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The growing burden of neurodegenerative diseases (NDD) on healthcare
systems, driven by global aging population, has increased interest in modelling
the blood-brain barrier (BBB). While microfluidic platforms have been widely
used to model the BBB, they remain limited by complex fabrication
techniques, low-throughput, and restricted control over BBB geometry. Recent
advancements in three-dimensional (3D) bioprinting offer promising strategies
to overcome these constraints and to enable the generation of physiologically
relevant BBB models. This review examines the recent progress in 3D bioprinting
approaches to model human in vitro BBB, with a focus on their applications
in NDD research. We first summarise current 3D bioprinting techniques and
strategies, including the selection of bioinks and geometry design. Subsequently,
we address the evaluation methods for in vitro BBB modelling and their
relevance to disease modelling. Finally, we identify key challenges and future
directions aimed at improving resolution, reproducibility, and functional 3D-
printed BBB constructs for use in NDD modelling and drug development.
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1 Introduction

Neurodegenerative diseases (NDD), including Alzheimer’s disease (AD) and
Parkinson’s disease (PD), affect approximately 15% of the global population and pose a
growing challenge to healthcare systems worldwide (Liu et al., 2022). A critical factor in
NDD pathogenesis is the dysfunction of the blood-brain barrier (BBB) (Sweeney et al.,
2018; Tran et al., 2022), which plays a central role in maintaining central nervous system
(CNS) homeostasis by tightly regulating molecular exchange between the bloodstream
and the brain (Kadry et al., 2020; Segarra et al., 2021). The BBB protects neural tissue
from neurotoxic plasma components, blood cells, and pathogens, while ensuring optimal
neuronal function.

Evidence suggests that disruption of BBB, leading to the loss of selective permeability,
may precede and contribute to neuronal degeneration by allowing the entry of neurotoxic
plasma components, inflammatory mediators, and immune cells into the CNS (Bell et al.,
20105 Takata, 2021). This breach can amplify neuroinflammation and impair clearance of
pathological proteins such as accumulated amyloid-beta (Af) in AD (Mawuenyega et al.,
2010) and misfolded alpha-synuclein in PD (Stefanis et al., 2012). Understanding the
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mechanisms underlying BBB dysfunction and evaluating strategies
to restore barrier integrity are therefore essential for advancing NDD
research and therapy development.

Modelling the BBB has thus become essential for elucidating
NDD pathogenesis and evaluating CNS-targeted therapies.
However, due to the restrictive permeability and structural
complexity of the human BBB, accurate modelling remains
challenging. Traditional modelling approaches include the two-
dimensional (2D) Transwell co-culture platform, which typically
involves endothelial cells (EC) on the apical surface (representing
the blood side) and other supporting cells on the basolateral surface
(representing the brain side). The two compartments are separated
by a porous membrane which allows molecular exchange and
intercellular communication (Stone et al., 2019).

Although the 2D Transwell system has provided valuable
insights, it is limited in its ability to recapitulate spatial organization,
dynamic flow conditions and microenvironment of the human
BBB (Yan et al., 2011). Furthermore, animal models often fail to
fully recapitulate human BBB physiology, limiting their translational
relevance (Badawi et al., 2024; Helman et al., 2016). These limitations
have therefore driven the development of more advanced systems
that better mimic native human BBB physiology.

Advanced technologies such as microfluidic organ-on-a-chip
platforms and stem cell-derived BBB models have emerged in
response. Among these, three-dimensional (3D) bioprinting stands
out for its ability to generate spatially organized, customizable,
and physiologically relevant in vitro BBB constructs. By integrating
vascular geometry, multicellular interactions, extracellular matrix
(ECM) composition, and perfusable flow, 3D bioprinting provides
a powerful platform for studying BBB dysfunction in NDD and
accelerating CNS-targeted drug development.

In this review, we explore the use of 3D bioprinting
for modelling human BBB, with a focus on applications in
NDD research (Figure 1). We begin by outlining the anatomical
and functional features of the BBB, followed by key design
considerations for in vitro models. We then compare existing
modelling approaches while emphasising the advantages of 3D
bioprinting. Subsequently, we discuss bioprinting techniques, bioink
optimisation, and geometric design strategies, and conclude with
functional assessment methods and the potential application of
bioprinted BBB models in NDD research.

1.1 Anatomy of the BBB

Accurate BBB modelling requires replication of both its
cellular composition and the structure of the surrounding
ECM. The main cellular components of the BBB include brain
microvascular endothelial cells (BMEC), pericytes (PC), astrocytes
(AC) (Figure 2). BMEC differ markedly from EC in peripheral
tissues. They exhibit low rate of transcytosis and are interconnected
by complex tight junctions (T7J) that restrict paracellular flux and
diffusion (Rubin et al., 1999).

PC, embedded within the basement membrane, regulate BBB
permeability by modulating the expression of TJ and adherent
junction proteins in BMEC, thereby influencing barrier tightness
and vascular stability (Sweeney et al., 2016; Sweeney et al,, 2019).
AC contribute to the regulation of BBB permeability through their
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end-feet, which envelop the blood vessels and form close physical
interactions with BMEC. These astrocytic processes also respond to
CNS injury and help maintain homeostasis (Pekny et al., 2016). The
BBB ECM differs from other tissues, lacking hyaluronic acid (HA)
and consisting primarily of collagen IV, laminin, nidogen, perlecan
and fibronectin (Reed et al.,, 2019). These components provide both
structural support and biochemical cues that influence BBB cellular
behaviour and barrier function.

TJ, which are fundamental to BBB integrity, comprise of
membrane proteins including occludin, claudins and JAM
(Stamatovic et al, 2016). Occludin forms oligomers that
regulate solute diffusion across the TJ that can be disrupted
under pathological conditions such as hypoxia-regeneration
(Lochhead et al, 2010). Claudins, a family of tetraspan
transmembrane proteins, determine the tissue, size, and charge
properties of the TJ (Krause et al., 2008). Among these, claudin-
3 and claudin-5 are particular important for maintaining BBB
integrity, and reduced claudin-5 expression increased barrier
permeability (Luissint et al, 2012). JAMs, members of the
immunoglobulin superfamily, regulate T] assembly through
interactions with cell polarity related proteins, thereby reducing
permeability (Hudson et al., 2021). Notably, JAM-1 is involved
in the early stages of TJ formation and is essential for BBB
integrity (Jia et al., 2013).

1.2 Key design considerations for in vitro
BBB modelling

Physiologically relevant BBB models aim to replicate in vivo
function as closely as possible, encompassing appropriate cellular
composition and structural integrity. Key design considerations
are summarised in Figure 3. One of the most critical aspects is
the inclusion of all three key BBB cell types-BMEC, AC and
PC (Jamieson et al.,, 2017). Incorporating these cells enhances TJ
formation and barrier tightness, allowing more accurate replication
of the anatomical and functional complexity of the BBB (Vetter et al.,
2025). Beyond cellular composition, model reproducibility and
homogeneity are also crucial considerations when developing NDD
specific BBB models to ensure consistent and reliable disease
modelling (Winkelman et al., 2021). Variability in cell sourcing,
culture conditions, or scaffold composition can significantly impact
barrier properties and reduce translational relevance.

Another important criterion is the inclusion of dynamic,
perfusable flow (Bolden et al., 2023; Potjewyd et al., 2021). Perfusable
models that simulate capillary blood flow recreate shear stress
experienced by EC in vivo that is reported to be between 5 and
23 dyn/cm? in human brain capillaries (Wang et al, 2020). This
mechanical stimulus influences cell alignment, morphology, and
upregulation of T] proteins which are key elements for maintaining
barrier integrity and function (Yue et al, 2020). By integrating
controlled flow conditions, in vitro BBB systems can better emulate
the native microenvironment, enabling the study of vascular
contributions to NDD pathogenesis and for evaluating therapeutic
strategies.

Finally, in vitro BBB models should strive to reproduce
in vivo physiological parameters. High-resolution fabrication is
required to achieve structural features comparable to brain
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FIGURE 1

3D Bioprinting of BBB

(A) BBB dysfunction in AD which involves accumulation of amyloid plaque. (B) BBB dysfunction in PD which involves accumulation of misfolded
alpha-synuclein protein. (C) 3D bioprinting to create in vitro models of the BBB in NDD. (D) Application of BBB model in NDD research, to elucidate
NDD pathophysiology for identification of novel therapeutic targets and therapy development via high-throughput drug screening.
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capillaries, which are 7-10 um in diameter (Pandey et al., 2016;
Wong et al, 2013). Another key metric is the trans-epithelial
electrical resistance (TEER), which reflects barrier integrity;
physiologically relevant models should aim for in vivo TEER
values ranging from 1,500 to 8,000 Qcm?® (Crone et al, 1982;
Reichel et al., 2003; Wolff et al., 2015).

1.3 Current in vitro BBB modelling
approaches

Various techniques have been developed to construct in
vitro BBB models, including microfluidics and 3D bioprinting
(Table 1). Among these, microfluidic approaches are currently
more prevalent in the literature, in part due to their ability to
incorporate dynamic flow and mimic physiological shear-stress
conditions (Jagtiani et al., 2022).

Microfluidic the
development of dynamic BBB models with improved barrier
tightness and functionality. EC cultured under flow conditions

models enable perfusion, allowing

showed elongated cell morphology and higher localisation of
T] proteins which are features associated with enhanced barrier
integrity (Wei et al., 2023).

Additionally, perfusion also supports cell viability by
facilitating metabolite and nutrient diffusion, promoting long-
term culture maintenance. However, stiff materials used in
microfluidic devices can alter mechanotransduction signalling due
to stiffness mismatches with native tissue (Potjewyd et al., 2021).
Furthermore, complex fabrication procedures and small construct
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dimensions can limit meaningful multicellular interactions,
which are essential for replicating the BBB multicellular nature
(Royse et al., 2024).

To address these challenges, 3D bioprinting has recently been
integrated with microfluidic devices, offering a promising hybrid
approach. 3D bioprinting enables spatially controlled deposition of
multiple cell types and ECM components, supporting the creation of
high-resolution, reproducible and customisable models (Tang et al.,
2021; Yue et al,, 2020). Galpayage Dona et al. demonstrated the use
of digital light processing (DLP)-based bioprinting to encapsulated
human AC within a vascular lumen surrounded by PC and primary
human BMEC, successfully generating a perfusable microvascular
network that replicated key BBB features (Galpayage Dona et al.,
2023). currently dominates the field,
3D bioprinting offers architectural control and

While microfluidics
superior
scalability, making it a promising platform for next-generation
BBB models.

2 3D bioprinting strategies for BBB
modelling

3D bioprinting utilises computer aided design models to
fabricate precise 3D structures. These models can be developed
from medical imaging data such as radiological images, allowing
for the recreation of anatomically accurate tissue architectures.
When combined with chemical crosslinking, 3D bioprinting can
generate high-resolution, multicellular structures that closely mimic
native tissue environments (Potjewyd et al, 2021). Importantly,
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FIGURE 2

(A) Schematic diagram depicting anatomy of the healthy BBB, highlighting TJ proteins (junctional adhesion molecule (JAM), occludin and claudin). (B)
Comparison of healthy BBB and diseased BBB, illustrating disrupted TJ and impaired barrier function.
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this technique enables reproducible and consistent manufacturing
2022), allowing for better
standardization and comparability across studies.

of in vitro models (Jagtiani et al,

2.1 Bioprinting techniques for BBB
fabrication

Three major categories of 3D bioprinting technologies are
commonly employed in tissue engineering applications: inkjet-
based, extrusion-based and light-assisted printing (LAP) methods
(Cho et al,, 2019) (Figure 4). Inkjet-based bioprinting involves the
deposition of controlled volumes of bioink at predefined locations,
either through thermal inkjet bioprinting or piezoelectric inkjet
bioprinting, which differ in how they overcome surface tension to
eject bioink droplets from the nozzle. Although inkjet bioprinting
allows fabrication of complex tissue constructs with different
compositions and is both affordable and versatile, its use in BBB
modelling is limited by difficulties in generating porous, tissue-like
constructs and the requirement for low-viscosity bioinks, which
restricts material choices (Gudapati et al., 2016).

Frontiers in Molecular Biosciences

Extrusion-based bioprinting deposits continuous filaments
of biomaterial through a nozzle, controlled pneumatically or
mechanically. This approach accommodates a broader range of
bioink viscosities and supports very high cell densities. However, it
is limited by lower resolution compared to other methods, the risk of
nozzle clogging and reduced cell viability due to shear stress during
extrusion (Holzl et al., 2016). Notably, co-axial extrusion enables the
fabrication of hollow fibres that mimic capillary geometry, making it
particularly promising for modelling BBB (Mohan TS et al., 2022).

LAP methods, such as DLP and two-photon polymerisation
techniques, offer precise control over material properties and
high-resolution printing (Galpayage Dona et al., 2023). As these
methods are nozzle-free, they eliminate shear stress on cells during
printing, preserving cell viability (F16lzl et al., 2016). Although there
are concerns over cytotoxicity from photo-crosslinking (Mironi-
Harpaz et al, 2012; parhi, 2017), multiple studies have shown
that these effects are minimal, with no significant impact on cell
viability (Galpayage Dona et al.,, 2023; Haring et al., 2019). Among
the available technologies, LAP methods are currently the most
widely used for BBB bioprinting due to their superior resolution and
precision.
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Legend: Key Design criteria for in vitro
BBB models
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FIGURE 3
Schematic diagram of key design considerations for in vitro BBB modelling. Key design criteria include: 1) cellular composition consisting of AC, EC and
PC, 2) a dynamic and perfusable flow system with physiological shear stress, and 3) physical parameters similar to in vivo brain capillaries.

TABLE 1 Advantages and disadvantages of microfluidic against 3D bioprinting methods for BBB modelling.

Model type Advantages Disadvantages ’ References

Microfluidic BBB Shear stress incorporation, long-term Complex fabrication, stiffness Royse, 2024; Wei (2023)
viability mismatch

3D bioprinted BBB High resolution, reproducible, Resolution variability by method, Galpayage Dona, 2023; Yue (2020)
customisable geometry vascularization challenge
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Laser
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FIGURE 4
Schematic representation of 3D bioprinting methods. (A) Inkjet-based bioprinting which operates via thermal or piezoelectric mechanisms (B)
Extrusion-based bioprinting controlled via pneumatic, piston or screw systems; and (C) LAP.
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2.2 Bioink development and optimization

Selecting an appropriate bioink is crucial in 3D bioprinting
to recapitulate the BBB complex architecture and function. Ideal
bioinks must fulfil criteria such as biocompatibility, printability,
mechanical integrity, and the ability to support BBB-specific cellular
functions. Bioinks are typically categorized as either natural or
synthetic.

Natural bioinks, such as HA, collagen, gelatin, alginate, and
Matrigel, provide intrinsic biological cues but often lack mechanical
robustness. HA
(Potjewyd et al, 2018) but exhibits poor mechanical strength,

supports cell migration and proliferation
requiring combination with other polymers to enhance structural
stability and printability (Tang et al., 2021). Collagen, particularly
type IV, is a native component of the BBB ECM, offering high
bioactivity through Arginine-Glycine-Aspartic (RGD) motifs
(Holzl et al,, 2016; Tang et al., 2021). However, its slow gelation
and low stiffness restrict independent use, requiring reinforcement
with additional agents (Potjewyd et al., 2018). Gelatin, a hydrolysed
form of collagen, retains bioactive domains (Asim et al., 2023) but
lacks photo-crosslinkable groups. This limitation can be overcome
by chemical modification (e.g., methacrylamide or thiol-ene
functionalisation), which enhances print fidelity and reproducibility
(Dobos et al,, 2021). Gelatin also enables modular designs that
permit post-printing dissolution and tissue remodelling, making
it suitable for soft-tissue BBB constructs (Jagtiani et al.,, 2022).
A notable application is its combination with fibrinogen for
the coculture of BMEC, AC, and PC, which improved cell
morphology compared with conventional 2D cultures (Tung et al.,
2024). Alginate, derived from brown algae, undergoes rapid
ionic crosslinking with calcium, allowing physiological gelation
while maintaining cell viability. Although rigidity and porosity
are calcium concentration dependent, no adverse effects on cell
morphology or function were reported (Oh et al., 2023). Blending
alginate with low viscosity collagen yields a compliant bioink
suitable for mimicking native BBB tissue (Potjewyd et al., 2021).
Lastly, Matrigel, a thermosensitive ECM extract rich in laminin
and collagen IV, supports differentiation and barrier formation
(Oh et al,, 2023; Tang et al., 2021). Nonetheless, its murine origin
and batch variability compromise reproducibility and limit clinical
translation.

Synthetic bioinks such as polyethylene glycol (PEG)
provide well-controlled mechanical properties and reproducible
performance. When functionalised as PEG-diacrylate (PEGDA)
or PEG-norbornene, PEG enables photo-crosslinking, allowing
precise spatial patterning and reducing cell death during live-
cell printing (Gudapati et al., 2016; Paone et al., 2024). However,
PEG lacks inherent bioactivity and therefore requires modification
with ECM-derived peptides to promote cell-material interactions.
Functional motifs such as RGD and Isoleucine-Lysine-Valine-
Alanine-Valine (IKVAV) facilitate cell adhesion and spreading
(Matthiesen et al., 2023), while Histidine- Alanine-Valine- Aspartate-
Isoleucine (HAVDI) supports endothelial monolayer formation
and TJ assembly, as evidenced by increased localization of zonula
occludens-1 (ZO-1) even in the absence of flow (Paone et al,
2024). Incorporating these bioactive peptides into PEG-based
inks preserves mechanical stability while substantially enhancing
biological functionality.

Frontiers in Molecular Biosciences

10.3389/fmolb.2025.1703403

As summarized in Table 2, natural bioinks excel in cell-
matrix interactions but often require mechanical reinforcement,
whereas synthetic bioinks are structurally tuneable yet need
biofunctionalisation for physiological relevance. Current challenges
include improving reproducibility, vascularisation, long-term
stability, and scalability of the 3D bioinks. To address these issues,
hybrid bioinks combining natural and synthetic components,
enhanced with cell-instructive peptides, is a promising strategy.
Future directions should prioritise advanced crosslinking
strategies, peptide-based customization and biofunctionalization,
standardized formulations, and validation in perfused, shear-
responsive systems to better model BBB physiology and improve

translational relevance.

2.3 Geometry design considerations

In addition to the choice of bioinks, the geometrical fidelity
is critical for BBB modelling. Ideally, the model should closely
replicate the dimensions and structure of microvascular capillaries,
which vary in diameter according to the anatomical location of
the microvessel (DeStefano et al, 2018). Accurately mimicking
these capillary dimensions is essential for reproducing physiological
shear stress and cellular organisation. However, achieving such
high-resolution features with direct bioprinting methods can be
technically challenging. In contrast, high-resolution bioprinting
methods, such as the biomimetic model developed by Marino A.
et al. Achieved resolutions similar to that of the in vivo dimensions
using two photon lithography (TPL) (Marino et al., 2018).

Beyond resolution, the models architectural design should
accurately reflect the cylindrical geometry of the native
microvessel. To achieve this, indirect bioprinting methods which
incorporates a removable sacrificial biomaterial have been used
in order to create cylindrical channels that can be subsequently
seeded with EC, thereby ensuring a physiologically relevant
structure (Potjewyd et al, 2018). This method allows for the
fabrication of perfusable, physiologically relevant constructs that
support cellular alignment and barrier formation under flow
conditions.

3 Functional assessment of BBB
models

Rigorous functional assessment is essential to validate in vitro
BBB models and confirm they capture the physiological and
pathological features of the native BBB. As illustrated in Figure 5,
the functionality of in vitro BBB models can be evaluated based
on integrity, permeability, cellular function and key molecular
expression (DeStefano et al., 2018).

BBB integrity is commonly assessed by immunofluorescence
(IF) staining of TJ proteins (ZO-1, claudin-5, JAMs) and efflux
transporters (e.g., P-glycoprotein) which are indicative of barrier
formation (Langen et al.,, 2019). TEER remains the gold standard
for non-destructive, real-time assessment of barrier tightness,
although electrode placement and opacity can introduce variability
(Srinivasan et al, 2015; Wei et al, 2023). It should be noted
that TEER is influenced by the applied voltage and does not
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TABLE 2 Summary of bioinks suitable for 3D BBB bioprinting.

Bioink Gelation Cell adhesion Advantages Limitations References
mechanism
HA Photo-crosslink Inherent Promote cell migration Poor mechanical Potjewyd et al. (2018),
and proliferation properties Tang et al. (2021)
Collagen Thermal/pH Inherent High porosity Slow gelation Holzl et al. (2016),

Tang et al. (2021),
Wang et al. (2023)

Gelatin Thermal Inherent Good Affect cell viability Oh et al. (2023),
rheology/thermally Tang et al. (2021)
responsive

Alginate Calcium ions Chemical modification Fast gelation Lack cell adhesion Potjewyd and Hooper

peptides (2021), Wang et al.
(2023)

Matrigel Thermal Inherent Similar to vascular ECM Animal origin/batch Oh et al. (2023),

variation Potjewyd and Hopper

(2021), Tang (2021)

PEG Photo- crosslink Chemical modification Biocompatible/tuneable Low optical transparency Galpayage Dona et al.
mechanical properties with high concentration (2023), Gudapati et al.
(2016), Tang et al. (2021)

TEER

IF imaging for BBB measurement

expression markers and
BBB structure

Cell viability assay / Permeability assay

—10kDa
—70kDa
—150 kDa

Fluorescence
intensity

Distance

FIGURE 5
Schematic diagram of methods for functional assessment of BBB models. These include IF staining for BBB specific markers, TEER measurement, cell

viability assay, and permeability assays.
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TABLE 3 Compilation of 3D bioprinted BBB models applied in NDD studies. VE-cadherin: vascular endothelial cadherin;

protein; TfR: transferrin receptor.

Cell lines

Printing method

Barrier function characterisation

10.3389/fmolb.2025.1703403

BCRP: breast cancer resistance

RE

bEND.3 EC LAP - TPL ZO-1 staining, dextran permeability, TEER Marino et al. (2018)
Human AC, BMEC, PC LAP - DLP Z0-1 staining, dextran permeability Galpayage Dona et al. (2023)
Human AC, BMEC LAP - DLP ZO-1 staining, dextran permeability, ACviability Paone et al. (2024)

Human AC, BMEC, PC LAP - stereolithography

VE-cadherin/TfR/LRP1/BRCP staining, dextran permeability

Royse et al. (2024)

provide information regarding the transcellular transport of charged
compounds (Hajal et al., 2021). Barrier permeability to solutes and
overall barrier tightness is typically evaluated via tracer diffusion
assays (e.g., FITC-dextran) (Bednarek et al., 2022), while live/dead
imaging confirms cell viability and morphology is consistent with
native BBB architecture (Bikmulina et al., 2022). Achieving native-
like cellular morphologies is key to developing an accurate BBB
model, as it reflects successful recapitulation of the physiological
environment.

4 Applications of 3D bioprinting in
modelling BBB in NDD research

The aetiologies of NDD involve intricate cross-talk between
dysfunctional BMEC, PC, AC and neurons. 3D bioprinting, which
allows precise, spatially controlled deposition of bioinks and
multiple cell types, facilitates the creation of these complex cellular
ecosystems, making it highly valuable in NDD research. Moreover,
the incorporation of induced pluripotent stem cells (iPSCs)
allows for the generation of humanised and patient-specific BBB
models, thereby eliminating interspecies differences (Brown et al.,
2019; Ito Keetal, 2011) and enabling personalised investigations
into NDD pathophysiology and therapeutic response (Pérez-
Lopez et al., 2023).

Techniques such as TPL and DLP have been used to
construct microvascular structures that mimic the native BBB
microenvironment. Marino and colleagues employed a 3D BBB
model by incorporating bEND.3 EC and U87 glioblastoma cells
within microtubes of approximately 10 um in diameter using the
TPL technique (Marino et al., 2018). The bEnd.3 cells efficiently
covered the tubular structures and the model demonstrated key
BBB features, including T] maturation (confirmed by ZO-1 IF) and
barrier integrity (assessed via dextran diffusion), thus providing a
powerful platform for high-throughput drug screening across the
BBB. However, the absence of AC and PC in this biohybrid system
resulted in a TEER of 75 + 2 Q cm?, substantially lower than in vivo
values, limiting its suitability for studying NDD.

To address this limitation, Galpayage Dona etal. developed
a more comprehensive model using DLP bioprinting that
incorporated all major BBB cell types, AC, PC, and EC
(Galpayage Dona et al.,, 2023). In this model, vascular structures
were continuously perfused to activate mechanotransduction
pathways and promote maturation. Treatment with Tumor necrosis
factor alpha (TNF-a), known to decrease barrier tightness,
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significantly increased dextran leakage, confirming the model’s
responsiveness to neuroinflammation, a common hallmark of
NDD. To better simulate neuroinflammation, pro-inflammatory
cytokines (e.g., TNF-a, IL-1B) or lipopolysaccharide have been
introduced into the vascular lumen of bioprinted BBB models,
enabling real-time assessment of barrier breakdown, upregulation
of adhesion molecules (e.g., vascular cell adhesion molecule-
1 (VCAM-1)), and immune cell adhesion and transmigration
(Knox et al., 2022; Wei et al., 2023).

It is worth to notice that interleukin-6 (IL-6), elevated in AD
and linked to BBB disruption (Lyra et al., 2021; Wu et al., 2015),
has not yet been employed in 3D bioprinted BBB studies. IL-6,
released by activated AC, triggers signal transducer and activator of
transcription 3 (STAT3) pathways in AC and EC, inducing matrix
metalloproteinase-9 (MMP-9) and vascular endothelial growth
factor (VEGF) expression, leading to degradation of TJ proteins
such as claudin-5, occludin, and ZO-1, thereby increasing BBB
permeability (Gryka-Marton et al., 2025; Hu et al., 2025; Rose-John,
2017). This pathway is strongly associated with vascular dysfunction
(Rose-John, 2017; Yang et al., 2022). Hence, targeting IL-6/STAT3
signalling to restore BBB function in diseased AC and EC may offer
an effective strategy for developing novel therapeutics against NDD.

Beyond investigating inflammatory effects, 3D bioprinted
BBB model also hold promise for evaluating the impact of
natural compounds and virus infections in NDD pathogenesis
(Abdelsalam et al., 2023; Kumar et al, 2018; Yousif et al,
2021). Similarly, 3D bioprinted models can be exposed to Ap-
induced toxicity to simulate AD (Yue et al, 2020) or subjected
to oxygen-glucose deprivation to mimic ischemic stroke, a major
risk factor for vascular dementia and other NDD, allowing
studies on oxidative stress and reperfusion injury on BBB in a
human context (Cho et al., 2015).

To further enhance DLP-printed model fidelity and matrix-cell
interactions, Paone et al. created a tuneable, perfusable BBB model
using DLP-printed PEG-norbornene hydrogels functionalised with
HAVDI/IKVAYV peptides, which promoted endothelial adhesion and
TJ formation, as confirmed by ZO-1 staining, dextran permeability
assays, and live/dead cell assays (Paone et al.,, 2024). Nonetheless,
the current limitation for DLP-printed BBB model is the low
resolution of polymerized layers, preventing is achievement of
capillary-scale lumens.

Genetic mutations have also been incorporated into 3D
bioprinting approaches to establish NDD models that exhibiting
disease hallmarks. By transducing amyloid precursor protein (APP)
genes with familial AD mutations to neural stem cells (NSC), Zhang
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and colleagues used 3D bioprinting technology to create a coaxial
core-shell structure comprising a high-density cell suspension
and Matrigel in the core, surrounded by alginate in the shell
(YiZhang et al, 2022). This 3D printed AD model displayed
superior self-assembly, extended cell survival, more complex
metabolic activity, and differentiation rich in AP, highlighting
3D bioprinting as a promising tool for studying AD pathology
and developing therapeutics. More recently, Royse etal. used
stereolithography to bioprint a BBB model incorporating all key
cell types expressing exogenous low-density lipoprotein receptor
related protein 1 (LRP1) for studies of AP clearance, enabling
mechanistic and pharmacological investigations modelling AD in
NDD contexts (Royse et al., 2024).

Collectively, these studies demonstrate that 3D bioprinting
the generation of biomimetic, multicellular,
perfusable BBB models that recapitulate key pathological

enables and
features of NDD (Table 3), making them suited for advancing our
understanding of BBB dysfunction, high-throughput drug screening
and developing effective novel therapeutics for NDD.

5 Conclusion and future perspectives

3D bioprinting enables precise spatial control in BBB models,
creating perfusable, physiologically relevant structures through
layer-by-layer deposition of biomaterials. By integrating multiple
BBB cell types with brain-specific ECM components under digital
design, it offers a reproducible platform for in vitro studies.
However, challenges remain, including the lack of bioinks that
mimic brain ECM, limited sub-capillary resolution, and immature
tissue phenotypes.

Future progress will likely stem from combining bioprinted
vascular networks with microfluidic systems and incorporating
iPSC-derived cells into dynamic platforms for higher-throughput
screening. Advances in BBB-specific bioinks and high-resolution
printing will be key to producing reproducible, human-relevant BBB
constructs for NDD modelling and CNS drug discovery.
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