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Viral encephalitis, characterized by inflammation of the brain parenchyma,
poses a significant threat to public health due to its high rates of morbidity
and mortality. Microglia, the central nervous system'’s resident immune cells,
are crucial in the pathophysiology and development of this condition. These
microglia exhibit a dual function, being involved in both neuroprotection
and neurotoxicity during viral encephalitis. To address this complex interplay,
targeted therapeutic strategies that modulate microglia activation state have
emerged as a promising approach. These strategies aim to either inhibit
excessive microglia activation or promote their neuroprotective functions. By
targeting microglia, these therapies hold the potential to improve outcomes
for patients with viral encephalitis. This review synthesizes current evidence
revealing that microglial responses during viral encephalitis exhibit context-
dependent heterogeneity that extends beyond traditional M1/M2 paradigms.
Critically, our review reveals a significant translational gap, with no current
clinical trials investigating microglial-targeted therapies for viral encephalitis
despite promising preclinical evidence. This review provides a comprehensive
framework for understanding microglial complexity in viral encephalitis and
establishes research priorities for advancing these insights toward clinical
application.
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1 Introduction

Viral encephalitis is an inflammatory condition in the central
nervous system (CNS) that primarily affects the brain parenchyma
(Venkatesan and Murphy, 2018; Venkatesan et al., 2013). It can
be caused by a wide range of RNA and DNA viruses, including
Japanese encephalitis virus (JEV), West Nile virus (WNYV), herpes
simplex virus (HSV) and enteroviruses (Venkatesan and Murphy,
2018; Costa and Sato, 2020; McMillan etal., 2023). The infection may
manifest as a primary viral infection, a reactivation of latent viral
infection, or as a result of viral dissemination (Granerod et al., 2010).

The global incidence of viral encephalitis varies depending on
the virus and geographical location, with approximately 3.5-7.4
cases per 100,000 individuals annually (Venkatesan et al., 2013;
Granerod et al, 2010; Vora et al, 2014). It poses significant
public health challenges, particularly in developing countries, due
to high morbidity and mortality rates (Solomon et al, 2012).
Clinical manifestations of viral encephalitis can range from mild,
nonspecific symptoms such as fever, headache, and lethargy to severe
neurological complications, including seizures, cognitive difficulties,
and altered consciousness (Venkatesan and Murphy, 2018; Whitley
and Gnann, 2002). Despite the availability of antiviral therapies
for some viral encephalitis etiologies, the prognosis remains poor,
particularly for HSV encephalitis, which has a mortality rate of
approximately 70% without treatment (Solomon et al., 2012).

Microglia, the resident immune cells of the CNS, are crucial not
only for maintaining neuronal homeostasis but also in the context
of infections, such as viral encephalitis (Ginhoux and Prinz, 2015;
Nayak et al., 2014). Microglial activation and subsequent immune
responses can both protect the host by limiting viral replication and
spread or exacerbate the infection by causing neuroinflammation
and neuronal damage (Nayak et al, 2014; Salter and Stevens,
2017). Therefore, understanding the role and functions of microglia
during viral encephalitis is critical for the development of targeted
therapeutics to modulate their neuroprotective functions while
minimizing neurotoxic effects (Mariani and Kielian, 2009).

This review aims to provide a comprehensive overview of the
current knowledge on microglial involvement in viral encephalitis,
focusing on their roles in pathogen recognition, orchestrating antiviral
immune responses, and their contribution to neuroinflammation and
blood-brain barrier disruption. Additionally, we will discuss the dual
role of microglia in viral encephalitis, delineating their neuroprotective
and neurotoxic functions. Finally, prospective microglia-targeting
treatment approaches and potential future research objectives in this
area will be discussed.

2 Overview of microglia
2.1 Origin and development

Microglia belong to the mononuclear phagocyte system, a
group of myeloid cells that includes monocytes, macrophages,
and dendritic cells (Borst et al., 2021; Prinz and Priller, 2014).
Unlike other cell types in the CNS, microglia are relatively long-
lived, maintaining their population through self-renewal rather
than relying on the turnover of circulating precursors (Prinz
and Priller, 2014). Microglia play a crucial role in immune
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surveillance, sustaining tissue homeostasis, and responding to injury
or virus infection in the CNS (Prinz and Priller, 2014; Erny et al.,
2015). They are highly dynamic cells that constantly survey their
microenvironment and can rapidly respond to changes by altering
their morphology and function (Nimmerjahn et al., 2005).

The origin of microglia has been a subject of debate, and
Hortega’s classical view suggests that microglia originate from the
mesoderm and enter the brain during late embryonic development
when blood vessels form (Boullerne and Feinstein, 2020). During
early embryonic development, microglia arise from primitive
macrophages in the yolk sac and migrate to the developing brain
(Ginhoux et al., 2010). Once they reach the CNS, they differentiate
into ramified cells with highly branched processes that continuously
survey their surroundings (Nimmerjahn et al., 2005). Microglia are
characterized by their unique molecular signature, which includes
various cell surface markers such as CD11b, CD45, and Ibal
(Ginhoux et al., 2010; Lan et al., 2017).

In addition to the role in immune surveillance, microglia also
actively participate in shaping the developing brain. They contribute
to neural circuit refinement, synaptic pruning, and the elimination
of excess synapses during development (Paolicelli et al., 2011).
Microglia also play a role in neurogenesis and neuroinflammation,
and their malfunction is implicated in various neurological
disorders, such as Alzheimer’s disease (AD) and multiple sclerosis
(MS) (Prinz and Priller, 2014; Hickman et al., 2018).

2.2 Functions in the CNS

Microglia play multiple roles in the CNS, including maintenance
of homeostasis, surveying the microenvironment, synaptic pruning,
and mediating adaptive and innate immune responses (Nayak et al.,
2014; Salter and Stevens, 2017). Under physiological conditions,
microglia exhibit a ramified morphology characterized by a small
cell body with numerous branched processes, allowing them to
constantly monitor their surroundings for any potential threats
(Nimmerjahn et al., 2005). In response to injury, infection, or other
disruptions of CNS homeostasis, microglia undergo morphological
and functional changes, becoming activated, phagocytic, and
releasing cytokines and chemokines (Wolf et al., 2017; Garaschuk
and Verkhratsky, 2019; Kettenmann et al., 2011).

Activated microglia can phagocytose cellular debris, pathogens,
and damaged neurons, contributing to tissue repair and clearance of
harmful substances (Salter and Stevens, 2017). They also release pro-
inflammatory factors, such as interleukin-1 beta (IL-1f) and tumor
necrosis factor-alpha (TNF-a), which recruit immune cells to the site
of injury and initiate an inflammatory response (Kettenmann et al.,
2011). In addition to their immune functions, microglia actively
participate in synaptic pruning and refinement of neural circuits
during development (Paolicelli et al., 2011). They remove excess
synapses, allowing for the proper wiring of neuronal connections
and optimizing neural circuitry (Schafer etal., 2012). Dysfunction or
dysregulation of microglial pruning processes has been implicated in
neurodevelopmental disorders, such as autism spectrum disorders
and schizophrenia (Schafer et al., 2012). Furthermore, microglia
are involved in neurogenesis and neuroplasticity, influencing
the formation and maintenance of new neurons and synaptic
connections (Sierra et al., 2010). They release growth factors and
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neurotrophic factors that support neuronal survival, differentiation,
and synaptic plasticity (Sierra et al., 2010).

However, excessive or prolonged activation of microglia can lead
to more severe neuroinflammation and contribute to the pathogenesis
of various neurological disorders (Nayak et al., 2014; Salter and
Stevens, 2017; Hickman et al., 2018). Understanding the complex
functions of microglia in both health and disease is crucial for
developing targeted therapeutic strategies for neurological disorders.

2.3 Activation states and phenotypes

Microglia can be divided into 3 morphological forms, namely,
branch-like, amoeboid and intermediate, according to their
significant changes in morphology (Figure 1) (Savage et al., 2019).
In turn, they can be classified into four types according to their
functional state, namely, resting, intermediate, activated and aging
states (Orihuela et al., 2016). In the resting state, microglia appear
as small, branched cells with long protrusions. When the CNS is
stimulated by inflammation or other injuries, microglia are activated
and morphologically appear as amoeboid cells with larger cell bodies
and shorter protrusions (Wolf et al., 2017; Orihuela et al., 2016).

Historically, microglial activation was simplified into two
phenotypes: the “classic” pro-inflammatory M1 and “alternative”
anti-inflammatory M2 states, representing extremes of microglial
activation (Orihuela et al, 2016; Ransohoff, 2016a). However,

10.3389/fmolb.2025.1695058

it is now widely recognized that microglial activation is highly
dynamic and context-dependent, with microglia adopting various
activation states in response to different stimuli (Deczkowska et al.,
2018). These activation states are characterized by specific gene
expression profiles, functions, and secreted factors that can
be either neuroprotective or neurotoxic (Bachiller et al, 2018;
Spiterietal, 2022). In general, resting-state microglia assist neuronal
circuit formation and induce neuroactive synaptic plasticity by
phagocytosing neuronal fragments (Nayak et al., 2014; Cornell et al.,
2022). Microglia M1 are neurotoxic phenotype, as they release
pro-inflammatory cytokines and various neurotoxins, such as IL-
1B, IL-6, TNF-a, which may damage neurons and even induce
neuronal death (Tang and Le, 2016). In M1 activation state,
microglia can initiate a pro-inflammatory response, producing pro-
inflammatory factors to eliminate foreign pathogens and promote
an adaptive immune response (Tang and Le, 2016; Kwon and
Koh, 2020). On the contrary, microglia M2 are neuroprotective
phenotype, as they release neurotrophic factors promoting neuronal
growth and tissue repair, such as IL-4, IL-10, BDNE which protect
neurons (Kwon and Koh, 2020). M2 forms can be further classified
into M2a, M2b and M2c subtypes, where M2a could counteract
neuroinflammation by secreting IL-10 and various neurotrophic
factors to attenuate the pro-inflammatory response and stimulate
tissue repair. M2b are associated with increased phagocytic and
immunomodulatory activity and secrete large amounts of the
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Biomarkers and diverse biological functions of microglia in different morphologies.

Frontiers in Molecular Biosciences

03

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1695058
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zong et al.

anti-inflammatory factor IL-10 as well as the pro-inflammatory
factors IL-1pB, IL-6 and TNF-a. M2c secrete IL-10 and TGF-p
and are associated with anti-inflammatory effects, tissue repair
and neuronal debris removal (Orihuela et al., 2016; Pepe et al.,
2014; Guo et al,, 2022). During acute stimulation, the activation
of microglia is primarily M2 phenotype, which is beneficial
for neuronal survival. However, during chronic stimulation, the
activation of microglia is primarily M1 phenotype, which promotes
neuronal degeneration and death (Salter and Stevens, 2017; Mariani
and Kielian, 2009; Orihuela et al., 2016).

In the context of viral encephalitis, microglial activation states
are influenced by the type of virus, host-pathogen interactions, and
host immune status (Waltl and Kalinke, 2022; Chen et al., 2019).
The balance between the various activation states can determine
the outcome of infection, with excessive pro-inflammatory
responses leading to neuroinflammation and neuronal damage,
whereas anti-inflammatory responses can promote tissue repair
and maintain neuronal homeostasis (Waltl and Kalinke, 2022;
Griffin et al., 1992; Smeyne et al., 2021).

3 Microglial involvement in viral
encephalitis

3.1 Recognition of viral pathogens

Microglia are crucial in the recognition and defense against viral
infections in the CNS. Microglial recognition of viral pathogens is
a critical step in the CNS immune response against viral encephalitis
(Borstetal.,2021). This recognition is mediated by pattern recognition
receptors (PRRs) expressed on microglial cells, includding RIG-I-like
receptors (RLRs), Toll-like receptors (TLRs), and NOD-like receptors
(NLRs), which can sense viral pathogen-associated molecular patterns
(PAMPs) (Fitzgerald and Kagan, 2020; Kawai and Akira, 2011;
Li et al, 2021). Upon recognizing a viral PAMP, these PRRs
initiate downstream signaling pathways leading to the activation of
transcription factors like NF-kB and IRF3/7, in turn promoting the
production of pro-inflammatory cytokines, chemokines and type I
interferons (IFNs) (Takeuchi and Akira, 2010).

One important group of PRRs involved in viral pathogen
recognition is TLRs. TLRs can detect viral nucleic acids or proteins
in the CNS. For example, TLR3 can recognize double-stranded
RNA, a common viral genetic material, while TLR7 and TLR8 can
recognize single-stranded RNA (Hornung et al., 2008). The immune
response against viral infection is facilitated by the activation
of TLRs, which also stimulate downstream signaling pathways
that encourage the release of pro-inflammatory cytokines and
chemokines (Zhang et al., 2007). In addition to TLRs, microglia
also express other PRRs such as RLRs and NLRs (Kigerl et al,
2014). RLRs, including RIG-I and MDAS5, can recognize viral RNA
molecules and activate antiviral immune responses (Kato et al.,
2006; Shen et al., 2021). NLRs, on the other hand, can detect viral
components in the cytosol and activate inflammatory signaling
pathways (Tuladhar and Kanneganti, 2020). Upon activation of these
PRRs, microglia initiate downstream signaling cascades that involve
transcription factors, like NF-xB and IRF3/7 (Newton and Dixit,
2012). Activation of NF-«kB and IRF3/7 can lead to the generation
of pro-inflammatory cytokines, chemokines, and type I IFNs, which
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are important for mounting an effective antiviral immune response
in the CNS (Takeuchi and Akira, 2010). Overall, microglia play
a crucial role in recognizing viral pathogens in viral encephalitis
through the expression of various PRRs. These PRRs are activated,
which triggers the synthesis of immune mediators that aid in the
CNS’s immunological response to viral infections.

3.2 Antiviral immune response

The antiviral immune response is a complex process involving
various cells and molecules that work together to eliminate viral
infections. Microglia are key players in mounting an antiviral
immune response in the CNS by producing type I IFNs, which
possess potent antiviral activity and can limit viral replication
and spread (Gonzalez-Navajas et al., 2012; Reinert et al., 2021).
Furthermore, microglia can phagocytose viral particles and infected
cells, presenting viral antigens to T cells and promoting the
recruitment of peripheral immune cells to the site of infection
(Kettenmann et al, 2011; Moseman et al, 2020). Additionally,
microglia can secrete a variety of cytokines that modulate
the adaptive immune response, such as IL-12, IL-23, and IL-
27, ultimately shaping the host defense against viral infections
(Chen et al., 2019; Jeong et al., 2022).

3.3 Microglia-mediated neuroinflammation

Whereas microglial activation is essential for mounting an
effective antiviral response, exaggerated or chronic activation
can lead to neuroinflammation and subsequent neuronal damage
and dysfunction (Mariani and Kielian, 2009; Borst et al.,, 2021).
Activated microglia release a wide range of pro-inflammatory
molecules, includingTNF-a, IL-1f, IL-6, and nitric oxide (NO).
These molecules can induce a cascade of inflammatory responses,
recruiting other immune cells to the site of infection and promoting
the production of additional inflammatory mediators. This
sustained inflammatory environment can exacerbate the neuronal
injury and contribute to the progression of viral encephalitis
(Dheen et al,, 2007; Chauhan et al., 2017; Kajimoto et al., 2021).
Furthermore, the unrestrained activation of microglia and the
overproduction of inflammatory mediators can disrupt the blood-
brain barrier (BBB). The BBB is a specialized barrier that tightly
regulates the exchange of molecules between blood circulation
and brain tissue. Disruption of the BBB allows the infiltration of
immune cells and inflammatory molecules into the brain, further
amplifying the neuroinflammatory response and aggravating the
disease process (Ronaldson and Davis, 2020; Ghoshal et al., 2007).

3.4 Contribution to blood-brain barrier
disruption

BBB acts as a physical and metabolic barrier that separates
the CNS from the peripheral circulation, protecting it from
harmful substances and pathogens (Zhao et al, 2015; Daneman
and Prat, 2015). Microglia-mediated neuroinflammation can
contribute to BBB disruption during viral encephalitis through the
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overproduction of pro-inflammatory cytokines and chemokines,
which can enhance the permeability of the BBB and facilitate the
infiltration of peripheral immune cells into the CNS (Varatharaj
and Galea, 2017). Furthermore, activated microglia can upregulate
the expression of matrix metalloproteinases (MMPs), which
can further degrade the extracellular matrix and tight junction
proteins, leading to increased BBB permeability and CNS damage
(Behl et al., 2021; Almutairi et al., 2016).

In viral encephalitis, disruption of the BBB plays a significant
role in disease progression and severity. For example, in JEV
infection, microglial activation has been shown to induce BBB
disruption by upregulating MMP-3 and MMP-9 expression, thereby
exacerbating CNS infiltration of peripheral immune cells and
neuroinflammation (Ashraf et al., 2021). Similarly, BBB disruption
has been implicated in the pathogenesis of other viral encephalitides,
such as HSV-1 and WNV (Daniels et al., 2017; Wang et al., 2003).

Taken together, microglial activation plays a complex and
multifaceted role in viral encephalitis, contributing to both the
antiviral defense and the potentially detrimental inflammatory
response. The balance between these opposing roles of microglia
may determine the outcome of viral encephalitis, and further
research is required to better understand the precise mechanisms
underlying microglial involvement in these disease processes.

4 Dual role of microglia in viral
encephalitis

Recent studies have fundamentally transformed our
understanding of microglial biology in viral encephalitis contexts,
moving beyond traditional models to more clinically relevant
human-based systems.Human microglial responses to neurotropic
viral infections exhibit profound species-specific differences that
cannot be captured by traditional mouse models (Figure 2)
(McMillan et al., 2023; Hasselmann et al., 2019; Hasselmann and
Blurton-Jones, 2020). The comprehensive analysis demonstrated
that immortalized human microglial cell lines (C20 and HMC3)
are transcriptionally distinct from primary human microglia,
induced pluripotent stem cell-derived microglia (iMGs), and
monocyte-derived macrophages (Hasselmann and Blurton-Jones,
20205 Rajab et al,, 2021; Seah et al., 2025). This finding challenges
the widespread reliance on mouse models and cell lines for
understanding human microglial pathophysiology. Critically,
some work established that human stem cell-derived microglial
models reveal fundamentally different virus-host interactions
compared to traditional approaches. For instance, while HIV-1
directly infects microglia and establishes latency through a Bim-
dependent mechanism (Castellano et al., 2017; Huang et al., 2011),
other viruses like SARS-CoV-2 and WNV do not productively
infect microglia but still elicit robust proinflammatory responses
through pattern recognition receptors (Jeffries and Marriott, 2017;
Cheeran et al., 2005; Song et al., 2021). Studies across multiple
neurotropic viruses (HIV-1, ZIKV, JEV, WNV, HSV, and SARS-
CoV-2) revealed virus-specific patterns of microglial activation that
provide essential foundations for developing targeted therapeutic
interventions (McMillan et al., 2023; Lum et al., 2017; Kumar et al.,
20205 Jacob et al., 2020). Furthermore, xenotransplanted human
microglia (xMGs) express homeostatic microglial markers such
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as EGR1, P2RY12, TMEM119, CX3CR1, and SALL1, which are not
expressed or substantially downregulated in vitro (Hasselmann et al.,
2019; Mancuso et al., 2024). The xenotransplantation studies in
CSF1-humanized mice showed higher transcriptional similarities
between xMGs and ex vivo human microglia compared to iMGs
and cultured primary microglia, providing a more accurate model
of human disease biology (Hasselmann and Blurton-Jones, 2020;
Tang C. et al., 2025; Fattorelli et al., 2021).

Through comprehensive analysis of transcriptomic data,
microglial responses to viral CNS infections represent a spectrum
of activation states rather than discrete polarization categories
(Waltl and Kalinke, 2022). The critical temporal dynamics whereby
microglia provide essential protective functions during acute viral
encephalitis through pathogen recognition via Toll-like receptors,
RIG-I-like receptors, and cGAS-STING pathways (Takeuchi and
Alkira, 2010), antiviral defense initiation through type I interferon
production (Katzilieris-Petras et al., 2022), and T cell activation
via MHC T and II antigen presentation (Moseman et al., 2020;
Goddery et al., 2021). However, the prolonged microglial activation
leads to chronic neuroinflammation through excessive production
of proinflammatory cytokines such as TNF-a, IL-1f, and IL-6,
ultimately resulting in synaptic loss and long-term neurological
sequelae (Moseman et al, 2020; Vasek et al, 2016). Critically,
microglial-T cell crosstalk is essential for maintaining effective
antiviral responses while preventing immunopathology (Herz et al.,
2015). Microglia serve as local antigen-presenting cells that
restimulate infiltrating virus-specific T cells, ensuring that only
relevant antigen-specific T cells remain active within the CNS.

These studies converged on demonstrating pathogen-specific
microglial responses that challenge previous generalizations.
Primary human microglia infected with HSV-1 produce high levels
of TNF-q, IL-1f, IP-10, and RANTES without viral amplification
(Katzilieris-Petras et al., 2022), while ZIKV-infected microglia serve
as viral reservoirs and transmit infectious particles to neurons
(Lum et al, 2017). Similarly, microglia depletion during WNV
infections leads to increased viral titers and mortality (Seitz et al.,
2018), while during other viral infections, microglial activation
may contribute more to pathology than protection. Together, these
studies have shifted our understanding from viewing microglia
as uniformly beneficial or detrimental toward recognizing their
context-dependent, temporally dynamic, and virus-specific roles
in viral encephalitis. This nuanced understanding provides the
foundation for developing precision therapeutic approaches that can
harness the protective functions of microglia while mitigating their
pathological contributions, representing a significant advancement
from the traditional binary view of microglial activation.

4.1 Neuroprotective functions

4.1.1 Phagocytosis and clearance of viral particles

One of the key neuroprotective functions of microglia in the
context of viral encephalitis is their ability to phagocytose and
clear viral particles, thereby preventing viral spread and limiting
neuronal damage. Microglia express a variety of PRRs that can
detect PAMPs present in viral particles (Deczkowska et al., 2017).
Upon recognition of PAMPs, microglia become activated, undergo
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Dual roles of microglia in viral encephalitis.

morphological changes, and subsequently phagocytose the viral
particles (Deczkowska et al., 2017; Kreutzberg, 1996).

Studies have demonstrated the importance of microglial
phagocytosis in clearing viral particles and limiting CNS damage
in animal models of viral encephalitis. For instance, during
WNV infection, microglia play a significant role in clearing the
virus from the brain, limiting viral replication, and ultimately
reducing mortality (Stonedahl et al, 2020; Stonedahl et al,
2022). Similarly, in a murine model of HSV-1 encephalitis,
microglial phagocytosis is essential for removing replicating viral
particles from CNS neurons, thereby providing neuroprotective
effects (Reinert et al., 2016; Marques et al, 2006). Recent
advances in single-cell RNA sequencing have fundamentally
challenged the traditional M1/M2 polarization, revealing instead
that microglia exhibit a spectrum of activation states during viral
infections (Schwabenland et al., 2021; Ransohoff, 2016b; Huang and
Sabatini, 2020; Syage et al., 2020). Under homeostatic conditions,
microglia consist of at least two different subpopulations, but
during viral neuroinflammation, they demonstrate remarkable
plasticity and heterogeneity (Borst et al, 2021; Hammond et al.,
2019; Li et al, 2019). Despite these transcriptomic complexities,
functional studies continue to identify M2-like microglial responses
associated with neuroprotective outcomes. Treatment with anti-
inflammatory agents like minocycline can reduce M1-like markers
while promoting M2-like phenotypes that provide neuroprotective
effects during viral encephalitis (Quick et al., 2017). During acute
viral encephalitis, microglia function as the first line of defense
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against viral invasion within the CNS (Prinz and Priller, 2017). They
provide essential pathogen recognition through pattern recognition
receptors and initiate antiviral defense mechanisms via robust type
I interferon production (Chhatbar et al., 2018; Detje et al., 2015;
Drokhlyansky et al., 2017). Critically, microglia form physiological
immune barriers that prevent viral dissemination to uninfected
brain regions, effectively compartmentalizing infection and limiting
tissue damage (Chhatbar et al, 2018). This barrier function is
particularly evident in vesicular stomatitis virus infections, where
microglia respond to locally produced type I interferons and create
protective cellular networks (Detje et al, 2015). The temporal
dynamics of microglial activation reveal context-dependent shifts
between protective and potentially detrimental functions. However,
sustained microglial activation can transition toward complement-
mediated synaptic elimination and cognitive dysfunction during the
recovery phase (Vasek et al., 2016). This temporal duality emphasizes
that the same microglial populations can exhibit dramatically
different functional outcomes depending on the phase of infection
and duration of activation.

The importance of microglial phagocytic function in controlling
the viral spread and contributing to the survival of the host suggests
that modulation of microglial activity may represent a potential
therapeutic strategy for the treatment of viral encephalitis. However,
it should be noted that microglial phagocytosis may not be solely
beneficial, as excessive phagocytosis of healthy neurons or synaptic
elements may contribute to detrimental effects observed during CNS
infection.
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4.1.2 Secretion of neurotrophic factors

Another neuroprotective function of microglia during viral
encephalitis is the secretion of neurotrophic factors, which are
capable of promoting neuronal survival, growth, and differentiation.
During the early stages of CNS injury or infection, activated
microglia have been shown to produce various neurotrophic factors
such as NGE, BDNE and GDNF (Rizzi et al., 2018; Prowse and
Hayley, 2021; Zlotnik and Spittau, 2014).

For instance, BDNF secreted by microglia has been shown
to enhance neuronal survival and neuroplasticity during viral
infections such as HIV-1 encephalitis (Soontornniyomkij et al.,
1998). In contrast, microglia often show a reduced capacity
to produce neurotrophic factors during chronic inflammatory
conditions, such as in neurodegenerative diseases and progressive
viral infections. Dysregulated microglial function during these
conditions may impair neuronal support and contribute to the
progression of tissue damage (Calsolaro and Edison, 2016).
Recent studies revealed unexpected neuroprotective effects of
SARS-CoV-2 vaccination through enhanced microglial functions.
Maternal SARS-CoV-2 vaccination during pregnancy enhances
offspring hippocampal neurogenesis and working memory via IFN-
y-responsive microglia (Tang J. et al., 2025; Kumar et al., 2023).
Inactivated SARS-CoV-2 vaccine administration during pregnancy
led to transient enhancement of hippocampal neurogenesis in
offspring at 1 month of age, mediated through microglial IFN-yR1
and CX3CRI signaling pathways (Tang J. et al., 2025). The study
revealed that microglia serve as critical mediators of vaccination-
induced neuronal development through regulating microglial
activation and chemotaxis. Conditional knockout experiments
identified microglial IFNyR1 and CX3CRI1 as key mediators,
demonstrating that microglia activation following vaccination
promotes neural precursor cell proliferation and neuronal
differentiation through direct microglia-neuron interactions
(TangJ. et al, 2025; Cserép et al, 2022). Importantly, the
protective effects were temporally regulated and specific to the
developmental period, with enhanced neurogenesis observed at
1 month but not at 2 months post-vaccination (Tang]. et al,
2025). 'This temporal specificity suggests that vaccination-
induced microglial activation provides a beneficial developmental
window for neuroplasticity —without causing prolonged
neuroinflammation.

The ability of microglia to secrete neurotrophic factors
highlights the potential for stimulating their production as a
therapeutic approach to promote neuronal survival and tissue repair
during viral encephalitis. However, the precise mechanisms and
signaling pathways involved in the regulation of neurotrophic factor
secretion by microglia in the context of viral infections warrant
further investigation.

4.1.3 Regulation of neurogenesis

Additionally, microglia are essential in regulating neurogenesis,
the process through which neural stem cells and progenitor cells turn
into new neurons. During viral encephalitis, microglia may promote
neurogenesis and contribute to tissue repair and functional recovery
(Ekdahl et al., 2003; Ziv et al., 2006).

There are several ways through which microglia can regulate
neurogenesis, such as by producing several regulatory molecules
and signaling factors that influence neural stem cell proliferation,
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differentiation, and survival. These factors include IL-6, TGE-
B, and IGF (Lu et al, 2011; Araki et al., 2021). Microglia can
phagocytize cellular debris and apoptotic cells, thereby contributing
to the clearance of detrimental factors and facilitating the
regenerative process (Sierra et al., 2010). Altogether, the regulation
of neurogenesis by activated microglia during viral encephalitis
may represent a potential therapeutic target for facilitating CNS
recovery. A better understanding of the molecular mechanisms
and signaling pathways involved is required to develop suitable
therapeutic strategies.

4.2 Neurotoxic functions

4.2.1 Release of pro-inflammatory cytokines and
chemokines

While microglia play a crucial role in the neuroprotective
functions in viral encephalitis, they can also exert neurotoxic effects
that contribute to neuronal damage and pathology progression.
One of the primary neurotoxic mechanisms is the release of
pro-inflammatory cytokines and chemokines during the activated
state of microglia (Chen et al, 2019; Gonzélez-Scarano and
Baltuch, 1999; Rock et al., 2004).

Microglial activation resulting from viral infection or
stimulation by viral components, such as viral proteins or
nucleic acids, leads to the production and release of various
pro-inflammatory cytokines, including TNF-a, IL-1f3, and IL-
6 (Dheen et al, 2007; Glass et al, 2010). These cytokines can
contribute to neuronal dysfunction and death by exacerbating
and

neuroinflammation, homeostasis,

enhancing oxidative stress (Allen and Barres, 2009; Lull and Block,

disrupting neuronal

2010). Similarly, activated microglia can also release chemokines
such as CCL2, CXCL10, and CX3CL1, that can mediate the
recruitment of additional inflammatory cells, including peripheral
immune cells, to the site of infection, thereby amplifying the
inflammatory response and associated neurotoxicity (Errede et al.,
2022; Kinuthia et al., 2020). In some cases, certain viruses can
directly induce the production of these pro-inflammatory cytokines
and chemokines by microglia, leading to augmented neurotoxic
effects. For instance, infection with JEV in microglial cells has been
shown to upregulate the expression of TNF-q, IL-6, and CCL2 (Ray
and Ray, 2001; Verma et al., 2009). Similarly, HIV-1 proteins can
stimulate the secretion of pro-inflammatory cytokines by activating
microglia, thereby perpetuating neuroinflammatory damage
(Gonzélez-Scarano and Martin-Garcia, 2005; Boerwinkle et al.,
2021). Persistent SARS-CoV-2 spike protein components drive
sustained neurodegeneration through pathological microglial
activation. SARS-CoV-2 spike receptor-binding domain (RBD)
drives sustained Parkinson’s disease progression via microglia-
neuron crosstalk-mediated RTP801 upregulation (Wang et al,
2025a). RBD persistence in brain tissue accelerates dopaminergic
neuron degeneration and a-synuclein aggregation through a
pathogenic mtDNA-cGAS-STING-IENB/RTP801 feedback loop
(Wang et al., 2025a; Wang et al., 2025b). RBD initially activates
microglia, inducing neuronal RTP801 upregulation via IL-6 and
IL-8 signaling (Wang et al., 2025a). Subsequently, RBD leads to
microglial mitochondrial dysfunction, mtDNA release, and cGAS-
STING pathway activation, establishing a self-perpetuating cycle
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of neuroinflammation and neurodegeneration. This pathogenic
crosstalk between microglia and neurons amplifies PD pathology,
with RTP801 serving as a critical mediator of RBD-induced
neurodegeneration (Wang et al., 2025a). Targeting either RTP801
or microglial depletion significantly attenuated RBD-induced
motor symptoms, cognitive impairment, and dopaminergic neuron
loss (Wang et al,, 2025a). Importantly, microglial depletion with
PLX5622 prevented RBD-induced neurodegeneration, confirming
the central role of pathological microglial activation in long-
COVID neurological sequelae (Wang et al, 2025a; Solana-
Balaguer et al., 2023).

Therefore, due to their capacity to release pro-inflammatory
mediators, activated microglia can contribute to the pathogenesis of
viral encephalitis by promoting neuroinflammation, neurotoxicity,
and consequent neuronal damage.

4.2.2 Induction of oxidative stress

Another neurotoxic function of microglia in viral encephalitis
is the induction of oxidative stress. Activated microglia can produce
reactive oxygen species (ROS) and reactive nitrogen species (RNS),
which can damage cellular structures, including lipids, proteins, and
nucleic acids, resulting in neuronal dysfunction and death (Lull and
Block, 2010; Vezzani et al., 2016).

The activation of microglia following viral infection or exposure
to viral components leads to increased production of ROS, such
as superoxide anion and hydrogen peroxide (H202), through the
activity of oxidative enzymes such as NADPH oxidase (NOX)
(Xu et al.,, 2023; Ghosh and Basu, 2017; Sharma et al., 2021).
Additionally, microglial activation also results in an increased
production of RNS, such as nitric oxide (NO) and peroxynitrite
(ONOO-), through the upregulation of inducible nitric oxide
synthase (Katzilieris-Petras et al., 2022; Espinosa-Gongora et al.,
2023; Klein et al, 2019). Various studies have reported the
involvement of oxidative stress in the pathogenesis of viral
encephalitis. For instance, in mouse models of West Nile virus
infection, increased expression of iNOS and oxidative damage to
neuronal cells have been observed (Wang et al., 2003; Kumar et al.,
2010). Similarly, infection with HIV-1 leads to oxidative stress in
neurons both in vitro and in vivo, partly mediated by increased iNOS
expression and NO production in activated microglia (Gonzalez-
Scarano and Martin-Garcia, 2005; Turchan et al., 2001).

Thus, by inducing oxidative stress, microglia can contribute to
the neurotoxicity and pathogenesis of viral encephalitis, leading to
neuronal dysfunction and cell death.

5 Microglial function in animal models
of viral encephalitis

Recent advances in microglial depletion techniques have
revolutionized our understanding of microglial function in viral
encephalitis, revealing their unambiguously protective role across
multiple viral infections (Hatton and Duncan, 2019). Through
systematic analysis of mouse models employing colony-stimulating
factor 1 receptor (CSF1R) inhibition, particularly using PLX5622
and related compounds, consistent findings have emerged that
challenge traditional assumptions about neuroinflammation in viral
encephalitis.
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Microglial depletion studies across diverse neurotropic viruses
demonstrate remarkable consistency in outcomes. Depletion of
microglia via CSFIR inhibition invariably results in enhanced
viral replication, increased mortality, and more severe neurological
disease (Seitz et al., 2018; Hatton and Duncan, 2019). In flavivirus
models specifically, microglial depletion led to 100% mortality
in WNV-infected mice compared to 25% mortality in controls,
accompanied by significant increases in viral RNA levels within the
central nervous system (Seitz et al., 2018). Similar protective effects
were observed in JEV infections, where PLX5622-treated mice
showed significantly increased mortality compared to untreated
controls (Seitz et al., 2018). The protective mechanisms appear
multifaceted and extend beyond simple viral clearance. Microglia
serve as essential antigen-presenting cells that restimulate virus-
specific CD8* T cells, ensuring effective immune surveillance
within the CNS (Funk and Klein, 2019). Furthermore, microglial
phagocytosis of infected neurons and viral debris represents a
critical clearance mechanism, with P2Y12-mediated phagocytosis
being particularly important in controlling viral spread (Fekete et al.,
2018). In pseudorabies virus infections, microglia were observed
to be recruited toward virus-infected neurons and actively engulf
them through P2Y12 signaling (Fekete et al., 2018). The loss of this
phagocytic function in microglial-depleted mice resulted in overt
neurological disease and increased viral replication (Fekete et al.,
2018). Paradoxically, microglial depletion often leads to enhanced
rather than reduced neuroinflammation, suggesting that microglia
exert regulatory control over excessive immune responses
(Seitz et al,, 2018; Hatton and Duncan, 2019). In WNV-infected,
PLX5622-treated mice, several proinflammatory genes including
CCL2, CCL7, CXCL9, and CXCL10 were actually upregulated
compared to infected controls (Seitz et al., 2018), indicating that
other CNS cells can produce these inflammatory mediators and that
microglia may normally provide immunoregulatory functions.

Despite  consistent  protective  outcomes,  significant
heterogeneity exists in microglial responses to different viral
pathogens. Japanese encephalitis virus models demonstrate
substantial variability, with mouse strain, age, virus strain, and
inoculation route accounting for considerable experimental
variation (Bharucha et al., 2022). Meta-regression analysis of 127
JEV studies encompassing 5,026 individual mice revealed that
these factors explain approximately 61% of experimental variability,
while 39% remains unexplained (Bharucha et al., 2022). Critically,
the relationship between viral tropism and microglial function
varies considerably. While WNV does not productively infect
microglia in vivo, JEV readily infects these cells (Seitz et al., 2018;
Chen et al,, 2012). Interestingly, despite this fundamental difference
in viral tropism, microglial protection remains essential in both
scenarios (Seitz et al., 2018). In JEV infections, only PLX5622-
treated mice showing overt clinical illness had detectable viral
titers in the brain, whereas no virus was detected in control-fed
animals at equivalent time points (Seitz et al., 2018), suggesting
that microglia provide protection even when they themselves
are viral targets. The temporal aspects of microglial protection
reveal complex dynamics throughout disease progression. In
WNV models, significantly increased viral loads were detected
in microglia-depleted mice at multiple time points (6, 9, and 10
days post-infection), indicating sustained protective functions
throughout the infection course (Seitz et al., 2018). The protective
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effect was most pronounced during early CNS invasion, with
microglia apparently controlling initial viral seeding and subsequent
replication (Seitz et al., 2018). Evidence from complement-microglia
interactions suggests that while microglial activation may contribute
to acute protection, dysregulated responses might contribute to
longer-term neurological sequelae (Vasek et al., 2016; Wang et al.,
2012). In attenuated WNV models, complement C3-mediated
microglial phagocytosis of presynaptic neurons was associated with
spatial orientation defects in recovered animals (Vasek et al., 2016),
highlighting the potential trade-off between acute survival benefits
and chronic neurological damage.

The mechanisms underlying microglial protection extend
beyond direct antiviral effects. Microglia coordinate complex
cellular networks involving T cell responses, with depletion studies
revealing variable effects on different T cell populations across
viral models (Hatton and Duncan, 2019). In mouse hepatitis virus
infections, microglial depletion significantly reduced CD4" T cell
recruitment and IFNy expression, while paradoxically reducing
regulatory T cell populations (Wheeler et al., 2018). These findings
suggest that microglia orchestrate balanced immune responses
that optimize viral clearance while limiting immunopathology.
Interferon signaling represents another critical pathway through
which microglia mediate protection (Drokhlyansky et al., 2017;
Detje et al,, 2009). Type I interferon responses within the CNS create
an intrinsic antiviral network, with microglia serving as both sensors
and effectors of this system (Nayak et al., 2014). Astrocytes have
been identified as major producers of IFNP upon infection with
neurotropic RNA viruses (Detje et al., 2009; Pfefferkorn et al., 2016),
yet the coordination between microglial sensing and astroglial
interferon production requires further investigation.

Current animal models face significant limitations in translating
to human disease. Species-specific differences in immune responses,
transcriptional regulation, and genetic factors between mice and
humans represent fundamental barriers to translation (Hatton
and Duncan, 2019). The incomplete reduction of microglia in
some depletion models further complicates interpretation of
protective mechanisms (Hatton and Duncan, 2019). Additionally,
systematic analysis reveals concerning gaps in experimental
rigor. Among JEV studies, no investigations reported sample
size calculations, temperature control during experiments was
rarely documented, and fewer than 50% included statements
regarding randomization or blinding (Bharucha et al., 2022). These
methodological limitations significantly impact the reliability and
reproducibility of findings. The median quality score was only 10
out of 17 across established CAMARADES criteria (Bharucha et al,,
2022), indicating substantial room for improvement in experimental
design and reporting.

The disconnect between robust preclinical evidence and clinical
application remains stark. Despite compelling animal model data
demonstrating microglial protection, no current clinical trials
investigate microglial-targeted therapies for viral encephalitis. This
translational gap reflects broader challenges in neurovirology
research, where the complexity of human microglial biology
cannot be fully recapitulated in rodent systems (Davis, 2008).
Off-target effects of microglial depletion compounds represent
another translational concern. PLX5622 has been shown to affect
macrophage populations in various tissues (Spangenberg et al,
2016), and variable effects on circulating monocytes have been
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reported across studies (Seitz et al., 2018; Hatton and Duncan, 2019).
For flavivirus models where systemic viral replication precedes
CNS invasion, systemic myeloid cell depletion might confound
results by enhancing peripheral viral loads (Seitz et al., 2018).
Future research priorities must include development of more
specific microglial targeting approaches, advanced in vivo imaging
techniques for real-time microglial tracking, and standardization
of experimental protocols to reduce inter-laboratory variability.
The integration of single-cell multi-omics approaches with spatially
resolved transcriptomics offers particular promise for dissecting the
regulatory networks governing microglial state transitions during
viral infections (Li and Barres, 2018).

6 Therapeutic strategies targeting
microglia in viral encephalitis

6.1 Direct inhibitors of microglial activation

Targeting microglia and modulating their activation can be
a promising approach for developing therapeutic strategies in
viral encephalitis. Different approaches that have been explored
include inhibiting the harmful effects of microglial activation, while
promoting their neuroprotective functions.

Minocycline, a second-generation tetracycline, has been shown
to possess anti-inflammatory and neuroprotective effects, partly by
inhibiting microglial activation (Wang et al., 2020; Ansari et al,,
2022). In animal models of viral encephalitis, treatment with
minocycline was demonstrated to reduce microglial activation,
neuronal damage, and improve neurological outcomes (Richardson-
Burns and Tyler, 2005; Kumar et al., 2009). Furthermore, the drug’s
ability to penetrate the BBB makes it a potential candidate for
clinical trials in patients with viral encephalitis. Cannabinoids,
the bioactive compounds found in Cannabis sativa, have shown
potential in modulating microglial activation and exerting anti-
inflammatory effects (Mecha et al., 2013). In a murine model of
virus encephalitis, treatment with a cannabinoid receptor agonist led
to reduced microglial activation and decreased neuroinflammation,
resulting in improved survival and reduced neurological deficits
(Zhang et al., 2009; Solbrig et al., 2013). However, further studies
are required to evaluate the safety and efficacy of cannabinoids in
treating viral encephalitis. Inhibition of Colony-stimulating factor
1 receptor (CSFIR), a receptor involved in microglial survival
and proliferation, has been shown to reduce microglial activation
and neuroinflammation in various neurodegenerative diseases
(Elmore et al., 2014; Olmos-Alonso et al., 2016). Recent research
has revealed strain-specific effects of the CSF1R-microglia axis
in the context of neurotropic viral infection, along with innate
abnormalities in microglial antigen presentation and subsequent T
cell crosstalk that increase vulnerability to neurotropic picornavirus
infection. CSF1R antagonist also limits the local restimulation
of antiviral CD8" T cells (Funk and Klein, 2019; Sanchez et al,,
2021). Although the therapeutic potential of CSF1R inhibitors in
viral encephalitis has not been directly tested in clinical, it could
provide an avenue to modulate microglial activation and reduce
neuroinflammation.

While these approaches hold promise, much remains to be
understood about the specific roles of microglia in different
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stages of viral encephalitis and how best to modulate them

without compromising their defensive roles. Furthermore,
concerns about the potential side effects of long-term microglial
inhibition, such as increased susceptibility to infections, need to be
carefully considered. With more research, a better understanding
of microglial biology and function in viral encephalitis will
undoubtedly open new avenues for therapeutic intervention.
Challenges aside, the potential rewards for patients with viral
encephalitis are too significant to ignore. In conclusion, modulating
microglial activation is a promising approach in developing
therapeutic strategies for viral encephalitis. Further research is
needed to understand the balance between the beneficial and
harmful roles of microglia and to identify novel targets and strategies

for the treatment of viral encephalitis (Table 1).

6.2 Cytokine/mediator blockade

An alternative approach for developing therapeutic strategies in
viral encephalitis is to inhibit the production or signaling of pro-
inflammatory mediators that contribute to neuroinflammation and
subsequent neuronal damage.

IL-1 and TNF-a are pro-inflammatory cytokines, produced
primarily by activated microglia, that have been implicated in the
pathogenesis of viral encephalitis (Skoldenberg et al., 2006; Rubio-
Perez and Morillas-Ruiz, 2012). Inhibition of IL-1 and TNF-a has
been reported to reduce neuroinflammation and improve outcomes
in animal models of viral encephalitis (Ashraf et al., 2021; Niu et al.,
20205 Zhang et al., 2017). Biological agents targeting these cytokines
are in clinical use for other inflammatory conditions, thus providing
a basis for their potential application in viral encephalitis. NF-kB
signaling modulates the expression of genes encoding various pro-
inflammatory mediators, including cytokines, chemokines, and
adhesion molecules (Zhang et al., 2017; Oeckinghaus and Ghosh,
2009). Inhibition of NF-«B activation has shown promising results
in reducing neuroinflammation in preclinical models of various
neurological disorders, including viral encephalitis (Gu et al,
2012; Moniuszko-Malinowska et al., 2017; Wang et al., 2022).
The development of specific inhibitors targeting key components
of the NF-kB pathway may offer a novel therapeutic approach
for viral encephalitis. Cyclooxygenase (COX) and lipoxygenase
(LOX) enzymes mediate the production of pro-inflammatory
lipid mediators, such as prostaglandins, thromboxanes, and
leukotrienes, contributing to the neuroinflammation associated
with viral encephalitis (Ghasemi et al, 2019; Tung et al,, 2011;
Chen et al., 2001). COX-2 inhibitors have been shown to decrease
inflammation and improve outcomes in animal models of viral
infection (Ju et al., 2022; Chen et al., 2002). However, given the
cardiovascular side effects and organ damage associated with COX-
2 inhibitors (Bindu et al., 2020), caution should be exercised in
their application, and the development of more specific inhibitors
targeting individual lipid mediators may hold therapeutic promise
for viral encephalitis.

Hence, targeting pro-inflammatory mediators presents a
potential therapeutic strategy for viral encephalitis. Further
research is required to identify the most suitable candidates
and determine their safety and efficacy in the context of viral
encephalitis (Table 1).

Frontiers in Molecular Biosciences

10

10.3389/fmolb.2025.1695058

6.3 Neuroprotective enhancers

Microglial activation during viral encephalitis can result
in both detrimental and protective outcomes. Enhancing the
neuroprotective functions of microglia, while limiting their
neurotoxic effects, will inevitably be a promising approach for
treating viral encephalitis.

Microglia display a spectrum of activation states that range
between pro-inflammatory (M1 phenotype) and neuroprotective
(M2 phenotype). Strategies that promote a shift from M1 to M2
phenotype have been shown to improve outcomes in various
neurological disorders (Guo et al, 2022; Liu et al, 2021).
In a model of HIV-1-associated brain inflammation, treatment
with peroxisome proliferator-activated receptor gamma (PPAR-
y) agonists such as pioglitazone and rosiglitazone induced a
neuroprotective M2 phenotype in microglia and reduced neuronal
cell death (Omeragic et al., 2017; Omeragic et al., 2019). Nuclear
factor erythroid 2-related factor 2 (Nrf2) is a transcription factor
that regulates the expression of antioxidant and anti-inflammatory
genes, which can improve the neuroprotective functions of microglia
(Ma, 2013; Cui et al., 2021). Activation of the Nrf2 pathway has
been shown to provide protection in various neuroinflammatory
conditions, including neuroviral diseases such as ALS-like pathology
in mice (Kraft et al., 2007). A study has revealed that sulforaphane
treatment is effective in reducing neurotoxicity associated with
HSV-stimulated microglia ROS production, as well as modulating
neurotoxicity associated with experimental herpes encephalitis
through sulforaphane treatment (Schachtele et al, 2012). The
purinergic receptor P2Y12 has been identified as a potential
target for modulating microglial function through the regulation
of microglial ramification and motility (Haynes et al, 2006;
Suzuki et al, 2020). Activation of P2Y12 receptors by selective
agonists, such as ADP, reduces neuroinflammation and promotes
phagocytosis of neuronal debris, conferring neuroprotection in
various models of neurodegenerative diseases (Burnstock, 2017;
Imraish et al., 2023; Liu et al., 2017). Further studies are required to
investigate the role of P2Y12 receptor targeting in viral encephalitis.

To a certain degree, strategies that enhance the neuroprotective
functions of microglia offer a promising therapeutic approach
for viral encephalitis. Further research is required to validate
these targets in the context of viral encephalitis and to identify
additional strategies that may modulate microglial functions for
neuroprotection (Table 1).

6.4 Combinatorial approaches

Combination therapies targeting multiple aspects of immune-
inflammatory responses, including microglial modulation, viral
replication, and neuronal support, could provide enhanced
therapeutic benefits for viral encephalitis treatment in future
clinical practice.

Antiviral treatments combined with anti-inflammatory drugs:
The primary goal of treating viral encephalitis is to control and
eliminate the underlying infection. Antiviral drugs such as acyclovir,
ganciclovir, and foscarnet have proven effective against specific viral
infections (Solomon etal., 2012; Wei et al., 2021). However, given the
complex pathophysiology of viral encephalitis and the contribution
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of immune-mediated processes to tissue damage, combining
antiviral agents with anti-inflammatory or immunomodulatory
drugs could provide more comprehensive treatment strategies. For
example, the combination of antiviral ribavirin with minocycline, an
antibiotic with immunomodulatory properties, resulted in increased
survival and reduced neuroinflammation during JEV infection
(Topno and Khan, 2016; Joe et al., 2022).

Adjunctive therapies supporting neuronal survival: The
prevention of neuronal loss is crucial for mitigating the
neurological sequelae of viral encephalitis. Glutamate-mediated
excitotoxicity is a common feature of many neuroinflammatory
and neurodegenerative disorders, and targeting glutamate receptors
with drugs such as memantine or riluzole could offer additional
neuroprotection in viral encephalitis (Lipton, 2006). Furthermore,
neurotrophic factors like BDNF and GDNF have shown potential
in promoting neuronal survival and regeneration in various
neurological conditions (Lima Giacobbo et al,, 2019; Allen et al,
2013). Combining antiviral and anti-inflammatory agents with
drugs supporting neuronal survival could represent a promising
therapeutic approach in treating viral encephalitis.

Targeting endogenous neuroprotective signaling pathways:
Besides  directly targeting microglia, other endogenous
neuroprotective pathways, such as Nrf2 (as mentioned above) and
sphingosine-1-phosphate (S1P) signaling, could also be modulated to
provide additional therapeutic benefits. S1P signaling has been shown
to have a protective function in several neurological disorders by
regulating immune cell trafficking, inflammatory gene expression,
and cell survival (Czubowicz et al, 2019). Treatment with SI1P
receptor modulators, such as FTY720 (fingolimod), has demonstrated
both immunomodulatory and neuroprotective effects in various
preclinical models (Miron et al., 2010; McGinley and Cohen, 2021).
Combination therapies incorporating S1P modulators and other
targeted interventions might offer improved outcomes in viral
encephalitis treatment.

Thus, combination therapies targeting multiple aspects of the
immune response, viral replication, and neuronal support hold
promise for the development of more effective therapeutic strategies
for viral encephalitis. Further studies are needed to identify the
optimal combinations of interventions and establish their safety and
efficacy in treating various forms of viral encephalitis (Table 1).

7 Perspectives

Despite promising advancements in understanding the
pathophysiology of viral encephalitis and the development of novel
therapeutic strategies, several challenges and limitations remain,
which impede the successful translation of these advancements into
effective treatments for patients.

Microglia, the primary immune cells of the CNS, are essential
players in the development and progression of viral encephalitis.
Despite their importance, our understanding of microglial behavior
during viral infection is still in its nascent stages due to several
challenges and limitations. Primarily, the heterogeneity of microglia
response to different viral pathogens adds to the complexity of
the overarching mechanism. Microglia can adopt varied activation
states, depending on the viral strain, each with distinct impacts on
disease progression, which further complicates our understanding
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(Cherry et al, 2014). Besides, the lack of advanced in vivo
imaging techniques for accurately visualizing microglia activation and
interactions during disease progression is a notable limitation. This
obstacle hinders real-time tracking of microglial behavior and disease
progression within the CNS (Ransohoff and Perry, 2009). In addition,
the successful treatment of viral encephalitis relies on a comprehensive
understanding of host-pathogen interactions and immune responses
(Jo, 2019; Jain et al., 2022). However, due to the complexity of these
interactions and the diversity of causative pathogens, our knowledge
remains limited, particularly regarding the underlying mechanisms
that drive neurological damage and long-term sequelae. Further
research is needed to interrogate host-pathogen interactions at the
cellular and molecular levels to inform the development of targeted
therapeutic strategies. Meanwhile, the development and optimization
of therapeutic interventions for viral encephalitis rely on robust
preclinical models that accurately recapitulate key aspects of the
human disease. Although animal models have provided valuable
insights into the pathophysiology of viral encephalitis, they often fail
to recapitulate the full complexity of human disease due to differences
in immune responses, transcriptional regulation, and genetic factors
between species (Zschaler et al.,, 2014). Current clinical management
of viral encephalitis relies primarily on antiviral agents and supportive
care, with microglial-targeted therapies remaining largely theoretical
despite promising preclinical evidence. Thus, the development of more
accurate and representative preclinical models, including humanized
mice and human organoid cultures, may facilitate the translation of
promising therapeutic strategies into effective clinical treatments.

RNA (scRNA-seq)
transcriptomics are fundamentally transforming our understanding

Single-cell sequencing and spatial
of microglial heterogeneity during viral encephalitis. These
technologies have revealed unprecedented diversity in microglial
transcriptional states that extend far beyond the traditional M1/M2
paradigm (Schwabenland et al., 2021; Huang and Sabatini, 2020),
while spatial transcriptomics enables mapping of region-specific
activation states within anatomical contexts (Han et al., 2024;
Mallach et al., 2024). Future single-cell multi-omics approaches
promise to reveal the regulatory networks governing microglial state
transitions during viral infections. Additionally, a critical challenge
is the significant disparity between microglial behavior in vitro and
in vivo systems. Traditional microglial cultures fail to recapitulate the
complex brain environment and crucial cell-cell interactions. While
brain organoids and “brain-on-chip” models offer improved cellular
interactions (Park et al., 2023; Zhang et al., 2023; Nandi et al., 2024),
they still lack the full complexity of blood-brain barrier function
and systemic inflammatory responses. Future research must develop
hybrid approaches combining mechanistic insights from simplified
systems with physiologically relevant in vivo validation.

Given the challenges, there is a need for strategic development
and planning for future research directions. Improved in vivo
imaging techniques to track the activation and interaction of
microglia during disease progression would be pivotal in addressing
the current limitations (Ransohoff and Perry, 2009). High-
throughput single-cell analysis techniques can be employed to
dissect the complex microglial heterogeneity and better understand
the varied responses to different viral pathogens. Additionally,
developing better animal models would be advantageous for
simulating human viral encephalitis and studying the roles of
microglia in the disease (Korin et al., 2017). Lastly, in-depth studies
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into the influence of other factors such as age, sex, and predisposing
genetic factors on microglial activity during viral infection may open
novel therapeutic avenues for viral encephalitis.
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