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Progressively exploring and 
assessing the prognosis of 
bladder urothelial cancer based 
on the microenvironment 
through the integration of 
multiple databases

Xiong Zou, Yanfeng Li, Xuefeng Peng, Changshi Gu* and 
Qiang Wang*

Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 
China

Background: The heterogeneous prognosis of bladder urothelial carcinoma 
(BLCA) remains a significant clinical challenge. A multi-factor prognostic model 
is essential for BLCA, as it not only assesses tumor progression and elucidates 
underlying molecular mechanisms but also paves the way for timely treatment 
adjustments and improved clinical decision-making.
Methods: Using R software, we performed immunophenotyping on multiple 
BLCA cohorts from the GEO database to identify shared immune signatures. 
Simultaneously, we identified BLCA prognosis-associated genes by analyzing 
TCGA data. Prognostic genes were further refined via LASSO regression, 
allowing BLCA patients to be stratified into high- and low-risk groups based on 
their expression patterns. Quantitative PCR (qPCR) was used to validate gene 
expression in tumor and matched normal tissues. Finally, we integrated clinical 
data to construct a prognostic model.
Results: The GSE31684 and GSE48276 cohorts were divided into high 
immunity (Immunity_H) and low immunity (Immunity_L) groups, and there 
were significant microenvironment differences between the Immunity_H and 
Immunity_L of the two cohorts, and there were many common differentially 
expressed genes (DEGs) between different immune subtypes of the two cohorts, 
which were mainly involved in immune-related biological processes. In addition, 
patients in the high-risk BLCA group exhibited significantly worse prognosis 
than those in the low-risk group. qPCR analysis confirmed that the expression 
levels of the risk-stratification genes were significantly different between BLCA 
tumors and matched adjacent normal tissues. The integrated analysis of tumor 
mutation burden (TMB) and our risk stratification revealed that patients with low-
risk scores and high TMB exhibited the most favorable prognosis. Furthermore, 
the risk score was validated as an independent prognostic factor through 
both univariate and multivariate Cox regression analyses. Consequently, we 
constructed a nomogram that incorporates these findings to assist clinicians in 
prognostic assessment for BLCA patients.
Conclusion: Given that the tumor microenvironment significantly 
influences BLCA prognosis, our finding that risk stratification serves as
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an independent prognostic indicator underscores the clinical relevance of our 
model. This stratification strategy has the potential to improve prognostic 
assessment and inform personalized treatment planning for BLCA patients.

KEYWORDS

bladder urothelial carcinoma (BLCA), risk stratification, immune subtypes, prognosis, 
microenvironment 

Introduction

 In 2020, nearly 600000 new cases of bladder cancer 
were diagnosed globally (Sung et al., 2021). By 2040, this 
number is projected to double (Dyrskjøt et al., 2023). 
More than 90% of the pathological types of bladder cancer 
are bladder urothelial carcinoma (BLCA) (Zhang et al., 
2021), so this paper mainly discusses and studies BLCA. 
The microenvironment of BLCA has strong heterogeneity 
(Hoadley et al., 2014; Warrick et al., 2019), effective management of 
BLCA requires a multidisciplinary approach that comprehensively 
considers patient characteristics and the molecular features of the
disease.

Currently, the diagnosis and follow-up of BLCA rely on 
a comprehensive assessment using cystoscopy, histology, and 
cytology. However, the detection and screening of BLCA 
remain insufficient, as a significant number of patients are 
diagnosed at an advanced stage. While early-stage BLCA is more 
amenable to effective treatment compared to late-stage disease, 
it has a high recurrence rate (Zhao et al., 2023). Moreover, 
even among patients with BLCA of the same stage and grade 
undergoing identical treatment regimens, there can be substantial 
differences in recurrence times and prognoses, which may 
be related to the heterogeneity of tumor microenvironment 
(TME) in cancer patients (Prasetyanti and Medema, 2017; 
Burrell et al., 2013). Therefore, further risk stratification of 
BLCA is crucial for better prognosis assessment and timely 
adjustment of treatment strategies. Elucidating the molecular 
mechanism of BLCA is the basis of precise treatment of BLCA. 
Detection of genes and related gene expression products in 
cancer tissue plays a crucial role in BLCA molecular subtyping
(Zhu et al., 2020).

TME is a highly heterogeneous biological system comprising 
immune cells, cancer cells, extracellular matrix components, 
and various signaling molecules (Warrick et al., 2019; Hu et al., 
2021a; da Costa et al., 2018). The expression of immune 
cells and their related genes is a crucial component of 
the TME, significantly impacting the prognosis of BLCA
(Zhang et al., 2022).

In this study, we performed immunotyping on BLCA 
patients from GSE31684 and GSE48276, comparing the 
tumor microenvironment and differentially expressed genes 
between the identified immune subtypes. Subsequently, we 
integrated TCGA and GEO transcriptomic datasets to establish 
a comprehensive risk stratification system for BLCA. Based on 
this analysis, we developed a predictive model to facilitate clinical 
prognosis evaluation, enabling timely therapeutic optimization for
BLCA patients.

Methods

Acquisition and processing of GSE31684 
and GSE48276 data from GEO database

Firstly, the gene expression matrices of 93 BLCA samples from 
GSE31684 and 116 BLCA samples from GSE48276 were obtained 
through the “Biobase” and “GEOquery” packages of R language 
(R 4.4.1). The raw gene expression matrices obtained from the 
GEO database were already preprocessed and normalized by the 
original submitters using the robust multi-array average (RMA) 
method. We directly utilized these normalized expression data 
for our subsequent ssGSEA and differential expression analyses. 
Both datasets exclusively contain profiles from Bladder Urothelial 
Carcinoma (BLCA) patients, which aligns perfectly with the focus 
of our study. Each dataset contains a substantial number of samples 
(GSE31684: n = 93; GSE48276: n = 116), which provides sufficient 
statistical power for reliable subgroup identification and differential 
expression analysis. According to the expression information of 
29 immune-related gene sets in each sample, the immune-related 
characteristics of GSE31684 and GSE48276 samples were evaluated 
comprehensively, that is, gene set enrichment analysis of a single 
sample (ssGSEA) (Wu et al., 2022; Hanzelman et al., 2013). Based 
on the ssGSEA score, Euclidean distance and Ward’s linkage 
(Guan et al., 2020), the samples of GSE31684 and GSE48276 
were divided into two groups, namely, the low immunity group 
(Immunity_L) and the high immunity group (Immunity_H). 
The Immunity_L of GSE31684 dataset includes 71 samples, and 
Immunity_H includes 22 samples. The Immunity_L of GSE48276 
dataset includes 74 samples, and Immunity_H includes 42 samples. 
We also used t-distributed Stochastic Neighbor Embedding (tSNE) 
algorithm to cluster the Immunity_H and Immunity_L groups 
again. Then, the tumor microenvironment of the Immunity_L and 
Immunity_H groups of GSE31684 and GSE48276 datasets was 
evaluated by “limma” package in R language. We compared the 
expression levels of HLA-related genes between Immunity_H and 
Immunity_L groups, and also compared the levels of immune 
cell infiltration between Immunity_h and Immunity_L groups by 
CIBERSORT analysis (Newman et al., 2015). In addition, we focused 
on genes that were differentially expressed between Immunity_H 
and Immunity_L in the GSE31684 and GSE48276 datasets. With 
Immunity_L as the control group, the P value less than 0.05 and the 
absolute value of logFC greater than 0.585 as the standard to measure 
the differentially expressed genes (DEGs) between different immune 
subtypes. When integrating the gene expression data from the two 
GEO cohorts (GSE31684 and GSE48276) for the identification of 
common DEGs, we employed the ComBat algorithm from the 
“sva” R package to adjust for potential batch effects arising from 
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FIGURE 1
Two different immunophenotypes in BLCA patients. (A,B) Based on ssGSEA results, BLCA patients from GSE31684 (A) and GSE48276 (B) were stratified 
into Immunity_H and Immunity_L. (C,D) The reliability of BLCA immunophenotypes derived from GSE31684 (C) and GSE48276 (D) cohorts was 
verified by tSNE.

different experimental batches or platforms. This step ensured that 
the identified common DEGs were more likely to be biologically 
relevant rather than technical artifacts.

The acquisition and collation of BLCA data 
from TCGA

The clinical information and expression matrix of BLCA from 
TCGA were downloaded and sorted out with R language. The RNA-
seq data (in FPKM format) downloaded from TCGA were log2-
transformed (log2(FPKM+1)) to approximate a normal distribution 
before any downstream analysis. Normal tissue samples were 
removed, and 411 BLCA samples were obtained for subsequent 
analysis. The expression matrix of DEGs in the two GEO datasets 
(GSE31684 and GSE48276) from TCGA was obstained using the 
“sva” and “limma” packages. For the integration of GEO-derived 
DEGs with the TCGA dataset, we utilized the limma package’s 
removeBatchEffect function prior to survival analysis to minimize 
non-biological variance. At the same time, gene expression data 
and survival data of 403 samples with complete clinical information 
(including sex, age, grade, stage and survival information) of 
BLCA patients were combined through the “limma” package. 
The prognostic related genes (PRGs) of BLCA were identified by 
analyzing the combined gene expression matrix and survival data 
using the “survival” package. Download tumor-related transcription 

factors (TFs) from the website (http://www.cistrome.org/), and 
construct the co-expression analysis of PRGs and TFs by “dplyr” 
and “ggalluvial” packages to further explore the possible causes of 
PRGs affecting the prognosis of BLCA. Gene oncology (GO) analysis 
was used to explore the primary biological processes involving 
these PRGs. 

Risk stratification of BLCA

Based on the expression of PRGs and survival information of the 
samples, the lasso regression analysis was performed on 403 samples 
with complete clinical information, and 30 genes for risk score 
and their corresponding coefficients were obtained. The LASSO 
Cox regression was performed using the “glmnet” R package. To 
determine the optimal penalty parameter (lambda) and prevent 
overfitting, we employed 10-fold cross-validation. This process 
was repeated 100 times to enhance the stability and reliability 
of the lambda selection. The optimal lambda value was selected 
based on the minimum partial likelihood deviance criterion (i.e., 
lambda.min). The 403 samples were divided into high-risk (201 
samples) and low-risk (202 samples) groups based on the median 
risk score. The genes and their coefficients used to calculate the 
risk score are shown in Supplementary Table S1. Moreover, we 
compared the survival outcomes of high and low risk groups with 
the “survival” package. 
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FIGURE 2
Multilevel comparison of the microenvironment among different immune subtypes of BLCA. (A,B) Comparison of StromalScore, ImmuneScore, and 
ESTIMATEScore for different immune subtypes from the GSE31684 (A) and GSE48276 (B) cohorts. (C,D) Comparison of HLA gene expression levels 
from different immune subtypes in GSE31684 (C) and GSE48276 (D) cohorts. (E,F) Microenvironmental landscapes of different immune subtypes in 
BLCA patients from the GSE31684 (E) and GSE48276 (F) cohorts. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

UALCAN

UALCAN is a powerful website that can be used to analyze the 
associations between transcriptomic, proteomic, and patient survival 
information across various cancers (Chandrashekar et al., 2022). 
We used UALCAN to explore the impact of the three genes with 
the largest or smallest coefficients used to calculate risk scores on 
survival in BLCA patients.  

Tumor mutation burden

Tumor mutation burden (TMB) data of BLCA were downloaded 
from TCGA, and TMB of each sample was calculated through 
Strawberry Perl software. Using “limma” and “ggpubr” packages 
in R language to compare the TMB of high and low risk groups. 
Simultaneously, we evaluated the association between TMB and 
clinical outcomes in BLCA patients. Furthermore, we performed 
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FIGURE 3
Comparison of DEGs among different immune subtypes of BLCA. (A,B) Volcano plots displaying the DEGs for different subtypes from the GSE31684 (A)
and GSE48276 (B) cohorts. (C,D) A Venn diagram depicting the DEGs that are consistently upregulated (C) or downregulated (D) in the GSE31684 and 
GSE48276 cohorts (Immunity_L as the control group).

integrated analysis to assess the combined prognostic value of both 
risk stratification and TMB in patients. 

A prognostic model for BLCA

Given the significance of risk stratification based on gene 
expression, we further assessed its superiority in evaluating BLCA 
prognosis by univariate and multifactorial independent prognostic 
analyses. Last but not least, through the “timeROC” and “rms” 
packages of R language, we devised a comprehensive scoring system 
based on risk stratification, incorporating patient grade, stage, age, 
and gender to systematically evaluate the outcomes of BLCA. 

qPCR

We obtained tumor and adjacent normal tissue samples from four 
bladder cancer (BLCA) patients at the Affiliated Hospital of Guizhou 
Medical University. Using qPCR, we compared the expression levels 

of either the three genes with the highest coefficients or the three 
genes with the lowest coefficients in our risk score calculation model. 
Total RNA was extracted from tissue samples using TRIzol reagent. 
RNA purity and concentration were verified by spectrophotometry 
with acceptable A260/A280 ratios between 1.8–2.0. Total RNA 
was reverse transcribed into cDNA following the manufacturer’s 
protocol (Vazyme, R323-01). Post-amplification, the comparative 
2−ΔΔCT method was employed to quantify differential gene expression 
between malignant and matched paracancerous tissues. qPCR was 
performed using the primer sequences specified below. 

GAPDH:
5′-AATCAAGTGGGGCGATGCTG-3' (Forward),
5′-GCAAATGAGCCCCAGCCTTC-3′(Reverse);
ADCY7 (Adenylate Cyclase 7):
5′-GATGTACGTCGAGTGTCTCCT-3' (Forward),
5′- CTTTGTCCATGCGTCGAACA-3' (Reverse);
SLC1A6 (Solute Carrier Family 1 Member 6):
5′-CTCAACCTGGGTCAGATCACA-3' (Forward),
5′-CCGACCGACGTAAGCACAA-3' (Reverse);
NELL2 (Neural EGFL Like 2):
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FIGURE 4
Identification of PRGs for BLCA based on TCGA and GEO data, along with the construction of their regulatory network. (A) The forest atlas showed 
common DEGs in the GSE31684 and GSE48276 cohorts that affected the survival outcomes of TCGA-BLCA patients. (B) A river interaction diagram 
showcasing the relationships between PRGs and TFs. (C) GO analysis revealed the main biological processes involved in PRGs.
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FIGURE 5
Determination and evaluation of risk assessment for patients with BLCA. (A,B) LASSO coefficient profiles (A) and cross-validation plot (B) for gene 
parameter selection within a lasso model of BLCA. (C) A distribution plot of risk scores for BLCA patients based on 30 genes identified through the lasso 
model. (D) Correlation analysis between OS and risk scores in patients with BLCA. (E) Kaplan-Meier survival analysis for BLCA across different risk 
groups. (F) The ROC analysis based on the lasso model yielded AUC values for 1-year, 3-year, and 5-year survival predictions of 0.807, 0.786, and 0.791, 
respectively. (G) A calibration plot for the risk characteristics of bladder cancer (BLCA) based on genes selected through the lasso model.

5′-GAGCTGAACAGCGAATGAATAGA-3' (Forward),
5′-AATTCTCGGTAGGTGGTTCCC-3' (Reverse);
ZNF823 (Zinc Finger Protein 823):
5′-GTCGTCTTGGGTCATTCGTCT-3' (Forward),
5′-ATGTGTCTTCGGAGGTTTCCA-3' (Reverse);
ITGB7 (Integrin Subunit Beta 7):
5′-TGGACCTGAGCTACTCCATGA-3' (Forward),
5′-GGTGAAAGCTGAATGGTGACTG-3' (Reverse);
CTLA4 (Cytotoxic T-Lymphocyte Associated Protein 4):
5′-GCCCTGCACTCTCCTGTTTTT-3' (Forward),
5′-GGTTGCCGCACAGACTTCA-3' (Reverse).

Results

Immune subtypes of BLCA and their 
microenvironment comparison

We performed ssGSEA analysis on 93 cancer samples from 
GSE31684 and 116 cancer samples from GSE48276, classifying 
them into two distinct immune subtypes: Immunity_H (high 
immune infiltration) and Immunity_L (low immune infiltration) 
(Figures 1A,B). Both t-SNE visualization and hierarchical clustering 
yielded consistent subtype classification patterns (Figures 1C,D), 
demonstrating that these computational approaches effectively 
discriminated between Immunity_H and Immunity_L subgroups. 

We compared the microenvironment of the Immunity_H and 
Immunity_L. As shown in Figure 2A, the tumor microenvironment 
scores were significantly elevated in the Immunity_H group 
compared to the Immunity_L group in the GSE31684 cohort 
(n = 93). Specifically, the StromalScore (p < 0.001), ImmuneScore (p
< 0.001), and ESTIMATEScore (p < 0.001) were all markedly higher, 
as determined by the two-sided Student’s t-test. Similar results 
were observed in BLCA from GSE48276 (Figure 2B). Moreover, 
the expression of multiple HLA-related genes was significantly 
higher in Immunity_H group compared to the Immunity_H group 
(Figures 2C,D), and the immune-related functional scores were 
also significantly higher in Immunity_H (Figures 2E,F). These 
results indicate that there are significant differences in the immune 
microenvironment between the Immunity_H and Immunity_L, 
and the immune microenvironment is a crucial factor affecting 
cancer patient prognosis (Caramelo et al., 2023; Xie et al., 2024). 
Therefore, further exploration of BLCA based on immune subtyping 
is essential. 

Differential analysis of BLCA immune 
subtypes

To further investigate the differences between immune subtypes, 
we compared the DEGs between the Immunity_H and Immunity_L, 
using the Immunity_L group as a control. In the BLCA of GSE31684, 
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FIGURE 6
The impact of the expression levels of genes used for risk stratification on the prognosis of BLCA. (A–C) The influence of the expression levels of the 
three genes with the highest coefficients—ADCY7 (A), SLC1A6 (B), and NELL2 (C)—on the prognosis of BLCA. (D–F) The influence of the expression 
levels of the three genes with the smallest coefficients—ITGB7 (D), ZNF823 (E), and CTLA4 (F)—on the prognosis of BLCA.

1418 genes were upregulated and 1052 genes were downregulated 
in Immunity_H group (Figure 3A). In the BLCA of GSE48276, 
1149 genes were upregulated and 808 genes were downregulated 
in Immunity_H group (Figure 3B). In the shared DEGs from 
GSE31684 and GSE48276, the Immunity_H group had 473 genes 
commonly upregulated and 247 genes commonly downregulated
(Figures 3C,D).

The combination of TCGA and GEO to 
explore the PRGs of BLCA

Based on immune subtypes, we selected the shared DEGs 
(Immunity_H versus Immunity_L) in GSE31684 and GSE48276, 
then integrated TCGA survival data to explore prognostic genes 
in BLCA. We obtained a total of 47 genes that influence 
the prognosis of BLCA patients (Figure 4A). To gain a deeper 
understanding of BLCA development and prognostic differences, 
we explored the co-expression analysis of PRGs and tumor-related 
TFs. Multiple PRGs and TFs showed significant co-expression 
correlations (Figure 4B). Detailed co-expression information can be 
found in Supplementary Material S1. GO analysis showed that the 
biological processes involved in these PRGs were mainly immune 
related processes such as regulatory T cell differentiation, leukocyte 
proliferation, T cell receptor signaling pathway and leukocyte cell-
cell adhesion (Figure 4C). These results highlight the complex 
regulatory network among PRGs and their strong association 
with immunity. 

Risk stratification of BLCA based on PRGs

Given the importance of these PRGs in the development of 
BLCA, we performed lasso regression analysis based on PRGs 
and identified 30 genes for BLCA risk stratification (Figures 5A,B). 
Risk scores were then calculated from gene expression profiles and 
regression coefficients, enabling stratification of BLCA patients into 
high- and low-risk categories (Figure 5C). Kaplan-Meier survival 
analysis revealed a significantly poorer OS for patients in the 
high-risk group (n = 201) compared to those in the low-risk 
group (n = 202) (p < 0.001, Figure 5D). ROC analysis was used 
to determine the superiority of risk stratification in predicting 
survival of BLCA patients. The AUC values for 1-year, 3-year, and 
5-year survival predictions from ROC analysis were 0.807, 0.786, 
and 0.791, respectively (Figure 5E). The calibration plot results 
showed that the predicted values based on risk stratification closely 
matched the actual values (Figure 5F), indicating the reliability of 
risk stratification for predicting BLCA prognosis.

We further explored the effect of the six genes with the largest 
(ADCY7, SLC1A6, NELL2) or smallest (ITGB7, ZNF823, CTLA4) 
risk score coefficients on BLCA prognosis. Surprisingly, we found that 
high expression of the top three genes with risk coefficients greater than 
0 (ADCY7, SLC1A6, NELL2) was detrimental to the survival prognosis 
of BLCA patients (Figures 6A–C), while high expression of the three 
genes with the smallest risk coefficients less than 0 (ITGB7, ZNF823, 
CTLA4) was beneficial for their survival prognosis (Figures 6D–F). 
These results are consistent with our risk score findings, further 
demonstrating the reliability of risk stratification. 
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FIGURE 7
The expression of PRGs in BLCA and adjacent normal tissues. (A–F) The expression of ADCY7 (A), SLC1A6 (B), NELL2 (C), ZNF823 (D), ITGB7 (E) and 
CTLA4 (F) in BLCA and adjacent tissues in the UALCAN database. (G–L) The qPCR results confirmed the expression of ADCY7 (G), SLC1A6 (H), NELL2
(I), ZNF823 (J), ITGB7 (K) and CTLA4 (L) in BLCA and adjacent tissues. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

The expression of PRGs in BLCA and 
adjacent normal tissues

Further investigation using the UALCAN database revealed 
distinct expression patterns of ADCY7, SLC1A6, NELL2, 
ITGB7, ZNF823, and CTLA4 in BLCA compared to adjacent 
normal tissues. Among the three genes with highest risk-
score coefficients, ADCY7 and SLC1A6 showed significantly 

elevated expression in BLCA (Figures 7A,B), while NELL2 
exhibited no significant differential expression (Figure 7C). 
Conversely, among the three genes with lowest risk score 
coefficients, ZNF823 was markedly upregulated in tumor tissues 
(Figure 7D), whereas ITGB7 and CTLA4 demonstrated comparable 
expression levels between BLCA and normal tissues (Figures 7E,F). 
These database findings were subsequently validated by qPCR
experiments (Figures 7G–L). 
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FIGURE 8
Joint analysis of risk stratification and TMB in BLCA. (A) Comparison of TMB across different risk groups in BLCA. (B) Impact of TMB on BLCA prognosis.
(C) Evaluating the prognosis of BLCA by combining TMB and risk stratification.

Combining risk stratification with TMB to 
assess BLCA prognosis

Given that tumor mutational burden (TMB) significantly 
influences cancer prognosis (Provencio et al., 2023; Sung et al., 
2022), we compared TMB levels between high- and low-risk BLCA 
patient groups. Analysis of tumor mutation burden (TMB) between 
the risk groups showed that the high-risk group (n = 201) had a 
significantly lower TMB than the low-risk group (n = 202) (p = 0.034, 
Figure 8A). Moreover, BLCA patients with high TMB (H-TMB) 
have a better survival prognosis than those with low TMB (L-TMB) 
(Figure 8B). Studies have reported that colorectal cancer patients 
with high TMB have a better prognosis (Wang et al., 2022), which is 
similar to our results. Integrating both TMB and risk stratification, 
we found BLCA patients with H-TMB and low-risk status showed 
optimal survival outcomes, whereas those with L-TMB and high-
risk status had the poorest prognosis (Figure 8C). 

Independent prognostic analysis and 
predictive model construction for BLCA

To evaluate the independent prognostic value of our risk score, 
we performed Cox regression analyses. Univariate Cox regression 
analysis identified the risk score as a significant prognostic factor 
(HR = 3.625, p < 0.001). Importantly, in the multivariate analysis 
adjusted for age, gender, grade, and stage, the risk score remained 
an independent predictor of overall survival (HR = 3.283, p < 0.001), 
confirming its prognostic value beyond standard clinical parameters 
(Figures 9A,B). To facilitate clinical prognosis evaluation and timely 
treatment adjustment, we developed a comprehensive prognostic 
model incorporating risk stratification, age, stage, and grade using 
BLCA patient data. The model generates a total score where higher 
values correlate with increased probability of survival below 1, 3, and 
5 years (Figure 9C). ROC analysis confirmed the nomogram’s high 
predictive accuracy for BLCA patient survival (Figure 9D). At the 
same time, calibration plot also indicated that the performance of the 
nomogram was highly similar to that of the ideal model (Figure 9E). 
These results demonstrate the reliability and practicality of our 
comprehensive assessment, incorporating clinical information and 
risk stratification, in predicting the prognosis of BLCA patients.

Discussion

Due to the unique nature of its surgery, BLCA significantly impacts 
patients’ quality of life (Tang et al., 2020). To better adjust treatment 
plans and effectively assess the prognosis of BLCA, further exploration 
of its molecular subtypes is necessary. Studies have shown that the 
heterogeneity of the TME is a significant factor affecting cancer 
prognosis and the efficacy of drug treatments (Schulz et al., 2019; 
Hanahan and Weinberg, 2011), and the expression of immune cells and 
immune-related genes is a critical component of the TME (Zhang et al., 
2022). In this study, by mining the BLCA data of TCGA and GEO, we 
not only performed immune typing of BLCA according to immune-
related genes, but also performed risk stratification of BLCA in 
combination with PRGs. Additionally, we developed a prognostic 
model to assist clinicians in evaluating BLCA patient outcomes and 
guiding timely treatment adjustments. 

First of all, different cohorts of BLCA patients in GEO were divided 
into two immune subtypes, and it was found that these two immune 
subtypes had great differences in HLA-related gene expression and 
immune cell infiltration. These results indicate a large heterogeneity in 
the TME of BLCA. Previous studies have reported that differences in 
immune cell infiltration levels are a key factor contributing to variations 
in BLCA prognosis (Hu et al., 2021b; Xu et al., 2022; Debatin et al., 
2024; Li et al., 2024). Therefore, we further explored how to effectively 
assess BLCA prognosis based on different immune subtypes, enabling 
clinicians to adjust treatment plans promptly and effectively. In order to 
ensure that our research is more reliable, we continued to conduct in-
depth analysis of immunophenotyping in conjunction with TCGA. We 
identified multiple genes that influence the prognostic risk of BLCA, 
with a strong interaction observed between these prognostic genes 
and tumor transcription factors. This discovery lays the foundation 
for future exploration of the molecular mechanisms influencing BLCA 
prognosis. ADCY7 catalyzes the production of cyclic AMP (cAMP), 
a critical second messenger. In immune cells, high cAMP levels are 
a potent negative regulator of T cell activation and effector functions 
(Bayerl et al., 2023). This aligns with studies showing that cAMP-
elevating pathways are a mechanism of immune evasion in cancers 
(Zha et al., 2022). Our finding positions ADCY7 as a potential 
mediator of immunosuppression in BLCA. SLC1A6 is a glutamate 
and aspartate transporter. Beyond its role in the nervous system, 
glutamate signaling is implicated in cancer (Ren et al., 2025). It can 
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FIGURE 9
Univariate and multivariate analyses of the impact of risk stratification on BLCA, along with the establishment and evaluation of a nomogram model. (A)
Analysis of risk stratification and other variables in BLCA using univariate cox regression. (B) Analysis of risk stratification and other variables in BLCA 
  (Continued)
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FIGURE 9 (Continued)

using multivariate cox regression. (C) Construction of a nomogram based on clinical features and risk stratification for BLCA.(D) Assessment of the 
reliability of the nomogram through ROC analysis. (E) Map of calibration used to compare the nomogram to the ideal model for similarity 
assessment. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

influence tumor cell proliferation, invasion, and calcium signaling 
(Bertero et al., 2019). The high expression of SLC1A6 in BLC and 
its association with poor prognosis suggest it may fuel aggressive 
tumor behavior. Furthermore, glutamate can modulate T cell function, 
and dysregulated glutamate metabolism in the TME is emerging as 
a contributor to cancer progression (Stanulovic et al., 2024). Thus, 
SLC1A6 may represent a novel metabolic driver in BLCA. ITGB7 pairs 
with α4 integrin to form α4β7 integrin, which is crucial for lymphocyte 
homing to mucosal tissues, including the gut and possibly the bladder 
mucosa (Nie et al., 2022). In our model, high ITGB7 expression is 
protective. This strongly suggests that a robust lymphocyte recruitment 
mechanism to the tumor site is a favorable prognostic factor. The 
presence of ITGB7 may indicate a more effective anti-tumor immune 
infiltration. This is consistent with the fundamental role of T cell 
recruitment in cancer immunotherapy (Zhu et al., 2025). CTLA-4 is a 
well-established immune checkpoint molecule on T cells. It transmits 
an inhibitory signal that serves as a critical “brake” on the immune 
response to prevent autoimmunity. It is also a premier target for 
cancer immunotherapy. In some studies, high intratumoral CTLA4 
transcript levels can predict response to anti-CTLA-4 therapy and 
are associated with improved survival (Blanchard et al., 2025). This 
finding underscores the complexity TME in BLCA. Moreover, the 
biological processes involving these prognostic genes were closely 
related to immunity, further highlighting the significant impact of 
immunity on BLCA prognosis. It has been reported that the apoptosis 
and proliferation of immune cells play a significant role in BLCA 
prognosis (Liu Q. et al., 2024; Gao et al., 2024). Our study aligns 
with previous research and further explores the potential mechanisms 
influencing BLCA prognosis through tumor transcription factors and 
immunobiological processes. 

In addition, the Immunity_H subtype exhibits an “activated-
but-suppressed” microenvironment, characterized by concurrent 
enrichment of cytotoxic CD8+ T cells and immunosuppressive 
elements (M2 macrophages and some immune checkpoints). 
This indicates that the Immunity_H subtype needs to reach 
a state of immune balance in order to maximize its benefits 
for the patient’s survival. In contrast, the Immunity_L subtype 
represents an “immune-desert” phenotype, with minimal immune 
infiltration and a failure to initiate anti-tumor immunity, resulting 
in unfavorable outcomes.

Furthermore, we refined the prognostic gene signature through 
LASSO regression analysis, enabling stratification of BLCA patients 
into distinct high- and low-risk groups based on gene expression 
patterns. Integration with tumor mutational burden (TMB) further 
enhanced prognostic discrimination, revealing significant survival 
differences among BLCA subgroups. Consistent with established 
findings that TMB significantly influences prognosis through 
immune modulation (Chan et al., 2019; Jiang et al., 2022; 
Palmeri et al., 2021), and BLCA has a better survival prognosis 
in the low-risk + H-TMB group (Zhang et al., 2022). Our 
study also found similar results, indicating the reliability of our 

findings. TMB serves as a measure of tumor immunogenicity, 
where a higher load of mutations generates more neoantigens, 
potentially initiating a T-cell response (Westcott et al., 2023). 
Our risk model assesses the functional state of the tumor 
microenvironment (TME). A low-risk score indicates a TME 
permissive for immune cell function, while a high-risk score 
signifies an immunosuppressive TME. Therefore, the most favorable 
prognosis is observed in patients with High-TMB + Low-Risk 
scores. In this group, the “spark” of immunogenicity (neoantigens 
from high TMB) meets the “fertile ground” of a functional TME, 
enabling an effective anti-tumor immune response. Conversely, 
a high-risk TME can suppress the immune response even in 
the presence of high immunogenicity (High-TMB + High-Risk), 
leading to poorer outcomes. This framework explains the enhanced 
prognostic accuracy of the combined model. Moreover, our TMB 
+ Risk model can stratify BLCA patients into distinct subgroups 
with direct therapeutic implications. For example, in Low-Risk 
+ High-TMB group, these “ideal responders” possess both high 
immunogenicity and a functional TME, making them the strongest 
candidates for immune checkpoint blockade (ICB) therapy. In 
High-Risk + High-TMB, this group has the antigenic targets for 
immunotherapy but within a suppressive TME. They may require 
combinatorial strategies (ICB combined with TME-modulating 
agents) to overcome resistance. In High-Risk + Low-TMB, these 
“double-negative” patients, with low immunogenicity and a hostile 
TME, may derive less benefit from initial immunotherapy and 
could be prioritized for conventional chemotherapy or novel agents. 
This framework provides a actionable blueprint for personalizing 
treatment decisions in BLCA. However, the underlying molecular 
mechanisms through which TMB influences prognosis remain to 
be further elucidated in subsequent studies. We evaluated the 
impact of certain genes used for risk stratification on BLCA 
prognosis. Some genes were beneficial to BLCA prognosis when 
highly expressed, while others were advantageous when expressed 
at low levels, indicating that the genes selected for risk stratification 
are comprehensive and reasonable. Moreover, our qPCR results 
further validated the heterogeneous expression patterns of these 
prognostic genes between BLCA and matched adjacent tissues, 
further demonstrating the necessity of comprehensively judging the 
prognosis of BLCA based on these genes.

Current prognostic approaches for BLCA lack precision, 
highlighting the urgent need for robust stratification tools to 
guide clinical decision-making. We constructed a nomogram by 
combining risk stratification identified from multiple databases 
with patients’ clinicopathological information, providing clinicians 
with a tool to assess BLCA prognosis. Although nomograms 
for BLCA prognosis have been developed in previous studies 
(Zhang et al., 2022; Wu et al., 2022; Huang et al., 2023; 
Rodriguez-Enriquez et al., 2020; Liu L. et al., 2024), our nomogram 
offers more accurate predictive probabilities and covers a wider 
scoring range, demonstrating its greater reliability and applicability.
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In summary, our study established a novel immune classification 
system for BLCA and developed a robust gene expression-based risk 
stratification model, effectively distinguishing high-risk and low-
risk patient subgroups with distinct prognostic outcomes. We also 
integrated risk stratification and clinicopathological information to 
construct a nomogram that assists clinicians in assessing BLCA 
prognosis. However, it is undeniable that our study has certain 
limitations. On one hand, the qPCR validation of gene expression 
differences was performed on a limited number of patient samples 
(n = 4). While the results were consistent with the trends observed in 
the TCGA and UALCAN databases, this small sample size precludes 
strong statistical conclusions and necessitates validation in a larger, 
independent cohort. On the other hand, future studies should 
employ large-scale prospective cohort research to continuously 
refine and improve our predictive models, while further validating 
the biological functions of relevant target genes and proteins through 
both in vivo and in vitro experiments.
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