
ROC results showed that the diagnostic ROC values of RDGs for 
DFU all exceeded 0.9 (Figure 6C), indicating that RDGs have the 
potential to become novel diagnostic targets for DFU.

3.6 Immune cell infiltration analysis

We utilized the ssGSEA algorithm to assess the immunological 
characteristics of the DFU samples. Figure 7A shows the overall 
immune cell infiltration between the two groups of DFU samples 
and DFS samples, and the results indicate that there is a significant 
difference in immune cell infiltration between these two groups. 
The abundance of immune cell infiltration was significantly higher 
in DFU patients compared to DFS samples, and the immune 
infiltration analysis showed that a total of 5 types of immune cells 
were more abundant in the DFU group than those in the DFS 
group, including Type 17 T helper cell, CD56dim natural killer cell, 
Activated dendritic cell, Eosinophil, and Neutrophil (Figure 7B). 
This suggests that the immune microenvironment disturbance may 
also be a contributor to the development of DFU. Certainly, it 
is necessary to explore the relationship between the dysregulated 
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FIGURE 2
Identification of DFU-related DEGs by WGCNA. (A,B) Clustering dendrogram of DEGs. (C) Clustering dendrogram of DFU and DFS samples. (D)
Heatmap of correlation between module DEGs and phenotypes.

expression of RDGs and the immune microenvironment. Next, we 
investigated the relationship between the expression of RDGs and 
the abundance of immune cells by correlation analysis. The result 
showed a significant correlation between the expression of RDGs 
and the abundance of a variety of immune cells (Figure 7C), which 
suggests that RDGs may have a potential role in regulating the DFU 
immune microenvironment.

3.7 ScRNA-seq profiling analysis of DFU

Initially, we performed clustering analysis on the scRNA-seq 
data obtained from DFU patients using the UMAP algorithm, 
which delineated 17 clusters (Figure 8A). These clusters were 
subsequently annotated based on known markers (Figure 8B). Our 
scRNA-seq profiling identified a total of eight major celltypes, with 
their respective single-cell transcriptomic landscapes illustrated 
in Figure 8C. To assess disease-associated cellular heterogeneity, 
we stratified the single-cell data by clinical status (Figure 8D). 
Cell proportion analysis demonstrated a significant enrichment 
of smooth muscle cells, T/B lymphocytes, and macrophages in 
DFU samples (Figure 8E), suggesting that this altered cellular 
distribution may contribute to the chronic inflammatory and 
ulcerative microenvironment characteristic of DFU. Given the 
potential involvement of RDGs in disease pathogenesis, we 
further investigated their expression patterns at single-cell level. 

Notably, RDGs exhibited elevated expression levels in DFU 
patients (Figure 8F), consistent with the dysregulation observed 
in bulk RNA-seq analyses. Expression heatmap confirmed 
detectable RDG activity across multiple cell types, with prominent 
enrichment in vascular endothelial cells, epithelial cells, and 
fibroblasts (Figure 8G). Collectively, these findings highlight the 
heterogeneous expression of RDGs at single-cell level, reinforcing 
their potential as key regulators in DFU progression and therapeutic 
targets for intervention.

3.8 Molecular docking between resveratrol 
and RDGs

This study conducted comprehensive molecular docking 
simulations to further elucidate the interactions between resveratrol 
and RDGs. Specifically, RDGs was used as the receptor and resveratrol 
as the ligand, and AutoDock software was employed to generate 
docking results for them. The molecular docking results indicated 
that RDGs exhibit binding capacity with resveratrol (binding energy 
<0 kcal/mol). Specifically, the results showed that the binding affinities 
of resveratrol docked to RDGs were −6.72 kcal/mol (Target: ODC1) 
and −9.62 kcal/mol (Target: CDA), respectively (Figures 9A,B). 
Altogether, the docking results suggest that resveratrol may be able 
to interact with RDGs with higher binding energies and thus achieve 
therapeutic or palliative effects on DFU symptoms. 
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FIGURE 3
Characterization of resveratrol target-genes dysregulately expressed in DFU. (A) Venn diagram showing overlapped genes between the DFU-related 
DEGs and the resveratrol target-genes. (B) KEGG enrichment results in the overlapped genes. (C) GO enrichment results in the overlapped genes.

3.9 The expression of RDGs in human DFU 
samples

The above-mentioned study has demonstrated from multiple 
dimensions that RDGs are the hub targets of resveratrol acting 
on DFU. Certainly, the significance of RDGs still needs to be 
verified through experiments. The analysis results of bulk RNA-seq 
of DFU showed that RDGs were significantly upregulated in DFU 
compared with DFS. Therefore, in this study, the expression of RDGs 
was verified by combining clinical DFU samples and using IHC 
experiments. Specifically, the results of IHC indicated that RDGs 
were highly expressed in the clinical tissues of DFU (Figure 10), 
which was consistent with the above transcriptome analysis results 
and further provided strong evidence for the hub targets of this 
study. Taken together, these results suggested the potential role of 
RDGs in the pathogenesis of DFU.

4 Discussion

Diabetic foot ulcers (DFU) represent one of the most 
serious and prevalent complications of diabetes, defined as 
chronic, non-healing wounds occurring on the lower limbs of 
diabetic patients (Armstrong et al., 2023; Jeyam et al., 2020). 
Epidemiological studies indicate that DFU constitute a significant 
global public health burden. Currently, 15%–25% of diabetic 

patients will develop foot ulcers during their lifetime, and 
nearly 20% of patients ultimately require lower limb amputation 
due to uncontrolled infection or tissue necrosis (Xia et al., 
2025; Zhao et al., 2025). Beyond physical suffering, foot ulcers 
impose a substantial socioeconomic burden, further diminishing 
patients’ quality of life (Rathnayake et al., 2020). Clinically, DFU 
present major challenges in both diagnosis and treatment. At 
present, the clinical diagnostic workflow for DFU primarily 
centers on the assessment of lower limb vasculopathy and 
peripheral neuropathy (Sloan et al., 2021). The diagnosis of 
lower extremity vasculopathy relies on the fulfillment of the 
following diagnostic parameters: (1) confirmation of diabetes 
mellitus diagnosis; (2) presence of clinical signs and symptoms 
indicative of lower extremity ischemia; (3) auxiliary examination 
results suggesting lower extremity vasculopathy. The diagnosis 
of peripheral neuropathy is guided by the presence of the 
following abnormal findings: (1) disturbed thermal sensation; 
(2) diminished or absent plantar sensation detected via nylon 
monofilament testing; (3) abnormal vibratory perception; (4) 
absent ankle reflexes; (5) slowing down of 2 or more items of 
nerve conduction velocity (Tan et al., 2024). Conventional clinical 
assessments lack sufficient sensitivity to subtle changes in the 
wound microenvironment, hindering early diagnosis. Meanwhile, 
advanced diagnostic tools such as imaging or biomarker testing 
remain underutilized in primary care settings (Zhou et al., 
2022). Traditional therapies, including surgical debridement, 
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FIGURE 4
Expression patterns of resveratrol target-DEGs in DFU patients. (A) The protein-protein interaction network showing the interactions between the top 
20 scoring genes. (B) Correlation analysis of the top 20 scoring genes. Red and green colors represent positive and negative correlations, respectively. 
(∗p < 0.05).

FIGURE 5
Identification of RDGs by multiple machine learning. (A) LASSO regression algorithm to screen candidate genes. (B) SVM-RFE algorithm for screening 
candidate genes. (C) RF algorithm for screening candidate genes. (D) Venn diagram showing the intersection of candidate genes obtained by the 3 
machine learning algorithms.

novel wound dressings, interventions targeting lower extremity 
ischemia, management of foot infections, intravenous antibiotic 
administration, and alleviation of ulcer weight-bearing pressure, and 
hyperbaric oxygen therapy—continue to have inherent limitations 
(Jeffc et al., 2024; Tan et al., 2024; Everett and Mathioudakis, 2018). 

Even advanced approaches like negative pressure wound therapy 
remain limited by high costs, technical complexity, and inconsistent 
efficacy across patient subgroups (Bandyk, 2018; Shu et al., 
2018). Given these unmet clinical needs, there is an urgent 
requirement to develop novel therapeutic agents targeting the 
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FIGURE 6
Evaluation of diagnostic performance of RDGs. (A) The expression of ODC1 between the DFS and DFU. (B) The expression of CDA between the DFS 
and DFU. (C) ROC showed the diagnostic performance of the RDGs.

multidimensional pathophysiological mechanisms of diabetic foot
ulcers.

Resveratrol is a natural polyphenolic compound widely 
found in plants such as grapes and peanuts. It has garnered 
significant attention for its diverse biological activities, including 
anti-aging, anti-tumor, anti-inflammatory, anti-oxidative stress, 
and immune-modulating effects (Malaguarnera, 2019; Bi et al., 
2023; Ding et al., 2022; Ren et al., 2021). In the treatment 
of diabetic foot ulcers (DFU), studies have demonstrated that 
resveratrol can improve the pathological state of ‘inflammatory 
dysregulation - repair arrest’ in diabetic wounds through multiple 
pathways. These include reducing oxidative stress, alleviating 
inflammatory infiltration, promoting angiogenesis, and inhibiting 
ferroptosis, thereby accelerating wound healing (Zhu et al., 2022; 
Zhang et al., 2022; Zhou et al., 2021; Wang A. et al., 2025). However, 
DFU wound repair involves a multi-cellular cooperative process 
encompassing fibroblast proliferation, keratinocyte migration, and 
immune cell polarization. The precise molecular mechanisms 
by which resveratrol modulates this complex biological network 
through multi-target, multi-pathway regulation to exert therapeutic 
effects remain to be ascertained, necessitating systematic and 
comprehensive in-depth research.

To elucidate the multidimensional mechanisms of resveratrol 
in treating DFU, this study integrated a series of bioinformatics 
techniques and experimental methods. First, DFU-related 
transcriptome data were obtained from the GEO database, and 
the R package “limma” identified 1,727 differentially expressed 
genes (DEGs) in DFU, comprising 864 downregulated genes and 
863 upregulated genes. Subsequently, weighted gene co-expression 
network analysis (WGCNA) was employed to mine DFU-associated 
DEGs. To ascertain potential target sites for resveratrol in DFU, 
predicted targets for resveratrol were first obtained from the 
TCMSP, PharmMapper, and Swiss Target Prediction databases. 
These were then cross-analyzed with DFU-related DEGs to identify 
overlapping genes. Subsequently, functional enrichment analysis 
of these overlapping genes using the R package “clusterProfiler” 
revealed their primary involvement in immune/metabolic pathways 
(e.g., IL-17 signaling, NF-κB signaling, glutathione metabolism) and 

immune/inflammatory responses (e.g., leukocyte homeostasis, T/B 
cell activation, acute inflammatory response). This provides crucial 
insights into the potential mechanisms of resveratrol in DFU. To 
further identify core targets, this study employed multiple machine 
learning algorithms, ultimately identifying two RDGs: Cytidine 
deaminase (CDA) and Ornithine Decarboxylase 1 (ODC1).

CDA and ODC1 have been identified as RDGs, a finding 
supported by previous evidence. These studies indicate that both 
genes are closely associated with wound healing, inflammation 
regulation, and metabolic processes—core mechanisms in the 
pathogenesis of DFU (Durr et al., 2025). As a key enzyme in 
pyrimidine metabolism, CDA plays a vital role in regulating 
nucleotide homeostasis and immune cell function (Ligasová et al., 
2025; Lv et al., 2025). In chronic wounds like DFU, disrupted 
nucleotide metabolism interferes with immune cell activation and 
proliferation, thereby hindering inflammation resolution and tissue 
repair (Liao et al., 2025). Previous studies have revealed that 
CDA expression undergoes alterations in inflammatory states, 
with changes in its activity influencing the balance between pro-
inflammatory and anti-inflammatory mediators (Lu et al., 2023). 
For example, in skin inflammation models, CDA deficiency leads 
to enhanced inflammatory cell infiltration and delayed wound 
healing, fully demonstrating its role in regulating the inflammatory 
microenvironment (Reynolds et al., 2021; Naso et al., 2023). 
ODC1 is the rate-limiting enzyme in polyamine biosynthesis, and 
polyamines are crucial for cell proliferation, migration, and tissue 
regeneration—all key processes in wound healing (Gao et al., 2024; 
Bhalla and Lee, 2025). Studies indicate that dysregulated ODC1 
expression in diabetic wounds leads to reduced polyamine levels, 
resulting in impaired fibroblast function and decreased keratinocyte 
migration (He et al., 2020; Li et al., 2024). In diabetic animal models, 
restoring ODC1 activity or supplementing polyamines accelerates 
wound healing by promoting cell proliferation and angiogenesis, 
highlighting ODC1 as a potential therapeutic target for DFU 
(Theocharidis et al., 2022; Kaur et al., 2025). Collectively, these 
findings indicate that CDA and ODC1 not only participate in core 
pathological processes of DFU but may also serve as potential 
therapeutic targets.
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FIGURE 7
Immune cell infiltration analysis. (A) Heatmap showing the overall landscape of immune cell abundance. (B) Box diagram showing the differences in 
immune cell infiltration abundance between the DFS and DFU. (C) Correlation analysis between the expression of RDGs and immune cell infiltration 
abundance. (∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001)

In this study, we further confirmed that CDA and ODC1 
hold potential as diagnostic markers and therapeutic targets for 
DFU, along with their interactive relationship with resveratrol. To 
elaborate, receiver operating characteristic (ROC) analyses were 

performed using the R package “pROC”. The findings showed that 
both CDA and ODC1 displayed superior diagnostic capabilities for 
DFU, with area under the ROC curve (AUC) values surpassing 
0.9. This high AUC indicates their strong ability to differentiate 
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FIGURE 8
scRNA-seq analysis of DFU patients. (A) 17 cell clusters were identified. (B) Expression dot plots of known markers to support cell annotation. (C,D) 8 
celltypes were annotated. (E) Counting cell proportions. (F) Grouping expression dot plots of RDGs. (G) Grouping expression heatmap of RDGs.

between DFU and DFS samples, thereby offering robust support for 
their potential as new diagnostic biomarkers for DFU (Guo et al., 
2024). Moreover, molecular docking experiments conducted via 

AutoDock software demonstrated that resveratrol has a strong 
binding capacity with these two key regulatory genes (RDGs). 
Specifically, the binding energies of resveratrol with ODC1 and 
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FIGURE 9
3D views of the interacted interface between RDGs and resveratrol. (A) The structure of the complex formed by the docking of resveratrol with ODC1.
(B) The structure of the complexes formed by the docking of resveratrol with CDA.

FIGURE 10
Immunohistochemical staining of RDGs from human’s DFU samples and DFS samples.

CDA were −6.72 kcal/mol and −9.62 kcal/mol, respectively. Both 
values being below 0 kcal/mol suggests the presence of stable 
intermolecular interactions between resveratrol and these two 
proteins (Shen et al., 2023; Xiao et al., 2024; Aguiar and Camps, 
2024). These results imply that resveratrol might exert its therapeutic 
effects on DFU by binding to CDA and ODC1, thereby modulating 
their biological activities.

Although this study obtained several valuable findings, it 
must be acknowledged that certain limitations remain. First, 
while multiple bioinformatics methods and machine learning 
algorithms were employed to identify and validate CDA and 
ODC1 as RDGs, the specific functional mechanisms underlying the 
interaction between resveratrol and these two genes require further 
elucidation through in-depth in vitro experiments. Second, while 
immunohistochemical staining confirmed the expression of CDA 
and ODC1 in clinical diabetic foot ulcer samples, the limited sample 
size necessitates larger cohort studies to validate their diagnostic 
value and clinical significance. In summary, subsequent research 
should integrate in vitro and in vivo experiments to ascertain 

the precise mechanisms by which resveratrol regulates CDA and
ODC1. 

5 Conclusion

In summary, this study identified RDGs as key therapeutic 
targets for resveratrol in treating DFU through a series of 
bioinformatics analyses and machine learning algorithms, and 
validated the importance of RDGs for DFU across multiple 
dimensions. This research not only elucidates the molecular 
mechanism underlying resveratrol therapy for DFU but also 
provides novel targets for DFU treatment.
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