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bladder urothelial cancer based
on the microenvironment
through the integration of
multiple databases

Xiong Zou, Yanfeng Li, Xuefeng Peng, Changshi Gu* and
Qiang Wang*

Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou,
China

Background: The heterogeneous prognosis of bladder urothelial carcinoma
(BLCA) remains a significant clinical challenge. A multi-factor prognostic model
is essential for BLCA, as it not only assesses tumor progression and elucidates
underlying molecular mechanisms but also paves the way for timely treatment
adjustments and improved clinical decision-making.

Methods: Using R software, we performed immunophenotyping on multiple
BLCA cohorts from the GEO database to identify shared immune signatures.
Simultaneously, we identified BLCA prognosis-associated genes by analyzing
TCGA data. Prognostic genes were further refined via LASSO regression,
allowing BLCA patients to be stratified into high- and low-risk groups based on
their expression patterns. Quantitative PCR (qPCR) was used to validate gene
expression in tumor and matched normal tissues. Finally, we integrated clinical
data to construct a prognostic model.

Results: The GSE31684 and GSE48276 cohorts were divided into high
immunity (Immunity_H) and low immunity (Immunity_L) groups, and there
were significant microenvironment differences between the Immunity_H and
Immunity_L of the two cohorts, and there were many common differentially
expressed genes (DEGs) between differentimmune subtypes of the two cohorts,
which were mainly involved inimmune-related biological processes. In addition,
patients in the high-risk BLCA group exhibited significantly worse prognosis
than those in the low-risk group. gPCR analysis confirmed that the expression
levels of the risk-stratification genes were significantly different between BLCA
tumors and matched adjacent normal tissues. The integrated analysis of tumor
mutation burden (TMB) and our risk stratification revealed that patients with low-
risk scores and high TMB exhibited the most favorable prognosis. Furthermore,
the risk score was validated as an independent prognostic factor through
both univariate and multivariate Cox regression analyses. Consequently, we
constructed a nomogram that incorporates these findings to assist clinicians in
prognostic assessment for BLCA patients.

Conclusion: Given that the tumor microenvironment significantly
influences BLCA prognosis, our finding that risk stratification serves as
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an independent prognostic indicator underscores the clinical relevance of our
model. This stratification strategy has the potential to improve prognostic
assessment and inform personalized treatment planning for BLCA patients.

bladder urothelial carcinoma (BLCA), risk stratification, immune subtypes, prognosis,

microenvironment

Introduction

In 2020, nearly 600000 new cases of bladder cancer
were diagnosed globally (Sung et al, 2021). By 2040, this
2023).
More than 90% of the pathological types of bladder cancer
are bladder (BLCA) (Zhang et al,
2021), so this paper mainly discusses and studies BLCA.

number is projected to double (Dyrskjot et al,

urothelial ~carcinoma
The microenvironment of BLCA has strong heterogeneity
(Hoadley et al., 2014; Warrick et al., 2019), effective management of
BLCA requires a multidisciplinary approach that comprehensively
considers patient characteristics and the molecular features of the
disease.

Currently, the diagnosis and follow-up of BLCA rely on
a comprehensive assessment using cystoscopy, histology, and
cytology. However, the detection and screening of BLCA
remain insufficient, as a significant number of patients are
diagnosed at an advanced stage. While early-stage BLCA is more
amenable to effective treatment compared to late-stage disease,
it has a high recurrence rate (Zhao et al, 2023). Moreover,
even among patients with BLCA of the same stage and grade
undergoing identical treatment regimens, there can be substantial
differences in recurrence times and prognoses, which may
be related to the heterogeneity of tumor microenvironment
(TME) in
Burrell et al, 2013). Therefore, further risk stratification of
BLCA is crucial for better prognosis assessment and timely

cancer patients (Prasetyanti and Medema, 2017;

adjustment of treatment strategies. Elucidating the molecular
mechanism of BLCA is the basis of precise treatment of BLCA.
Detection of genes and related gene expression products in
cancer tissue plays a crucial role in BLCA molecular subtyping
(Zhu et al., 2020).

TME is a highly heterogeneous biological system comprising
immune cells, cancer cells, extracellular matrix components,
and various signaling molecules (Warrick et al.,, 2019; Hu et al,
2021a; daCosta et al, 2018). The expression of immune
cells and their related genes is a crucial component of
the TME, significantly impacting the prognosis of BLCA
(Zhang et al., 2022).

In this study, we performed immunotyping on BLCA
from GSE31684 and GSE48276,
tumor microenvironment and differentially expressed genes

patients comparing the
between the identified immune subtypes. Subsequently, we
integrated TCGA and GEO transcriptomic datasets to establish
a comprehensive risk stratification system for BLCA. Based on
this analysis, we developed a predictive model to facilitate clinical
prognosis evaluation, enabling timely therapeutic optimization for
BLCA patients.

Frontiers in Molecular Biosciences

Methods

Acquisition and processing of GSE31684
and GSE48276 data from GEO database

Firstly, the gene expression matrices of 93 BLCA samples from
GSE31684 and 116 BLCA samples from GSE48276 were obtained
through the “Biobase” and “GEOquery” packages of R language
(R 4.4.1). The raw gene expression matrices obtained from the
GEO database were already preprocessed and normalized by the
original submitters using the robust multi-array average (RMA)
method. We directly utilized these normalized expression data
for our subsequent ssGSEA and differential expression analyses.
Both datasets exclusively contain profiles from Bladder Urothelial
Carcinoma (BLCA) patients, which aligns perfectly with the focus
of our study. Each dataset contains a substantial number of samples
(GSE31684: n = 93; GSE48276: n = 116), which provides sufficient
statistical power for reliable subgroup identification and differential
expression analysis. According to the expression information of
29 immune-related gene sets in each sample, the immune-related
characteristics of GSE31684 and GSE48276 samples were evaluated
comprehensively, that is, gene set enrichment analysis of a single
sample (ssGSEA) (Wu et al., 2022; Hanzelman et al.,, 2013). Based
on the ssGSEA score, Euclidean distance and Ward’s linkage
(Guan et al, 2020), the samples of GSE31684 and GSE48276
were divided into two groups, namely, the low immunity group
(Immunity_L) and the high immunity group (Immunity_H).
The Immunity_L of GSE31684 dataset includes 71 samples, and
Immunity_H includes 22 samples. The Immunity_L of GSE48276
dataset includes 74 samples, and Immunity_H includes 42 samples.
We also used t-distributed Stochastic Neighbor Embedding (tSNE)
algorithm to cluster the Immunity_ H and Immunity_L groups
again. Then, the tumor microenvironment of the Immunity_L and
Immunity_H groups of GSE31684 and GSE48276 datasets was
evaluated by “limma” package in R language. We compared the
expression levels of HLA-related genes between Immunity_H and
Immunity_L groups, and also compared the levels of immune
cell infiltration between Immunity_h and Immunity_L groups by
CIBERSORT analysis (Newman et al., 2015). In addition, we focused
on genes that were differentially expressed between Immunity H
and Immunity_L in the GSE31684 and GSE48276 datasets. With
Immunity_L as the control group, the P value less than 0.05 and the
absolute value of logFC greater than 0.585 as the standard to measure
the differentially expressed genes (DEGs) between different immune
subtypes. When integrating the gene expression data from the two
GEO cohorts (GSE31684 and GSE48276) for the identification of
common DEGs, we employed the ComBat algorithm from the
“sva” R package to adjust for potential batch effects arising from

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1702311
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zou et al. 10.3389/fmolb.2025.1702311
«
o
- o
@
3
3
C D
7 L)
20 . .
. ®e o ° % .
. ‘: . ° .o KO .
.
M . o.. 104 Seee e ,
104 . °
e o ° 0'.-
oo . .. .. L A '. o ®
e P o Subtype " ° % e Subtype
a0 % o o o o1 A ..
% oo, P e Immunity_H = . i . ®  Immunity_H
- ® .o . . ® Immunity_L 2 ¢ ° o ° ® Immunity_L
o, . . . ® °, ..
.
-104 oo . . °
-104 ®e K
. ° o° .
L] . o 00y e °
° .
201 o? :. . :. J—Y
. ®e .c S o %°
. -20 .
10 0 10 ~10 0 10
tSNE1 tSNE1
FIGURE 1

verified by tSNE.

Two different immunophenotypes in BLCA patients. (A,B) Based on ssGSEA results, BLCA patients from GSE31684 (A) and GSE48276 (B) were stratified
into Immunity_H and Immunity_L. (C,D) The reliability of BLCA immunophenotypes derived from GSE31684 (C) and GSE48276 (D) cohorts was

different experimental batches or platforms. This step ensured that
the identified common DEGs were more likely to be biologically
relevant rather than technical artifacts.

The acquisition and collation of BLCA data
from TCGA

The clinical information and expression matrix of BLCA from
TCGA were downloaded and sorted out with R language. The RNA-
seq data (in FPKM format) downloaded from TCGA were log2-
transformed (log2(FPKM+1)) to approximate a normal distribution
before any downstream analysis. Normal tissue samples were
removed, and 411 BLCA samples were obtained for subsequent
analysis. The expression matrix of DEGs in the two GEO datasets
(GSE31684 and GSE48276) from TCGA was obstained using the
“sva” and “limma” packages. For the integration of GEO-derived
DEGs with the TCGA dataset, we utilized the limma package’s
removeBatchEffect function prior to survival analysis to minimize
non-biological variance. At the same time, gene expression data
and survival data of 403 samples with complete clinical information
(including sex, age, grade, stage and survival information) of
BLCA patients were combined through the “limma” package.
The prognostic related genes (PRGs) of BLCA were identified by
analyzing the combined gene expression matrix and survival data
using the “survival” package. Download tumor-related transcription
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factors (TFs) from the website (http://www.cistrome.org/), and
construct the co-expression analysis of PRGs and TFs by “dplyr”
and “ggalluvial” packages to further explore the possible causes of
PRGs affecting the prognosis of BLCA. Gene oncology (GO) analysis
was used to explore the primary biological processes involving
these PRGs.

Risk stratification of BLCA

Based on the expression of PRGs and survival information of the
samples, the lasso regression analysis was performed on 403 samples
with complete clinical information, and 30 genes for risk score
and their corresponding coefficients were obtained. The LASSO
Cox regression was performed using the “glmnet” R package. To
determine the optimal penalty parameter (lambda) and prevent
overfitting, we employed 10-fold cross-validation. This process
was repeated 100 times to enhance the stability and reliability
of the lambda selection. The optimal lambda value was selected
based on the minimum partial likelihood deviance criterion (i.e.,
lambda.min). The 403 samples were divided into high-risk (201
samples) and low-risk (202 samples) groups based on the median
risk score. The genes and their coefficients used to calculate the
risk score are shown in Supplementary Table S1. Moreover, we
compared the survival outcomes of high and low risk groups with
the “survival” package.
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FIGURE 2

Multilevel comparison of the microenvironment among different immune subtypes of BLCA. (A,B) Comparison of StromalScore, ImmuneScore, and
ESTIMATEScore for different immune subtypes from the GSE31684 (A) and GSE48276 (B) cohorts. (C,D) Comparison of HLA gene expression levels
from different immune subtypes in GSE31684 (C) and GSE48276 (D) cohorts. (E,F) Microenvironmental landscapes of different immune subtypes in
*p<0.05 "*p<0.01 "**p<0.001

BLCA patients from the GSE31684 (E) and GSE48276 (F) cohorts.
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UALCAN

UALCAN is a powerful website that can be used to analyze the
associations between transcriptomic, proteomic, and patient survival
2022).
We used UALCAN to explore the impact of the three genes with
the largest or smallest coefficients used to calculate risk scores on

information across various cancers (Chandrashekar et al.,

survival in BLCA patients.
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Tumor mutation burden

Tumor mutation burden (TMB) data of BLCA were downloaded
from TCGA, and TMB of each sample was calculated through
Strawberry Perl software. Using “limma” and “ggpubr” packages
in R language to compare the TMB of high and low risk groups.
Simultaneously, we evaluated the association between TMB and

clinical outcomes in BLCA patients. Furthermore, we performed

04
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GSE48276 cohorts (Immunity_L as the control group).

Comparison of DEGs among different immune subtypes of BLCA. (A,B) Volcano plots displaying the DEGs for different subtypes from the GSE31684 (A)
and GSE48276 (B) cohorts. (C,D) A Venn diagram depicting the DEGs that are consistently upregulated (C) or downregulated (D) in the GSE31684 and
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integrated analysis to assess the combined prognostic value of both
risk stratification and TMB in patients.

A prognostic model for BLCA

Given the significance of risk stratification based on gene
expression, we further assessed its superiority in evaluating BLCA
prognosis by univariate and multifactorial independent prognostic
analyses. Last but not least, through the “timeROC” and “rms”
packages of R language, we devised a comprehensive scoring system
based on risk stratification, incorporating patient grade, stage, age,
and gender to systematically evaluate the outcomes of BLCA.

qPCR

We obtained tumor and adjacent normal tissue samples from four
bladder cancer (BLCA) patients at the Affiliated Hospital of Guizhou
Medical University. Using qPCR, we compared the expression levels

Frontiers in Molecular Biosciences

05

of either the three genes with the highest coefficients or the three
genes with the lowest coefficients in our risk score calculation model.
Total RNA was extracted from tissue samples using TRIzol reagent.
RNA purity and concentration were verified by spectrophotometry
with acceptable A260/A280 ratios between 1.8-2.0. Total RNA
was reverse transcribed into ¢cDNA following the manufacturer’s
protocol (Vazyme, R323-01). Post-amplification, the comparative
2722CT method was employed to quantify differential gene expression
between malignant and matched paracancerous tissues. QPCR was
performed using the primer sequences specified below.

GAPDH:

5'-AATCAAGTGGGGCGATGCTG-3' (Forward),

5'-GCAAATGAGCCCCAGCCTTC-3' (Reverse);

ADCY7 (Adenylate Cyclase 7):

5'-GATGTACGTCGAGTGTCTCCT-3' (Forward),

5'- CTTTGTCCATGCGTCGAACA-3' (Reverse);

SLC1A6 (Solute Carrier Family 1 Member 6):

5'-CTCAACCTGGGTCAGATCACA-3' (Forward),

5'-CCGACCGACGTAAGCACAA-3' (Reverse);

NELL2 (Neural EGFL Like 2):
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5'-GAGCTGAACAGCGAATGAATAGA-3' (Forward),
5"-AATTCTCGGTAGGTGGTTCCC-3' (Reverse);
ZNF823 (Zinc Finger Protein 823):
5'-GTCGTCTTGGGTCATTCGTCT-3' (Forward),
5"-ATGTGTCTTCGGAGGTTTCCA-3' (Reverse);
ITGB?7 (Integrin Subunit Beta 7):
5"-"TGGACCTGAGCTACTCCATGA-3' (Forward),
5'-GGTGAAAGCTGAATGGTGACTG-3' (Reverse);
CTLA4 (Cytotoxic T-Lymphocyte Associated Protein 4):
5'-GCCCTGCACTCTCCTGTTTTT-3' (Forward),
5'-GGTTGCCGCACAGACTTCA-3' (Reverse).

Results

Immune subtypes of BLCA and their
microenvironment comparison

We performed ssGSEA analysis on 93 cancer samples from
GSE31684 and 116 cancer samples from GSE48276, classifying
them into two distinct immune subtypes: Immunity_H (high
immune infiltration) and Immunity_L (low immune infiltration)
(Figures 1A,B). Both t-SNE visualization and hierarchical clustering
yielded consistent subtype classification patterns (Figures 1C,D),
demonstrating that these computational approaches effectively
discriminated between Immunity_H and Immunity_L subgroups.

Frontiers in Molecular Biosciences

We compared the microenvironment of the Immunity_H and
Immunity_L. As shown in Figure 2A, the tumor microenvironment
scores were significantly elevated in the Immunity H group
compared to the Immunity L group in the GSE31684 cohort
(n = 93). Specifically, the StromalScore (p < 0.001), ImmuneScore (p
<0.001), and ESTIMATEScore (p < 0.001) were all markedly higher,
as determined by the two-sided Student’s t-test. Similar results
were observed in BLCA from GSE48276 (Figure 2B). Moreover,
the expression of multiple HLA-related genes was significantly
higher in Immunity_H group compared to the Immunity_H group
(Figures 2C,D), and the immune-related functional scores were
also significantly higher in Immunity H (Figures 2E,F). These
results indicate that there are significant differences in the immune
microenvironment between the Immunity_ H and Immunity_L,
and the immune microenvironment is a crucial factor affecting
cancer patient prognosis (Caramelo et al., 2023; Xie et al., 2024).
Therefore, further exploration of BLCA based on immune subtyping
is essential.

Differential analysis of BLCA immune
subtypes

To further investigate the differences between immune subtypes,

we compared the DEGs between the Immunity_H and Immunity_L,
using the Immunity_L group as a control. In the BLCA of GSE31684,
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The impact of the expression levels of genes used for risk stratification on the prognosis of BLCA. (A—C) The influence of the expression levels of the
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1418 genes were upregulated and 1052 genes were downregulated
in Immunity H group (Figure 3A). In the BLCA of GSE48276,
1149 genes were upregulated and 808 genes were downregulated
in Immunity_ H group (Figure 3B). In the shared DEGs from
GSE31684 and GSE48276, the Immunity_H group had 473 genes
commonly upregulated and 247 genes commonly downregulated
(Figures 3C,D).

The combination of TCGA and GEO to
explore the PRGs of BLCA

Based on immune subtypes, we selected the shared DEGs
(Immunity_H versus Immunity_L) in GSE31684 and GSE48276,
then integrated TCGA survival data to explore prognostic genes
in BLCA. We obtained a total of 47 genes that influence
the prognosis of BLCA patients (Figure 4A). To gain a deeper
understanding of BLCA development and prognostic differences,
we explored the co-expression analysis of PRGs and tumor-related
TFs. Multiple PRGs and TFs showed significant co-expression
correlations (Figure 4B). Detailed co-expression information can be
found in Supplementary Material S1. GO analysis showed that the
biological processes involved in these PRGs were mainly immune
related processes such as regulatory T cell differentiation, leukocyte
proliferation, T cell receptor signaling pathway and leukocyte cell-
cell adhesion (Figure 4C). These results highlight the complex
regulatory network among PRGs and their strong association
with immunity.
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Risk stratification of BLCA based on PRGs

Given the importance of these PRGs in the development of
BLCA, we performed lasso regression analysis based on PRGs
and identified 30 genes for BLCA risk stratification (Figures 5A,B).
Risk scores were then calculated from gene expression profiles and
regression coefficients, enabling stratification of BLCA patients into
high- and low-risk categories (Figure 5C). Kaplan-Meier survival
analysis revealed a significantly poorer OS for patients in the
high-risk group (n=201) compared to those in the low-risk
group (n=202) (p < 0.001, Figure 5D). ROC analysis was used
to determine the superiority of risk stratification in predicting
survival of BLCA patients. The AUC values for 1-year, 3-year, and
5-year survival predictions from ROC analysis were 0.807, 0.786,
and 0.791, respectively (Figure 5E). The calibration plot results
showed that the predicted values based on risk stratification closely
matched the actual values (Figure 5F), indicating the reliability of
risk stratification for predicting BLCA prognosis.

We further explored the effect of the six genes with the largest
(ADCY7, SLC1A6, NELL2) or smallest (ITGB7, ZNF823, CTLA4)
risk score coefficients on BLCA prognosis. Surprisingly, we found that
high expression of the top three genes with risk coefficients greater than
0(ADCY?7,SLC1A6,NELL2) was detrimental to the survival prognosis
of BLCA patients (Figures 6A-C), while high expression of the three
genes with the smallest risk coefficients less than 0 (ITGB7, ZNF823,
CTLA4) was beneficial for their survival prognosis (Figures 6D-F).
These results are consistent with our risk score findings, further
demonstrating the reliability of risk stratification.
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The expression of PRGs in BLCA and
adjacent normal tissues

Further investigation using the UALCAN database revealed
distinct expression patterns of ADCY7, SLC1A6, NELL2,
ITGB7, ZNF823, and CTLA4 in BLCA compared to adjacent
normal tissues. Among the three genes with highest risk-
score coefficients, ADCY7 and SLC1A6 showed significantly

Frontiers in Molecular Biosciences

elevated expression in BLCA (Figures 7A,B), while NELL2
(Figure 7C).
Conversely, among the three genes with lowest risk score

exhibited no significant differential expression

coeflicients, ZNF823 was markedly upregulated in tumor tissues
(Figure 7D), whereas ITGB7 and CTLA4 demonstrated comparable
expression levels between BLCA and normal tissues (Figures 7E,F).
These database findings were subsequently validated by qPCR
experiments (Figures 7G-L).
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Combining risk stratification with TMB to
assess BLCA prognosis

Given that tumor mutational burden (TMB) significantly
influences cancer prognosis (Provencio et al, 2023; Sung et al,
2022), we compared TMB levels between high- and low-risk BLCA
patient groups. Analysis of tumor mutation burden (TMB) between
the risk groups showed that the high-risk group (n = 201) had a
significantly lower TMB than the low-risk group (n=202) (p = 0.034,
Figure 8A). Moreover, BLCA patients with high TMB (H-TMB)
have a better survival prognosis than those with low TMB (L-TMB)
(Figure 8B). Studies have reported that colorectal cancer patients
with high TMB have a better prognosis (Wang et al., 2022), which is
similar to our results. Integrating both TMB and risk stratification,
we found BLCA patients with H-TMB and low-risk status showed
optimal survival outcomes, whereas those with L-TMB and high-
risk status had the poorest prognosis (Figure 8C).

Independent prognostic analysis and
predictive model construction for BLCA

To evaluate the independent prognostic value of our risk score,
we performed Cox regression analyses. Univariate Cox regression
analysis identified the risk score as a significant prognostic factor
(HR = 3.625, p < 0.001). Importantly, in the multivariate analysis
adjusted for age, gender, grade, and stage, the risk score remained
an independent predictor of overall survival (HR = 3.283, p < 0.001),
confirming its prognostic value beyond standard clinical parameters
(Figures 9A,B). To facilitate clinical prognosis evaluation and timely
treatment adjustment, we developed a comprehensive prognostic
model incorporating risk stratification, age, stage, and grade using
BLCA patient data. The model generates a total score where higher
values correlate with increased probability of survival below 1, 3, and
5 years (Figure 9C). ROC analysis confirmed the nomogram’s high
predictive accuracy for BLCA patient survival (Figure 9D). At the
same time, calibration plot also indicated that the performance of the
nomogram was highly similar to that of the ideal model (Figure 9E).
These results demonstrate the reliability and practicality of our
comprehensive assessment, incorporating clinical information and
risk stratification, in predicting the prognosis of BLCA patients.
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Discussion

Due to the unique nature of its surgery, BLCA significantly impacts
patients’ quality of life (Tang et al., 2020). To better adjust treatment
plans and effectively assess the prognosis of BLCA, further exploration
of its molecular subtypes is necessary. Studies have shown that the
heterogeneity of the TME is a significant factor affecting cancer
prognosis and the efficacy of drug treatments (Schulz et al., 2019;
Hanahan and Weinberg, 2011), and the expression of immune cellsand
immune-related genes is a critical component of the TME (Zhangetal.,
2022). In this study, by mining the BLCA data of TCGA and GEO, we
not only performed immune typing of BLCA according to immune-
related genes, but also performed risk stratification of BLCA in
combination with PRGs. Additionally, we developed a prognostic
model to assist clinicians in evaluating BLCA patient outcomes and
guiding timely treatment adjustments.

First ofall, different cohorts of BLCA patients in GEO were divided
into two immune subtypes, and it was found that these two immune
subtypes had great differences in HLA-related gene expression and
immune cell infiltration. These results indicate a large heterogeneity in
the TME of BLCA. Previous studies have reported that differences in
immune cellinfiltrationlevels are akey factor contributing to variations
in BLCA prognosis (Hu et al., 2021b; Xu et al., 2022; Debatin et al,,
2024; Li et al., 2024). Therefore, we further explored how to effectively
assess BLCA prognosis based on different immune subtypes, enabling
clinicians to adjust treatment plans promptly and effectively. In order to
ensure that our research is more reliable, we continued to conduct in-
depth analysis ofimmunophenotyping in conjunction with TCGA. We
identified multiple genes that influence the prognostic risk of BLCA,
with a strong interaction observed between these prognostic genes
and tumor transcription factors. This discovery lays the foundation
for future exploration of the molecular mechanisms influencing BLCA
prognosis. ADCY7 catalyzes the production of cyclic AMP (cAMP),
a critical second messenger. In immune cells, high cAMP levels are
a potent negative regulator of T cell activation and effector functions
(Bayerl et al., 2023). This aligns with studies showing that cAMP-
elevating pathways are a mechanism of immune evasion in cancers
(Zha et al, 2022). Our finding positions ADCY7 as a potential
mediator of immunosuppression in BLCA. SLC1A6 is a glutamate
and aspartate transporter. Beyond its role in the nervous system,
glutamate signaling is implicated in cancer (Ren et al., 2025). It can
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using multivariate cox regression. (C) Construction of a nomogram based on clinical features and risk stratification for BLCA.(D) Assessment of the
reliability of the nomogram through ROC analysis. (E) Map of calibration used to compare the nomogram to the ideal model for similarity

assessment. *p < 0.05; **p < 0.01; ***p < 0.001

influence tumor cell proliferation, invasion, and calcium signaling
(Bertero et al., 2019). The high expression of SLC1A6 in BLC and
its association with poor prognosis suggest it may fuel aggressive
tumor behavior. Furthermore, glutamate can modulate T cell function,
and dysregulated glutamate metabolism in the TME is emerging as
a contributor to cancer progression (Stanulovic et al., 2024). Thus,
SLC1A6 may represent a novel metabolic driver in BLCA. ITGB7 pairs
with o4 integrin to form a4p7 integrin, which is crucial for lymphocyte
homing to mucosal tissues, including the gut and possibly the bladder
mucosa (Nie et al., 2022). In our model, high ITGB7 expression is
protective. This strongly suggests that a robust lymphocyte recruitment
mechanism to the tumor site is a favorable prognostic factor. The
presence of ITGB7 may indicate a more effective anti-tumor immune
infiltration. This is consistent with the fundamental role of T cell
recruitment in cancer immunotherapy (Zhu et al., 2025). CTLA-4 is a
well-established immune checkpoint molecule on T cells. It transmits
an inhibitory signal that serves as a critical “brake” on the immune
response to prevent autoimmunity. It is also a premier target for
cancer immunotherapy. In some studies, high intratumoral CTLA4
transcript levels can predict response to anti-CTLA-4 therapy and
are associated with improved survival (Blanchard et al., 2025). This
finding underscores the complexity TME in BLCA. Moreover, the
biological processes involving these prognostic genes were closely
related to immunity, further highlighting the significant impact of
immunity on BLCA prognosis. It has been reported that the apoptosis
and proliferation of immune cells play a significant role in BLCA
prognosis (Liu Q. et al., 2024; Gao et al.,, 2024). Our study aligns
with previous research and further explores the potential mechanisms
influencing BLCA prognosis through tumor transcription factors and
immunobiological processes.

In addition, the Immunity_H subtype exhibits an “activated-
but-suppressed” microenvironment, characterized by concurrent
enrichment of cytotoxic CD8" T cells and immunosuppressive
elements (M2 macrophages and some immune checkpoints).
This indicates that the Immunity H subtype needs to reach
a state of immune balance in order to maximize its benefits
for the patients survival. In contrast, the Immunity_L subtype
represents an “immune-desert” phenotype, with minimal immune
infiltration and a failure to initiate anti-tumor immunity, resulting
in unfavorable outcomes.

Furthermore, we refined the prognostic gene signature through
LASSO regression analysis, enabling stratification of BLCA patients
into distinct high- and low-risk groups based on gene expression
patterns. Integration with tumor mutational burden (TMB) further
enhanced prognostic discrimination, revealing significant survival
differences among BLCA subgroups. Consistent with established
findings that TMB significantly influences prognosis through
immune modulation (Chan et al, 2019; Jiang et al, 2022;
Palmeri et al, 2021), and BLCA has a better survival prognosis
in the low-risk + H-TMB group (Zhang et al, 2022). Our
study also found similar results, indicating the reliability of our
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findings. TMB serves as a measure of tumor immunogenicity,
where a higher load of mutations generates more neoantigens,
potentially initiating a T-cell response (Westcott et al., 2023).
Our risk model assesses the functional state of the tumor
microenvironment (TME). A low-risk score indicates a TME
permissive for immune cell function, while a high-risk score
signifies an immunosuppressive TME. Therefore, the most favorable
prognosis is observed in patients with High-TMB + Low-Risk
scores. In this group, the “spark” of immunogenicity (neoantigens
from high TMB) meets the “fertile ground” of a functional TME,
enabling an effective anti-tumor immune response. Conversely,
a high-risk TME can suppress the immune response even in
the presence of high immunogenicity (High-TMB + High-Risk),
leading to poorer outcomes. This framework explains the enhanced
prognostic accuracy of the combined model. Moreover, our TMB
+ Risk model can stratify BLCA patients into distinct subgroups
with direct therapeutic implications. For example, in Low-Risk
+ High-TMB group, these “ideal responders” possess both high
immunogenicity and a functional TME, making them the strongest
candidates for immune checkpoint blockade (ICB) therapy. In
High-Risk + High-TMB, this group has the antigenic targets for
immunotherapy but within a suppressive TME. They may require
combinatorial strategies (ICB combined with TME-modulating
agents) to overcome resistance. In High-Risk + Low-TMB, these
“double-negative” patients, with low immunogenicity and a hostile
TME, may derive less benefit from initial immunotherapy and
could be prioritized for conventional chemotherapy or novel agents.
This framework provides a actionable blueprint for personalizing
treatment decisions in BLCA. However, the underlying molecular
mechanisms through which TMB influences prognosis remain to
be further elucidated in subsequent studies. We evaluated the
impact of certain genes used for risk stratification on BLCA
prognosis. Some genes were beneficial to BLCA prognosis when
highly expressed, while others were advantageous when expressed
at low levels, indicating that the genes selected for risk stratification
are comprehensive and reasonable. Moreover, our qPCR results
further validated the heterogeneous expression patterns of these
prognostic genes between BLCA and matched adjacent tissues,
further demonstrating the necessity of comprehensively judging the
prognosis of BLCA based on these genes.

Current prognostic approaches for BLCA lack precision,
highlighting the urgent need for robust stratification tools to
guide clinical decision-making. We constructed a nomogram by
combining risk stratification identified from multiple databases
with patients” clinicopathological information, providing clinicians
with a tool to assess BLCA prognosis. Although nomograms
for BLCA prognosis have been developed in previous studies
(Zhang et al, 2022; Wu et al, 2022; Huang et al., 2023;
Rodriguez-Enriquez et al., 2020; Liu L. et al., 2024), our nomogram
offers more accurate predictive probabilities and covers a wider
scoring range, demonstrating its greater reliability and applicability.
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In summary, our study established a novel immune classification
system for BLCA and developed a robust gene expression-based risk
stratification model, effectively distinguishing high-risk and low-
risk patient subgroups with distinct prognostic outcomes. We also
integrated risk stratification and clinicopathological information to
construct a nomogram that assists clinicians in assessing BLCA
prognosis. However, it is undeniable that our study has certain
limitations. On one hand, the qPCR validation of gene expression
differences was performed on a limited number of patient samples
(n =4). While the results were consistent with the trends observed in
the TCGA and UALCAN databases, this small sample size precludes
strong statistical conclusions and necessitates validation in a larger,
independent cohort. On the other hand, future studies should
employ large-scale prospective cohort research to continuously
refine and improve our predictive models, while further validating
the biological functions of relevant target genes and proteins through
both in vivo and in vitro experiments.
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