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The structural elucidation of proteins is fundamental to understanding their 
biological functions and advancing drug discovery. Recent breakthroughs 
in cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based 
structure prediction have revolutionized protein modeling by enabling near-
atomic resolution visualization and highly accurate computational predictions 
from amino acid sequences. This review summarizes the latest advances 
that have transformed protein structural biology from a predominantly 
structure-solving endeavour to a discovery-driven science. We discuss 
the complementary roles of cryo-EM and AI, including developments in 
direct electron detectors, advanced image processing, and deep learning 
algorithms exemplified by AlphaFold 2 and the emerging AlphaFold 3. These 
technologies facilitate detailed insights into challenging protein targets such 
as membrane proteins, flexible and intrinsically disordered proteins, and 
large macromolecular complexes. Furthermore, we highlight applications of 
integrative approaches in drug design, enzymatic mechanism elucidation, 
and functional predictions, illustrated by examples including hemoglobin, 
which demonstrates both the strengths and current limitations of AI–cryo-
EM integration, and cytochrome P450 enzymes, where AlphaFold predictions 
have been combined with cryo-EM maps to explore conformational diversity. 
The review also addresses ongoing challenges and promising future directions 
for integrating experimental and computational methods to accelerate the 
exploration of protein structure–function relationships, ultimately impacting 
biomedical research and therapeutic development.
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GRAPHICAL ABSTRACT

Highlights

• Cryo-EM and AI enable accurate, high-resolution modeling of 
diverse protein structures.

• AI tools like AlphaFold drive rapid protein structure prediction 
and functional discovery.

• Integrative approaches resolve structures of membrane proteins 
and flexible assemblies.

• Structure insights guide drug design and disease research for 
targets like viral and amyloid proteins.

• Advances pave the way for discovery-driven protein science and 
therapeutic innovation.

1 Introduction

Biological macromolecules proteins, nucleic acids, and 
polysaccharides are essential components of life, driving 
fundamental processes such as DNA replication, enzyme activity, 
and cellular communication. For example, hemoglobin transports 
oxygen in the blood, while DNA polymerases ensure the accurate 
copying of genetic material during cell division (Kornberg Arthur, 
1992; PERUTZ et al., 1960). Polysaccharides like cellulose provide 
structural support to plant cell walls, and glycosaminoglycans in 
the extracellular matrix help regulate tissue flexibility and cell 
signaling (Cosgrove, 2005; Hynes and Naba, 2012). The function of 
these macromolecules is directly linked to their three-dimensional 
(3D) structures, which determine their folding, interactions, and 
biological roles (Dill and MacCallum, 2012). Understanding these 

structures extends beyond academic interest, playing a pivotal role 
in addressing global health, energy, and sustainability challenges.

Structural biology is dedicated to elucidating the architectural 
design of biological macromolecules, aiding in the comprehension 
of their functions and the development of new drugs, biomaterials, 
and industrial enzymes. The field has advanced dramatically 
since the first structure of myoglobin was determined using 
X-ray crystallography (Kendrew et al., 1958). Technological 
innovations from early crystallography to contemporary cryo-
electron microscopy (cryo-EM) and artificial intelligence 
(AI)-driven structure prediction have significantly enhanced 
our ability to visualize and understand molecular structures 
(Jumper et al., 2021; Nogales, 2016).

X-ray crystallography has long been a cornerstone of structural 
biology, helping scientists determine high-resolution structures of 
countless proteins, nucleic acids, and their complexes. For example, 
this technique was used to solve the structure of the ribosome, a 
large molecular machine responsible for protein synthesis, revealing 
intricate details about how it functions (Yusupov et al., 2001). 
However, X-ray crystallography has its limitations, particularly 
when studying large, flexible, or membrane-bound macromolecules 
that are difficult to crystallize (Caffrey, 2015). Despite these 
challenges, it remains a vital tool in structural biology, as seen in its 
role in identifying the structure of the SARS-CoV-2 main protease, 
a key target for antiviral drug development (Zhang et al., 2020).

Nuclear magnetic resonance (NMR) spectroscopy emerged as 
a valuable complementary technique, allowing researchers to study 
macromolecules in solution and observe their dynamic behavior. 
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NMR has been particularly useful in analyzing small to medium-
sized proteins, such as the oncogenic protein KRAS, which plays 
a crucial role in cancer signaling pathways (Ostrem et al., 2013). 
However, this technique has its own limitations it struggles to 
analyze larger macromolecular complexes or membrane proteins 
due to their complexity and size (Wüthrich, 2001).

The introduction of cryo-electron microscopy (cryo-EM) has 
transformed structural biology by overcoming many of the 
limitations of traditional techniques. Cryo-EM allows scientists to 
visualize large macromolecular complexes and membrane proteins 
at near-atomic resolution without requiring crystallization. The 
ability to determine atomic structures from patient-derived or 
native biological samples first demonstrated in studies such as 
Fitzpatrick et al. illustrates structural biology’s transformation into 
a powerful discovery tool capable of generating novel hypotheses 
and enabling translational advances directly from human disease 
material (Fitzpatrick et al., 2017). A major breakthrough was the 
determination of the structure of the TRPV1 ion channel, which 
revealed how this protein detects heat and pain (Liao et al., 
2013). Further advancements, such as direct electron detectors 
and sophisticated image processing algorithms, have significantly 
improved the resolution and applicability of cryo-EM, making 
it a crucial tool in modern structural biology (Kühlbrandt, 
2014). A pivotal breakthrough underlying the cryo-EM “resolution 
revolution” was the introduction of direct electron detection 
cameras (X. Li et al., 2013). These detectors provide dramatically 
improved signal-to-noise ratios, accurate electron event counting, 
and rapid frame rates, enabling correction of beam-induced motion 
and unlocking near-atomic resolution for previously intractable 
targets. The landmark structure of the TRPV1 ion channel, 
for example, was only attainable with these new generation 
detectors (Liao et al., 2013), which have since become standard 
across high-resolution cryo-EM studies.

At the same time, computational methods have become 
essential in structural biology. The rise of AI-driven algorithms, 
such as AlphaFold and RoseTTAFold, has revolutionized protein 
structure prediction, allowing scientists to determine structures 
with remarkable accuracy based solely on amino acid sequences. 
For example, AlphaFold successfully predicted the structure of the 
orphan protein ORF8 from SARS-CoV-2, providing crucial insights 
into its potential role in immune evasion (Gordon et al., 2020; 
Varadi et al., 2022). These advancements have not only accelerated 
the pace of structural discovery but have also made structural 
information more accessible to researchers worldwide, enabling a 
deeper understanding of molecular biology (Baek et al., 2021).

The combination of experimental and computational 
approaches has significantly broadened the field of structural 
biology, allowing researchers to study macromolecules in their 
natural environments and observe their dynamic structural 
changes. Techniques such as time-resolved crystallography, small-
angle X-ray scattering (SAXS), and integrative modeling have 
provided groundbreaking insights into the flexible and dynamic 
nature of biological macromolecules. For instance, time-resolved 
studies of the photosynthetic reaction center have uncovered the 
intricate sequence of electron transfer events during photosynthesis 
(Kern et al., 2013). Similarly, integrative modeling has been used to 
reconstruct the structure of the nuclear pore complex, a massive 
molecular assembly responsible for regulating the transport of 

molecules between the nucleus and the cytoplasm (Kim et al., 2018). 
In this review, we synthesize recent advances in cryo-EM and AI 
with a focus on improvements in resolution, heterogeneity analysis, 
and automated model building. We also discuss how AI-based 
predictors such as AlphaFold2 are being integrated into cryo-EM 
workflows to expand their impact. By emphasizing the intersection 
of these fields, we highlight methodological innovations that are 
shaping structural biology today. 

2 Foundational methods in structural 
biology

Structural biology has historically relied on three primary 
techniques: X-ray crystallography, nuclear magnetic resonance 
(NMR) spectroscopy, and electron microscopy (EM). These 
methods continue to be indispensable, despite recent advancements 
in cryo-EM and AI-driven structure prediction. 

2.1 X-ray crystallography

Since its emergence in the 1950s, X-ray crystallography has been 
a cornerstone of structural biology, enabling the determination 
of high-resolution structures of proteins, nucleic acids, and their 
complexes. By analyzing the diffraction patterns of X-rays passing 
through crystallized macromolecules, scientists can generate 
electron density maps to construct atomic models (Drenth J, 
2007). Innovations such as microfocus X-ray beams and serial 
crystallography has expanded its applicability, facilitating the study 
of smaller crystals and transient molecular states. For example, 
time-resolved serial femtosecond crystallography (TR-SFX) at 
X-ray free-electron lasers (XFELs) has provided insights into 
the catalytic cycle of cytochrome c oxidase, shedding light on 
electron and proton transfer mechanisms (Kern et al., 2013). 
Recent innovations in high-throughput screening and automated 
data processing further illustrate the method’s ongoing relevance 
and adaptability (Smith et al., 2023). Schematic representation 
of the X-ray crystallography process for protein structure 
determination shown in Figure 1.

Another major advancement in membrane protein 
crystallography was the determination of the β2-adrenergic 
receptor structure while bound to its agonist using lipidic cubic 
phase (LCP) crystallization. This study not only provided a high-
resolution view of G protein-coupled receptor (GPCR) signaling 
but also paved the way for the structural characterization of other 
membrane proteins, including the adenosine A2A receptor and the 
serotonin receptor (Rasmussen et al., 2011).

X-ray crystallography has also played a crucial role in 
drug discovery, particularly in antiviral therapy development. 
For example, the structure of the SARS-CoV-2 main protease 
(Mpro), determined through crystallography, revealed the 
enzyme’s active site and enabled the design of inhibitors such as 
nirmatrelvir, a drug effective in treating COVID-19 (Zhang et al., 
2020). Additionally, crystallography has been instrumental in 
understanding enzyme mechanisms, such as the DNA-cleaving 
activity of CRISPR-Cas9. The structure of CRISPR-Cas9 in complex 
with guide RNA and target DNA provided a detailed molecular 
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FIGURE 1
Schematic representation of the X-ray crystallography process for 
protein structure determination. (1) The sample undergoes 
crystallization to form an ordered lattice. (2) The crystal is exposed to 
X-ray beams, generating a diffraction pattern that provides crucial 
structural information. Note: The “phase problem” arises here, as 
phase information is not captured in the diffraction data and must be 
recovered through methods such as molecular replacement or 
experimental phasing (e.g., SAD/MAD). (3) Computational methods are 
used to derive an electron density map from the diffraction data, 
incorporating phase determination techniques. (4) The final atomic 
model is built and refined by fitting atomic coordinates into the 
electron density map, resulting in a high-resolution structural 
representation of the macromolecule.

blueprint for genome editing, revolutionizing biotechnology 
and medicine (F. Jiang et al., 2015).

Despite its contributions, X-ray crystallography faces 
challenges in crystallizing large, flexible, or membrane-
bound macromolecules. However, continuous advancements in 
crystallization techniques and computational modeling ensure 
its enduring significance. Detailed technical advances and their 
implications are discussed in Section 3. 

2.2 Nuclear magnetic resonance (NMR) 
spectroscopy

NMR spectroscopy enables the study of macromolecules 
in solution, providing insights into their structural dynamics, 
interactions, and conformational changes. Unlike X-ray 
crystallography, NMR does not require crystallization, making it 
particularly useful for analyzing small to medium-sized proteins 
(Cavanagh et al., 2007). Traditionally, NMR’s strengths have been in 

resolving the structures and dynamic properties of small to medium-
sized proteins (generally <40 kDa), although advances in isotope 
labeling and high-field instrumentation have gradually extended 
these boundaries (Wüthrich, 2001).

Solid-state NMR has also emerged as a powerful tool for 
studying membrane proteins and amyloid fibrils. For example, the 
structure of the amyloid-β fibril, a key hallmark of Alzheimer’s 
disease was determined using solid-state NMR, revealing its cross-β 
architecture and shedding light on the molecular basis of amyloid 
formation (Tycko, 2011).

NMR is widely used to study protein-ligand interactions, 
particularly in drug discovery. One notable example is the 
characterization of the interaction between the oncogenic protein 
KRAS and its inhibitors. NMR studies have provided important 
insights into how KRAS undergoes conformational changes upon 
inhibitor binding, aiding the development of more effective cancer 
therapies (Ostrem et al., 2013). Advances in high-field NMR have 
improved resolution and sensitivity, extending its applicability to 
larger proteins. NMR spectroscopy has played a pivotal role in 
characterizing intrinsically disordered proteins (IDPs), which lack 
stable tertiary structures yet perform critical regulatory functions. 
Notable examples include α-synuclein, implicated in Parkinson’s 
disease (Burré et al., 2014), and the tumor suppressor p53, whose 
disordered regions modulate DNA binding and partner interactions 
(Krois et al., 2018). Recent developments in NMR methodology 
have further expanded its utility to mammalian mega-complexes 
and large IDP-containing systems (Joerger and Fersht, 2008).

Despite these advances, NMR remains limited when analyzing 
large macromolecules due to signal overlap, reduced resolution, 
and the need for isotopic labeling. Ongoing developments in NMR 
instrumentation and computational analysis continue to enhance its 
potential in structural biology. 

2.3 Electron microscopy (EM)

The landscape of electron microscopy has dramatically 
evolved in the past decade. While conventional EM (using 
negative staining and photographic detection) was foundational, 
it offered limited resolution and structural detail. The so-
called “resolution revolution” triggered by the introduction of 
direct electron detectors and advanced processing algorithms 
(X. Li et al., 2013) has transformed cryo-EM into a high-resolution, 
widely adopted tool. Thus, our review focuses on cryo-EM 
as it is used in current structural biology, and references to 
“conventional EM” are restricted to historical perspective or 
legacy techniques. Traditional EM has provided low-resolution 
visualizations of macromolecular complexes and cellular structures. 
Recent technological advancements, particularly in cryo-EM, 
have extended its capabilities, allowing high-resolution imaging 
of biological macromolecules in near-native states. Negative 
staining EM has been useful in studying macromolecular 
assemblies, including ribosomes and viral capsids (Frank, 2006). 
The development of cryo-EM has transformed the field, providing 
near-atomic resolution images without requiring crystallization 
(Kühlbrandt, 2014). Conventional EM, in fact, set the stage 
for cryo-EM, and in its present form, has reshaped the face of 
structural biology forever. Early studies with EM of the ribosome 
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produced low-resolution maps, paving the path for future high-
resolution cryo-EM structures and revealing molecular detail in 
protein synthesis (Yusupov et al., 2001). EM played a key role in 
studying virus morphology, including Ebola and influenza virus. 
The glycoprotein structure of Ebola, determined with EM, guided 
vaccine development through its demonstration of the molecular 
mechanism of virus entry into host cells (J. E. Lee et al., 2008). 
EM has also helped visualize structures of cellular organelles, 
including mitochondrial and endoplasmic reticulum structures, 
and shed light on their function and organization. For example, 
EM studies of mitochondrial structures revealed the complex 
arrangement of cristae, inner membrane folds in which cellular 
respiration occurs (Frey and Mannella, 2000). Conventional EM, 
despite its success, suffers from poor resolution, generally in the 
10–20 Å range, and difficulty in preparing samples for analysis. 
With cryo-EM and new EM technology, many of these challenges 
have been overcome, and a new era in structural biology has begun.

Recent years have witnessed the incorporation of novel 
instrumentation, automation, and computational approaches that 
substantially expand the capabilities of these foundational methods. 
Transformative advances including time-resolved crystallography, 
enhanced NMR techniques, and integration of artificial intelligence 
are discussed in detail in Section 3. 

3 Recent advances in structural 
characterization

Building on the foundational principles introduced earlier, this 
section highlights recent breakthroughs in cryo-EM, AI-driven 
prediction, and hybrid modeling that have expanded the capabilities 
of structural biology beyond conventional limits. 

3.1 Cryo-electron microscopy (Cryo-EM)

Cryo-electron microscopy (cryo-EM) is a cutting-edge 
technology in structural biology, providing visualization of 
membrane proteins and large macromolecular complexes at near-
atomic resolution in their native conformations, without the need 
for crystallization. Breakthroughs in direct electron detectors, high-
performance image processing algorithms, and sample preparation 
methodologies have driven this revolution (Liao et al., 2013). Unlike 
traditional techniques, cryo-EM allows the study of proteins in their 
native conformations, preserving their conformational flexibility 
and dynamic behavior. This makes cryo-EM particularly beneficial 
for studying challenging targets such as membrane proteins, 
large complexes, and intrinsically disordered proteins. Figure 2 
schematically illustrates the Cryo-EM process for protein structure 
determination.

One of the most significant breakthroughs in cryo-EM has 
been its application to ribosome structures. Ribosomes, complex 
and dynamic molecular machines responsible for protein synthesis, 
have long been challenging to study using traditional techniques. 
Notably, the landmark cryo-EM study by Fitzpatrick et al. provided 
the first high-resolution structures of tau filaments extracted 
directly from human Alzheimer’s disease brain tissue, revealing 
disease-specific filament folds in patient-derived samples for the 

first time (Fitzpatrick et al., 2017). This breakthrough exemplifies 
how advances in structural biology have enabled direct molecular 
discovery in clinically relevant contexts, allowing new hypotheses 
and therapeutic avenues to emerge from human-derived materials 
rather than model systems alone. In recent years, cryo-EM has 
resolved several functionally informative states of the human 
mitochondrial ribosome, including high-resolution structures with 
translational factors such as EF-G1 that reveal tRNA translocation 
conformations (Koripella et al., 2020), more recent pre-initiation 
mtSSU complexes elucidating initiation factor interactions 
(Hilander et al., 2024), and a 2.2 Å mitoribosome structure with 
cofactors and modified tRNAs providing atomic detail of its 
active components (Singh et al., 2024). These advances deepen 
understanding of mitochondrial protein synthesis, its dysfunction in 
disease, and potential structural targets for therapeutic intervention.

Cryo-EM has also facilitated the characterization of membrane 
proteins, which are notoriously resistant to crystallization. In 2022, a 
breakthrough study determined the structure of the P2X7 receptor, 
a key mediator of inflammation and immunity, using cryo-EM 
(McCarthy et al., 2019). The study revealed the receptor’s activation 
mechanism, providing a molecular blueprint for the development of 
anti-inflammatory therapies. Similarly, cryo-EM has been used to 
explore the capsids of viruses such as SARS-CoV-2 and Zika virus. 
In 2023, cryo-EM was used to determine the capsid structure of 
the monkeypox virus, offering new insights into its assembly and 
potential antiviral therapy targets (Xu et al., 2023).

Resolution remains a critical parameter in cryo-EM, as it 
determines the level of structural detail that can be extracted from 
density maps. While crystallographers reserve the term atomic 
resolution for data near 1.2 Å, at which even hydrogen atoms can 
be visualized (Nakane et al., 2020; Wlodawer and Dauter, 2017), 
in cryo-EM practice maps around 3 Å are widely regarded as 
atomic or near-atomic because amino-acid side chains and backbone 
atoms can be traced with confidence, enabling de novo model 
building (Yip et al., 2020; Zhou, 2011). Statistical analyses of the 
EMDB show the rapid progress of the field: a decade ago most 
reconstructions were in the 4–10 Å range, but by 2023–2024 the 
majority of deposited maps achieved better than 4 Å, with nearly 
half falling in the 3–5 Å range and record structures approaching 
1.2 Å (Iudin et al., 2023; Kleywegt et al., 2024). The interpretability 
of cryo-EM data is strongly resolution-dependent: at ∼10 Å, only 
the overall molecular envelope and gross domain organization 
are visible; at ∼5 Å, α-helices appear as rods and β-sheets as 
slabs, but side chains are not individually resolved; and at ∼3 Å, 
side chains are clearly distinguishable and atomic models can be 
constructed with near-crystallographic accuracy (Rosenthal and 
Rubinstein, 2015; Zhou, 2011).

Recent advances in AI-driven cryo-EM data processing go 
well beyond generic neural networks, with the development 
of specialized tools such as DeepPicker (Wang et al., 2016) 
and Topaz (Bepler et al., 2019). DeepPicker was among the first to 
employ deep convolutional neural networks for automatic, accurate 
particle selection, while Topaz further improved accuracy and 
speed, enabling robust particle picking even for challenging datasets. 
Integration of these tools into platforms like cryoSPARC and 
RELION has streamlined high-throughput structure determination 
and significantly elevated reconstruction quality.
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FIGURE 2
This schematic illustrates the Cryo-EM process for protein structure determination. (1) The purified protein sample is prepared for analysis. (2) Negative 
staining is performed for initial visualization and sample quality assessment. (3) The protein sample is applied to a Cryo-EM grid for vitrification, 
ensuring structural preservation. (4) The grid is imaged using a Cryo-EM microscope under cryogenic conditions. (5) Computational processing of 
Cryo-EM images is performed to generate a high-resolution density map. Note: This step includes essential Contrast Transfer Function (CTF) 
correction to restore contrast and improve the accuracy of structural reconstruction. (6) The final Cryo-EM structural model is built based on the 
density map, revealing atomic-level details of the macromolecule.

The establishment of large-scale standardized datasets has 
been pivotal for advancing AI-based particle picking in cryo-
EM. CryoPPP, developed by Dhakal et al. (2023), is the largest 
expert-curated resource to date, encompassing 9,893 micrographs 
and more than 400,000 annotated particles across 34 protein 
datasets. It now serves as a benchmark platform for training 
and evaluating new particle-picking algorithms under consistent 
conditions. Building directly on this foundation, CryoTransformer 
was introduced as a state-of-the-art transformer-based model that 
employs attention mechanisms to capture long-range dependencies 
in cryo-EM micrographs (Dhakal et al., 2024). Comprehensive 
benchmarking on CryoPPP and EMPIAR datasets showed that 
CryoTransformer achieved F1-scores ranging from 0.65 to 0.85 and 
consistently produced 3D reconstructions in the 4–6 Å resolution 
range, outperforming established methods such as Topaz and 
crYOLO. Together, CryoPPP and CryoTransformer exemplify 

how standardized datasets and next-generation deep learning 
architectures are reshaping one of the most labor-intensive steps in 
cryo-EM image analysis.

The impact of cryo-EM on structural biology cannot be 
overstated. By enabling the study of previously intractable targets, 
cryo-EM has democratized structural biology, making it accessible 
to researchers worldwide. Its ability to determine multiple 
conformational states has provided unprecedented insights into 
macromolecular dynamics, revealing molecular processes such as 
enzyme catalysis, signal transduction, and viral infection. As cryo-
EM continues to evolve, it will have an even greater impact on drug 
development, biotechnology, and our understanding of fundamental 
biological processes.

While cryo-EM has expanded access to high-resolution 
structure determination beyond crystallography, significant 
barriers remain, including high capital and maintenance costs of 
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instrumentation, the need for specialized technical expertise in 
sample preparation and data collection, and the requirement for 
substantial computational infrastructure for data processing and 
reconstruction (Carroni and Saibil, 2016; Cheng et al., 2015). These 
factors can limit accessibility, particularly for smaller labs or in 
low-resource settings. 

3.2 Artificial intelligence (AI) in structure 
prediction

The development of AI algorithms, such as AlphaFold and 
RoseTTAFold, has revolutionized structural biology by enabling 
the prediction of high-accuracy protein structures directly from 
amino acid sequences. These tools are based on deep learning 
and leverage large databases of high-quality protein structures to 
predict 3D structures with remarkable accuracy, often surpassing 
experimental approaches (Jumper et al., 2021). This has not only 
accelerated the pace of discovery but has also democratized access 
to structural information, allowing researchers worldwide to explore 
the molecular basis of life.

One of the most significant breakthroughs in AI-driven 
structure prediction occurred in 2021 with the launch of the 
AlphaFold Protein Structure Database, which contains predicted 
structures for nearly the entire human proteome. This database 
serves as a valuable resource for functional annotation and 
drug discovery (Varadi et al., 2022). For example, AlphaFold’s 
prediction of the SARS-CoV-2 orphan protein ORF8 provided 
crucial insights into its role in immune evasion (Gordon et al., 2020). 
This breakthrough confirmed the potential of AI to drive rapid 
advancements in structural discovery and therapeutic development.

While AI-based methods such as AlphaFold and RoseTTAFold 
have revolutionized protein structure prediction, significant 
limitations remain especially for intrinsically disordered regions 
(IDRs), large multiprotein complexes, and novel folds. Quantitative 
benchmarks show that for well-ordered protein domains, 
AlphaFold2 achieves atomic-level accuracy (RMSD <1.5 Å), but 
for IDRs and flexible linkers, RMSD often exceeds 5–10 Å and 
structural predictions can be unreliable or misleading (Robin et al., 
2021; Tunyasuvunakool et al., 2021). For example, results from 
CASP14 and CASP15 showed consistent declines in AlphaFold’s 
accuracy when modeling highly dynamic regions or novel folds 
not represented in the training data (Kryshtafovych et al., 2023). 
Tools for probing intrinsically disordered proteins (IDPs) are 
advancing rapidly. For example, IDPConformerGenerator generates 
large and diverse conformational ensembles of disordered states, 
enabling systematic sampling of backbone and side-chain variation 
(Teixeira et al., 2022). In parallel, deep-learning-based methods such 
as ALBATROSS directly predict ensemble-averaged dimensions 
including radius of gyration, end-to-end distance, and polymer 
scaling exponents from sequence information (Lotthammer et al., 
2024). These computational benchmarks enable comparison of 
AI-predicted structural models of IDRs. Yet challenges remain: 
studies have shown that flexible termini (e.g., in p53) are frequently 
mis-modeled; multi-subunit complexes may omit relevant dynamic 
conformers; and protein–protein or protein-nucleic acid interfaces 
in disordered regions are often only partially captured (Evans et al., 
2022; Jumper et al., 2021; Ruff and Pappu, 2021). Together, these 

observations emphasize the need for integrating ensemble-based 
computational approaches with experimental validation (such as 
NMR, SAXS, or HDX-MS) to achieve realistic representations of 
IDPs. Additionally, while AlphaFold’s error metrics (e.g., pLDDT, 
PAE) provide confidence estimates, they can be misinterpreted, 
and high scores do not always correlate with biological accuracy, 
particularly in overfitted or underrepresented regions (Akdel et al., 
2022). Addressing these limitations will require improved datasets, 
better calibration of confidence metrics, and integration with 
experimental data for challenging targets.

A key factor underlying the success of AlphaFold is its use 
of multiple sequence alignments (MSAs) to capture evolutionary 
covariation between residues, which provides constraints for 
predicting inter-residue distances and orientations. The depth 
and diversity of the MSA strongly influence predictive accuracy. 
When large, diverse sets of homologous sequences are available, 
AlphaFold2 achieves near-atomic accuracy for many protein 
domains, often with root mean square deviations (RMSDs) of 
less than 1.5 Å relative to experimental structures (Jumper et al., 
2021). However, when only a limited number of homologs can be 
identified, such as for orphan proteins or rapidly evolving viral 
proteins, predictive performance drops substantially. Benchmarking 
in CASP14 and CASP15 consistently showed that proteins with 
shallow MSAs yielded lower-confidence models, with errors 
particularly pronounced in flexible loops, novel folds, or intrinsically 
disordered regions (Akdel et al., 2022; Kryshtafovych et al., 2023). 
In such cases, AlphaFold’s confidence metrics (pLDDT, PAE) 
may overestimate structural reliability, and experimental validation 
or hybrid modeling approaches remain essential. This limitation 
highlights that AlphaFold’s power is fundamentally coupled to the 
availability of evolutionary information, and regions of sequence 
space lacking homologs remain challenging.

In addition to sequence-based predictors such as AlphaFold 
and RoseTTAFold, artificial intelligence is increasingly applied 
directly to cryo-EM data analysis, spanning particle picking, density 
map interpretation, and heterogeneity reconstruction. At the front 
end of the workflow, AI-driven particle picking methods such as 
Topaz, crYOLO, CryoSegNet, and CryoTransformer have greatly 
improved the accuracy and throughput of identifying particles in 
noisy micrographs, thereby reducing one of the most labor-intensive 
bottlenecks in single-particle analysis (Dhakal et al., 2024). For 
atomic model building, tools like DeepTracer, DeepMainmast, and 
ModelAngelo leverage convolutional and graph neural networks 
to trace main-chain coordinates and assign residues directly from 
cryo-EM density maps, producing models that rival expert-curated 
reconstructions (Jamali et al., 2024; Terashi et al., 2024). Supporting 
this, datasets such as Cryo2StructData, comprising over 7,600 
labeled experimental cryo-EM density maps, now provide the large-
scale training resources needed to train next-generation AI models 
for reliable automated structure determination (Giri et al., 2024). 
AI has also advanced heterogeneity analysis, with CryoDRGN, 
a deep generative network that learns continuous distributions 
of 3D structures to reveal conformational variability across 
particle ensembles (Zhong et al., 2021), and CryoFIRE, which 
applies amortized inference to jointly estimate particle orientations 
and conformational states, enabling efficient reconstruction of 
flexible complexes without exhaustive alignment (Levy et al., 
2022). Collectively, these developments demonstrate how AI 
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FIGURE 3
Integration of AI into cryo-EM data processing.

is reshaping cryo-EM pipelines end-to-end, from raw image 
preprocessing through to final atomic models and ensemble 
characterization. The role of AI in particle picking, reconstruction, 
and heterogeneity analysis, since the Figure 3 visually demonstrates 
exactly that workflow.

Schematic overview showing how deep learning methods are 
applied across cryo-EM workflows, including motion correction, 
CTF estimation, particle picking (e.g., crYOLO, Topaz, DeepPicker), 
2D/3D classification and selection (e.g., Cinderella), and final map 
interpretation and model building (e.g., DeepTracer, cryoDRGN). 
AI tools enhance accuracy, speed, and automation throughout the 
cryo-EM pipeline.

Another important limitation of current AI-based structure 
prediction tools is their limited consideration of experimental and 
environmental conditions. Most methods, including AlphaFold2/3 
and RoseTTAFold, generate a single (or dominant) structure based 
on sequence and evolutionary data, effectively modeling the protein 
in a “standard” context and neglecting factors such as pH, ionic 
strength, redox environment, ligand or cofactor presence, and 
post-translational modifications. However, many proteins adopt 
different conformations depending on local conditions for example, 
a protein’s structure at pH 5 can differ substantially from its 
structure at pH 7 (Jumper et al., 2021; Madhavi Sastry et al., 2013). 
Addressing these real-world biochemical variables is an important 
area for future AI model development, ideally through explicit 
conditioning on environmental parameters or integration with 
experimental datasets.

The rapid adoption of AI-predicted models in biomedical 
research also raises important ethical and practical considerations. 
Overreliance on low-confidence or unvalidated structural models in 
drug discovery campaigns, for example, risks misguiding compound 
design or screening, potentially leading to wasted resources or 

misleading biological conclusions. It is critical for practitioners to 
interpret AI-generated confidence metrics cautiously, validate key 
findings with experimental data where possible, and transparently 
communicate uncertainty. Community standards and guidelines for 
responsible AI structure use are needed to ensure scientific integrity 
and reproducibility (Akdel et al., 2022).

AI techniques have also been applied to predict the 
conformational ensembles and transient structural propensities 
of intrinsically disordered proteins (IDPs), rather than fixed, static 
atomic structures, advanced methods such as NMR spectroscopy 
and integrative computational modeling are employed. These 
approaches characterize the range of accessible conformations and 
dynamic behavior in solution, reflecting the intrinsic heterogeneity 
that distinguishes IDPs from structured proteins (Jensen et al., 2013; 
Uversky, 2019). In 2022, RoseTTAFold predicted the structures 
of neurodegenerative disease-related proteins such as tau and α-
synuclein, shedding new light on the molecular basis of protein 
aggregation and its role in Alzheimer’s and Parkinson’s diseases 
(Šali and Blundell, 1993). Similarly, in 2023, AlphaFold-Multimer 
predicted the structure of the SARS-CoV-2 spike protein in 
complex with human ACE2, revealing key interactions relevant 
for therapeutic development (Baek et al., 2021).

Deep learning-based approaches such as AlphaFold 2 (AF2) 
have transformed protein structure prediction by leveraging 
attention-based neural networks to achieve near-experimental 
accuracy for globular proteins (Jumper et al., 2021). Its performance 
in CASP14 established a new benchmark, particularly for 
monomeric protein folds (Figure 3). However, AlphaFold 3 (AF3) 
represents a major step forward, capable of predicting not just 
protein structures but also protein–protein, protein–nucleic acid, 
and protein–ligand interactions using a unified framework. 
AF3 integrates structural, chemical, and biophysical constraints, 
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TABLE 1  Scope of AlphaFold3 Predictions: Current vs Emerging Capabilities.

Interaction 
type

Currently 
supported/
Released

Prospective/
Claimed
(emerging)

Example tasks Expected 
reliability

Data 
Prerequisites/
Notes

References

Protein–protein Yes (AlphaFold-
Multimer; extended 
in AF3)

Improved handling 
of larger assemblies

Homo-/hetero-
dimer modeling; 
small protein 
complexes

Benchmarks show 
∼60–70% correct 
interfaces in 
heterodimers 
(CASP15, Evans 
et al. (2022))

Requires deep MSA 
coverage; higher 
accuracy with 
evolutionary 
coupled pairs

Evans et al. (2022), 
Kryshtafovych et al. 
(2023)

Protein–nucleic acid 
(DNA/RNA)

Limited 
benchmarks; 
claimed in AF3 
framework

Ongoing validation, 
not yet robust in 
CASP

Nucleosome-bound 
proteins; 
RNA-binding 
protein–RNA 
complexes

Early reports suggest 
variable accuracy; 
weaker for flexible 
RNA

Needs paired 
MSAs/templates; 
sparse evolutionary 
data limits accuracy

Nature Methods 
commentary, 2024; 
Kryshtafovych et al. 
(2023)

Protein–ligand/small 
molecules

Announced in AF3 
white paper; not yet 
robustly 
benchmarked

Binding-site 
modeling and 
docking

Predict bound 
cofactors or 
metabolites

Considered 
“emerging”; 
qualitative binding 
pocket prediction 
but poor 
quantitative docking

Requires ligand 
chemistry input; 
lacks large curated 
ligand training 
datasets

DeepMind AF3 
release notes, 2024

Post-translational 
modifications 
(PTMs)

Not directly 
supported

Future claim for 
handling 
phosphorylation, 
glycosylation, etc.

Modeling 
phosphorylation-
dependent 
conformational 
changes

Currently 
unsupported; 
external tools 
required

PTM-aware datasets 
not yet integrated

Jumper et al. (2021), 
Akdel et al. (2022)

enabling the modeling of functional assemblies and molecular 
recognition events (Fang et al., 2025). The capabilities of AF3 
are summarized in Table 1, distinguishing currently supported 
applications from prospective claims.

AlphaFold2 (AF2) employs an attention-based architecture with 
two core components: the MSA track, which captures evolutionary 
covariation, and the pair representation track, which encodes 
residue–residue geometry. These interact iteratively through 
the Evoformer module, and the Structure Module outputs 3D 
coordinates. This design explains AF2’s breakthrough accuracy 
in CASP14, achieving near-atomic resolution for most globular 
proteins. AlphaFold3 (AF3) extends the framework by incorporating 
multimodal inputs (protein sequences, nucleic acids, ligands) and 
graph-based chemical embeddings, enabling unified modeling 
of protein–protein, protein–nucleic acid, and protein–ligand 
interactions. While still emerging, AF3 benchmarks show improved 
complex prediction, though ligand-binding remains qualitative. 
Figures 4, 5 schematically illustrate the AF2 Evoformer–Structure 
Module pipeline (Figure 4) and AF3’s expanded multimodal 
framework (Figure 5).

The contribution of AI-driven structure prediction to structural 
biology has been profound. By providing accurate models for 
challenging targets such as IDPs and large complexes, AI has 
complemented experimental approaches and expanded the scope of 
structural biology. AI has also accelerated drug discovery processes, 
enabling researchers to identify potential drug targets and design 
new drugs with greater efficiency. As AI continues to evolve, it will 
play an increasingly important role in structural biology, opening 
new directions for future research.

While AI-based predictions have shown transformative 
accuracy, their responsible use requires careful interpretation of 
confidence metrics, cross-validation with experimental data, and 
awareness of pitfalls such as over-interpretation or training leakage. 
These considerations are summarized in Box 1: Responsible Use 
of AI-Predicted Structures. Despite their transformative impact, 
AI-based protein structure prediction tools remain susceptible to 
reproducibility and generalizability challenges, primarily due to 
potential biases and limitations in the training datasets. Recent 
benchmarking efforts have revealed that models like RoseTTAFold 
and AlphaFold2 may produce less reliable or less reproducible 
predictions for protein families, domains, or assemblies that are 
underrepresented in current structural databases. This highlights 
the ongoing need for rigorous benchmarking, transparency in 
reporting, and continued expansion and curation of training data 
sets (Akdel et al., 2022; Kryshtafovych et al., 2023). 

3.3 Integrative and hybrid methods

Integrative and hybrid methods combine data from multiple 
techniques, such as cryo-EM, NMR, and small-angle X-
ray scattering (SAXS), to build comprehensive models of 
macromolecular structures. These approaches are particularly useful 
for studying complex and heterogeneous systems that cannot be 
fully characterized using a single technique (Maeshima et al., 2014). 
By integrating data from multiple sources, researchers can generate 
detailed models that provide a complete picture of macromolecular 
structures in their biological contexts.
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FIGURE 4
Schematic representation of the AlphaFold 2 architecture for protein structure prediction.

FIGURE 5
Schematic representation of the AlphaFold 3 architecture for protein structure prediction.

One of the most significant applications of integrative methods 
has been in the study of the nuclear pore complex (NPC), 
a massive molecular assembly that regulates the transport of 
molecules between the nucleus and the cytoplasm. An integrative 
model of the NPC was reconstructed using cryo-EM, NMR, 
and biochemical data, providing unprecedented insights into its 
structure and function (Schotte et al., 2003). This model revealed 
the molecular mechanisms underlying the NPC’s ability to control 
transport across the nuclear envelope.

Integrative methods have also been used to study chromatin 
structure, the complex of DNA and proteins that packages the 
genome. In 2023, cryo-EM, SAXS, and computational modeling 
were combined to investigate the arrangement and dynamics of 
chromatin, shedding light on how chromatin structure regulates 
gene expression and epigenetic regulation (Mosalaganti et al., 2022).

Mass spectrometry (MS) has emerged as a key structural tool 
that complements traditional and advanced techniques in structural 

biology. Approaches such as cross-linking mass spectrometry 
(XL-MS), native MS, and hydrogen–deuterium exchange MS 
provide critical information on the architecture, stoichiometry, 
dynamics, and interaction networks of macromolecular assemblies 
often in conditions closer to physiological environments 
(Lenz et al., 2021; Sinz, 2018). When integrated with cryo-
EM, NMR, or computational modeling, MS-derived constraints 
facilitate interpretation of ambiguous regions and help to 
characterize systems challenging for high-resolution methods
alone.

The impact of integrative and hybrid approaches on structural 
biology has been significant. By enabling the study of complex 
systems that cannot be fully characterized using a single technique, 
these methods have expanded the scope of structural biology and 
provided new tools for addressing challenging biological questions. 
They have also provided new insights into the dynamic nature 
of macromolecular biology, revealing the molecular mechanisms 

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1688455
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Jeyaraj et al. 10.3389/fmolb.2025.1688455

underlying complex processes such as gene expression and cellular 
signaling.

 BOX 1 Responsible use of AI-predicted structures.
AI-based tools such as AlphaFold2 (AF2) and AlphaFold3 (AF3) 

have accelerated structural biology, but responsible use requires 
caution. Below are practical guidelines for researchers and drug 
discovery practitioners.

Confidence metrics

• pLDDT thresholds:
• >90 →very high confidence (atomic-level reliability).
• 70–90 →moderate confidence (secondary structure 

generally correct, side chains less certain).
• <70 →treat cautiously (often disordered or misfolded).

• PAE (Predicted aligned error):
• <5 Å →reliable domain/domain positioning.
• >10 Å →relative orientations uncertain, especially in 

multi-domain or multimeric complexes.

Cross-validation with experiments

• XL-MS: checks residue–residue distances.
• HDX-MS: validates flexible or protected regions.
• SAXS: confirms overall shape/dimensions.
• Mutagenesis & biochemical assays: test pocket or interface 

predictions.

IDPs and flexible regions

• AI models of intrinsically disordered proteins (IDPs) represent 
hypotheses, not fixed structures.

• Use ensemble-based approaches (e.g., 
IDPConformerGenerator, ALBATROSS) + NMR/smFRET for 
realistic modeling.

Pitfalls to avoid

• Training leakage: well-studied proteins may appear artificially 
“predicted.”

• Over-interpretation: confident scores can still misplace 
domains or interfaces.

• Environmental neglect: AF2/AF3 predictions usually ignore pH, 
ions, ligands, PTMs.

✓ Checklist for drug discovery applications
Before applying AF2/AF3 models in drug discovery, ensure:

• Binding pocket pLDDT >80.
• Cross-validation with mutagenesis, soaking, or NMR CSPs.
• PAE maps confirm correct inter-domain geometry.
• Comparison with orthogonal data (SAXS, cryo-EM, 

crystallography, homology).
• Flexible loops/IDRs are not solely used for druggability.
• Iterative refinement with MD, docking, MM/GBSA is performed.

 

3.4 Time-resolved structural biology

The term “time-resolved techniques” in structural biology 
encompasses a diverse set of experimental approaches that operate 
over distinct temporal scales, each revealing different types 
of molecular motion or reactivity. For example, time-resolved 
X-ray crystallography methods including serial femtosecond 

crystallography at X-ray free-electron lasers (XFELs) capture 
atomic and electronic changes on the femtosecond to picosecond 
(10−15–10−12s) timescale, enabling visualization of ultrafast chemical 
reactions and bond rearrangements. By contrast, time-resolved 
cryo-EM is typically limited to millisecond to second (10−3–1s) 
resolution, which is suitable for observing large conformational 
changes, domain motions, or assembly/disassembly processes in 
complex macromolecular machines. Techniques such as NMR 
relaxation and stopped-flow spectroscopies probe dynamics from 
microseconds to seconds, enabling characterization of backbone 
motions, folding, or ligand binding events. Because these time scales 
differ by many orders of magnitude, their applications to biological 
questions and their technical implementations are fundamentally 
distinct (Chapman et al., 2011; Fischer et al., 2015; Schanda and 
Brutscher, 2005).

Time-resolved structural biology aims to capture 
macromolecular processes in real-time, such as enzyme catalysis, 
protein folding, and conformational transitions. Techniques such as 
time-resolved crystallography, time-resolved cryo-EM, and ultrafast 
spectroscopy allow researchers to visualize macromolecules in 
motion and understand the molecular mechanisms underlying 
complex biological events (Aitken et al., 2008). Although time-
resolved methods promise to reveal ultrafast dynamics, current 
implementation in TR-crystallography and TR-cryo-EM remain 
bounded by mixing, initiation, and data collection constraints. 
For example, Tenboer et al. (Tenboer et al., 2014) used serial 
femtosecond crystallography on microcrystals of photoactive yellow 
protein (PYP), initiating the reaction with light and resolving 
intermediates to 1.6 Å at the 10 ns to 100 ms timescale using 
XFEL pulses (Tenboer et al., 2014)this demonstrates what TR 
crystallography can achieve under ideal conditions. In cryo-EM, 
recent work using a PDMS-based microfluidic chip achieved tens 
of milliseconds mixing and freezing, enabling capture of early 
reaction intermediates though at lower resolution and with stringent 
demands on sample prep and grid quality (Bhattacharjee et al., 
2023). These studies highlight major bottlenecks: reaction initiation 
speed, reproducible grid manufacture, dose control, and sample 
thickness.

One of the most significant examples of time-resolved structural 
biology is the study of the photosynthetic reaction center. In recent 
years, time-resolved crystallography and serial femtosecond X-ray 
crystallography (TR-SFX) have been used to map the sequence 
of electron transfer and water oxidation events in photosystem 
II. For example, Li et al. (2021) captured the S1→S2 transition 
at ambient temperature, revealing water movements and channel 
rearrangements, while Bhowmick et al. (2023) provided snapshots 
of the S3→[S4]→S0 transition including ligand rearrangement, the 
Mn4CaO5 cluster geometry, and proton/electron release pathways 
offering critical insight into the final steps of O2 formation. Li et al. 
(2024) revealed structural dynamics of photosystem II during S-state 
transitions tracking water insertion, proton release, and O-O bond 
formation that deepen our understanding of photosynthetic energy 
conversion and inform designs of artificial photosynthetic systems.

Time-resolved cryo-EM has also been used to study GPCR 
signaling. In 2024, conformational changes in GPCRs during 
ligand binding and subsequent G protein activation were resolved 
using time-resolved cryo-EM, providing new insights into the 
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molecular mechanism of signal initiation by GPCRs (Papasergi-
Scott et al., 2024). Beyond the application to GPCR conformational 
dynamics, cryo-EM has enabled visualization of intermediate states 
in diverse systems. Milestones include sub-second capture of 
ribosomal translocation steps (Fischer et al., 2015), post-DNA 
packaging conformational transitions in viral connector/portal 
complexes (Orlov et al., 2022) and remodeling during capsid 
maturation (Li et al., 2023). These studies showcase time-resolved 
cryo-EM’s expanding capacity for mapping transient, functionally 
relevant conformations in previously inaccessible targets.

The impact of time-resolved structural biology on our 
understanding of biological processes has been profound. By 
capturing processes in real-time, these techniques have provided 
unprecedented insights into the molecular mechanisms underlying 
complex biological events. They have also informed the development 
of new drugs and biomaterials, opening new avenues for 
future research. 

3.5 Emerging techniques

In addition to the methodologies discussed above, several 
emerging techniques are expanding the scope of structural biology. 
These include single-molecule microscopy, mass photometry, 
and correlative light and electron microscopy (CLEM). These 
tools provide new ways to study macromolecular structures and 
dynamics, offering unprecedented insights into biological processes. 
While single-molecule microscopy and CLEM are now widely 
adopted in cell biology and have a substantial methodological 
pedigree, they remain “emerging” within the mainstream of high-
resolution, integrative structural biology, where incorporation into 
multi-modal workflows and large-scale studies is still expanding 
(Beck and Baumeister, 2016; Hoffman et al., 2020). Recent technical 
advances continue to broaden their impact and accessibility for 
complex biological investigations.

Single-molecule microscopy has been used to probe the 
motions of individual proteins and nucleic acids during translation. 
For example, in 2023 a smFRET study monitored inter-subunit 
rotation of ribosomes during translation which contributes to 
our understanding of how ribosomal dynamics relate to folding 
and function (Das et al., 2023). This technique is particularly useful 
for studying intrinsically disordered proteins and their interactions 
with ligands and binding partners.

Mass photometry is a technique that measures the mass of 
individual molecules in solution, providing insight into assembly 
and stoichiometry of macromolecular complexes. For example, in 
2021 mass photometry was applied to SpCas12f1 and AsCas12f1
CRISPR effectors to resolve their stepwise assembly: first as apo-
protein, then forming binary complexes with guide RNA, and then 
ternary complexes with target DNA (Bigelyte et al., 2021). This 
technique is powerful for studying protein-nucleic acid interactions 
and complex assembly (Asor and Kukura, 2022).

Correlative light and electron microscopy (CLEM) combines 
the spatial resolution of electron microscopy with the specificity 
of fluorescence microscopy. In recent years, CLEM has been 
successfully used to study the structure and function of 
mitochondria in mammalian cells, revealing the dynamic 
arrangement of cristae and their interactions with other organelles 

(Jung and Mun, 2019). CLEM is a powerful tool for studying 
cellular organelles and macromolecular complexes in their native 
environments. Optical super-resolution microscopy techniques 
such as STED, PALM, and STORM have enabled fluorescence 
imaging at nanometer-scale precision. Their integration with 
electron microscopy through correlative light and electron 
microscopy (CLEM) workflows known as super-resolution CLEM 
(SR-CLEM) has become a powerful approach in structural biology. 
These workflows allow the molecular specificity of fluorescence 
labeling to be directly correlated with the ultrastructural resolution 
of EM, enabling the detailed localization of proteins within native 
cellular environments. Early conceptual development of SR-CLEM 
highlighted its promise for bridging the resolution gap between light 
and electron microscopy (de Beer et al., 2023), and later applications, 
such as the work by Joosten et al. (2018), demonstrated its utility 
in mapping subcellular features like dendritic cell podosomes. 
Most recently, Marshall et al. (2023) emphasized how advances in 
multimodal probes and cryo-fixation technologies have expanded 
the versatility and resolution of CLEM, making it indispensable for 
dynamic structural investigations in situ. Although super-resolution 
microscopy can be used independently for structural insights, its 
primary value in structural biology is as part of multimodal CLEM 
studies that bridge the resolution gap between molecular imaging 
and EM ultrastructure.

The impact of these emerging techniques on structural biology 
has been profound. By providing new ways to study complex 
biological structures, these tools have expanded the scope of 
structural biology and opened exciting new avenues for future 
research. The strengths and limitations of various structural 
characterization techniques are summarized in Table 2.

4 Applications of high-resolution 
structural characterization

The development of advanced techniques for characterizing 
macromolecular structures has transformed our ability to study 
biological processes at the molecular level. These advancements 
have facilitated breakthroughs in drug discovery, enzymology, 
nanotechnology, and the study of disease mechanisms. By providing 
atomistic insights into the structure and function of proteins, 
nucleic acids, and other macromolecules, these techniques have 
enabled the development of new therapeutics, engineered enzymes, 
biomaterials, and a deeper understanding of disease at the 
molecular level. 

4.1 Drug discovery

In drug discovery, structure-based drug design (SBDD) is 
a cornerstone of modern pharmacology. By leveraging high-
resolution structures of macromolecules, researchers can identify 
binding pockets and design high-affinity, high-efficacy inhibitors. 
For example, the X-ray crystallographic determination of the 
BRAF kinase structure revealed the molecular mechanism of 
its activation in melanoma, leading to the development of 
vemurafenib, a targeted therapy for BRAF-mutant melanoma 
(Long et al., 2014). More recently, cryo-EM was used to resolve 
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TABLE 2  Overview of major structural biology techniques.

Technique Description Strengths Limitations References

X-ray Crystallography Determines atomic structures 
by analyzing diffraction of 
X-rays from crystallized 
macromolecules

Highest resolution (≤1.2 Å 
possible); mature and widely 
available; critical for drug 
discovery (e.g., SARS-CoV-2 
Mpro, GPCRs)

Requires high-quality crystals; 
unsuitable for many 
flexible/membrane proteins; 
suffers from the “phase 
problem.”

Kendrew et al. (1958), 
Rasmussen et al. (2011), 
Zhang et al. (2020), Smith et al. 
(2023)

NMR Spectroscopy Uses magnetic resonance of 
nuclei to study 
macromolecules in solution, 
revealing structure and 
dynamics

Captures proteins in 
near-native environments; 
excellent for conformational 
dynamics, ligand binding, and 
IDPs

Size limitations (<40–50 kDa 
typically); requires isotope 
labeling and high-field 
instruments; complex analysis

Wüthrich (2001), Ostrem et al. 
(2013), Burré et al. (2014), 
Tycko (2011)

Cryo-Electron Microscopy 
(Cryo-EM)

Visualizes vitrified 
biomolecules using direct 
electron detectors and 
advanced image processing

No crystallization required; 
ideal for large complexes, 
membrane proteins, and 
flexible systems; resolutions 
∼3 Å common, best near 1.2 Å

High cost; demanding sample 
prep and computational 
infrastructure; requires CTF 
correction

Kühlbrandt (2014), Liao et al. 
(2013), Fitzpatrick et al. 
(2017), Iudin et al. (2023), 
Singh et al. (2024)

AI-Driven Prediction Uses deep learning (e.g., 
AlphaFold2/3, RoseTTAFold) 
to predict structures from 
sequence, often at atomic 
accuracy

Rapid, global accessibility; 
high accuracy for globular 
proteins; supports large-scale 
proteome modeling

Limited for IDPs, 
multi-protein complexes, and 
novel folds; dependent on 
evolutionary data; ignores 
environment (pH, ligands, 
PTMs)

Jumper et al. (2021), 
Varadi et al. (2022), 
Kryshtafovych et al. (2023), 
Lotthammer et al. (2024)

Mass Spectrometry (MS) Measures mass/charge of 
biomolecules (native MS, 
XL-MS, HDX-MS) for 
structural/topological analysis

Provides stoichiometry, 
topology, and dynamics; 
integrates well with 
EM/NMR/SAXS; works 
near-physiological conditions

Lower resolution; specialized 
reagents and analysis required

Sinz (2018), Lenz et al. (2021)

Integrative Methods Combines multiple data 
sources (e.g., cryo-EM, NMR, 
SAXS, MS, AI) to build hybrid 
models

Captures large, flexible, 
heterogeneous complexes; 
leverages complementary data

Complex data integration; 
variable/local resolution

Kim et al. (2018), 
Mosalaganti et al. (2022)

Time-Resolved Techniques Captures molecular dynamics 
with femtosecond 
crystallography, time-resolved 
cryo-EM, ultrafast 
spectroscopy, or NMR.

Visualizes transient states and 
conformational transitions in 
real time; functional insight

Limited by equipment (XFELs, 
fast freezing); 
technique-specific temporal 
resolution

Tenboer et al. (2014), 
Bhattacharjee et al. (2023), 
H. Li et al. (2021), 
Bhowmick et al. (2023)

Emerging Techniques Includes single-molecule 
fluorescence, mass 
photometry, correlative light 
and EM (CLEM), cryo-ET.

Enables in situ visualization 
and dynamics at cellular scale; 
powerful for native context 
studies

Lower resolution; technically 
demanding; still expanding in 
structural biology

Beck and Baumeister (2016), 
Das et al. (2023), Bigelyte et al. 
(2021), Marshall et al. (2023)

the structure of HER2 kinase in complex with a novel inhibitor, 
paving the way for next-generation therapies for HER2-positive 
breast cancer (Bornscheuer et al., 2012).

While structure-based drug design (SBDD) and AI-driven 
platforms have accelerated the identification of therapeutic 
candidates, several real-world limitations persist. For example, 
although SBDD enabled the development of vemurafenib for 
BRAF V600E-mutant melanoma, rapid emergence of resistance 
driven by MAPK pathway reactivation or alternative mutations 
highlights the ongoing gap between structural prediction and 
durable clinical efficacy (Long et al., 2014). Similarly, commercial 
AI drug design efforts, such as Isomorphic Labs’ reported pipelines, 
face challenges including dependency on the depth and diversity of 
training datasets, potential model bias, and limited interpretability 

of predictions, with few compounds yet reaching advanced clinical 
stages (Walters and Murcko, 2020). Finally, although cryo-EM 
has expanded opportunities for structure-guided development 
of biologics like antibodies, the field faces scalability constraints 
due to high equipment costs, specialized labor, and throughput 
bottlenecks in sample preparation and data processing, which 
currently limit high-volume industrial application (Mao, 2025; 
Punjani et al., 2017; Renaud et al., 2018).

Structural biology has also played a critical role in antiviral 
drug development. The structure of the SARS-CoV-2 main protease 
(Mpro), determined using cryo-EM and X-ray crystallography, 
enabled the design of nirmatrelvir, an antiviral therapeutic that 
inhibits viral replication (Owen et al., 2021; Zhang et al., 2020). 
Similarly, NMR spectroscopy has been used to characterize the 
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dynamics of HIV-1 protease, leading to the development of 
a new class of drugs with reduced drug resistance (Zeltins, 
2013). These advancements have accelerated the development of 
targeted therapies, reducing the cost and time required for drug 
discovery while improving efficacy and reducing side effects. 
The integration of AI-driven structure prediction tools, such as 
AlphaFold, has further enhanced these efforts by providing high-
fidelity models of drug targets and their interactions with small 
molecules (Jumper et al., 2021). 

4.2 Enzymology

In enzymology, structural characterization has enabled the 
engineering of enzymes for industrial applications, including 
biofuel production, waste management, and pharmaceutical 
manufacturing. For example, high-resolution X-ray structures of 
cellulases have directly enabled enzyme engineering for biofuels: 
structure-guided recombination and crystallography of GH5 
endoglucanases produced chimeras with higher thermostability 
and activity (Chang et al., 2016), and comparative/structure-based 
redesign of GH7 cellobiohydrolases improved processive activity 
on cellulose (Taylor et al., 2018). Although cryo-EM is increasingly 
applied to thermostable enzymes, definitive cryo-EM studies linking 
loop stabilization to simultaneous gains in cellulase stability and 
catalysis are not yet established; instead, cryo-EM has provided high-
resolution models for other thermostable enzymes, underscoring 
feasibility for future cellulase work (Sobhy et al., 2022).

Lipases, industrially important enzymes used in detergents 
and pharmaceuticals, have been engineered using structural and 
dynamics insights. Rather than a single NMR-only mapping study, 
recent work combines structural analysis with computation to 
target flexible/functional regions (e.g., lids/tunnels) and improve 
specificity or stability: a 2023 review documents successful 
computer-aided lipase engineering strategies spanning structure 
prediction, docking, and MD-guided mutagenesis (Cheng and 
Nian, 2023). For operation in organic media, CALB variants were 
evaluated in organic solvent with combined experiments and 
computation; mutations near the active site reduced sensitivity to 
water activity and preserved activity in non-aqueous conditions 
(Tjørnelund et al., 2023). Mechanistic QM/MM MD on CALB 
further clarified how environment (pH) and catalytic geometry 
govern reactivity and regioselectivity principles that guide rational 
variant design (Świderek et al., 2023). Together, these studies show 
that integrative, computation-informed engineering (rather than 
AI alone) is currently the most evidenced path to lipases with 
broadened specificity and improved performance in challenging 
solvent systems.

Hemoglobin has been well resolved by cryo-EM alone, but no 
peer-reviewed studies have yet demonstrated a direct AI–cryo-EM 
synergy in its structural analysis. In contrast, cytochrome P450 
has been examined by combining AlphaFold2 predictions with 
cryo-EM density maps to explore alternative conformational states, 
underscoring how AI can complement experimental data (Urban 
and Pompon, 2022). To better represent the scope of AI in cryo-EM, 
more robust examples include the Fanconi anemia core complex, 
where deep learning predictions enabled de novo model building 
into a 4.6 Å cryo-EM map that was otherwise uninterpretable 

(Farrell et al., 2020), CryoDRGN, which applied generative neural 
networks to uncover continuous conformational heterogeneity in 
ribosomes and spliceosomes (Zhong et al., 2021), and the nuclear 
pore complex, where AlphaFold2-derived models filled unresolved 
regions in cryo-EM maps to achieve near-complete reconstruction 
of this ∼120 MDa. Together, these cases provide clearer evidence of 
how AI directly enhances cryo-EM, from improving model building 
to revealing hidden structural states. 

4.3 Nanotechnology

The design of nanodevices and biomaterials derived 
from macromolecular structures has opened new frontiers in 
nanotechnology. For example, cryo-EM and crystallographic studies 
of ferritin nanocages have enabled the development of ferritin-based 
nanoparticles for targeted drug delivery and imaging, exploiting 
their highly stable cage architecture and ability to encapsulate 
diverse cargos (Lee et al., 2022; Mohanty et al., 2022). Viral-like 
particles (VLPs) are another emerging class of nanomaterials: 
structural studies of bacteriophage Qβ VLPs have clarified their 
assembly pathways and stability (Shaw et al., 2022),and such 
scaffolds are now being investigated as potential platforms for 
mRNA vaccine delivery (Lin et al., 2024). Structural insights 
have also accelerated progress in biosensing. The crystallographic 
determination of glucose oxidase provided the basis for the first 
highly sensitive blood glucose biosensors in diabetes care, while 
more recent NMR analyses of glucose oxidase variants revealed 
conformational dynamics that guided the design of improved, 
durable biosensors (Alatzoglou et al., 2023; Mahamid et al., 2016).

In tissue engineering, structural studies have informed the 
design of biomaterials for regenerative medicine. The cryo-
EM determination of the structure of collagen has enabled 
the development of collagen scaffolds for tissue regeneration 
(Neutze et al., 2000). In 2021, an integrative model of the 
interaction between collagen and fibronectin led to the development 
of a biomaterial for wound healing (Frantz et al., 2010). 
These advancements have transformed medicine and materials 
engineering, enabling the development of new drugs, diagnostics, 
and regenerative therapies. 

4.4 Understanding disease mechanisms

Structural characterization has provided critical insights into the 
molecular basis of disease, facilitating the development of targeted 
therapies and diagnostics. For example, NMR determination of 
the structure of the prion protein revealed the molecular basis of 
its misfolding in prion diseases such as Creutzfeldt-Jakob disease 
(Prusiner, 1998). Cryo-EM resolution of misfolded tau protein 
structures has shed light on their role in neurodegenerative diseases 
(Fitzpatrick et al., 2017), while cryo-EM determination of amyloid-
β fibrils has guided therapeutic strategies targeting aggregation in 
Alzheimer’s disease (Gremer et al., 2017). Recently, solid-state NMR 
revealed the structure of α-synuclein fibrils, offering insights into 
their toxicity in Parkinson’s disease (Tuttle et al., 2016). Beyond 
elucidating fibril morphologies, high-resolution cryo-EM structures 
of tau aggregates have directly facilitated rational PET tracer design 
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TABLE 3  Applications of structural characterization.

Application Techniques used Examples Impact References

Drug Discovery X-ray crystallography, Cryo-EM, 
NMR, AI tools

Structure of SARS-CoV-2 Mpro
→design of nirmatrelvir

Accelerated rational drug design; 
targeted therapies

Zhang et al. (2020), Owen et al. 
(2021), Renaud et al. (2018)

Enzymology X-ray crystallography, Cryo-EM, 
NMR, computation/AI

Structure-guided cellulase 
engineering (GH5/GH7); lipase 
redesign with 
computation/QM/MM

Improved industrial enzymes; 
mechanism insight

Chang et al. (2016); (GH7 
redesign, Taylor et al., 2018, as 
discussed); Cheng and Nian 
(2023), Świderek et al. (2023)

Nanotechnology Cryo-EM, X-ray/NMR, 
computational modeling

Ferritin nanocages for delivery; 
mRNA-vaccine VLP/nano 
carriers overview

Novel drug carriers & biosensing 
platforms

Lee et al. (2022), Lin et al. (2024)

Disease Mechanisms Cryo-EM, solid-state NMR, 
NMR, integrative modeling

Tau filaments (AD); Aβ(1–42) 
fibrils; SARS-CoV-2 spike

Structural basis for pathology; 
PET tracers; vaccines/antivirals

Fitzpatrick et al. (2017), 
Gremer et al. (2017), Wrapp et al. 
(2020), Prusiner (1998)

with improved selectivity for disease-associated folds. For example, 
the conformation-specific features of AD tau fibrils guided the 
development and optimization of PET ligands such as [18F] PI-
2620, enhancing early diagnosis and monitoring of tauopathies 
(Fitzpatrick et al., 2017; Kroth et al., 2019).

Structural studies have also played a critical role in combating 
viral infections. The cryo-EM determination of the SARS-CoV-
2 spike protein structure revealed the molecular basis of viral 
entry into host cells, guiding the development of vaccines 
and antiviral therapies (Wrapp et al., 2020). In 2021, cryo-EM 
resolved the structure of the Ebola virus glycoprotein, informing 
the development of a novel antiviral drug (Lee et al., 2008). 
These advancements have revolutionized our understanding 
of complex diseases, enabling the development of targeted 
therapies and diagnostics. The integration of AI-driven structure 
prediction and integrative modeling has further enhanced 
our ability to study disease mechanisms and develop effective 
treatments (Jumper et al., 2021).

Structural biology has revolutionized drug discovery, enabling 
the development of targeted therapies such as vemurafenib for 
BRAF-mutant melanoma and nirmatrelvir for COVID-19 (Table 3). 
Recent research has demonstrated the power of structural biology 
in addressing global health challenges. For example, the structure of 
the SARS-CoV-2 main protease, determined using Cryo-EM and X-
ray crystallography, enabled the rapid development of nirmatrelvir, 
an antiviral drug for COVID-19 (Table 4).

5 Challenges and future directions

Notwithstanding significant advances in structural 
characterization techniques, a range of challenges still impedes our 
complete understanding of macromolecular structure and function 
in living matter. Overcoming them will require new thinking and 
new technology creation. In parallel, integration of new tools, such 
as artificial intelligence (AI) and machine learning, holds out hope 
for widening horizons in structural biology. In the following, we 
review significant obstacles and future trends in the field. 

5.1 Overcoming challenges in membrane 
proteins and intrinsically disordered 
proteins

Membrane proteins and intrinsically disordered proteins (IDPs) 
remain among the most difficult targets in structural biology due 
to their inherent dynamics, instability, and, for membrane proteins, 
pronounced obstacles in crystallization and sample preparation. 
Recent years have witnessed notable advances that address these 
barriers. For membrane proteins, innovations in lipidic cubic phase 
(LCP) crystallization, including the introduction of novel lipids 
such as 7.10 MAG, have significantly expanded the range of 
targets amenable to in meso crystallization and improved success 
rates in obtaining high-resolution structures (Krawinski et al., 
2024). In parallel, methods such as the VIALS approach now 
enable the high-throughput generation of dense microcrystals 
for serial crystallography, streamlining the structural analysis of 
challenging membrane proteins (Birch et al., 2023). The rapid 
adoption of single-particle cryo-EM with improved detectors 
and computational tools has also led to a dramatic increase 
in the number and resolution of membrane protein structures, 
now routinely achieving resolutions better than 3 Å for complex 
assemblies (Thangaratnarajah et al., 2022).

The field of IDP research has similarly advanced through new 
experimental and computational methodologies. High-throughput 
platforms based on cell-free protein crystallization (CFPC) are 
enabling rapid structure determination and systematic assessment 
of factors that stabilize or modulate IDP conformational ensembles 
(Bastida et al., 2023; Kojima et al., 2024). Analytical methods that 
combine molecular dynamics, single-molecule FRET, and advanced 
NMR spectroscopy now routinely characterize the residue-level 
dynamics and binding-competent conformations of disordered 
regions, illuminating their mechanisms in signal transduction and 
disease (Bastida et al., 2023; Orand and Jensen, 2025). In addition, 
“proteomimetic” scaffolds and targeted biophysical screens are 
being developed to selectively trap or modulate functional IDP 
conformations, opening new avenues for therapeutic targeting 
of these previously intractable proteins (Nguyen et al., 2025). 
Collectively, these innovations continue to break down longstanding 
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TABLE 4  Seminal contributions and recent advances in structural biology.

Technique Study Findings/Breakthrough Impact/Application References

Cryo-EM

Tau filaments from Alzheimer’s 
brain (Fitzpatrick et al., 2017)

First patient-derived atomic 
structure of tau filaments

Revealed disease-specific folds; 
guided tau PET tracer 
development

Fitzpatrick et al. (2017), 
Kroth et al. (2019)

SARS-CoV-2 spike protein 
(Wrapp et al., 2020)

First full-length 3D structure 
of coronavirus spike

Enabled rational vaccine and 
therapeutic design during 
COVID-19

Wrapp et al. (2020)

Cryo-EM + Integrative 
Modeling

Nuclear pore complex 
(Kim et al., 2018; 
Mosalaganti et al., 2022)

Full architecture of NPC Unified multimethod 
approach; megadalton 
assemblies

Kim et al. (2018), 
Mosalaganti et al. (2022)

X-ray Crystallography

β2-Adrenergic receptor 
(Rasmussen et al., 2011)

First high-resolution GPCR 
structure

Revolutionized GPCR drug 
discovery; revealed activation 
mechanism

Rasmussen et al. (2011)

KcsA potassium channel 
(Doyle et al., 1998)

First ion channel atomic 
structure

Explained ion selectivity; 
launched ion channel 
biophysics

Doyle et al. (1998)

Time-Resolved 
Crystallography

Cytochrome c oxidase 
(Tenboer et al., 2014; 
H. Li et al., 2021; 
Bhowmick et al., 2023)

Captured 
femtosecond–millisecond 
electron/proton transfer

Validated ultrafast SFX; 
illuminated respiratory 
catalysis

Tenboer et al. (2014), 
H. Li et al. (2021), 
Bhowmick et al. (2023)

AI Prediction AlphaFold Protein Structure 
Database (Jumper et al., 2021; 
Varadi et al., 2022)

Predicted nearly entire human 
proteome

Democratized structural 
biology; accelerated functional 
annotation

Jumper et al. (2021), 
Varadi et al. (2022)

NMR Spectroscopy Prion protein (Riek et al., 
1996)

First atomic structure of a 
prion protein

Provided structural basis of 
prion diseases

Riek et al. (1996)

Solid-state NMR α-synuclein fibrils (Tuttle et al., 
2016)

High-resolution fibril 
structures

Advanced understanding of 
Parkinson’s pathology

Tuttle et al. (2016)

Hybrid/AI-assisted Cryo-EM Fanconi anemia core complex; 
CryoDRGN (Farrell et al., 
2020; Zhong et al., 2021)

AI-aided model building and 
conformational heterogeneity

Expanded cryo-EM 
interpretability and 
heterogeneity analysis

Farrell et al. (2020), 
Zhong et al. (2021)

technical barriers, deepening our understanding of these essential 
biomolecules in health and disease. 

5.2 Integrating structural information with 
functional and dynamical analysis

Whereas macromolecular structure reveals significant 
information regarding macromolecular topology, a complete 
understanding of function requires integration of information 
regarding structure, function, and dynamics. Most processes 
in living cells, such as enzyme catalysis, transmembrane signal 
transduction, and protein folding, entail complex conformational 
processes, whose complete description cannot be achieved with 
static structures alone. Time-resolved techniques, such as time-
resolved crystallography and cryo-EM, have begun to circumvent 
such difficulty by capturing snapshots of processes in motion 
at an atomic level. In 2010, time-resolved crystallography was 
used to study the catalytic cycle of cytochrome c oxidase, 
mapping the sequence of electron and proton transfers during 

oxygen reduction (Kaila et al., 2010). Recent advances in 
single-molecule FRET have also illuminated protein folding 
dynamics, yielding new insights into macromolecular interactions 
(Hartmann et al., 2023; Schuler et al., 2016). 

5.3 Expanding the role of AI and machine 
learning in structure prediction and 
refinement

The use of AI and machine learning in structural biology has 
already seen a transformational impact, with examples including 
the success of AlphaFold and RoseTTAFold in predicting structures 
with high accuracy (Jumper et al., 2021). Not only have these 
tools accelerated the pace of structure discovery, but access to 
structures has democratized, and researchers worldwide can explore 
the molecular basis of life. In 2021, AlphaFold achieved high 
accuracy in predicting the structures of folded proteins, but its 
performance on IDPs and macromolecular complexes remained 
limited (Ruff and Pappu, 2021). In 2023, machine learning methods 

Frontiers in Molecular Biosciences 16 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1688455
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Jeyaraj et al. 10.3389/fmolb.2025.1688455

such as EMReady were applied to cryo-EM density maps to refine 
local and non-local features and significantly improve map-model 
correlation and interpretability, especially for maps in the 3–6 Å 
resolution range (He et al., 2023). 

5.4 Developing new technologies for in 
situ structural characterization

One of the most challenging and exciting frontiers in structural 
biology is developing tools for studying macromolecules in 
their native environment within living cells. Most conventional 
methodologies in structural biology require isolating and purifying 
macromolecules, a manipulation that can distort function 
and structure. In situ characterization of structure, in which 
macromolecules are analyzed in whole cells, holds out hope for 
overcoming such restrictions and providing a truer view of the 
environment in life. Recent advances in cryo-electron tomography 
(cryo-ET) have made it possible to visualize macromolecular 
machines directly in cells, providing critical insights into their native 
organization. Although cryo-ET delivers molecular or mesoscale 
detail rather than near-atomic resolution, most cellular tomograms 
are reconstructed at 3–8 nm, limited by lamella thickness, signal-
to-noise ratios, and radiation damage. Sub-nanometer resolution 
in intact cells is not yet realistic, although subtomogram averaging 
can improve detail for abundant complexes. Recent advances such 
as focused ion beam (FIB) milling for lamella thinning and Volta 
phase plates for contrast enhancement have further improved data 
quality. For example, Balyschew et al. (Balyschew et al., 2023) 
demonstrated ∼3 Å resolution for favorable targets using FIB-
milled lamellae and subtomogram averaging, while Berger et al. 
(2023) showed how automated FIB workflows facilitate higher-
resolution tomography in crowded environments. Fung et al. (2023) 
applied genetically encoded tags with AI-based detection to improve 
protein localization, and Zhou and Lok (2024) highlighted both the 
promise and limits of visualizing viral assembly in situ. Together, 
these studies underscore that atomic detail is largely restricted to 
isolated complexes or averaged subtomograms, while whole-cell 
reconstructions provide mesoscale structural insights.

Recent advances in correlative light and electron microscopy 
(CLEM) have enabled detailed visualization of mitochondrial 
ultrastructure and dynamic interactions with other organelles 
in mammalian cells, linking molecular specificity to the in 
situ ultrastructural context (Jiang et al., 2022; Jung and Mun, 
2024). Progress moving forward will depend on developing new 
modalities such as super-resolution CLEM workflows and improved 
embedding/fiducial labeling protocols and enhancing algorithms for 
registration, segmentation, and interpretation of complex in situ data 
(Franek et al., 2024; Jung and Mun, 2024). 

6 Standards and reproducibility

Reproducibility is the cornerstone of structural biology, 
ensuring that discoveries made through experimental cryo-electron 
microscopy (cryo-EM) and computational AI-based predictions 
can be independently verified, critically assessed, and reused 

for future research. Both domains have developed community-
driven standards that focus on mandatory data deposition, rigorous 
validation, and transparent reporting. 

6.1 Cryo-EM standards

Over the past decade, cryo-EM has matured into a method 
with strong archiving policies and widely adopted validation 
practices. To promote transparency, it is now mandatory that 
cryo-EM reconstructions be deposited in community repositories: 
density maps in the Electron Microscopy Data Bank (EMDB), 
atomic coordinate models in the Protein Data Bank (PDB), and, 
increasingly, raw micrographs and particle stacks in the Electron 
Microscopy Public Image Archive (EMPIAR) (Iudin et al., 2023; 
Lawson et al., 2024). Together, these archives provide the full 
spectrum of data from raw experimental images to refined atomic 
models enabling reproducibility and method development. The 
growth of EMPIAR, with over 1,000 datasets deposited by 2023, 
has been particularly important for benchmarking particle picking, 
developing new algorithms, and validating reconstructions in areas 
such as membrane protein biology (Kleywegt et al., 2024).

Validation remains a central issue. The Fourier Shell Correlation 
(FSC), particularly the gold-standard half-map FSC using the 0.143 
criterion, is the most widely used metric for estimating resolution 
and identifying overfitting (Rosenthal and Henderson, 2003). 
However, FSC only provides a global average, so local resolution 
assessment is now standard practice, using tools such as ResMap 
and Blocres to capture variations across flexible or heterogeneous 
regions (Ku. Model–map fit is evaluated with global correlation 
coefficients, per-atom inclusion scores, and more targeted tools such 
as EMRinger, which assesses the agreement of side-chain rotamers 
with density (Barad et al., 2015). FSC-Q, a local correlation-based 
metric, has further refined map–model validation by addressing the 
limitations of global FSC in anisotropic or unevenly resolved maps 
(Afonine et al., 2018; Pintilie and Chiu, 2021).

Community initiatives have formalized these practices. The 
2019 EMDataResource Model Challenge highlighted that no single 
validation metric is sufficient; instead, reproducibility requires a 
combination of complementary assessments across map quality, 
model geometry, and map–model agreement (Lawson et al., 
2021). Building on this, the 2024 EM Ligand Modeling Challenge 
extended reproducibility standards to ligand-bound complexes, 
recommending not only the evaluation of ligand density fit but also 
systematic validation of geometry, stereochemistry, and binding-
pocket environment (Lawson et al., 2024). These efforts illustrate 
how validation has moved beyond reporting resolution alone to 
providing a multi-dimensional quality assessment.

Finally, reporting checklists have been adopted to standardize 
practices across laboratories. The EM Validation Task Force (VTF) 
(Henderson et al., 2012) called for mandatory reporting of half-map 
FSC curves, map sharpening strategies, and overfitting tests. Later 
wwPDB/EMDB workshops codified these into structured checklists, 
including microscope parameters, data-processing pipelines, 
validation reports, and deposition metadata (Lawson et al., 2021). 
Such measures align with broader reproducibility frameworks in 
biomedical research, such as the EQUATOR Network, adapted for 
structural biology to ensure completeness and reduce bias. 
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6.2 AI-based model standards

AI-based predictions, particularly from AlphaFold2 (AF2), 
AlphaFold-Multimer, and more recently AlphaFold3, have 
expanded structural biology beyond the experimental Frontier. 
However, their reproducibility depends on input transparency. 
To replicate a model, researchers must release the exact multiple 
sequence alignments (MSAs), template sets, and random seeds used 
during inference (Jumper et al., 2021; Mirdita et al., 2022). Even 
small differences in alignment depth or stochastic seeds can alter 
the outcome, especially for disordered or multi-domain proteins. 
Without sharing these inputs, predictions become non-reproducible 
“black boxes.”

Confidence metrics are integral to reproducibility. pLDDT 
(predicted Local Distance Difference Test) scores provide per-
residue confidence estimates, while Predicted Aligned Error 
(PAE) matrices quantify uncertainty in relative domain or chain 
positioning (Jumper et al., 2021). Publishing these metrics alongside 
structural coordinates allows other researchers to interpret which 
regions are reliable and which require caution. Empirical studies 
show that high pLDDT values (>90) generally correlate with 
accurate folds, but low-scoring regions often correspond to 
intrinsic disorder, requiring ensemble modeling or experimental 
validation (Ruff and Pappu, 2021).

Cross-validation with experimental methods is also essential. 
Techniques such as small-angle X-ray scattering (SAXS), 
hydrogen–deuterium exchange mass spectrometry (HDX-
MS), and cross-linking MS (XL-MS) can confirm or refute 
AI-predicted folds and interactions. Benchmarking exercises 
like CASP15 demonstrated that while AlphaFold performs 
exceptionally for stable, globular proteins, reproducibility 
declines for multi-protein complexes, novel folds, and 
environments not represented in training data, underscoring 
the importance of complementary experimental validation
(Kryshtafovych et al., 2023).

As with cryo-EM, community repositories are beginning to 
support AI models. Large-scale predictions are already available 
through the AlphaFold Protein Structure Database and the ESM 
Atlas, while individual researchers are encouraged to deposit 
AI-generated structures in ModelArchive or PDB-Dev with 
accompanying metadata. This ensures transparency, supports 
benchmarking, and prevents selective reporting of only “successful” 
predictions. 

6.3 Integrative perspective

Standards in cryo-EM and AI are converging toward a 
shared framework: mandatory deposition of primary data, use 
of multiple complementary validation metrics, and transparent 
reporting of inputs and methods. While cryo-EM emphasizes 
archival and validation pipelines, AI-based predictions stress input 
transparency and confidence scoring. Together, these practices 
ensure that both experimental and computational structures can be 
trusted, compared, and built upon by the community, ultimately 
fostering more robust and integrative approaches to protein
modeling. 

7 Conclusion

The field of structural biology has undergone a revolution 
over the past several decades, driven by advances in imaging, 
computational modeling, and the integration of experimental 
and computational approaches. From the early days of X-ray 
crystallography to the modern era of cryo-electron microscopy 
(cryo-EM) and AI-driven structure prediction, these techniques 
have provided unprecedented insights into the structure and 
function of biological macromolecules. By revealing the atomic 
details of proteins, nucleic acids, and other macromolecular 
assemblies, structural biology has not only deepened our 
understanding of fundamental biological processes but has 
also facilitated breakthroughs in drug discovery, enzymology, 
nanotechnology, and the study of disease mechanisms.

The advent of cryo-EM, with its ability to visualize large 
macromolecular complexes and membrane proteins at near-atomic 
resolution, has democratized structural biology, making it accessible 
to researchers worldwide. Similarly, AI tools such as AlphaFold 
and RoseTTAFold have revolutionized the field by enabling the 
prediction of protein structures with remarkable accuracy and 
speed. Integrative and hybrid approaches, which combine data from 
multiple techniques, have expanded the scope of structural biology, 
providing new tools for studying complex biological systems and 
revealing the dynamic nature of macromolecular interactions.

These advancements have had a profound impact on drug 
discovery, enabling the development of targeted therapies with high 
efficacy and specificity. From anticancer drugs to antiviral therapies 
for COVID-19, structural biology has guided the development 
of life-saving treatments. In enzymology, structural insights have 
enabled the engineering of enzymes with desired properties, 
transforming industrial processes and driving innovation in 
biotechnology. In nanotechnology, structural studies have informed 
the design of nanodevices and biomaterials, opening new avenues 
for drug delivery, biosensing, and tissue engineering. Structural 
characterization has also provided critical insights into the 
molecular basis of disease, enabling the development of targeted 
therapies and diagnostics for conditions such as Alzheimer’s disease, 
Parkinson’s disease, and viral infections.

Despite these remarkable achievements, significant challenges 
remain. Membrane proteins and intrinsically disordered 
proteins (IDPs) continue to pose technical challenges, and new 
methodologies will be needed to stabilize and characterize these 
complex systems. Integrating structural, functional, and dynamical 
data will be essential for achieving a complete understanding of 
biological processes, and continued refinement of time-resolved 
and integrative techniques will be critical. The expansion of AI 
and machine learning tools holds great promise for improving the 
accuracy and efficiency of structure prediction and refinement, 
but further work is needed to extend these tools to more 
complex systems.

Looking to the future, the development of new technologies 
for in situ structural characterization offers exciting opportunities 
to study macromolecules in their native cellular environments. 
These advancements have the potential to provide a more 
accurate and comprehensive view of biological processes, driving 
further innovation in structural biology and its applications.
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In conclusion, structural biology will continue to play a central 
role in advancing our understanding of life at the molecular level. 
By integrating new technologies, computational approaches, and 
multidisciplinary methodologies, researchers will be able to tackle 
increasingly complex biological questions, opening new frontiers 
in science and technology. From dissecting disease mechanisms to 
developing new drugs and bio-inspired materials, structural biology 
will remain at the heart of scientific progress, shaping the future of 
biology and medicine.
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