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Background: EIF3M, a core subunit of eukaryotic translation initiation factor
3, plays a pivotal role in protein synthesis by regulating the assembly
of the 43S initiation complex. However, its biological functions in cancer
remain poorly understood. To further investigate the clinical translational
value and underlying mechanisms of EIF3M in tumors, this study conducted
comprehensive bioinformatic analysis of EIF3M across various tumor types.
Methods: We utilized publicly available databases to perform a comprehensive
bioinformatics analysis of EIF3M’s biological roles in oncogenesis, aiming
to elucidate its pan-cancer expression patterns and prognostic significance.
Furthermore, we conducted an integrative multi-omics analysis incorporating
methylation profiling, co-expressed gene networks, targeted mIiRNA
interactions, and tumor immune microenvironment infiltration to decipher the
complex regulatory architecture and biological pathways mediated by EIFZM
across cancer types. Finally, we used HCC cell lines for in vitro functional
validation, determining how EIF3M expression modulates malignant phenotypic
behaviors in hepatocellular carcinoma.

Results: EIF3M was overexpressed in multiple cancers and correlated with
advanced tumor stage and poor survival. Its dysregulation was primarily driven by
gene amplification and regulated by promoter methylation and miRNAs. EIF3M
functioned as a hub in cell cycle and transcriptional networks and was linked to
an immunosuppressive microenvironment. In hepatocellular carcinoma models,
EIF3M modulated tumor proliferation, migration, and activated oncogenic
pathways like Wnt/p-catenin.

Conclusion: This study reveals that EIF3M expression correlates with immune
infiltration and poor prognosis in multiple cancers. In vitro experiments in
hepatocellular carcinoma models demonstrated that E/F3M critically regulates
malignant cell behaviors. Collectively, our findings highlight EIF3M’s value as a
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promising pan-cancer biomarker worthy of further investigation for its utility in
prognosis prediction and as an indicator of immunotherapeutic response.
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1 Introduction

Malignant tumors have emerged as a major challenge in the
global public health arena. In most high-income countries, they
have risen to the top cause of death among residents. Meanwhile,
in middle- and low-income countries, both the incidence and
mortality rates of malignant tumors are showing a notable upward
trend (Chen et al, 2025). According to statistical reports, there
were 19.3 million newly diagnosed malignant tumor cases and
approximately 10 million malignant tumor-related deaths globally
in 2020. The report also projects that the global burden of malignant
tumors will rise to 28.4 million cases by 2040, representing a
47% increase from 2020 (Siegel et al., 2024). Despite significant
improvements in the five-year survival rates of malignant tumor
patients over recent decades, a substantial proportion of these
individuals continue to face persistently poor survival outcomes,
presenting an ongoing clinical challenge. For instance, prognosis
remains particularly poor for patients with certain tumors
such as pancreatic cancer (Maomao et al., 2022). Concurrently,
current cancer therapeutics continue to face significant challenges
in efficacy. Despite the adoption of multimodal treatment
strategies—primarily based on surgical resection combined with
radiotherapy and chemotherapy—patients frequently encounter
issues such as incomplete tumor removal, postoperative recurrence,
and chemotherapy resistance, leading to generally poor prognoses.
The biological complexity of these malignancies, including high
invasiveness, an immunosuppressive microenvironment, and
activation of multiple drug-resistance mechanisms, substantially
limits the clinical benefits of existing therapies. Consequently, the
development of novel targeted strategies capable of overcoming
therapeutic resistance—particularly that driven by the dynamic
evolution of the tumor microenvironment—remains a critical and
ongoing focus in oncology research (Siegel et al., 2024; Sung et al.,
2021; Guo et al., 2022; Yang et al., 2024).

Eukaryotic translation initiation factor 3 subunit M (EIF3M)
functions as a central regulatory molecule in protein biosynthesis,
with its encoded product forming a core structural component of the
eukaryotic translation initiation factor 3 (EIF3) complex. Extensive
research has established that this complex operates as a pivotal
regulatory hub governing critical processes including translation
initiation, termination, and ribosome recycling, thereby serving as
an indispensable molecular foundation for the regulatory network
controlling eukaryotic protein synthesis (Gomes-Duarte et al,
2018). In recent years, research evidence on EIF3M in the field
of oncology has been progressively accumulating, revealing its
potential regulatory role in tumorigenesis and progression. Studies
have reported that silencing EIF3M expression in colorectal
cancer cell lines significantly suppressed the malignant biological
behaviors of these cells (Goh et al, 2011). Similar investigations
have also revealed that EIF3M exhibits overexpression in prostate
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cancer and triple-negative breast cancer, with cellular experiments
confirming significant growth inhibition in tumor cells following
EIF3M knockdown (Guo et al, 2024; Han et al, 2020). In
lung cancer research, investigators have identified that EIF3M
interacts with genes including SAAL1 and CAPRINI to promote
tumorigenesis and cancer progression (Chiang et al., 2024; Liu et al.,
2021). Although existing research has begun to elucidate the
expression profiles and molecular regulatory mechanisms of EIF3M
in specific cancer types, a systematic understanding of its pan-
cancer expression patterns, comprehensive biological functional
landscape, and regulatory characteristics within signaling networks
remains largely unexplored. Consequently, our research group
aims to transcend the traditional cancer classification based on
tissues or organs, and instead investigate the commonalities
and heterogeneities of EIF3M across multiple cancer types from
molecular and genomic perspectives.

This study aims to systematically dissect the multidimensional
molecular characteristics and clinical significance of EIF3M in
pan-cancer contexts. By integrating multi-omics data derived
from multiple public databases, we seek to elucidate its aberrant
overexpression across multiple malignancies and its significant
association with poor patient prognosis. Furthermore, we
investigated the correlations between EIF3M mutations, epigenetic
regulation, and tumorigenesis, while revealing the underlying
mechanisms of cancer progression mediated through regulatory
networks driven by interacting genes and miRNAs. Additionally,
we explored the relationship between EIF3M expression levels
and remodeling of the tumor microenvironment. This research
not only expands theoretical understanding of EIF3M’s role in
cancer heterogeneity regulation but also provides critical molecular
evidence and potential therapeutic targets for developing EIF3M-
based prognostic evaluation systems, targeted therapies, and
immuno-combination therapeutic strategies.

2 Materials and methods
2.1 Data collection and analysis

The Tumor Immune Estimation Resource 2.0 (TIMER2.0,
http://timer.cistrome.org) resource repository integrates multi-
omics data from multiple large-scale cancer genomic cohorts
and other public databases, facilitating comprehensive insights
into the expression profiles of EIF3M across pan-cancer contexts
(Li et al, 2020). Gene Expression Profiling Interactive Analysis
2 (GEPIA2,
expression profiling studies across cancerous and normal tissues

http://gepia2.cancer-pku.cn)specializes in gene

(Tang et al,, 2019). By integrating large-scale RNA sequencing

datasets from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) projects, this platform
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facilitates comprehensive investigation of EIF3M expression
disparities between multiple cancer types and their matched normal
tissues, as well as its associations with clinical characteristics and
survival curve differentiations (De Mendonca et al., 2025; Pastor
and Hong, 2023). The University of Alabama at Birmingham
Portal database (UALCAN, https://
ualcan.path.uab.edu) is a web-based platform dedicated to mining

Cancer Data Analysis

cancer multi-omics data and investigating clinical correlations,
capable of providing protein expression profiles of EIF3M
through integration with the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) database (Chandrashekar et al, 2022;
Prakash et al., 2021). The Human Protein Atlas (HPA, https://
www.proteinatlas.org) integrates antibody-based proteomics data,
RNA sequencing data, and pathological imaging to systematically
characterize the expression and localization patterns of EIF3M
in normal tissues (Gu et al, 2025). This platform further
provides comparative immunohistochemical (IHC) images of
EIF3M expression in paired normal and tumor tissues. All
aforementioned statistical analyses were conducted through
automated computational pipelines integrated within online
platforms. Additionally, we retrieved EIF3M expression data from
the TCGA database across multiple cancer types, and utilized these
datasets as the foundation to conduct disease-specific survival (DSS)
and progression-free survival (PFS) curve analyses, as well as to
calculate gene activity scores for EIF3M.

2.2 Integrative analysis of EIF3M mutations
and methylation

The cBio Cancer Genomics Portal (cBioPortal, https://
www.cbioportal.org) integrates multi-omics data, including somatic
mutations, copy number alterations (CNAs), expression profiles
and clinical information, enabling comprehensive analysis of
EIF3M mutation frequencies, CNAs, and other genomic alterations
across cancer contexts (De Bruijn et al, 2023). Furthermore,
we calculated the tumor mutational burden (TMB) of EIF3M
across multiple cancer types using data from TCGA database
(Endris et al., 2019). The Shiny Methylation Analysis Resource Tool
(SMART) integrates DNA methylation data from 33 malignancies
within TCGA database (Li et al, 2019). Its functionalities
span single-locus CpG site analysis to pan-cancer methylation
landscape profiling, enabling systematic investigation of CpG site
methylation levels for EIF3M. The UALCAN database provides
foundational data for analyzing EIF3M promoter methylation,
integrating multi-omics datasets to explore epigenetic regulation
in cancer contexts (Chandrashekar et al., 2022).

2.3 Functional and pathway enrichment
analysis based on related genes

Pathway Commons (https://www.pathwaycommons.org) is an
integrated biological pathway database that aggregates pathway
information from multiple sources, including KEGG, Reactome,
BioCyc, and WikiPathways (Cerami et al., 2011). This platform
enables the identification of gene sets exhibiting strong associations
with EIF3M and further facilitates the analysis of differential
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expression levels of these gene sets across pan-cancer contexts.
Enrichment Analysis (Enrichr, https://maayanlab.cloud/Enrichr)
serves as an online platform dedicated to functional annotation and
enrichment analysis of gene sets, integrating over 200 functional
annotation databases (Subramanian et al, 2005). It stands as
a cornerstone tool in functional genomics research, enabling
the exploration of highly enriched ontological features and
signaling pathways associated with gene sets linked to EIF3M.
The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING, https://cn.string-db.org) is a public database dedicated
to predicting protein-protein interactions (PPIs) and analyzing
functional associations (Szklarc et al, 2023). This platform
enables the identification of proteins potentially interacting
with EIF3M and elucidates their involvement in molecular
pathways.

2.4 Bioinformatic analysis of predicted
miRNAs

miRDB (https://mirdb.org), (https://
www.targetscan.org), and miRWalk (http://mirwalk.umm.uni-

TargetScan

heidelberg.de) are three widely utilized databases in bioinformatics,
all specializing in microRNA (miRNA) target prediction and
functional analysis (Wong and Wang, 2015; Agarwal et al., 2015;
Dweep et al,, 2011). By intersecting results from these databases,
highly credible target miRNAs and their binding sites for EIF3M
can be predicted. The Database of Differentially Expressed MiRNAs
in Human Cancers (dbDEMC, https://www.biosino.org/dbDEMC)
is a public repository specifically focused on cataloging differentially
expressed microRNAs (miRNAs) in cancer (GPB, 2024). It
integrates miRNA expression data derived from high-throughput
studies, providing a platform for systematic investigation of
the expression profiles of EIF3M-targeting miRNAs across
pan-cancer contexts. The Encyclopedia of RNA Interactomes
(ENCORI, also known as starBase, https://rnasysu.com/encori/)
is a specialized platform for investigating regulatory interactions
between non-coding RNAs and coding RNAs or proteins (Li et al.,
2014). Tt facilitates systematic exploration of EIF3M-targeting
miRNAs, enabling pan-cancer correlation analyses between
these miRNAs and EIF3M, as well as functional enrichment
assessments to identify associated biological pathways or molecular
mechanisms.

2.5 Pan-cancer investigation of EIF3M
association with the tumor
microenvironment

The TIMER2.0 database was employed to investigate the
correlation between EIF3M expression and tumor-infiltrating
immune cell abundance across pan-cancer cohorts. Processed
data derived from the online analysis platform were extracted
and subsequently visualized as a heatmap using GraphPad Prism
(version 9.5). Relevant data from TCGA database were also
extracted for StromalScore analysis, enabling further investigation
into tumor microenvironment dysregulation caused by aberrant
EIF3M gene expression.
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2.6 Cell culture and transfection

The HCCLM3, MHCC97H and Hep3B were procured from
Saiweier Biotechnology Co., Ltd. with authentication. All cell lines
were maintained in DMEM supplemented with 10% fetal bovine
serum (FBS, Gibco, 10091148) and 1% penicillin-streptomycin
(Solaibio, P1400) in an incubator at 37 °C with 5% CO2. The coding
sequences (CDS) of EIF3M,were inserted into the Nhel/BamHI
sites of the pcDNA3.1 plasmid. The siRNA duplex targeting
EIF3M, sourced from GenePharma (A10001), was introduced
into cells following strict adherence to the manufacturer’s
transfection protocol to ensure precise delivery of the siRNA
into the cellular interior. The siRNA sequences for the EIF3M
negative control group and experimental group are detailed in
Supplementary Table S1.

2.7 Quantitative real-time polymerase
chain reaction (qRT-PCR)

Total RNA was extracted from cultured tumor cells
using a total RNA extraction kit (Omega, R6834), and the
concentration of the purified RNA was quantified using UV
spectrophotometry. Following the manufacturer’s protocol of
the reverse transcription kit, the extracted RNA was reverse-
transcribed into complementary DNA (cDNA), which was
subsequently amplified according to the instructions of the
Plus All-in-one 1st Strand cDNA Synthesis SuperMix (gDNA
Purge) (Novoprotein, E047-01B). The mRNA amplification
reaction system is detailed in the Supplementary Table S2. The
primer sequences for detecting the target gene EIF3M and the
reference gene GAPDH in RT-qPCR experiments are listed in
Supplementary Table S3.

2.8 Cell counting Kit-8

The Cell Counting Kit-8 (Servicebio, G4103-1 ML)
was applied to determine tumor cell viability. Tumor cells
were plated in 96-well plates and cultured under the

aforementioned conditions. In compliance with the CCK-8
assay specifications, 10 uL of CCK-8 solution mixed with 90 pL
culture medium was administered to each well at designated
time intervals (Oh, 24h, 48h, 72h, and 96h). Following a
2-h incubation at 37 °C, absorbance values were recorded at
450 nm using a microplate reader for quantitative viability
assessment.

2.9 Colony formation assay

Tumor cells were seeded at an ultra-low density in 6-well
culture plates and maintained in a humidified 37 °C incubator with
5% CO, atmosphere using complete growth medium. Cultures
were continuously propagated for 7-14 days until microscopic
visualization of colony formation. To sustain optimal cellular
viability, medium replacement was performed every 3 days. At
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experimental termination, cells were gently rinsed with phosphate-
buffered saline (PBS, Servicebio, G4202-500 ML) to eliminate
non-viable cells, followed by fixation with 4% paraformaldehyde
(Servicebio,G1101-500 ML) for 30 min. Subsequent staining was
conducted using 0.1% crystal violet (Servicebio, G1014-50 ML)
solution for 30 min. Post-staining, residual background dye was
removed by slow-flow rinsing with deionized water. After air-drying,
plates were imaged, and colony quantification was performed
using Image] (version 1.54f) software through automated particle
analysis.

2.10 Wound healing assay

Cells in logarithmic growth phase were seeded into culture
dishes and incubated until reaching 80%-90% monolayer
confluency. A standardized linear wound was mechanically
introduced using a 200 pL sterile pipette tip held perpendicular
to the dish surface to ensure uniform scratch width. Detached
cells and cellular debris were removed by gentle washing with
PBS. Initial images of the scratch wound were captured at 0 h
using a microscope to establish baseline data. The culture dishes
were subsequently maintained in a humidified 37 °C incubator
with 5% CO, atmosphere, and sequential images of the same
microscopic fields were acquired at predetermined time points
(24 h and 48 h). Post-experiment, image analysis was performed
using Image] software to quantify the temporal changes in wound
area.

2.11 Statistical analysis

In this study, selected foundational statistical computations
were autonomously executed through online database systems. A
variety of online platforms and tools employ distinct statistical
methods to assess the significance of gene or protein expression,
methylation levels, survival correlations, and molecular interactions.
TIMER2.0 utilizes the edgeR algorithm by default to examine
the significance of expression differences; UALCAN, based on
the CPTAC database, applies Student’s t-test to compare protein-
level and promoter methylation-level expression between cancerous
and normal tissues; gene activity differential scores are typically
evaluated using the Wilcoxon rank-sum test; GEPIA2 employs the
Kaplan-Meier method, log-rank test, and Cox proportional hazards
model for pan-cancer survival analysis; the Smart platform uses a
one-sample t-test to analyze methylation level differences at specific
CpG sites; and the ENCORI platform applies Spearman correlation
analysis to assess the relationship between miRNA and EIF3M. For
intergroup comparative analyses of cell phenotypic experimental
data, a two-way analysis of variance (Two-way ANOVA) was
implemented on the GraphPad Prism software. Results attaining
this critical value were designated as demonstrating statistically
significant differences. In this study, a threshold of p < 0.05 was
applied for all statistical comparisons to determine significant
differences. The results of statistical analyses are annotated in
the figures using the following symbols: ns (p > 0.05, not
significant), *(p < 0.05), **(p < 0.01), ***(p < 0.001), and ****
(p < 0.0001).

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1697083
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zhao et al.

3 Result

3.1 Pan-tissue expression and subcellular
distribution

On the HPA integrated analysis platform, the RNA-seq data
from HPA and GTEx databases were standardized and integrated to
analyze the expression levels of EIF3M. Joint analysis revealed that
EIF3M exhibits low tissue specificity, with no significant abnormal
expression levels detected in any specific tissue among the 50 normal
tissues (Supplementary Figure S1A). Furthermore, our analysis of
EIF3M’s subcellular localization profile revealed its predominant
the cytosol (Supplementary Figure S1B).
Immunofluorescence analysis of A-431, U20S, and U-
25IMG tumor cells further corroborated this observation
(Supplementary Figure S1C).

localization within

3.2 Comprehensive characterization of
EIF3M expression across across human
malignancies

Initially, we conducted a preliminary analysis of the expression
levels of EIF3M in pan-cancer using the TIMER2.0 database based
on TCGA data. The results demonstrated that EIF3M exhibited
significantly elevated expression levels in the majority of human
malignancies compared to their corresponding normal tissues
(Figure 1A). To enhance the readability of the article, we have
compiled the abbreviations and full names of all cancer types
mentioned in this study, in accordance with the nomenclature
standards of TCGA, as presented in Table 1. In CHOL, COAD,
ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, PRAD, READ, and
STAD, the mRNA expression level of EIF3M exhibits a statistically
significant upregulation across all these cancer types. We also
observed that EIF3M expression was significantly downregulated
in tumor tissues of KICH, PCPG, THCA, and UCEC. To address
the limitation of limited availability of matched normal tissue
expression data for certain cancer types within TCGA database,
we propose an integrated analysis strategy combining data from
TCGA and the Genotype-Tissue Expression (GTEx) project. This
approach aims to more comprehensively evaluate the differential
expression patterns of EIF3M across diverse tumor entities. The
findings from this part of the study indicate that after further
increasing the number of samples included in the research, EIF3M
exhibited significantly higher expression levels in tumor tissues
compared to normal tissues across the following cancer types:
CHOL, COAD, DLBC, GBM, LGG, LIHC, PAAD, READ, TGCT,
and THYM. However, in LAML and PCPG, EIF3M expression
displayed the opposite trend, showing significantly lower levels
in tumor tissues compared to normal tissues (Figure 1B). To
further validate the expression characteristics of EIF3M at the
post-transcriptional regulatory level, we systematically evaluated
the protein-level expression patterns of EIF3M across multiple
cancer types on the GEPIA2 platform using proteomics data from
the CPTAC database. Through analysis, it has been observed
that EIF3M exhibits significant expression abnormalities across
multiple malignant tumor types. Specifically, in BRCA, COAD,
GBM, HNSC, LIHC, LUAD, LUSC, and OV, protein expression
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levels of EIF3M demonstrate statistically significant upregulation
compared to corresponding normal tissues. Conversely, in PAAD,
a pattern of downregulated expression is observed. Through
integrated analysis of immunohistochemistry data from the HPA
database, we further validated the abnormal expression pattern of
EIF3M (Figure 2A). Quantitative evaluation revealed statistically
significant upregulation of EIF3M protein levels in LUAD, LIHC,
THCA, PAAD, and UCEC compared with their corresponding
normal tissues (Figure 2B). The immunohistochemistry sample
information sourced from the HPA database is presented in
Supplementary Table S4. Finally, to comprehensively characterize
the transcriptional and regulatory networks of EIF3M in pan-cancer,
we systematically integrated multi-dimensional omics data from the
TCGA database for gene activity scoring analysis of EIF3M. Pan-
cancer analysis revealed that EIF3M exhibited significantly elevated
gene activity scores across 15 tumor types, including BLCA, BRCA,
CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, PRAD, READ, and UCEC. Notably, in PCPG, the gene
activity score was significantly lower compared to matched normal
tissues, presenting a striking contrast (Supplementary Figure S2).
The grouping and sample information utilized for each cancer
type in the gene activity score analysis are presented in
Supplementary Table S5.

3.3 Prognostic value of EIF3M in various
tumors

Tumor staging serves as one of the most pivotal indicators
for predicting prognosis in cancer patients, with later-stage disease
typically correlating with shorter survival duration and elevated
recurrence risk (Sung et al., 2021). Therefore, we investigated
the correlation between EIF3M expression levels and patients’
clinical staging. In KIRP, LIHC, and LUAD, higher tumor stages
demonstrated a significant positive correlation with elevated
EIF3M expression levels, while in SKCM, an opposing negative
correlation trend was observed (Supplementary Figure S3A). To
systematically evaluate the biological significance of EIF3M in
prognosis across multiple cancer types, we performed survival
curve analysis using the GEPIA2 database to investigate the
clinical relevance between its expression levels and patient survival
outcomes. In this part of the study, we stratified EIF3M expression
levels into high and low groups using the median value as the
cutoff. Our analysis revealed that elevated EIF3M expression
was significantly associated with shorter overall survival (OS) in
patients with ACC, HNSC, KICH, LIHC, LUAD, and PAAD.
Conversely, an opposite prognostic trend was observed in KIRC
and READ, where high EIF3M expression correlated with improved
survival outcomes (Figure 3A). Pan-cancer analysis of disease-
free survival (DFS) revealed that elevated EIF3M expression
was significantly associated with shortened DFS in patients with
ACC, LUAD, and PAAD. Conversely, an inverse correlation was
observed in KIRC, where high EIF3M expression correlated
with prolonged DFS (Figure 3B). To conduct a comprehensive
analysis of the association between EIF3M expression levels and
survival outcomes, we utilized data from TCGA to supplement
our investigation into correlations between EIF3M expression
and disease-specific survival (DSS) as well as progression-free
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FIGURE 1
Expression levels of EIF3M across various tumor tissues. (A) On the TIMER2 platform, based on the TCGA database, the mRNA expression levels of
EIF3M in various tumor tissues and specific tumor subtypes compared to normal tissues. (B) Corresponding analysis based on the TCGA database and
GTEx datasets to analyze the expression differences of EIF3M mRNA levels between various tumor tissues and normal tissues.

survival (PFS) across pan-cancer cohorts. The analysis revealed
that elevated EIF3M expression correlates with significantly shorter
DSS in ACC, KICH, LIHC, LUAD, and PCPG. Conversely, in
THYM and UVM, elevated EIF3M expression was associated
with prolonged DSS (Supplementary Figure S3B). We also observed
a significant correlation between EIF3M expression levels and
PES in patients with various malignant tumors. Survival analysis
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revealed that patients with high EIF3M expression exhibited
significantly shorter PFS in ACC, KICH, KIRP, LIHC, LUAD, and
PAAD. Conversely, in UVM and SKCM, high EIF3M expression
demonstrated a trend toward improved prognostic outcomes
(Supplementary Figure S3C). Detailed data on hazard ratios (HR)
with 95% confidence intervals and p-values for DSS and PFS analyses
are provided in Supplementary Table Sé.
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TABLE 1 The cancer types mentioned in the article.

10.3389/fmolb.2025.1697083

Abbreviation Full name Abbreviation Full name

ACC Adrenocortical carcinoma LUAD Lung adenocarcinoma

BLCA Bladder Urothelial Carcinoma LUSC Lung squamous cell carcinoma
BRCA Breast invasive carcinoma ov Ovarian serous cystadenocarcinoma
CHOL Cholangiocarcinoma PAAD Pancreatic adenocarcinoma
COAD Colon adenocarcinoma PCPG Pheochromocytoma and Paraganglioma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma PRAD Prostate adenocarcinoma

ESCA Esophageal carcinoma READ Rectum adenocarcinoma

GBM Glioblastoma multiforme SARC Sarcoma

HNSC Head and Neck squamous cell carcinoma SKCM Skin Cutaneous Melanoma
KICH Kidney Chromophobe STAD Stomach adenocarcinoma

KIRC Kidney renal clear cell carcinoma TGCT Testicular Germ Cell Tumors
KIRP Kidney renal papillary cell carcinoma THCA Thyroid carcinoma

LAML Acute Myeloid Leukemia THYM Thymoma

LGG Brain Lower Grade Glioma UCEC Uterine Corpus Endometrial Carcinoma
LIHC Liver hepatocellular carcinoma UVM Uveal Melanoma

3.4 The gene mutation and epigenetic
modification of EIF3M

Firstly, utilizing the cBioPortal analysis platform, select pan-
cancer whole genome data from TCGA and the International
Cancer Genome Consortium (ICGC) to construct the genetic
alteration profile of EIF3M. Analysis of cancer types with sample
sizes exceeding 10 cases revealed that BRCA, COAD, and HNSC
exhibited the highest mutation frequencies. The EIF3M exhibits
heterogeneous mutation frequencies across different cancer
types: its highest mutation rate is observed in BRAC (6.64%),
predominantly driven by Amplification (6.16%) with a minor
contribution from Mutations (0.47%). In COAD, the overall
mutation frequency is 5.77%, where Mutations account for a higher
proportion (3.85%) compared to Amplification (1.92%). In HNSC,
all mutational events are exclusively attributed to Amplification
(5.36%) (Figure 4A). We also identified 9 missense mutation sites
on EIF3M (Figure 4B). The mutation site sample information
based on the cBioPortal platform is summarized in Supplementary
Table S7. In-depth analysis revealed that patients harboring EIF3M
alterations exhibited significantly higher tumor mutational burden
(TMB) levels compared to those without EIF3M alterations
(Figure 4C). To systematically evaluate the association between
EIF3M expression and TMB, we stratified TCGA cohorts into high-
and low-expression groups based on median EIF3M expression
levels. The analysis revealed significant positive correlations in
ACC, CHOL, HNSC, LAML, LGG, LIHC, PAAD, PRAD, SKCM,
STAD, THYM, and UCEC (Figure 4D). In extended analyses, we
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systematically evaluated the DNA methylation profiles of EIF3M
across pan-cancer cohorts, unveiling its epigenetic regulatory
landscape. Comprehensive analysis revealed that CpG-dense regions
displayed hypomethylation in BLCA, BRCA, COAD, HNSC, LIHC,
LUAD, LUSC, PRAD, and READ compared to matched adjacent
normal tissues. However, in KIRC, KIRP, THCA, and UCEC,
CpG-dense regions exhibited significantly elevated methylation
levels (Figure 4E). Promoter methylation, serving as one of the
central mechanisms in epigenetic regulation, plays a pivotal role in
transcriptional control. Pan-cancer analysis conducted through the
ULCAN platform revealed hypomethylation in promoter regions
of BLCA, ESCA, HNSC, KIRP, LIHC, LUAD, LUSC, PRAD, TGCT,
and UCEC compared to matched adjacent normal tissues, while
COAD and PAAD demonstrated significant hypermethylation
(Figure 4F). The grouping and sample information for CpG-dense
regions and promoter methylation across various cancer types are
presented in Supplementary Tables S8, 9.

3.5 Functional and pathway enrichment
analysis of genes related to EIF3M

Based on the Pathway Commons biological pathway integration
analysis platform, the characteristics of the EIF3M interaction
network were systematically analyzed through standardized
annotation of multi-source molecular interaction data. A curated set
of candidate genes exhibiting significant interactions with EIF3M
was identified, including EIF5, METTL3, PRPF8, DHRS2, ESR2,
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FIGURE 2
The protein expression levels of EIF3M across various tumor tissues. (A) Based on CPTAC data, analyze the protein expression differences between

multiple tumor tissues and normal tissues. (B) Immunohistochemical images of EIF3M protein expression in multiple tumor and normal tissues.

STOML2, EEF2, ESR1, SEPTIN7, PSMDI12, PRNP, SEMA7A, of the expression profiles of the aforementioned gene set in pan-
ODF2, RECQL4, G3BP1, SMNI1, SMN2, UBB, ANGEL1, G3BP2, cancer and normal tissues was conducted. The results demonstrated
NP2C2, ANXALI, SAFB, and PSPCI (Supplementary Figure S4A).  that EEF2, G3BP1, G3BP2, PRPF8, RECQL4, STOML2, and UBB
Based on the GEPIA2 analysis platform, a systematic evaluation  exhibited significantly higher expression levels in the majority
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FIGURE 3
The correlation between EIF3M expression levels and patient survival rates. The analysis of EIF3M expression in relation to (A) overall survival and (B)
disease-free survival in patients was conducted using the TCGA database via the GEPIA2 platform.

of tumor tissues, whereas METTL3 and NR2C2 showed a
widespread downregulation trend (Supplementary Figure S4B).
To further elucidate the underlying biological functions and
regulatory pathways in which the aforementioned gene set
may be involved, this gene set was submitted to the Enrichr
online analysis platform for enrichment analysis. In pathway
enrichment analyses analysis, EIF3M-associated gene sets are
closely related to biological processes such as gene expression,
nuclear receptors and nuclear receptors transcriptional pathways
in BioPlanet. Reactome pathway analysis revealed that these genes
were significantly enriched in the Nuclear Receptor Transcription
Pathway, Regulation of RUNX2 Expression and Activity, and
MAPK6 MAPKA4 Signaling (Supplementary Figure S4C). Ontolo
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gical analysis revealed that the EIF3M gene set demonstrated
significant enrichment in specific biological processes and molecular
functions. Within the GO Biological Process category, this gene set
exhibited pronounced enrichment in estrogen receptor signaling
pathway, regulation of stress granule assembly and membraneless
organelle assembly. Concurrently, in the GO Molecular Function
domain, it showed marked enrichment profiles for estrogen
response element binding, nuclear steroid receptor activity
and mRNA binding capabilities (Supplementary Figure S4D).
STRING is an essential bioinformatics platform for studying
protein-protein interactions (PPI). On this platform, 10 proteins
with high interaction with EIF3M have been identified:
EIF3A, EIF3B, EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H,
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Mutations and epigenetic alterations of EIF3M in pan-cancer cells. (A) Mutation frequency and types of EIF3M. (B) Nine missense mutation sites in the
EIF3M gene. (C) Tumor Mutational Burden score comparison between EIF3M-mutated and EIF3M-unmutated tumor groups. (D) Expression level
differences of EIF3M in relation to Tumor Mutational Burden score across pan-cancer studies. (E) Differential expression of EIF3M in tumor tissues
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compared to normal tissues based on data from the UALCAN database.
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EIF31 and EIF3K (Supplementary Figure S4E). Gene Ontology
(GO) analysis demonstrated significant enrichment in the
molecular function category for terms including translational
initiation activity, RNA binding, translation initiation factor
binding, and metal-dependent deubiquitinase activity. Within
biological processes, the most prominently enriched term
was formation of cytoplasmic translation initiation complex
(Supplementary Figure S4F).

3.6 Bioinformatic prediction and functional
enrichment analysis of EIF3M-Regulating
miRNAs

miRNAs serve as key regulators in post-transcriptional
regulation, and fluctuations in their expression levels can profoundly
influence target gene expression. Therefore, investigating miRNAs
targeting EIF3M holds substantial research significance. A tri-
platform screening strategy integrating miRDB, miRWalk, and
TargetScan predictions was employed to identify EIF3M-targeting
miRNAs. Venn analysis demonstrated 41 consensus miRNAs shared
across all databases, representing a high-confidence candidate set
with multi-algorithmic validation (Supplementary Figure S5A).
Using pan-cancer analysis heatmaps generated by the dbDEMC
platform, we identified hsa-miR-139-5p, hsa-miR-199a-3p and
hsa-miR-199b-3p as candidate miRNAs through expression
profiling screening (Supplementary Figure S5B). Bioinformatics
analysis revealed that hsa-miR-139-5p targets the CDS region of
EIF3M, while hsa-miR-199a-3p and hsa-miR-199b-3p specifically
interact with its 3'UTR (Figure 5A). Detailed complementary
sequences and predicted secondary structures for these miRNA-
EIF3M interactions are shown in Figure 5B-C. Next, these three
filtered core miRNAs were imported into the ENCORI platform
to further investigate whether their expression patterns are
correlated with EIF3M across pan-cancer contexts. The results
revealed that, among the 12 cancer types where hsa-miR-139-
5p exhibited significant correlation with EIF3M expression, 9
cancers (BRAC, COAD, LGG, LIHC, LUAD, PAAD, PRAD,
READ, STAD) displayed a negative correlation in their expression
patterns (Figure 5D). For hsa-miR-199a-3p and hsa-miR-199b-
3p, among the 12 cancer types showing significant correlation
with EIF3M, 9 cancers (COAD, HNSC, LGG, OV, PRAD, READ,
TGCT, THCA, UCEC) demonstrated a negative correlation in their
expression (Figure 5E; Supplementary Figure S6A). To elucidate
the molecular mechanisms and underlying biological processes
of hsa-miR-139-5p, hsa-miR-199a-3p, and hsa-miR-199b-3p, we
systematically conducted functional enrichment analysis utilizing
the ENCORI database. KEGG pathway and Disease Ontology
analyses revealed that, out of the 10 significantly associated
pathways for hsa-miR-139-5p, 6 were directly linked to cancer.
Notably, this miRNA also exhibited regulatory associations with
the p53 signaling pathway and focal adhesion pathway—both
critically implicated in tumorigenesis. Further GO functional
module analysis demonstrated that at the Biological Process, this
molecule primarily enriched in biological metabolism-related
processes, while at the Molecular Function, it showed significant
involvement in RNA-binding (Table 2). KEGG pathway and disease
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ontology analyses revealed that hsa-miR-199a-3p and hsa-miR-
199b-3p are significantly enriched in cancer-related signaling
pathways. Additionally, GO functional analysis indicated that, at
the levels of biological processes and molecular functions, these two
miRNAs are primarily involved in metabolic biosynthesis processes,
nucleic acid binding, and transcriptional regulation functions
(Table 3; Supplementary Table S10).

3.7 Analysis of immune infiltration
characteristics of EIF3M in the tumor
microenvironment

The study of TIME represents a central paradigm in the fields of
cancer biology and immunotherapy. To investigate whether aberrant
expression of EIF3M induces alterations in immune cell levels, we
conducted further exploration using the TIMER 2.0 data analysis
platform. As shown in Figure 6, cancer types showing significant
positive correlations with B cells include THCA, Sarcoma (SARC),
PRAD, KIRC, and LIHC, primarily involving plasma cells and
memory B cell subsets. Notable negative correlations are observed
in KIRC, LGG, THYM, and LUAD. For cancer-associated fibroblasts
(CAFs), LIHC exhibits the only significant positive correlation,
while BLCA, HNSC, LUSC, PRAD, SARC, THCA, and UVM show
significant negative correlations. CD8" T cells demonstrate strong
positive correlations with THYM, SKCM, UVM, PCPG, and LIHC,
but negative correlations with PRAD, TGCT, LUSC, and KIRC. M1
macrophages display significant positive associations with BRCA,
HNSC, and LUAD, but a strong negative correlation with THCA.
Conversely, M2 macrophages show positive correlation with LIHC
and negative correlations with KIRC, LUAD, and THCA. All
significant MDSC correlations are positive, including LIHC, COAD,
HNSC, and LUAD. NK cells exhibit significant negative correlations
with LUAD, LGG, THCA, COAD, GBM, and PRAD, but positive
correlations with KIRP, TGCT, and LIHC. We evaluated the
immune scores of EIF3M in pan-cancer using the TCGA database.
StromalScore demonstrated correlations with EIF3M expression
across multiple cancer types, including ACC, BRCA, COAD, GBM,
HNSC, LAML, LGG, LIHC, LUAD, OV, PAAD, PRAD, READ,
SARC, SKCM, STAD, THCA, UCEC, and UVM. Conversely,
for ImmuneScore, statistically significant correlations with EIF3M
expression were observed only in ACC, CHOL, COAD, DLBC,
LAML, LGG, OV, READ, SKCM, THCA, and UVM as shown in
Supplementary Table S11.

3.8 EIF3M promotes HCC progression by
enhancing proliferation and migration

Through integrated analysis of multi-omics data, we identified
a significant correlation between EIF3M expression dysregulation
and tumor progression, suggesting its functional involvement in
this process. To elucidate the functional role of EIF3M in tumor
progression, we assessed the regulatory effects of its dysregulated
expression on the core biological behaviors of tumor cells. To
address this objective, this study employed well-characterized HCC
cell lines as experimental models to investigate and elucidate the
critical knowledge gap regarding the functional role of EIF3M
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expression patterns in the biological behavior of HCC. This
study initially established EIF3M knockdown and overexpression
cell models in three typical hepatocellular carcinoma cell lines
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(MHCC97H, Hep3B, and HCCLM3), and systematically verified
gene expression levels at the mRNA level using qRT-PCR,
thereby laying a reliable experimental foundation for subsequent
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TABLE 2 Top five miRNA-target interactions in enrichmentanalysis of hsa-miR-139-5p.

pathwayName log10(p-val) log10(FDR)
KEGG

KEGG_Pathways_In_Cancer —26.28905 —24.07157
KEGG_P53_Signaling Pathway -13.50613 —-11.58968
KEGG_Neurotrophin_Signaling_Pathway —13.28473 —11.54437
KEGG_Small_Cell_Lung_Cancer —-12.86315 —11.42381
KEGG_Focal_Adhesion -13.03558 —-11.42015
Disease ontology

Of_Gene-disease_Association —-46.5856 —43.78903
In_Breast_Cancer -35.1121 —32.61655
Of_Cancer -31.69575 —29.3763
In_Tumors —29.8869 -27.69239
In_Prostate_Cancer —19.47485 —17.37725
Biological processe

GOBP_Negative_Regulation_Of_Biosynthetic_Process —88.24621 —84.78494
GOBP_Negative_Regulation_Of_Nucleobase_Containing Compound_Metabolic_Process —-88.41281 —84.65051
GOBP_Positive_Regulation_Of_Biosynthetic_Process -87.6268 —84.34162
GOBP_Cellular_Macromolecule_Localization -85.7862 —-82.72287
GOBP_Positive_Regulation_Of_Nucleobase_Containing_Compound_Metabolic_Process —85.80708 —82.64683
Molecular function

GOMF_Enzyme_Binding —87.98419 —84.93381
GOMEF_Transcription_Regulator_Activity —74.3217 —71.57235
GOMF_Rna_Binding -70.21378 —67.64052
GOMF_Sequence_Specific_Dna_Binding —63.87299 —61.42467
GOMEF_Ribonucleotide_Binding —-58.92984 —56.57843

functional studies (Figure 7A). To investigate the impact of
EIF3M expression levels on the proliferative activity of HCC
cells, functional validation was conducted in this study using
the CCK-8 cell proliferation assay and colony formation assay.
The experimental results demonstrated that EIF3M overexpression
significantly enhanced the proliferative capacity of hepatocellular
carcinoma cells, while EIF3M knockdown resulted in a marked
reduction in tumor cell proliferation (Figure 7B). Furthermore,
EIF3M expression level exhibited a positive correlation with colony
formation efficiency, as evidenced by the significantly increased
number of cell colonies formed in the overexpression group.
Conversely, attenuation of EIF3M expression led to pronounced
inhibition of colony-forming ability (Figure 7C). Simultaneously,
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the impact of EIF3M expression on cell migration capacity was
evaluated, revealing a positive correlation between migration
ability and EIF3M expression levels. Scratch wound healing assays
demonstrated that EIF3M overexpression significantly promoted
wound closure rate. Conversely, suppression of EIF3M expression
resulted in marked inhibition of cellular migratory activity,
accompanied by prolonged wound healing duration (Figure 8A,B).
To investigate the potential mechanisms by which EIF3M influences
HCC cells, we performed KEGG pathway analysis. Among the top
ten pathways ranked by enrichment score (Supplementary Table
S12), the KEGG_WNT_SIGNALING_PATHWAY was identified
as highly relevant to the initiation, progression, and malignant
behavior of HCC. To explore potential interacting factors, we
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TABLE 3 Top five miRNA-target interactions in enrichmentanalysis of hsa-miR-199a-3p.

pathwayName log10(p-val) log10(FDR)
KEGG

KEGG_Mapk_Signaling_Pathway —18.92645 —-16.71426
KEGG_Pathways_In_Cancer —17.77964 —15.86848
KEGG_Focal_Adhesion -17.2644 —-15.52934
KEGG_Regulation_Of_Actin_Cytoskeleton —16.42243 —14.81231
KEGG_Neurotrophin_Signaling_Pathway -15.26997 -13.75675
Disease ontology

Of_Gene-disease_Association —41.53348 -38.78607
In_Tumors —27.73465 —25.28827
In_Breast_Cancer -26.93135 —24.66106
In_Prostate_Cancer -19.16659 -17.02123
Of_Cancer —-17.2255 —15.17706
Biological processe

GOBP_Positive_Regulation_Of_Nucleobase_Containing_Compound_Metabolic_Process —76.63465 —72.89516
GOBP_Positive_Regulation_Of_Biosynthetic_Process —75.26942 -71.83096
GOBP_Cellular_Macromolecule_Localization -73.59791 —70.33554
GOBP_Regulation_Of_Intracellular_Signal_Transduction —-68.97741 —65.83997
GOBP_Regulation_Of_Protein_Modification_Process —66.87656 —63.83603
Molecular function

GOMF_Enzyme_Binding —68.4878 —65.45357
GOMEF_Transcription_Regulator_Activity —55.59786 —52.86466
GOMEF _Identical_Protein_Binding —-52.29043 —49.73332
GOMF_Rna_Binding —49.7899 —47.35773
GOMEF_Sequence_Specific_Dna_Binding —47.83628 —45.50103

intersected the EIF3M-correlated gene set (Supplementary Table
S13) with genes enriched in the KEGG_WNT_SIGNALING_
PATHWAY, which led to the identification of FZD2 as a key
candidate regulator.

4 Discussion

EIF3M, as a core structural subunit of the eIF3 complex,
exhibits widespread expression of its encoded gene product across
various tissues. It plays a critical regulatory role in the initiation
stage of eukaryotic protein synthesis by mediating the assembly
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process of the 43S pre-initiation complex (43S PIC) (Gomes-
Duarte et al, 2018). Recent studies have progressively unveiled
the critical regulatory role of the EIF3M in tumorigenesis and
progression. Its dysregulated expression has been substantiated to
correlate with malignant progression and adverse clinical outcomes
in various solid tumors, including but not limited to LUAD,
LUSC, PRAD, and BRCA (9,10,12). However, the regulatory
mechanisms governing EIF3M’s dysregulated expression in cancer
and its associated biological functions remain poorly understood,
necessitating further in-depth investigation (Yin et al., 2018). To
bridge this gap, our pan-cancer multi-omics analysis revealed that
EIF3M is frequently overexpressed and genomically altered across
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Heatmap of the correlation between EIF3M expression and infiltration of various immune cells.

cancer types, which correlates with unfavorable patient outcomes.
We further elucidated its involvement in epigenetic modulation,
miRNA-mediated regulatory networks, and remodeling of the
TIME. These findings not only deepen the understanding of
EIF3M’s oncogenic role but also highlight its potential as a
prognostic biomarker and therapeutic target. To functionally
validate these observations, we have successfully established both
EIF3M overexpression and knockdown cellular models. Functional
experiments using these models have confirmed that EIF3M
significantly promotes tumor cell proliferation and migration.
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In the present study, based on transcriptome data analysis from
TCGA and GTEx databases, identified significant differential mRNA
expression of the EIF3M across 12 tumor types: CHOL, COAD,
DLBC, GBM, LGG, LIHC, PAAD, READ, TGCT, THYM, LAML,
and PCPG. Furthermore, protein expression analysis revealed
significant differential expression of this gene in 9 malignancies:
BRCA, COAD, GBM, HNSC, LIHC, LUAD, LUSC, OV, and PAAD.
Integrated analysis revealed concordant upregulation of EIF3M
expression at both mRNA and protein levels in COAD, GBM,
and LIHC. This dual aberrant overexpression pattern suggests its
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FIGURE 7
The impact of EIF3M expression on the proliferative capacity of HCC cell lines. (A) RT-gPCR validation of EIF3M overexpression and knockdown models
in three HCC cell lines. Results of (B) CCK-8 assay and (C) colony formation assay for three cell lines with differential EIF3M expression levels in vitro.
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compared to normal tissues. This paradoxical regulatory pattern
suggests EIF3M may undergo complex post-transcriptional control
mechanisms, including miRNA-mediated translational repression
and ubiquitin-proteasome system-dependent protein degradation.
These regulatory pathways likely underpin its pro-tumorigenic role
in cancer initiation and progression. Notably, this discovery provides
a critical molecular framework for developing precision therapeutic
strategies targeting EIF3M in oncology, holding substantial promise
for clinical translation. To explore evidence supporting EIF3M
as a novel tumor diagnostic marker and prognostic predictor,
we conducted an exploration and discussion by systematically
analyzing the correlation between EIF3M expression levels and
tumor Stage. The results revealed that in KIRP, LIHC, and LUAD,
EIF3M expression levels exhibited a positive correlation trend with
tumor Stage, whereas EIF3M expression was significantly lower in
advanced-stage SKCM patients compared to early-stage cases. These
complex findings suggest that during tumor progression, genomic
instability drives spatiotemporal fluctuations in EIF3M expression
levels, which are dynamically regulated through multilayered
networks to adapt to the tumor microenvironment. This adaptive
process likely involves functional reprogramming of oncogenic
mechanisms, enabling cancer cells to reshape their biological
functions in response to evolutionary pressures (Jardim et al., 2025;
Alonso et al,, 2025). Through multidimensional survival analysis,
we further evaluated the clinical association of EIF3M expression
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levels with OS, DFS, DSS, and PFES. After screening cancer types
with >3 statistically significant survival indicators, we identified
that high EIF3M expression in ACC and LUAD was significantly
associated with poor patient prognosis. In KICH and LIHC,
patients with elevated EIF3M levels exhibited worsening trends
in OS, DSS, and PFS. Similarly, in PAAD, EIF3M overexpression
demonstrated statistically significant inverse associations with OS,
DFS, and PFS outcomes. The integrated analysis of expression-
prognosis correlation patterns confirms that differential EIF3M
expression serves as a pan-cancer diagnostic and prognostic
biomarker (Zhou et al., 2025). To provide a comprehensive overview
of the expression alterations of EIF3M across various cancer
types and its association with patient prognosis, the corresponding
findings are systematically summarized in Table 4. This discovery
not only establishes a theoretical foundation for developing clinical
prediction models but also provides a novel entry point for
advancing the clinical translation of EIF3M-based therapeutic
strategies, thereby bridging the evidence chain from mechanistic
research to practical applications.

In tumor biology, the mutation frequency of oncogenes,
DNA methylation and miRNA-mediated
networks tumorigenesis

levels, regulatory

collectively drive and progression
through distinct molecular layers (Yang et al., 2021). These
interconnected mechanisms form the basis of tumor heterogeneity,

and investigating these axes provides critical insights into the
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TABLE 4 Expression changes of EIF3M across cancers and their prognostic associations.

EIF3M expression

Expression level

High expression & prognosis

Low expression High expression ‘ Protective factor Risk factor
KICH BRCA LUAD KIRC ACC
LAML CHOL LUSC READ HNSC
PAAD COAD ov THYM KICH
PCPG ESCA PRAD SKCM LIHC
Cancer type

THCA GBM READ UVM LUAD
UCEC HNSC STAD PAAD

KIRC PCPG

LIHC KIRP

biological functions of genes in cancer development. Pan-cancer
genomic analysis revealed that the EIF3M exhibits frequent
genomic alterations across 15 major malignancies, with BRCA,
COAD, and HNSC showing particularly high mutational rates.
Amplification represents the predominant alteration type for
this gene. Our pan-cancer TMB analysis identified a significant
correlation between EIF3M expression levels and TMB status in
12 malignancies. Furthermore, tumors with EIF3M mutations
exhibited significantly elevated TMB scores compared to wild-
type counterparts. Integrating mutation frequency and TMB data
enables the evaluation of genomic instability in patients, providing
a scientific rationale for developing personalized therapeutic
strategies (Zy et al., 2024; Sholl et al, 2020). CpG methylation
analysis of the EIF3M revealed significant differences in methylation
levels between 13 cancer types and normal tissues. Notably,
promoter region assessment demonstrated aberrant methylation
patterns in 12 of these malignancies. In most cancer types,
EIF3M exhibits hypomethylation patterns relative to normal
tissues, and this epigenetic alteration correlates with its consistent
overexpression observed in tumors (Gomes-Duarte et al., 2018).
This inverse relationship aligns with the well-established role of
DNA methylation as a transcriptional repressor in cells (Zhou et al.,
2025; Ji et al., 2022). MiRNAs play a pivotal role in gene expression
regulation and may provide critical clues for elucidating novel
regulatory mechanisms of oncogenes (Alexander et al., 2025).
Our pan-cancer analysis identified three miRNAs that target
EIF3M and show a significant negative correlation with its
expression. In most cancer types, EIF3M expression is negatively
correlated with these targeting miRNAs, which is consistent
with its significant overexpression in tumor tissues compared
to normal counterparts (Liu et al, 2021; Zhou et al, 2025).
Integrative analysis of genetic mutations, methylation, and
miRNAs transcends the limitations of the traditional “driver
mutation” paradigm by enabling multi-layered integration of
epigenetic-transcriptomic-genomic data. This approach uncovers
the dynamic interplay among these three elements within
regulatory networks, thereby offering a novel paradigm for

Frontiers in Molecular Biosciences

cancer mechanism research, precision diagnostics, and targeted
therapeutics.

Genes do not operate in isolation. Therefore, systematically
investigating the coordinated regulatory mechanisms within
complex oncogenic networks is crucial. It holds the potential
to elucidate core molecular networks that govern oncogenic
reprogramming by driver genes and immune evasion during
tumorigenesis and progression. This understanding will provide
a theoretical foundation for deciphering the evolutionary principles
of tumor heterogeneity and progression dynamics (Singh et al,
2019). Using the Pathway Commons database, we identified
a regulatory module of 24 genes with significant molecular
interactions with EIF3M. We then systematically constructed a
pan-cancer expression atlas for this gene set and their normal
tissue counterparts. Transcriptomic profiling revealed that EIF3M-
associated genes (e.g., EEF2, G3BP1, G3BP2, PRPF8, RECQL4,
STOML2, and UBB) are widely dysregulated in tumors. GSEA
revealed that this gene cohort is significantly enriched in functional
modules related to transcriptional regulation and core signaling
pathways. Next, we built a protein-protein interaction network
using the STRING database and identified 10 core proteins that
directly interact with EIF3M, all belonging to the EIF3 family.
Functional annotation confirmed that this protein cluster is also
highly enriched in GO terms associated with transcriptional
regulation. The findings from this section demonstrate a multi-
dimensional collaborative network map of EIF3M in tumorigenesis
and progression, providing crucial evidence for systematically
analyzing its mediated biological processes and precisely identifying
key signaling axes. This analysis reveals the topological structure
of the protein interaction network centered on EIF3M as a core
node, which transcends the limitations of traditional single-factor
studies. These results establish a foundation for deciphering the
functional plasticity of EIF3M in the context of tumor heterogeneity
and developing potential therapeutic targets.

The TIME, a complex ecosystem composed of tumor cells,
surrounding immune cells, stromal components, and signaling
molecules, serves not only as a pivotal key to understanding the
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essence of tumor biology but also as an indispensable pathway
to transcend current therapeutic barriers and achieve precision
medicine (Jin et al., 2023). By dissecting the intricate regulatory
networks within TIME, we can furnish theoretical foundations
for the development of novel immunocombination therapies, the
overcoming of drug resistance, and the realization of individualized
treatment strategies (Liu N. et al, 2025). Recent studies have
progressively unveiled the central role of the EIF3 family in
shaping the tumor immune microenvironment. Multiple EIF3
subunits—including B, D, and F—mediate immunosuppressive
functions through multidimensional mechanisms such as exosomal
sorting, metabolic reprogramming, and regulation of gene
expression, collectively promoting immune microenvironment
remodeling and resistance to immunotherapy (Zhang et al,
2025; Zhou et al, 2024; Lu et al, 2024). In studies focused on
hepatocellular carcinoma and melanoma, elevated expression of
specific EIF3 subunits (B and F) has been demonstrated to directly
or indirectly suppress CD8" T cell infiltration and impair the
efficacy of PD-1 blockade therapy (Zhou et al., 2025; Wu et al.,
2022). The present study also revealed that EIF3M, as a member
of the EIF3 gene family, exhibits a significant correlation between
its aberrant expression and dynamic alterations in immune cell
infiltration density within the TIME. Under pathological conditions,
dysregulation of this gene is accompanied by pronounced
changes in the infiltration levels of multiple immune cell subsets,
including CD8" T cells, macrophages, B cells, NK cells, MDSC,
and CAFs. CD8" T lymphocytes, NK cells, and M1-polarized
macrophages collectively function as central effector units within
the immune system, mediating antitumor immunity through direct
cytolytic elimination of malignant cells and paracrine secretion
of immunoregulatory cytokines/chemokines, thereby constituting
pivotal operational components of the immune surveillance network
(Xing et al., 2025; Park et al., 2024; Palmer et al., 2025). Under
conditions of EIF3M overexpression, functional suppression of
immune cells may be associated with metabolic reprogramming. For
instance, in HCC, depletion of polyunsaturated fatty acids (PUFAs)
leads to diminished antitumor cytotoxicity of immune cells, thereby
contributing to resistance to immunotherapy (An and Li, 2025).
M2-type macrophages, MDSCs, and CAFs collectively orchestrate
the establishment of an immunosuppressive microenvironment and
remodeling of tumor stromal architecture through the secretion
of immunosuppressive cytokines, chemokines, and extracellular
matrix components (Jin et al., 2023; Zhu et al., 2023; Oya et al,,
2020). In this study, it was observed that high expression of EIF3M
is accompanied by significantly elevated levels of MDSCs across
nearly all cancer types. This suggests that EIF3M may promote the
formation of an immunosuppressive microenvironment potentially
through the IL-6/CD73 axis, thereby modulating the activity of
other immune cells (Liu M. et al., 2025). Furthermore, elucidating
the molecular interaction mechanisms between EIF3M and immune
cell subsets not only establishes the molecular biological foundation
for developing dynamic immune score monitoring models and
prognostic stratification systems, but also offers novel insights into
the exploration of immunotherapy-based combination strategies
and provides an innovative research perspective for addressing
current clinical therapeutic challenges (Zhou et al., 2025).

In cancer functional genomics research, modulating the
expression levels of oncogenes in tumor cell lines to investigate
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their regulatory effects on cellular biological behaviors represents
a core research strategy widely employed in this field (Gong et al.,
2025). To elucidate the cellular-level biological functions of EIF3M,
this study established both knockdown and overexpression models
of EIF3M in HCC cell lines and conducted systematic functional
validation experiments. Through systematic evaluation utilizing
CCK-8 cell proliferation assays and colony formation experiments,
we demonstrated that downregulation of EIF3M gene expression
significantly suppresses proliferative activity in LIHC malignant
tumor cells, whereas overexpression of EIF3M markedly enhances
proliferative capacity across HCC cell lines. Further analysis revealed
that this regulatory effect also exerts significant biological impacts
on migratory phenotypes: Wound healing assays indicated that
suppression of EIF3M expression resulted in markedly reduced
migratory capacity in tumor cells of the knockdown group compared
to control counterparts, while the overexpression group exhibited
a contrasting phenotype characterized by significantly enhanced
migratory ability. These findings collectively suggest that EIF3M
may contribute to malignant tumor progression by concurrently
regulating critical cellular processes involving proliferation and
migration. KEGG enrichment analysis revealed a significant
positive association between EIF3M and the Wnt signaling
pathway. Notably, FZD2—a gene correlated with EIF3M—was
also enriched within this pathway. These observations suggest
that EIF3M may activate the Wnt signaling cascade through the
modulation of FZD2 expression, thereby promoting malignant
phenotypes in HCC cells, including proliferation, invasion, and
metastasis. Research on EIF3M has not only expanded our
understanding of tumor biological behaviors but also provided
critical insights for the development of innovative diagnostic tools
and therapeutic strategies. Through multidisciplinary integration
and deep functional characterization, continued investigation
into its mechanistic roles holds significant potential to catalyze
transformative progress in precision oncology.

Although the present study has conducted a systematic
investigation into the potential value of EIF3M as a novel biomarker
in pan-cancer analysis, the development of clinical prognostic
evaluation systems, and the exploration of its molecular regulatory
mechanisms, it is imperative to objectively acknowledge several
inherent limitations of the current research. Specifically, this study
primarily relied on retrospective analyses of public omics databases,
and the correlations between relevant molecular signatures and
clinical indicators still necessitate validation through prospective
clinical cohort studies to confirm their clinical translational validity.
It should be noted that although this study has preliminarily
validated the functional roles of EIF3M in regulating malignant
phenotypes in HCC through in vitro models, its cross-cancer
applicability still requires confirmation through systematic
functional genomic studies. Furthermore, the multidimensional
biological effects mediated by EIF3M and its associated molecular
regulatory networks still necessitate systematic dissection through
multi-layered functional genomics experiments. The translational
medical value of EIF3M is of critical importance; however, its
practical application remains highly contingent upon further
validation and in-depth exploration through prospective clinical
cohort studies and in vivo experiments. Despite the aforementioned
limitations, this study has offered significant insights into elucidating
the mechanistic role of EIF3M in tumorigenesis and its clinical
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translational potential. Firstly, through multi-dimensional data
validation, we have confirmed the potential association between
EIF3M expression patterns and malignant tumor phenotypes,
providing critical targets for subsequent functional verification.
Secondly, we have preliminarily mapped the signaling pathway
regulatory networks potentially involving EIF3M, establishing a
research foundation for clarifying its molecular mechanisms. Finally,
employing bioinformatics analysis combined with phenotype
correlation studies based on HCC cell lines, we have provided
theoretical underpinnings for designing targeted intervention
strategies and developing novel prognostic biomarkers. These
discoveries not only expand the functional understanding of the
eukaryotic translation initiation factor family in tumor biology but
also highlight the translational medical significance of EIF3M as a
potential therapeutic target.

5 Conclusion

This study systematically analyzed the expression profile
of EIF3M in pan-cancer tissues and revealed its significant
overexpression in multiple malignancies such as LIHC, COAD, and
LUAD. EIF3M expression was closely associated with poor patient
prognosis, including reduced OS and DFS, as well as key biological
processes such as genetic mutations, TMB, DNA methylation,
miRNA regulatory networks, and remodeling of the tumor immune
microenvironment. Furthermore, using HCC cell line models,
this study demonstrated that differential EIF3M expression levels
markedly influence tumor cell behaviors, including proliferation and
migration. While the conclusions are primarily supported by multi-
omics analyses from public databases, the biological functions and
clinical significance of EIF3M warrant further validation through
in-depth mechanistic investigations and clinical studies.
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SUPPLEMENTARY FIGURE S1

Expression levels of EIF3M in various human organs and its cellular localization.
(A) Expression levels of EIF3M across 50 organs in multiple human systems. (B)
Schematic diagram of subcellular localization analysis for EIF3M expression in
cells. (C) Immunofluorescence images of EIF3M in A-431, U20S, and U-251IMG
cell lines. EIF3M, nucleus, and microtubules are labeled with green, blue, and red,
respectively.

SUPPLEMENTARY FIGURE S2
Comparison of EIF3M gene expression activity scores across multiple tumor
tissues versus normal tissues.
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