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Background: EIF3M, a core subunit of eukaryotic translation initiation factor 
3, plays a pivotal role in protein synthesis by regulating the assembly 
of the 43S initiation complex. However, its biological functions in cancer 
remain poorly understood. To further investigate the clinical translational 
value and underlying mechanisms of EIF3M in tumors, this study conducted 
comprehensive bioinformatic analysis of EIF3M across various tumor types.
Methods: We utilized publicly available databases to perform a comprehensive 
bioinformatics analysis of EIF3M’s biological roles in oncogenesis, aiming 
to elucidate its pan-cancer expression patterns and prognostic significance. 
Furthermore, we conducted an integrative multi-omics analysis incorporating 
methylation profiling, co-expressed gene networks, targeted miRNA 
interactions, and tumor immune microenvironment infiltration to decipher the 
complex regulatory architecture and biological pathways mediated by EIF3M 
across cancer types. Finally, we used HCC cell lines for in vitro functional 
validation, determining how EIF3M expression modulates malignant phenotypic 
behaviors in hepatocellular carcinoma.
Results: EIF3M was overexpressed in multiple cancers and correlated with 
advanced tumor stage and poor survival. Its dysregulation was primarily driven by 
gene amplification and regulated by promoter methylation and miRNAs. EIF3M 
functioned as a hub in cell cycle and transcriptional networks and was linked to 
an immunosuppressive microenvironment. In hepatocellular carcinoma models, 
EIF3M modulated tumor proliferation, migration, and activated oncogenic 
pathways like Wnt/β-catenin.
Conclusion: This study reveals that EIF3M expression correlates with immune 
infiltration and poor prognosis in multiple cancers. In vitro experiments in 
hepatocellular carcinoma models demonstrated that EIF3M critically regulates 
malignant cell behaviors. Collectively, our findings highlight EIF3M’s value as a  
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promising pan-cancer biomarker worthy of further investigation for its utility in 
prognosis prediction and as an indicator of immunotherapeutic response.

KEYWORDS

EIF3M, pan-cancer, biomarkers, immune microenvironment, prognosis  

1 Introduction

Malignant tumors have emerged as a major challenge in the 
global public health arena. In most high-income countries, they 
have risen to the top cause of death among residents. Meanwhile, 
in middle- and low-income countries, both the incidence and 
mortality rates of malignant tumors are showing a notable upward 
trend (Chen et al., 2025). According to statistical reports, there 
were 19.3 million newly diagnosed malignant tumor cases and 
approximately 10 million malignant tumor-related deaths globally 
in 2020. The report also projects that the global burden of malignant 
tumors will rise to 28.4 million cases by 2040, representing a 
47% increase from 2020 (Siegel et al., 2024). Despite significant 
improvements in the five-year survival rates of malignant tumor 
patients over recent decades, a substantial proportion of these 
individuals continue to face persistently poor survival outcomes, 
presenting an ongoing clinical challenge. For instance, prognosis 
remains particularly poor for patients with certain tumors 
such as pancreatic cancer (Maomao et al., 2022). Concurrently, 
current cancer therapeutics continue to face significant challenges 
in efficacy. Despite the adoption of multimodal treatment 
strategies—primarily based on surgical resection combined with 
radiotherapy and chemotherapy—patients frequently encounter 
issues such as incomplete tumor removal, postoperative recurrence, 
and chemotherapy resistance, leading to generally poor prognoses. 
The biological complexity of these malignancies, including high 
invasiveness, an immunosuppressive microenvironment, and 
activation of multiple drug-resistance mechanisms, substantially 
limits the clinical benefits of existing therapies. Consequently, the 
development of novel targeted strategies capable of overcoming 
therapeutic resistance—particularly that driven by the dynamic 
evolution of the tumor microenvironment—remains a critical and 
ongoing focus in oncology research (Siegel et al., 2024; Sung et al., 
2021; Guo et al., 2022; Yang et al., 2024).

Eukaryotic translation initiation factor 3 subunit M (EIF3M) 
functions as a central regulatory molecule in protein biosynthesis, 
with its encoded product forming a core structural component of the 
eukaryotic translation initiation factor 3 (EIF3) complex. Extensive 
research has established that this complex operates as a pivotal 
regulatory hub governing critical processes including translation 
initiation, termination, and ribosome recycling, thereby serving as 
an indispensable molecular foundation for the regulatory network 
controlling eukaryotic protein synthesis (Gomes-Duarte et al., 
2018). In recent years, research evidence on EIF3M in the field 
of oncology has been progressively accumulating, revealing its 
potential regulatory role in tumorigenesis and progression. Studies 
have reported that silencing EIF3M expression in colorectal 
cancer cell lines significantly suppressed the malignant biological 
behaviors of these cells (Goh et al., 2011). Similar investigations 
have also revealed that EIF3M exhibits overexpression in prostate 

cancer and triple-negative breast cancer, with cellular experiments 
confirming significant growth inhibition in tumor cells following 
EIF3M knockdown (Guo et al., 2024; Han et al., 2020). In 
lung cancer research, investigators have identified that EIF3M
interacts with genes including SAAL1 and CAPRIN1 to promote 
tumorigenesis and cancer progression (Chiang et al., 2024; Liu et al., 
2021). Although existing research has begun to elucidate the 
expression profiles and molecular regulatory mechanisms of EIF3M
in specific cancer types, a systematic understanding of its pan-
cancer expression patterns, comprehensive biological functional 
landscape, and regulatory characteristics within signaling networks 
remains largely unexplored. Consequently, our research group 
aims to transcend the traditional cancer classification based on 
tissues or organs, and instead investigate the commonalities 
and heterogeneities of EIF3M across multiple cancer types from 
molecular and genomic perspectives.

This study aims to systematically dissect the multidimensional 
molecular characteristics and clinical significance of EIF3M in 
pan-cancer contexts. By integrating multi-omics data derived 
from multiple public databases, we seek to elucidate its aberrant 
overexpression across multiple malignancies and its significant 
association with poor patient prognosis. Furthermore, we 
investigated the correlations between EIF3M mutations, epigenetic 
regulation, and tumorigenesis, while revealing the underlying 
mechanisms of cancer progression mediated through regulatory 
networks driven by interacting genes and miRNAs. Additionally, 
we explored the relationship between EIF3M expression levels 
and remodeling of the tumor microenvironment. This research 
not only expands theoretical understanding of EIF3M’s role in 
cancer heterogeneity regulation but also provides critical molecular 
evidence and potential therapeutic targets for developing EIF3M-
based prognostic evaluation systems, targeted therapies, and 
immuno-combination therapeutic strategies. 

2 Materials and methods

2.1 Data collection and analysis

The Tumor Immune Estimation Resource 2.0 (TIMER2.0, 
http://timer.cistrome.org) resource repository integrates multi-
omics data from multiple large-scale cancer genomic cohorts 
and other public databases, facilitating comprehensive insights 
into the expression profiles of EIF3M across pan-cancer contexts 
(Li et al., 2020). Gene Expression Profiling Interactive Analysis 
2 (GEPIA2, http://gepia2.cancer-pku.cn)specializes in gene 
expression profiling studies across cancerous and normal tissues 
(Tang et al., 2019). By integrating large-scale RNA sequencing 
datasets from The Cancer Genome Atlas (TCGA) and the 
Genotype-Tissue Expression (GTEx) projects, this platform 
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facilitates comprehensive investigation of EIF3M expression 
disparities between multiple cancer types and their matched normal 
tissues, as well as its associations with clinical characteristics and 
survival curve differentiations (De Mendonça et al., 2025; Pastor 
and Hong, 2023). The University of Alabama at Birmingham 
Cancer Data Analysis Portal database (UALCAN, https://
ualcan.path.uab.edu) is a web-based platform dedicated to mining 
cancer multi-omics data and investigating clinical correlations, 
capable of providing protein expression profiles of EIF3M
through integration with the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) database (Chandrashekar et al., 2022; 
Prakash et al., 2021). The Human Protein Atlas (HPA, https://
www.proteinatlas.org) integrates antibody-based proteomics data, 
RNA sequencing data, and pathological imaging to systematically 
characterize the expression and localization patterns of EIF3M 
in normal tissues (Gu et al., 2025). This platform further 
provides comparative immunohistochemical (IHC) images of 
EIF3M expression in paired normal and tumor tissues. All 
aforementioned statistical analyses were conducted through 
automated computational pipelines integrated within online 
platforms. Additionally, we retrieved EIF3M expression data from 
the TCGA database across multiple cancer types, and utilized these 
datasets as the foundation to conduct disease-specific survival (DSS) 
and progression-free survival (PFS) curve analyses, as well as to 
calculate gene activity scores for EIF3M. 

2.2 Integrative analysis of EIF3M mutations 
and methylation

The cBio Cancer Genomics Portal (cBioPortal, https://
www.cbioportal.org) integrates multi-omics data, including somatic 
mutations, copy number alterations (CNAs), expression profiles 
and clinical information, enabling comprehensive analysis of 
EIF3M mutation frequencies, CNAs, and other genomic alterations 
across cancer contexts (De Bruijn et al., 2023). Furthermore, 
we calculated the tumor mutational burden (TMB) of EIF3M
across multiple cancer types using data from TCGA database 
(Endris et al., 2019). The Shiny Methylation Analysis Resource Tool 
(SMART) integrates DNA methylation data from 33 malignancies 
within TCGA database (Li et al., 2019). Its functionalities 
span single-locus CpG site analysis to pan-cancer methylation 
landscape profiling, enabling systematic investigation of CpG site 
methylation levels for EIF3M. The UALCAN database provides 
foundational data for analyzing EIF3M promoter methylation, 
integrating multi-omics datasets to explore epigenetic regulation 
in cancer contexts (Chandrashekar et al., 2022). 

2.3 Functional and pathway enrichment 
analysis based on related genes

Pathway Commons (https://www.pathwaycommons.org) is an 
integrated biological pathway database that aggregates pathway 
information from multiple sources, including KEGG, Reactome, 
BioCyc, and WikiPathways (Cerami et al., 2011). This platform 
enables the identification of gene sets exhibiting strong associations 
with EIF3M and further facilitates the analysis of differential 

expression levels of these gene sets across pan-cancer contexts. 
Enrichment Analysis (Enrichr, https://maayanlab.cloud/Enrichr) 
serves as an online platform dedicated to functional annotation and 
enrichment analysis of gene sets, integrating over 200 functional 
annotation databases (Subramanian et al., 2005). It stands as 
a cornerstone tool in functional genomics research, enabling 
the exploration of highly enriched ontological features and 
signaling pathways associated with gene sets linked to EIF3M. 
The Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING, https://cn.string-db.org) is a public database dedicated 
to predicting protein-protein interactions (PPIs) and analyzing 
functional associations (Szklarc et al., 2023). This platform 
enables the identification of proteins potentially interacting 
with EIF3M and elucidates their involvement in molecular
pathways. 

2.4 Bioinformatic analysis of predicted 
miRNAs

miRDB (https://mirdb.org), TargetScan (https://
www.targetscan.org), and miRWalk (http://mirwalk.umm.uni-
heidelberg.de) are three widely utilized databases in bioinformatics, 
all specializing in microRNA (miRNA) target prediction and 
functional analysis (Wong and Wang, 2015; Agarwal et al., 2015; 
Dweep et al., 2011). By intersecting results from these databases, 
highly credible target miRNAs and their binding sites for EIF3M
can be predicted. The Database of Differentially Expressed MiRNAs 
in Human Cancers (dbDEMC, https://www.biosino.org/dbDEMC) 
is a public repository specifically focused on cataloging differentially 
expressed microRNAs (miRNAs) in cancer (GPB, 2024). It 
integrates miRNA expression data derived from high-throughput 
studies, providing a platform for systematic investigation of 
the expression profiles of EIF3M-targeting miRNAs across 
pan-cancer contexts. The Encyclopedia of RNA Interactomes 
(ENCORI, also known as starBase, https://rnasysu.com/encori/) 
is a specialized platform for investigating regulatory interactions 
between non-coding RNAs and coding RNAs or proteins (Li et al., 
2014). It facilitates systematic exploration of EIF3M-targeting 
miRNAs, enabling pan-cancer correlation analyses between 
these miRNAs and EIF3M, as well as functional enrichment 
assessments to identify associated biological pathways or molecular
mechanisms. 

2.5 Pan-cancer investigation of EIF3M 
association with the tumor 
microenvironment

The TIMER2.0 database was employed to investigate the 
correlation between EIF3M expression and tumor-infiltrating 
immune cell abundance across pan-cancer cohorts. Processed 
data derived from the online analysis platform were extracted 
and subsequently visualized as a heatmap using GraphPad Prism 
(version 9.5). Relevant data from TCGA database were also 
extracted for StromalScore analysis, enabling further investigation 
into tumor microenvironment dysregulation caused by aberrant 
EIF3M gene expression. 
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2.6 Cell culture and transfection

The HCCLM3, MHCC97H and Hep3B were procured from 
Saiweier Biotechnology Co., Ltd. with authentication. All cell lines 
were maintained in DMEM supplemented with 10% fetal bovine 
serum (FBS, Gibco, 10091148) and 1% penicillin-streptomycin 
(Solaibio, P1400) in an incubator at 37 °C with 5% CO2. The coding 
sequences (CDS) of EIF3M,were inserted into the NheI/BamHI 
sites of the pcDNA3.1 plasmid. The siRNA duplex targeting 
EIF3M, sourced from GenePharma (A10001), was introduced 
into cells following strict adherence to the manufacturer’s 
transfection protocol to ensure precise delivery of the siRNA 
into the cellular interior. The siRNA sequences for the EIF3M
negative control group and experimental group are detailed in
Supplementary Table S1. 

2.7 Quantitative real‐time polymerase 
chain reaction (qRT‐PCR)

Total RNA was extracted from cultured tumor cells 
using a total RNA extraction kit (Omega, R6834), and the 
concentration of the purified RNA was quantified using UV 
spectrophotometry. Following the manufacturer’s protocol of 
the reverse transcription kit, the extracted RNA was reverse-
transcribed into complementary DNA (cDNA), which was 
subsequently amplified according to the instructions of the 
Plus All-in-one 1st Strand cDNA Synthesis SuperMix (gDNA 
Purge) (Novoprotein, E047-01B). The mRNA amplification 
reaction system is detailed in the Supplementary Table S2. The 
primer sequences for detecting the target gene EIF3M and the 
reference gene GAPDH in RT-qPCR experiments are listed in
Supplementary Table S3. 

2.8 Cell counting Kit-8

The Cell Counting Kit-8 (Servicebio, G4103-1 ML) 
was applied to determine tumor cell viability. Tumor cells 
were plated in 96-well plates and cultured under the 
aforementioned conditions. In compliance with the CCK-8 
assay specifications, 10 μL of CCK-8 solution mixed with 90 μL 
culture medium was administered to each well at designated 
time intervals (0 h, 24 h, 48 h, 72 h, and 96 h). Following a 
2-h incubation at 37 °C, absorbance values were recorded at 
450 nm using a microplate reader for quantitative viability
assessment. 

2.9 Colony formation assay

Tumor cells were seeded at an ultra-low density in 6-well 
culture plates and maintained in a humidified 37 °C incubator with 
5% CO2 atmosphere using complete growth medium. Cultures 
were continuously propagated for 7–14 days until microscopic 
visualization of colony formation. To sustain optimal cellular 
viability, medium replacement was performed every 3 days. At 

experimental termination, cells were gently rinsed with phosphate-
buffered saline (PBS, Servicebio, G4202-500 ML) to eliminate 
non-viable cells, followed by fixation with 4% paraformaldehyde 
(Servicebio,G1101-500 ML) for 30 min. Subsequent staining was 
conducted using 0.1% crystal violet (Servicebio, G1014-50 ML) 
solution for 30 min. Post-staining, residual background dye was 
removed by slow-flow rinsing with deionized water. After air-drying, 
plates were imaged, and colony quantification was performed 
using ImageJ (version 1.54f) software through automated particle
analysis. 

2.10 Wound healing assay

Cells in logarithmic growth phase were seeded into culture 
dishes and incubated until reaching 80%–90% monolayer 
confluency. A standardized linear wound was mechanically 
introduced using a 200 μL sterile pipette tip held perpendicular 
to the dish surface to ensure uniform scratch width. Detached 
cells and cellular debris were removed by gentle washing with 
PBS. Initial images of the scratch wound were captured at 0 h 
using a microscope to establish baseline data. The culture dishes 
were subsequently maintained in a humidified 37 °C incubator 
with 5% CO2 atmosphere, and sequential images of the same 
microscopic fields were acquired at predetermined time points 
(24 h and 48 h). Post-experiment, image analysis was performed 
using ImageJ software to quantify the temporal changes in wound
area. 

2.11 Statistical analysis

In this study, selected foundational statistical computations 
were autonomously executed through online database systems. A 
variety of online platforms and tools employ distinct statistical 
methods to assess the significance of gene or protein expression, 
methylation levels, survival correlations, and molecular interactions. 
TIMER2.0 utilizes the edgeR algorithm by default to examine 
the significance of expression differences; UALCAN, based on 
the CPTAC database, applies Student’s t-test to compare protein-
level and promoter methylation-level expression between cancerous 
and normal tissues; gene activity differential scores are typically 
evaluated using the Wilcoxon rank-sum test; GEPIA2 employs the 
Kaplan-Meier method, log-rank test, and Cox proportional hazards 
model for pan-cancer survival analysis; the Smart platform uses a 
one-sample t-test to analyze methylation level differences at specific 
CpG sites; and the ENCORI platform applies Spearman correlation 
analysis to assess the relationship between miRNA and EIF3M. For 
intergroup comparative analyses of cell phenotypic experimental 
data, a two-way analysis of variance (Two-way ANOVA) was 
implemented on the GraphPad Prism software. Results attaining 
this critical value were designated as demonstrating statistically 
significant differences. In this study, a threshold of p ≤ 0.05 was 
applied for all statistical comparisons to determine significant 
differences. The results of statistical analyses are annotated in 
the figures using the following symbols: ns (p > 0.05, not 
significant), ∗(p ≤ 0.05), ∗∗(p ≤ 0.01), ∗∗∗(p ≤ 0.001), and ∗∗∗∗

(p ≤ 0.0001). 
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3 Result

3.1 Pan-tissue expression and subcellular 
distribution

On the HPA integrated analysis platform, the RNA-seq data 
from HPA and GTEx databases were standardized and integrated to 
analyze the expression levels of EIF3M. Joint analysis revealed that 
EIF3M exhibits low tissue specificity, with no significant abnormal 
expression levels detected in any specific tissue among the 50 normal 
tissues (Supplementary Figure S1A). Furthermore, our analysis of 
EIF3M’s subcellular localization profile revealed its predominant 
localization within the cytosol (Supplementary Figure S1B). 
Immunofluorescence analysis of A-431, U2OS, and U-
251MG tumor cells further corroborated this observation
(Supplementary Figure S1C). 

3.2 Comprehensive characterization of 
EIF3M expression across across human 
malignancies

Initially, we conducted a preliminary analysis of the expression 
levels of EIF3M in pan-cancer using the TIMER2.0 database based 
on TCGA data. The results demonstrated that EIF3M exhibited 
significantly elevated expression levels in the majority of human 
malignancies compared to their corresponding normal tissues 
(Figure 1A). To enhance the readability of the article, we have 
compiled the abbreviations and full names of all cancer types 
mentioned in this study, in accordance with the nomenclature 
standards of TCGA, as presented in Table 1. In CHOL, COAD, 
ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, PRAD, READ, and 
STAD, the mRNA expression level of EIF3M exhibits a statistically 
significant upregulation across all these cancer types. We also 
observed that EIF3M expression was significantly downregulated 
in tumor tissues of KICH, PCPG, THCA, and UCEC. To address 
the limitation of limited availability of matched normal tissue 
expression data for certain cancer types within TCGA database, 
we propose an integrated analysis strategy combining data from 
TCGA and the Genotype-Tissue Expression (GTEx) project. This 
approach aims to more comprehensively evaluate the differential 
expression patterns of EIF3M across diverse tumor entities. The 
findings from this part of the study indicate that after further 
increasing the number of samples included in the research, EIF3M
exhibited significantly higher expression levels in tumor tissues 
compared to normal tissues across the following cancer types: 
CHOL, COAD, DLBC, GBM, LGG, LIHC, PAAD, READ, TGCT, 
and THYM. However, in LAML and PCPG, EIF3M expression 
displayed the opposite trend, showing significantly lower levels 
in tumor tissues compared to normal tissues (Figure 1B). To 
further validate the expression characteristics of EIF3M at the 
post-transcriptional regulatory level, we systematically evaluated 
the protein-level expression patterns of EIF3M across multiple 
cancer types on the GEPIA2 platform using proteomics data from 
the CPTAC database. Through analysis, it has been observed 
that EIF3M exhibits significant expression abnormalities across 
multiple malignant tumor types. Specifically, in BRCA, COAD, 
GBM, HNSC, LIHC, LUAD, LUSC, and OV, protein expression 

levels of EIF3M demonstrate statistically significant upregulation 
compared to corresponding normal tissues. Conversely, in PAAD, 
a pattern of downregulated expression is observed. Through 
integrated analysis of immunohistochemistry data from the HPA 
database, we further validated the abnormal expression pattern of 
EIF3M (Figure 2A). Quantitative evaluation revealed statistically 
significant upregulation of EIF3M protein levels in LUAD, LIHC, 
THCA, PAAD, and UCEC compared with their corresponding 
normal tissues (Figure 2B). The immunohistochemistry sample 
information sourced from the HPA database is presented in 
Supplementary Table S4. Finally, to comprehensively characterize 
the transcriptional and regulatory networks of EIF3M in pan-cancer, 
we systematically integrated multi-dimensional omics data from the 
TCGA database for gene activity scoring analysis of EIF3M. Pan-
cancer analysis revealed that EIF3M exhibited significantly elevated 
gene activity scores across 15 tumor types, including BLCA, BRCA, 
CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LIHC, 
LUAD, PRAD, READ, and UCEC. Notably, in PCPG, the gene 
activity score was significantly lower compared to matched normal 
tissues, presenting a striking contrast (Supplementary Figure S2). 
The grouping and sample information utilized for each cancer 
type in the gene activity score analysis are presented in
Supplementary Table S5.

3.3 Prognostic value of EIF3M in various 
tumors

Tumor staging serves as one of the most pivotal indicators 
for predicting prognosis in cancer patients, with later-stage disease 
typically correlating with shorter survival duration and elevated 
recurrence risk (Sung et al., 2021). Therefore, we investigated 
the correlation between EIF3M expression levels and patients’ 
clinical staging. In KIRP, LIHC, and LUAD, higher tumor stages 
demonstrated a significant positive correlation with elevated 
EIF3M expression levels, while in SKCM, an opposing negative 
correlation trend was observed (Supplementary Figure S3A). To 
systematically evaluate the biological significance of EIF3M in 
prognosis across multiple cancer types, we performed survival 
curve analysis using the GEPIA2 database to investigate the 
clinical relevance between its expression levels and patient survival 
outcomes. In this part of the study, we stratified EIF3M expression 
levels into high and low groups using the median value as the 
cutoff. Our analysis revealed that elevated EIF3M expression 
was significantly associated with shorter overall survival (OS) in 
patients with ACC, HNSC, KICH, LIHC, LUAD, and PAAD. 
Conversely, an opposite prognostic trend was observed in KIRC 
and READ, where high EIF3M expression correlated with improved 
survival outcomes (Figure 3A). Pan-cancer analysis of disease-
free survival (DFS) revealed that elevated EIF3M expression 
was significantly associated with shortened DFS in patients with 
ACC, LUAD, and PAAD. Conversely, an inverse correlation was 
observed in KIRC, where high EIF3M expression correlated 
with prolonged DFS (Figure 3B). To conduct a comprehensive 
analysis of the association between EIF3M expression levels and 
survival outcomes, we utilized data from TCGA to supplement 
our investigation into correlations between EIF3M expression 
and disease-specific survival (DSS) as well as progression-free 
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FIGURE 1
Expression levels of EIF3M across various tumor tissues. (A) On the TIMER2 platform, based on the TCGA database, the mRNA expression levels of 
EIF3M in various tumor tissues and specific tumor subtypes compared to normal tissues. (B) Corresponding analysis based on the TCGA database and 
GTEx datasets to analyze the expression differences of EIF3M mRNA levels between various tumor tissues and normal tissues.

survival (PFS) across pan-cancer cohorts. The analysis revealed 
that elevated EIF3M expression correlates with significantly shorter 
DSS in ACC, KICH, LIHC, LUAD, and PCPG. Conversely, in 
THYM and UVM, elevated EIF3M expression was associated 
with prolonged DSS (Supplementary Figure S3B). We also observed 
a significant correlation between EIF3M expression levels and 
PFS in patients with various malignant tumors. Survival analysis 

revealed that patients with high EIF3M expression exhibited 
significantly shorter PFS in ACC, KICH, KIRP, LIHC, LUAD, and 
PAAD. Conversely, in UVM and SKCM, high EIF3M expression 
demonstrated a trend toward improved prognostic outcomes 
(Supplementary Figure S3C). Detailed data on hazard ratios (HR) 
with 95% confidence intervals and p‑values for DSS and PFS analyses 
are provided in Supplementary Table S6.
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TABLE 1  The cancer types mentioned in the article.

Abbreviation Full name Abbreviation Full name

ACC Adrenocortical carcinoma LUAD Lung adenocarcinoma

BLCA Bladder Urothelial Carcinoma LUSC Lung squamous cell carcinoma

BRCA Breast invasive carcinoma OV Ovarian serous cystadenocarcinoma

CHOL Cholangiocarcinoma PAAD Pancreatic adenocarcinoma

COAD Colon adenocarcinoma PCPG Pheochromocytoma and Paraganglioma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma PRAD Prostate adenocarcinoma

ESCA Esophageal carcinoma READ Rectum adenocarcinoma

GBM Glioblastoma multiforme SARC Sarcoma

HNSC Head and Neck squamous cell carcinoma SKCM Skin Cutaneous Melanoma

KICH Kidney Chromophobe STAD Stomach adenocarcinoma

KIRC Kidney renal clear cell carcinoma TGCT Testicular Germ Cell Tumors

KIRP Kidney renal papillary cell carcinoma THCA Thyroid carcinoma

LAML Acute Myeloid Leukemia THYM Thymoma

LGG Brain Lower Grade Glioma UCEC Uterine Corpus Endometrial Carcinoma

LIHC Liver hepatocellular carcinoma UVM Uveal Melanoma

3.4 The gene mutation and epigenetic 
modification of EIF3M

Firstly, utilizing the cBioPortal analysis platform, select pan-
cancer whole genome data from TCGA and the International 
Cancer Genome Consortium (ICGC) to construct the genetic 
alteration profile of EIF3M. Analysis of cancer types with sample 
sizes exceeding 10 cases revealed that BRCA, COAD, and HNSC 
exhibited the highest mutation frequencies. The EIF3M exhibits 
heterogeneous mutation frequencies across different cancer 
types: its highest mutation rate is observed in BRAC (6.64%), 
predominantly driven by Amplification (6.16%) with a minor 
contribution from Mutations (0.47%). In COAD, the overall 
mutation frequency is 5.77%, where Mutations account for a higher 
proportion (3.85%) compared to Amplification (1.92%). In HNSC, 
all mutational events are exclusively attributed to Amplification 
(5.36%) (Figure 4A). We also identified 9 missense mutation sites 
on EIF3M (Figure 4B). The mutation site sample information 
based on the cBioPortal platform is summarized in Supplementary 
Table S7. In-depth analysis revealed that patients harboring EIF3M
alterations exhibited significantly higher tumor mutational burden 
(TMB) levels compared to those without EIF3M alterations 
(Figure 4C). To systematically evaluate the association between 
EIF3M expression and TMB, we stratified TCGA cohorts into high- 
and low-expression groups based on median EIF3M expression 
levels. The analysis revealed significant positive correlations in 
ACC, CHOL, HNSC, LAML, LGG, LIHC, PAAD, PRAD, SKCM, 
STAD, THYM, and UCEC (Figure 4D). In extended analyses, we 

systematically evaluated the DNA methylation profiles of EIF3M
across pan-cancer cohorts, unveiling its epigenetic regulatory 
landscape. Comprehensive analysis revealed that CpG-dense regions 
displayed hypomethylation in BLCA, BRCA, COAD, HNSC, LIHC, 
LUAD, LUSC, PRAD, and READ compared to matched adjacent 
normal tissues. However, in KIRC, KIRP, THCA, and UCEC, 
CpG-dense regions exhibited significantly elevated methylation 
levels (Figure 4E). Promoter methylation, serving as one of the 
central mechanisms in epigenetic regulation, plays a pivotal role in 
transcriptional control. Pan-cancer analysis conducted through the 
ULCAN platform revealed hypomethylation in promoter regions 
of BLCA, ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, TGCT, 
and UCEC compared to matched adjacent normal tissues, while 
COAD and PAAD demonstrated significant hypermethylation 
(Figure 4F). The grouping and sample information for CpG-dense 
regions and promoter methylation across various cancer types are 
presented in Supplementary Tables S8, 9.

3.5 Functional and pathway enrichment 
analysis of genes related to EIF3M

Based on the Pathway Commons biological pathway integration 
analysis platform, the characteristics of the EIF3M interaction 
network were systematically analyzed through standardized 
annotation of multi-source molecular interaction data. A curated set 
of candidate genes exhibiting significant interactions with EIF3M
was identified, including EIF5, METTL3, PRPF8, DHRS2, ESR2, 
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FIGURE 2
The protein expression levels of EIF3M across various tumor tissues. (A) Based on CPTAC data, analyze the protein expression differences between 
multiple tumor tissues and normal tissues. (B) Immunohistochemical images of EIF3M protein expression in multiple tumor and normal tissues.

STOML2, EEF2, ESR1, SEPTIN7, PSMD12, PRNP, SEMA7A, 
ODF2, RECQL4, G3BP1, SMN1, SMN2, UBB, ANGEL1, G3BP2, 
NP2C2, ANXA1, SAFB, and PSPC1 (Supplementary Figure S4A). 
Based on the GEPIA2 analysis platform, a systematic evaluation 

of the expression profiles of the aforementioned gene set in pan-
cancer and normal tissues was conducted. The results demonstrated 
that EEF2, G3BP1, G3BP2, PRPF8, RECQL4, STOML2, and UBB 
exhibited significantly higher expression levels in the majority 
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FIGURE 3
The correlation between EIF3M expression levels and patient survival rates. The analysis of EIF3M expression in relation to (A) overall survival and (B)
disease-free survival in patients was conducted using the TCGA database via the GEPIA2 platform.

of tumor tissues, whereas METTL3 and NR2C2 showed a 
widespread downregulation trend (Supplementary Figure S4B). 
To further elucidate the underlying biological functions and 
regulatory pathways in which the aforementioned gene set 
may be involved, this gene set was submitted to the Enrichr 
online analysis platform for enrichment analysis. In pathway 
enrichment analyses analysis, EIF3M-associated gene sets are 
closely related to biological processes such as gene expression, 
nuclear receptors and nuclear receptors transcriptional pathways 
in BioPlanet. Reactome pathway analysis revealed that these genes 
were significantly enriched in the Nuclear Receptor Transcription 
Pathway, Regulation of RUNX2 Expression and Activity, and 
MAPK6 MAPK4 Signaling (Supplementary Figure S4C). Ontolo

gical analysis revealed that the EIF3M gene set demonstrated 
significant enrichment in specific biological processes and molecular 
functions. Within the GO Biological Process category, this gene set 
exhibited pronounced enrichment in estrogen receptor signaling 
pathway, regulation of stress granule assembly and membraneless 
organelle assembly. Concurrently, in the GO Molecular Function 
domain, it showed marked enrichment profiles for estrogen 
response element binding, nuclear steroid receptor activity 
and mRNA binding capabilities (Supplementary Figure S4D). 
STRING is an essential bioinformatics platform for studying 
protein-protein interactions (PPI). On this platform, 10 proteins 
with high interaction with EIF3M have been identified: 
EIF3A, EIF3B, EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, 
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FIGURE 4
Mutations and epigenetic alterations of EIF3M in pan-cancer cells. (A) Mutation frequency and types of EIF3M. (B) Nine missense mutation sites in the 
EIF3M gene. (C) Tumor Mutational Burden score comparison between EIF3M-mutated and EIF3M-unmutated tumor groups. (D) Expression level 
differences of EIF3M in relation to Tumor Mutational Burden score across pan-cancer studies. (E) Differential expression of EIF3M in tumor tissues 
compared to normal tissues and its association with methylation alterations. (F) Analyze promoter methylation level differences in tumor tissues 
compared to normal tissues based on data from the UALCAN database.
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EIF3I and EIF3K (Supplementary Figure S4E). Gene Ontology 
(GO) analysis demonstrated significant enrichment in the 
molecular function category for terms including translational 
initiation activity, RNA binding, translation initiation factor 
binding, and metal-dependent deubiquitinase activity. Within 
biological processes, the most prominently enriched term 
was formation of cytoplasmic translation initiation complex
(Supplementary Figure S4F). 

3.6 Bioinformatic prediction and functional 
enrichment analysis of EIF3M-Regulating 
miRNAs

miRNAs serve as key regulators in post-transcriptional 
regulation, and fluctuations in their expression levels can profoundly 
influence target gene expression. Therefore, investigating miRNAs 
targeting EIF3M holds substantial research significance. A tri-
platform screening strategy integrating miRDB, miRWalk, and 
TargetScan predictions was employed to identify EIF3M-targeting 
miRNAs. Venn analysis demonstrated 41 consensus miRNAs shared 
across all databases, representing a high-confidence candidate set 
with multi-algorithmic validation (Supplementary Figure S5A). 
Using pan-cancer analysis heatmaps generated by the dbDEMC 
platform, we identified hsa-miR-139-5p, hsa-miR-199a-3p and 
hsa-miR-199b-3p as candidate miRNAs through expression 
profiling screening (Supplementary Figure S5B). Bioinformatics 
analysis revealed that hsa-miR-139-5p targets the CDS region of 
EIF3M, while hsa-miR-199a-3p and hsa-miR-199b-3p specifically 
interact with its 3′UTR (Figure 5A). Detailed complementary 
sequences and predicted secondary structures for these miRNA-
EIF3M interactions are shown in Figure 5B-C. Next, these three 
filtered core miRNAs were imported into the ENCORI platform 
to further investigate whether their expression patterns are 
correlated with EIF3M across pan-cancer contexts. The results 
revealed that, among the 12 cancer types where hsa-miR-139-
5p exhibited significant correlation with EIF3M expression, 9 
cancers (BRAC, COAD, LGG, LIHC, LUAD, PAAD, PRAD, 
READ, STAD) displayed a negative correlation in their expression 
patterns (Figure 5D). For hsa-miR-199a-3p and hsa-miR-199b-
3p, among the 12 cancer types showing significant correlation 
with EIF3M, 9 cancers (COAD, HNSC, LGG, OV, PRAD, READ, 
TGCT, THCA, UCEC) demonstrated a negative correlation in their 
expression (Figure 5E; Supplementary Figure S6A). To elucidate 
the molecular mechanisms and underlying biological processes 
of hsa-miR-139-5p, hsa-miR-199a-3p, and hsa-miR-199b-3p, we 
systematically conducted functional enrichment analysis utilizing 
the ENCORI database. KEGG pathway and Disease Ontology 
analyses revealed that, out of the 10 significantly associated 
pathways for hsa-miR-139-5p, 6 were directly linked to cancer. 
Notably, this miRNA also exhibited regulatory associations with 
the p53 signaling pathway and focal adhesion pathway—both 
critically implicated in tumorigenesis. Further GO functional 
module analysis demonstrated that at the Biological Process, this 
molecule primarily enriched in biological metabolism-related 
processes, while at the Molecular Function, it showed significant 
involvement in RNA-binding (Table 2). KEGG pathway and disease 

ontology analyses revealed that hsa-miR-199a-3p and hsa-miR-
199b-3p are significantly enriched in cancer-related signaling 
pathways. Additionally, GO functional analysis indicated that, at 
the levels of biological processes and molecular functions, these two 
miRNAs are primarily involved in metabolic biosynthesis processes, 
nucleic acid binding, and transcriptional regulation functions 
(Table 3; Supplementary Table S10).

3.7 Analysis of immune infiltration 
characteristics of EIF3M in the tumor 
microenvironment

The study of TIME represents a central paradigm in the fields of 
cancer biology and immunotherapy. To investigate whether aberrant 
expression of EIF3M induces alterations in immune cell levels, we 
conducted further exploration using the TIMER 2.0 data analysis 
platform. As shown in Figure 6, cancer types showing significant 
positive correlations with B cells include THCA, Sarcoma (SARC), 
PRAD, KIRC, and LIHC, primarily involving plasma cells and 
memory B cell subsets. Notable negative correlations are observed 
in KIRC, LGG, THYM, and LUAD. For cancer-associated fibroblasts 
(CAFs), LIHC exhibits the only significant positive correlation, 
while BLCA, HNSC, LUSC, PRAD, SARC, THCA, and UVM show 
significant negative correlations. CD8+ T cells demonstrate strong 
positive correlations with THYM, SKCM, UVM, PCPG, and LIHC, 
but negative correlations with PRAD, TGCT, LUSC, and KIRC. M1 
macrophages display significant positive associations with BRCA, 
HNSC, and LUAD, but a strong negative correlation with THCA. 
Conversely, M2 macrophages show positive correlation with LIHC 
and negative correlations with KIRC, LUAD, and THCA. All 
significant MDSC correlations are positive, including LIHC, COAD, 
HNSC, and LUAD. NK cells exhibit significant negative correlations 
with LUAD, LGG, THCA, COAD, GBM, and PRAD, but positive 
correlations with KIRP, TGCT, and LIHC. We evaluated the 
immune scores of EIF3M in pan-cancer using the TCGA database. 
StromalScore demonstrated correlations with EIF3M expression 
across multiple cancer types, including ACC, BRCA, COAD, GBM, 
HNSC, LAML, LGG, LIHC, LUAD, OV, PAAD, PRAD, READ, 
SARC, SKCM, STAD, THCA, UCEC, and UVM. Conversely, 
for ImmuneScore, statistically significant correlations with EIF3M
expression were observed only in ACC, CHOL, COAD, DLBC, 
LAML, LGG, OV, READ, SKCM, THCA, and UVM as shown in
Supplementary Table S11.

3.8 EIF3M promotes HCC progression by 
enhancing proliferation and migration

Through integrated analysis of multi-omics data, we identified 
a significant correlation between EIF3M expression dysregulation 
and tumor progression, suggesting its functional involvement in 
this process. To elucidate the functional role of EIF3M in tumor 
progression, we assessed the regulatory effects of its dysregulated 
expression on the core biological behaviors of tumor cells. To 
address this objective, this study employed well-characterized HCC 
cell lines as experimental models to investigate and elucidate the 
critical knowledge gap regarding the functional role of EIF3M
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FIGURE 5
Identification of miRNAs binding sites and pan-cancer analysis of their correlation with EIF3M expression. (A–C) Prediction of miRNA binding sites 
targeting EIF3M. Correlation between (D) hsa-miR-139-5p and (E) hsa-miR-199a-3p with EIF3M expression across various cancers.

expression patterns in the biological behavior of HCC. This 
study initially established EIF3M knockdown and overexpression 
cell models in three typical hepatocellular carcinoma cell lines 

(MHCC97H, Hep3B, and HCCLM3), and systematically verified 
gene expression levels at the mRNA level using qRT-PCR, 
thereby laying a reliable experimental foundation for subsequent 
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TABLE 2  Top five miRNA-target interactions in enrichmentanalysis of hsa-miR-139-5p.

pathwayName log10(p-val) log10(FDR)

KEGG

KEGG_Pathways_In_Cancer −26.28905 −24.07157

KEGG_P53_Signaling_Pathway −13.50613 −11.58968

KEGG_Neurotrophin_Signaling_Pathway −13.28473 −11.54437

KEGG_Small_Cell_Lung_Cancer −12.86315 −11.42381

KEGG_Focal_Adhesion −13.03558 −11.42015

Disease ontology

Of_Gene-disease_Association −46.5856 −43.78903

In_Breast_Cancer −35.1121 −32.61655

Of_Cancer −31.69575 −29.3763

In_Tumors −29.8869 −27.69239

In_Prostate_Cancer −19.47485 −17.37725

Biological processe

GOBP_Negative_Regulation_Of_Biosynthetic_Process −88.24621 −84.78494

GOBP_Negative_Regulation_Of_Nucleobase_Containing_Compound_Metabolic_Process −88.41281 −84.65051

GOBP_Positive_Regulation_Of_Biosynthetic_Process −87.6268 −84.34162

GOBP_Cellular_Macromolecule_Localization −85.7862 −82.72287

GOBP_Positive_Regulation_Of_Nucleobase_Containing_Compound_Metabolic_Process −85.80708 −82.64683

Molecular function

GOMF_Enzyme_Binding −87.98419 −84.93381

GOMF_Transcription_Regulator_Activity −74.3217 −71.57235

GOMF_Rna_Binding −70.21378 −67.64052

GOMF_Sequence_Specific_Dna_Binding −63.87299 −61.42467

GOMF_Ribonucleotide_Binding −58.92984 −56.57843

functional studies (Figure 7A). To investigate the impact of 
EIF3M expression levels on the proliferative activity of HCC 
cells, functional validation was conducted in this study using 
the CCK-8 cell proliferation assay and colony formation assay. 
The experimental results demonstrated that EIF3M overexpression 
significantly enhanced the proliferative capacity of hepatocellular 
carcinoma cells, while EIF3M knockdown resulted in a marked 
reduction in tumor cell proliferation (Figure 7B). Furthermore, 
EIF3M expression level exhibited a positive correlation with colony 
formation efficiency, as evidenced by the significantly increased 
number of cell colonies formed in the overexpression group. 
Conversely, attenuation of EIF3M expression led to pronounced 
inhibition of colony-forming ability (Figure 7C). Simultaneously, 

the impact of EIF3M expression on cell migration capacity was 
evaluated, revealing a positive correlation between migration 
ability and EIF3M expression levels. Scratch wound healing assays 
demonstrated that EIF3M overexpression significantly promoted 
wound closure rate. Conversely, suppression of EIF3M expression 
resulted in marked inhibition of cellular migratory activity, 
accompanied by prolonged wound healing duration (Figure 8A,B). 
To investigate the potential mechanisms by which EIF3M influences 
HCC cells, we performed KEGG pathway analysis. Among the top 
ten pathways ranked by enrichment score (Supplementary Table 
S12), the KEGG_WNT_SIGNALING_PATHWAY was identified 
as highly relevant to the initiation, progression, and malignant 
behavior of HCC. To explore potential interacting factors, we 
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TABLE 3  Top five miRNA-target interactions in enrichmentanalysis of hsa-miR-199a-3p.

pathwayName log10(p-val) log10(FDR)

KEGG

KEGG_Mapk_Signaling_Pathway −18.92645 −16.71426

KEGG_Pathways_In_Cancer −17.77964 −15.86848

KEGG_Focal_Adhesion −17.2644 −15.52934

KEGG_Regulation_Of_Actin_Cytoskeleton −16.42243 −14.81231

KEGG_Neurotrophin_Signaling_Pathway −15.26997 −13.75675

Disease ontology

Of_Gene-disease_Association −41.53348 −38.78607

In_Tumors −27.73465 −25.28827

In_Breast_Cancer −26.93135 −24.66106

In_Prostate_Cancer −19.16659 −17.02123

Of_Cancer −17.2255 −15.17706

Biological processe

GOBP_Positive_Regulation_Of_Nucleobase_Containing_Compound_Metabolic_Process −76.63465 −72.89516

GOBP_Positive_Regulation_Of_Biosynthetic_Process −75.26942 −71.83096

GOBP_Cellular_Macromolecule_Localization −73.59791 −70.33554

GOBP_Regulation_Of_Intracellular_Signal_Transduction −68.97741 −65.83997

GOBP_Regulation_Of_Protein_Modification_Process −66.87656 −63.83603

Molecular function

GOMF_Enzyme_Binding −68.4878 −65.45357

GOMF_Transcription_Regulator_Activity −55.59786 −52.86466

GOMF_Identical_Protein_Binding −52.29043 −49.73332

GOMF_Rna_Binding −49.7899 −47.35773

GOMF_Sequence_Specific_Dna_Binding −47.83628 −45.50103

intersected the EIF3M-correlated gene set (Supplementary Table 
S13) with genes enriched in the KEGG_WNT_SIGNALING_
PATHWAY, which led to the identification of FZD2 as a key 
candidate regulator. 

4 Discussion

EIF3M, as a core structural subunit of the eIF3 complex, 
exhibits widespread expression of its encoded gene product across 
various tissues. It plays a critical regulatory role in the initiation 
stage of eukaryotic protein synthesis by mediating the assembly 

process of the 43S pre-initiation complex (43S PIC) (Gomes-
Duarte et al., 2018). Recent studies have progressively unveiled 
the critical regulatory role of the EIF3M in tumorigenesis and 
progression. Its dysregulated expression has been substantiated to 
correlate with malignant progression and adverse clinical outcomes 
in various solid tumors, including but not limited to LUAD, 
LUSC, PRAD, and BRCA (9,10,12). However, the regulatory 
mechanisms governing EIF3M’s dysregulated expression in cancer 
and its associated biological functions remain poorly understood, 
necessitating further in-depth investigation (Yin et al., 2018). To 
bridge this gap, our pan-cancer multi-omics analysis revealed that 
EIF3M is frequently overexpressed and genomically altered across 
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FIGURE 6
Heatmap of the correlation between EIF3M expression and infiltration of various immune cells.

cancer types, which correlates with unfavorable patient outcomes. 
We further elucidated its involvement in epigenetic modulation, 
miRNA-mediated regulatory networks, and remodeling of the 
TIME. These findings not only deepen the understanding of 
EIF3M’s oncogenic role but also highlight its potential as a 
prognostic biomarker and therapeutic target. To functionally 
validate these observations, we have successfully established both 
EIF3M overexpression and knockdown cellular models. Functional 
experiments using these models have confirmed that EIF3M 
significantly promotes tumor cell proliferation and migration.

In the present study, based on transcriptome data analysis from 
TCGA and GTEx databases, identified significant differential mRNA 
expression of the EIF3M across 12 tumor types: CHOL, COAD, 
DLBC, GBM, LGG, LIHC, PAAD, READ, TGCT, THYM, LAML, 
and PCPG. Furthermore, protein expression analysis revealed 
significant differential expression of this gene in 9 malignancies: 
BRCA, COAD, GBM, HNSC, LIHC, LUAD, LUSC, OV, and PAAD. 
Integrated analysis revealed concordant upregulation of EIF3M 
expression at both mRNA and protein levels in COAD, GBM, 
and LIHC. This dual aberrant overexpression pattern suggests its 
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FIGURE 7
The impact of EIF3M expression on the proliferative capacity of HCC cell lines. (A) RT-qPCR validation of EIF3M overexpression and knockdown models 
in three HCC cell lines. Results of (B) CCK-8 assay and (C) colony formation assay for three cell lines with differential EIF3M expression levels in vitro.

potential role as a critical driving factor in the pathogenesis of these 
three malignancies. Furthermore, the cross-omics expression profile 
demonstrates promising utility as a high-performance diagnostic 

biomarker for these cancers. This study also uncovered a unique 
molecular expression signature of EIF3M in PAAD: its mRNA 
levels exhibit an inverse relationship with protein abundance 
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FIGURE 8
Results of wound healing assay. Results of (A) wound healing assay and corresponding (B) statistical analysis for the three cell lines with differential 
EIF3M expression levels.

compared to normal tissues. This paradoxical regulatory pattern 
suggests EIF3M may undergo complex post-transcriptional control 
mechanisms, including miRNA-mediated translational repression 
and ubiquitin-proteasome system-dependent protein degradation. 
These regulatory pathways likely underpin its pro-tumorigenic role 
in cancer initiation and progression. Notably, this discovery provides 
a critical molecular framework for developing precision therapeutic 
strategies targeting EIF3M in oncology, holding substantial promise 
for clinical translation. To explore evidence supporting EIF3M 
as a novel tumor diagnostic marker and prognostic predictor, 
we conducted an exploration and discussion by systematically 
analyzing the correlation between EIF3M expression levels and 
tumor Stage. The results revealed that in KIRP, LIHC, and LUAD, 
EIF3M expression levels exhibited a positive correlation trend with 
tumor Stage, whereas EIF3M expression was significantly lower in 
advanced-stage SKCM patients compared to early-stage cases. These 
complex findings suggest that during tumor progression, genomic 
instability drives spatiotemporal fluctuations in EIF3M expression 
levels, which are dynamically regulated through multilayered 
networks to adapt to the tumor microenvironment. This adaptive 
process likely involves functional reprogramming of oncogenic 
mechanisms, enabling cancer cells to reshape their biological 
functions in response to evolutionary pressures (Jardim et al., 2025; 
Alonso et al., 2025). Through multidimensional survival analysis, 
we further evaluated the clinical association of EIF3M expression 

levels with OS, DFS, DSS, and PFS. After screening cancer types 
with ≥3 statistically significant survival indicators, we identified 
that high EIF3M expression in ACC and LUAD was significantly 
associated with poor patient prognosis. In KICH and LIHC, 
patients with elevated EIF3M levels exhibited worsening trends 
in OS, DSS, and PFS. Similarly, in PAAD, EIF3M overexpression 
demonstrated statistically significant inverse associations with OS, 
DFS, and PFS outcomes. The integrated analysis of expression-
prognosis correlation patterns confirms that differential EIF3M 
expression serves as a pan-cancer diagnostic and prognostic 
biomarker (Zhou et al., 2025). To provide a comprehensive overview 
of the expression alterations of EIF3M across various cancer 
types and its association with patient prognosis, the corresponding 
findings are systematically summarized in Table 4. This discovery 
not only establishes a theoretical foundation for developing clinical 
prediction models but also provides a novel entry point for 
advancing the clinical translation of EIF3M-based therapeutic 
strategies, thereby bridging the evidence chain from mechanistic 
research to practical applications.

In tumor biology, the mutation frequency of oncogenes, 
DNA methylation levels, and miRNA-mediated regulatory 
networks collectively drive tumorigenesis and progression 
through distinct molecular layers (Yang et al., 2021). These 
interconnected mechanisms form the basis of tumor heterogeneity, 
and investigating these axes provides critical insights into the 
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TABLE 4  Expression changes of EIF3M across cancers and their prognostic associations.

Expression level EIF3M expression High expression & prognosis

Low expression High expression Protective factor Risk factor

Cancer type

KICH BRCA LUAD KIRC ACC

LAML CHOL LUSC READ HNSC

PAAD COAD OV THYM KICH

PCPG ESCA PRAD SKCM LIHC

THCA GBM READ UVM LUAD

UCEC HNSC STAD PAAD

KIRC PCPG

LIHC KIRP

biological functions of genes in cancer development. Pan-cancer 
genomic analysis revealed that the EIF3M exhibits frequent 
genomic alterations across 15 major malignancies, with BRCA, 
COAD, and HNSC showing particularly high mutational rates. 
Amplification represents the predominant alteration type for 
this gene. Our pan-cancer TMB analysis identified a significant 
correlation between EIF3M expression levels and TMB status in 
12 malignancies. Furthermore, tumors with EIF3M mutations 
exhibited significantly elevated TMB scores compared to wild-
type counterparts. Integrating mutation frequency and TMB data 
enables the evaluation of genomic instability in patients, providing 
a scientific rationale for developing personalized therapeutic 
strategies (Zy et al., 2024; Sholl et al., 2020). CpG methylation 
analysis of the EIF3M revealed significant differences in methylation 
levels between 13 cancer types and normal tissues. Notably, 
promoter region assessment demonstrated aberrant methylation 
patterns in 12 of these malignancies. In most cancer types, 
EIF3M exhibits hypomethylation patterns relative to normal 
tissues, and this epigenetic alteration correlates with its consistent 
overexpression observed in tumors (Gomes-Duarte et al., 2018). 
This inverse relationship aligns with the well-established role of 
DNA methylation as a transcriptional repressor in cells (Zhou et al., 
2025; Ji et al., 2022). MiRNAs play a pivotal role in gene expression 
regulation and may provide critical clues for elucidating novel 
regulatory mechanisms of oncogenes (Alexander et al., 2025). 
Our pan-cancer analysis identified three miRNAs that target 
EIF3M and show a significant negative correlation with its 
expression. In most cancer types, EIF3M expression is negatively 
correlated with these targeting miRNAs, which is consistent 
with its significant overexpression in tumor tissues compared 
to normal counterparts (Liu et al., 2021; Zhou et al., 2025). 
Integrative analysis of genetic mutations, methylation, and 
miRNAs transcends the limitations of the traditional “driver 
mutation” paradigm by enabling multi-layered integration of 
epigenetic-transcriptomic-genomic data. This approach uncovers 
the dynamic interplay among these three elements within 
regulatory networks, thereby offering a novel paradigm for 

cancer mechanism research, precision diagnostics, and targeted
therapeutics.

Genes do not operate in isolation. Therefore, systematically 
investigating the coordinated regulatory mechanisms within 
complex oncogenic networks is crucial. It holds the potential 
to elucidate core molecular networks that govern oncogenic 
reprogramming by driver genes and immune evasion during 
tumorigenesis and progression. This understanding will provide 
a theoretical foundation for deciphering the evolutionary principles 
of tumor heterogeneity and progression dynamics (Singh et al., 
2019). Using the Pathway Commons database, we identified 
a regulatory module of 24 genes with significant molecular 
interactions with EIF3M. We then systematically constructed a 
pan-cancer expression atlas for this gene set and their normal 
tissue counterparts. Transcriptomic profiling revealed that EIF3M-
associated genes (e.g., EEF2, G3BP1, G3BP2, PRPF8, RECQL4, 
STOML2, and UBB) are widely dysregulated in tumors. GSEA 
revealed that this gene cohort is significantly enriched in functional 
modules related to transcriptional regulation and core signaling 
pathways. Next, we built a protein-protein interaction network 
using the STRING database and identified 10 core proteins that 
directly interact with EIF3M, all belonging to the EIF3 family. 
Functional annotation confirmed that this protein cluster is also 
highly enriched in GO terms associated with transcriptional 
regulation. The findings from this section demonstrate a multi-
dimensional collaborative network map of EIF3M in tumorigenesis 
and progression, providing crucial evidence for systematically 
analyzing its mediated biological processes and precisely identifying 
key signaling axes. This analysis reveals the topological structure 
of the protein interaction network centered on EIF3M as a core 
node, which transcends the limitations of traditional single-factor 
studies. These results establish a foundation for deciphering the 
functional plasticity of EIF3M in the context of tumor heterogeneity 
and developing potential therapeutic targets.

The TIME, a complex ecosystem composed of tumor cells, 
surrounding immune cells, stromal components, and signaling 
molecules, serves not only as a pivotal key to understanding the 
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essence of tumor biology but also as an indispensable pathway 
to transcend current therapeutic barriers and achieve precision 
medicine (Jin et al., 2023). By dissecting the intricate regulatory 
networks within TIME, we can furnish theoretical foundations 
for the development of novel immunocombination therapies, the 
overcoming of drug resistance, and the realization of individualized 
treatment strategies (Liu N. et al., 2025). Recent studies have 
progressively unveiled the central role of the EIF3 family in 
shaping the tumor immune microenvironment. Multiple EIF3 
subunits—including B, D, and F—mediate immunosuppressive 
functions through multidimensional mechanisms such as exosomal 
sorting, metabolic reprogramming, and regulation of gene 
expression, collectively promoting immune microenvironment 
remodeling and resistance to immunotherapy (Zhang et al., 
2025; Zhou et al., 2024; Lu et al., 2024). In studies focused on 
hepatocellular carcinoma and melanoma, elevated expression of 
specific EIF3 subunits (B and F) has been demonstrated to directly 
or indirectly suppress CD8+ T cell infiltration and impair the 
efficacy of PD-1 blockade therapy (Zhou et al., 2025; Wu et al., 
2022). The present study also revealed that EIF3M, as a member 
of the EIF3 gene family, exhibits a significant correlation between 
its aberrant expression and dynamic alterations in immune cell 
infiltration density within the TIME. Under pathological conditions, 
dysregulation of this gene is accompanied by pronounced 
changes in the infiltration levels of multiple immune cell subsets, 
including CD8+ T cells, macrophages, B cells, NK cells, MDSC, 
and CAFs. CD8+ T lymphocytes, NK cells, and M1-polarized 
macrophages collectively function as central effector units within 
the immune system, mediating antitumor immunity through direct 
cytolytic elimination of malignant cells and paracrine secretion 
of immunoregulatory cytokines/chemokines, thereby constituting 
pivotal operational components of the immune surveillance network 
(Xing et al., 2025; Park et al., 2024; Palmer et al., 2025). Under 
conditions of EIF3M overexpression, functional suppression of 
immune cells may be associated with metabolic reprogramming. For 
instance, in HCC, depletion of polyunsaturated fatty acids (PUFAs) 
leads to diminished antitumor cytotoxicity of immune cells, thereby 
contributing to resistance to immunotherapy (An and Li, 2025). 
M2-type macrophages, MDSCs, and CAFs collectively orchestrate 
the establishment of an immunosuppressive microenvironment and 
remodeling of tumor stromal architecture through the secretion 
of immunosuppressive cytokines, chemokines, and extracellular 
matrix components (Jin et al., 2023; Zhu et al., 2023; Oya et al., 
2020). In this study, it was observed that high expression of EIF3M
is accompanied by significantly elevated levels of MDSCs across 
nearly all cancer types. This suggests that EIF3M may promote the 
formation of an immunosuppressive microenvironment potentially 
through the IL-6/CD73 axis, thereby modulating the activity of 
other immune cells (Liu M. et al., 2025). Furthermore, elucidating 
the molecular interaction mechanisms between EIF3M and immune 
cell subsets not only establishes the molecular biological foundation 
for developing dynamic immune score monitoring models and 
prognostic stratification systems, but also offers novel insights into 
the exploration of immunotherapy-based combination strategies 
and provides an innovative research perspective for addressing 
current clinical therapeutic challenges (Zhou et al., 2025).

In cancer functional genomics research, modulating the 
expression levels of oncogenes in tumor cell lines to investigate 

their regulatory effects on cellular biological behaviors represents 
a core research strategy widely employed in this field (Gong et al., 
2025). To elucidate the cellular-level biological functions of EIF3M, 
this study established both knockdown and overexpression models 
of EIF3M in HCC cell lines and conducted systematic functional 
validation experiments. Through systematic evaluation utilizing 
CCK-8 cell proliferation assays and colony formation experiments, 
we demonstrated that downregulation of EIF3M gene expression 
significantly suppresses proliferative activity in LIHC malignant 
tumor cells, whereas overexpression of EIF3M markedly enhances 
proliferative capacity across HCC cell lines. Further analysis revealed 
that this regulatory effect also exerts significant biological impacts 
on migratory phenotypes: Wound healing assays indicated that 
suppression of EIF3M expression resulted in markedly reduced 
migratory capacity in tumor cells of the knockdown group compared 
to control counterparts, while the overexpression group exhibited 
a contrasting phenotype characterized by significantly enhanced 
migratory ability. These findings collectively suggest that EIF3M 
may contribute to malignant tumor progression by concurrently 
regulating critical cellular processes involving proliferation and 
migration. KEGG enrichment analysis revealed a significant 
positive association between EIF3M and the Wnt signaling 
pathway. Notably, FZD2—a gene correlated with EIF3M—was 
also enriched within this pathway. These observations suggest 
that EIF3M may activate the Wnt signaling cascade through the 
modulation of FZD2 expression, thereby promoting malignant 
phenotypes in HCC cells, including proliferation, invasion, and 
metastasis. Research on EIF3M has not only expanded our 
understanding of tumor biological behaviors but also provided 
critical insights for the development of innovative diagnostic tools 
and therapeutic strategies. Through multidisciplinary integration 
and deep functional characterization, continued investigation 
into its mechanistic roles holds significant potential to catalyze 
transformative progress in precision oncology.

Although the present study has conducted a systematic 
investigation into the potential value of EIF3M as a novel biomarker 
in pan-cancer analysis, the development of clinical prognostic 
evaluation systems, and the exploration of its molecular regulatory 
mechanisms, it is imperative to objectively acknowledge several 
inherent limitations of the current research. Specifically, this study 
primarily relied on retrospective analyses of public omics databases, 
and the correlations between relevant molecular signatures and 
clinical indicators still necessitate validation through prospective 
clinical cohort studies to confirm their clinical translational validity. 
It should be noted that although this study has preliminarily 
validated the functional roles of EIF3M in regulating malignant 
phenotypes in HCC through in vitro models, its cross-cancer 
applicability still requires confirmation through systematic 
functional genomic studies. Furthermore, the multidimensional 
biological effects mediated by EIF3M and its associated molecular 
regulatory networks still necessitate systematic dissection through 
multi-layered functional genomics experiments. The translational 
medical value of EIF3M is of critical importance; however, its 
practical application remains highly contingent upon further 
validation and in-depth exploration through prospective clinical 
cohort studies and in vivo experiments. Despite the aforementioned 
limitations, this study has offered significant insights into elucidating 
the mechanistic role of EIF3M in tumorigenesis and its clinical 
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translational potential. Firstly, through multi-dimensional data 
validation, we have confirmed the potential association between 
EIF3M expression patterns and malignant tumor phenotypes, 
providing critical targets for subsequent functional verification. 
Secondly, we have preliminarily mapped the signaling pathway 
regulatory networks potentially involving EIF3M, establishing a 
research foundation for clarifying its molecular mechanisms. Finally, 
employing bioinformatics analysis combined with phenotype 
correlation studies based on HCC cell lines, we have provided 
theoretical underpinnings for designing targeted intervention 
strategies and developing novel prognostic biomarkers. These 
discoveries not only expand the functional understanding of the 
eukaryotic translation initiation factor family in tumor biology but 
also highlight the translational medical significance of EIF3M as a 
potential therapeutic target. 

5 Conclusion

This study systematically analyzed the expression profile 
of EIF3M in pan-cancer tissues and revealed its significant 
overexpression in multiple malignancies such as LIHC, COAD, and 
LUAD. EIF3M expression was closely associated with poor patient 
prognosis, including reduced OS and DFS, as well as key biological 
processes such as genetic mutations, TMB, DNA methylation, 
miRNA regulatory networks, and remodeling of the tumor immune 
microenvironment. Furthermore, using HCC cell line models, 
this study demonstrated that differential EIF3M expression levels 
markedly influence tumor cell behaviors, including proliferation and 
migration. While the conclusions are primarily supported by multi-
omics analyses from public databases, the biological functions and 
clinical significance of EIF3M warrant further validation through 
in-depth mechanistic investigations and clinical studies.
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SUPPLEMENTARY FIGURE S1
Expression levels of EIF3M in various human organs and its cellular localization.
(A) Expression levels of EIF3M across 50 organs in multiple human systems. (B)
Schematic diagram of subcellular localization analysis for EIF3M expression in 
cells. (C) Immunofluorescence images of EIF3M in A-431, U2OS, and U-251MG 
cell lines. EIF3M, nucleus, and microtubules are labeled with green, blue, and red, 
respectively.

SUPPLEMENTARY FIGURE S2
Comparison of EIF3M gene expression activity scores across multiple tumor 
tissues versus normal tissues.

SUPPLEMENTARY FIGURE S3
The correlation between EIF3M expression and different histopathological tumor 
stages as well as patient survival. (A) The correlation between EIF3M expression 
and tumor stage in four statistically significant tumor tissues. The correlation 
between EIF3M expression and (B) Progression-Free Survival as well as 
Disease-Free Survival in cancer patients.

SUPPLEMENTARY FIGURE S4
Functional Characterization and Pathway Enrichment Analysis of 
EIF3M-Associated Genes and Proteins. (A) Genes correlated with EIF3M. (B)
Pan-cancer expression profiling of EIF3M-associated genes. (C) Pathway 
enrichment and (D) ontological analysis of EIF3M-associated genes. (E) Proteins 
exhibiting close interaction relationships with EIF3M. (F) Gene Ontology Analysis 
of EIF3M-Interacting Proteins.

SUPPLEMENTARY FIGURE S5
Screening of EIF3M-targeting miRNAs. (A) Prediction of miRNA candidates 
through intersection analysis of miRDB, TargetScan, and miRWalk databases. (B)
Meta-analysis heatmap of 41 EIF3M-targeting miRNAs across pan-cancer versus 
matched normal tissues.

SUPPLEMENTARY FIGURE S6
(A) Correlation between hsa-miR-199b-3p with EIF3M expression across 
various cancers.
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