

OPEN ACCESS

EDITED BY
Daniel X. Zhang,
Hong Kong Metropolitan University, Hong
Kong SAR, China

REVIEWED BY
Assunta Sellitto,
Italian Institute of Technology, Italy
Evangelos Koustas,
Evaggelismos General Hospital, Greece

*CORRESPONDENCE
Gizem Calibasi-Kocal,

☑ gizem.calibasi@deu.edu.tr

RECEIVED 17 August 2025 ACCEPTED 17 October 2025 PUBLISHED 30 October 2025

CITATION

Andac-Aktas AB and Calibasi-Kocal G (2025) Immunological landscape of colorectal cancer: tumor microenvironment, cellular players and immunotherapeutic opportunities.

Front. Mol. Biosci. 12:1687556. doi: 10.3389/fmolb.2025.1687556

COPYRIGHT

© 2025 Andac-Aktas and Calibasi-Kocal. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

Immunological landscape of colorectal cancer: tumor microenvironment, cellular players and immunotherapeutic opportunities

Adile Buse Andac-Aktas¹ and Gizem Calibasi-Kocal²*

¹Department of Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye, ²Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Türkiye

Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with outcomes shaped not only by genetic alterations but also by the complexity of the tumor microenvironment (TME). The TME encompasses stromal and endothelial cells, extracellular matrix components, gut microbiota, and a diverse array of immune cells that dynamically interact to influence tumor initiation, progression, and therapeutic response. This review delineates the immunological landscape of CRC, highlighting the dual functions of innate immune cells—including tumor-associated macrophages, natural killer cells, dendritic cells, neutrophils, and mast cells-and adaptive immune players such as cytotoxic T lymphocytes, helper T-cell subsets, and B/plasma cells. These cellular interactions contribute to the heterogeneity between immunologically "hot" microsatellite instability-high (MSI-H) tumors, which are highly responsive to immunotherapy, and "cold" microsatellite-stable (MSS) tumors, which remain resistant. Key mechanisms of immune evasion, such as cancer immunoediting, checkpoint signaling, and exosome-mediated communication, are examined alongside prognostic tools like the Immunoscore that serve as biomarkers of immune infiltration. Emerging immunotherapeutic strategies, including checkpoint blockade, macrophage reprogramming, natural killer cell agonists, and microbiome modulation, are discussed with emphasis on both their promise and limitations in CRC management. By integrating current insights into immune-tumor interactions, the review underscores opportunities for developing personalized, TME-targeted interventions to improve CRC outcomes.

KEYWORDS

colorectal cancer, tumor microenvironment, immunotherapy, immunity, immunological heterogeneity

1 Introduction

Colorectal cancer (CRC) remains one of the most prevalent malignancies worldwide and represents a major cause of cancer-related mortality (Sung et al., 2021). Despite advancements in screening, surgical techniques, and systemic therapies, many patients progress to metastatic disease, highlighting the necessity for better treatment options

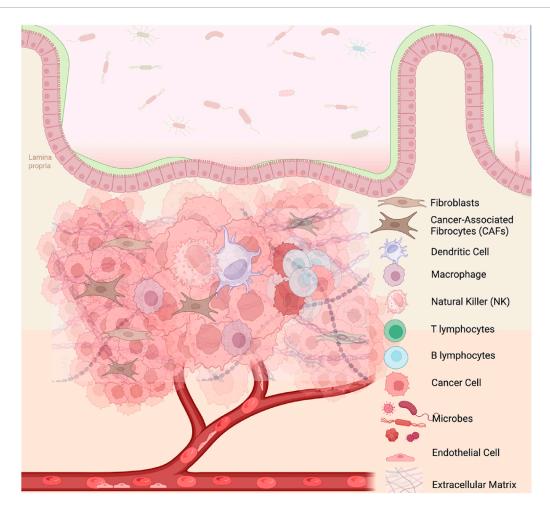


FIGURE 1
Cellular composition of colorectal cancer microenvironment. This schematic illustrates the complex cellular components within the colorectal cancer microenvironment. The intestinal epithelial barrier and lamina propria are depicted, showing the infiltration of various immune and stromal cell types into the tumor mass. Cancer-associated fibroblasts (CAFs), macrophages, dendritic cells, natural killer (NK) cells, T lymphocytes, B lymphocytes, and fibroblasts are shown interacting with tumor cells. Microbial components from the gut lumen are indicated near the disrupted epithelial barrier, suggesting their potential role in tumor progression and immune modulation. The vascular component highlights the tumor's access to systemic circulation, which may support metastasis and immune cell trafficking. The image was created with BioRender (https://BioRender.com).

(Allemani et al., 2018). Traditionally considered a genetically driven disease, CRC is now increasingly recognized as a complex entity shaped by dynamic interactions between malignant cells and the tumor microenvironment (TME) (Punt et al., 2017) (Figure 1).

The TME comprises a heterogeneous network of stromal components, including fibroblasts, endothelial cells, immune cells, and extracellular matrix (ECM) elements (Baghban et al., 2020; De Visser and Joyce, 2023) (Figure 1). These components not only provide structural support to tumor cells but also actively influence cancer initiation, progression, therapeutic resistance, and metastatic dissemination. Among these, immune cells play a particularly pivotal role by either restraining or promoting tumor development, depending on the balance between anti-tumor immunity and immune evasion mechanisms established by the tumor.

In recent years, growing evidence has highlighted the immunological heterogeneity within CRC tumors and the prognostic and predictive implications of immune cell infiltration patterns (Shembrey et al., 2019; Ferkel et al., 2025). This has led to

the emergence of immune-based classification systems, such as the "Immunoscore," and the increasing interest in immunotherapy for CRC, particularly in subgroups such as microsatellite instability-high (MSI-H) tumors (Gatalica et al., 2016; Hu et al., 2019; Bruni et al., 2020; Galon et al., 2014; Picard et al., 2020).

In this review, we first provide an overview of the CRC microenvironment, followed by a detailed examination of the various immune cell types involved in CRC, including their phenotypic and functional characteristics, their interaction with tumor and stromal cells, and their implications for clinical outcomes and therapeutic response (Pagès et al., 2018; Ciardiello et al., 2019).

2 Tumor microenvironment components in colorectal cancer

TME of CRC represents a highly dynamic and complex ecosystem that significantly influences tumor initiation,

progression, metastasis, and response to therapy. Comprising a diverse array of cellular and acellular components—including stromal cells, endothelial cells, immune infiltrates, the ECM, and microbial elements—the TME orchestrates continuous interactions that reshape cancer behavior over time (Figure 1) (Pedrosa et al., 2019; Baghban et al., 2020). Understanding the roles and interplay of these components is crucial to identifying novel therapeutic targets and overcoming resistance mechanisms in CRC.

2.1 Stromal cells

Stromal cells, particularly cancer-associated fibroblasts (CAFs), constitute a major structural and regulatory component of the CRC microenvironment (Figure 1). These cells facilitate tumor growth by producing ECM components and secreting a variety of soluble mediators, including transforming growth factor- β (TGF- β), interleukin (IL)-6, and hepatocyte growth factor (HGF), which promote cancer cell proliferation, invasion, and immune modulation (Mao et al., 2021). CAFs also upregulate tumor-promoting genes such as CTHRC1, INHBA, BGN, and PDPN, contributing to ECM remodeling and stiffness (Li N. et al., 2023). Recent single-cell transcriptomic analyses show CAFs alone have limited capacity to induce pro-tumorigenic SPP1⁺ macrophages. However, this capacity significantly increases in the presence of tumoroids (Wang et al., 2025).

2.2 Endothelial cells

Endothelial cells form the vascular backbone of the TME (Figure 1), supporting tumor growth by facilitating oxygen and nutrient delivery through angiogenesis. These cells are activated by tumor-derived angiogenic factors such as vascular endothelial growth factor (VEGF) and angiopoietins, leading to abnormal vascular networks that also enable immune evasion (Patel et al., 2023; Han et al., 2025). Tumor-associated endothelial cells (TECs) in CRC express immune-modulatory molecules like Fas ligand (FasL) and E-selectin, promoting the exclusion of cytotoxic T cells while facilitating neutrophil recruitment (Motz and Coukos, 2013; Nagl et al., 2020). In transcriptomic datasets, endothelial markers such as CDH5, CLDN5, and ESAM are upregulated in CRC tissues with disrupted tumor architecture (Wang et al., 2019; Tacconi et al., 2015; Liu et al., 2023). CODEX spatial profiling has shown enhanced interaction between TECs and carcinoma cells in high-risk tumors, contributing to the aggressive phenotype of the C3 molecular subtype, which is enriched for angiogenesis-related signatures and portends poor prognosis (Ji et al., 2010; Kuswanto et al., 2023; Cox et al., 2024; Wang et al., 2019; Suo et al., 2025; Schürch et al., 2020). In addition to vascular factors, endothelial cells interact closely with ECM elements to modulate the physical properties of the TME.

2.3 Extracellular matrix (ECM)

The ECM provides physical scaffolding and transmits biochemical cues that regulate cell adhesion, proliferation

(Figure 1), and migration. In CRC, the ECM is composed of structural proteins such as type I–IV collagens (COL1A1, COL3A1, and COL4A1), fibronectin (FN1), lumican (LUM), and osteonectin (SPARC) (Yue, 2014; Henke et al., 2020; Kim M.-S. et al., 2021). Tumor cells enhance ECM remodeling by upregulating matrix organization genes, which are generally less expressed in tumoroid models, indicating the importance of the *in vivo* microenvironment in ECM dynamics (Page-McCaw et al., 2007; Freitas-Rodríguez et al., 2017). High ECM density and stiffness not only support tumor cell invasion but also serve as physical barriers to immune cell infiltration, facilitating immune exclusion and tumor immune evasion—particularly in the C2 and C3 subtypes (Pickup et al., 2013).

2.4 Gut microbiota as a modulator of the TME

The intestinal microbiota plays a critical role in modulating immune responses within the CRC TME (Figure 1). Dysbiosis and the enrichment of pro-oncogenic microbes such as Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can trigger chronic inflammation, activate pro-survival signaling pathways, and modulate immune responses toward tumor tolerance (Xue et al., 2023; Singh et al., 2025). These bacteria contribute to the development of an immunosuppressive TME, further facilitating immune escape (Wong and Yu, 2019). Accordingly, microbiome-targeted strategies such as probiotics, prebiotics, and fecal microbiota transplantation (FMT) are being explored to restore immune homeostasis and improve therapeutic efficacy (Gopalakrishnan et al., 2018; Lei et al., 2025; Mafe and Büsselberg, 2025).

2.5 Immune cells

Immune cells are integral to both anti-tumor immunity and tumor progression within the CRC TME (Figure 1). This dual role is shaped by the balance between effector and immunosuppressive cell types. Tumor-infiltrating lymphocytes (TILs), including CD8+ cytotoxic T cells, Th1 cells, NK cells, dendritic cells (DCs), and B cells, are associated with improved prognosis and immune surveillance (Kumar et al., 2021; Yu et al., 2025). In contrast, immunosuppressive populations such as regulatory T cells (Tregs), M2-polarized macrophages, myeloid-derived suppressor cells (MDSCs), and SPP1+ tumor-associated macrophages (TAMs) support tumor immune evasion and are linked to poor prognosis (Davis et al., 2016; Binnewies et al., 2018; Liu et al., 2025). The immunologically "hot" C4 subtype exhibits a high cytolytic score and enriched effector cell infiltration, in contrast to C2 and C3 subtypes characterized by immune dysfunction and exclusion (Liu et al., 2021; Wu et al., 2023; Xu et al., 2024).

The immune response in CRC is further shaped by the process of cancer immunoediting, which consists of three distinct phases: elimination, equilibrium, and escape. During elimination, immune cells such as CD8⁺ T cells and NK cells identify and destroy tumor cells. If complete elimination is not achieved, the tumor may enter an equilibrium phase where immune pressure

selects for resistant clones (Guillerey et al., 2016; Gubin and Vesely, 2022; Tufail et al., 2025). Eventually, immune escape occurs through upregulation of immune checkpoints (e.g., Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)), secretion of immunosuppressive cytokines, and recruitment of suppressive cell populations. These processes are particularly evident in CRC subtypes with low immunogenicity (C1) and immune dysfunction (C2/C3) (Schreiber et al., 2011; Binnewies et al., 2018). Thus, understanding immune editing processes is fundamental for developing effective immunotherapeutic strategies in CRC.

3 Innate and adaptive immune cells in the colorectal cancer microenvironment

The immune response in CRC is further shaped by the process of cancer immunoediting, which consists of three distinct phases Immune cells within the CRC microenvironment represent a diverse and dynamic population that plays a dual role in tumor suppression and promotion. The balance between cytotoxic and immunosuppressive immune subsets determines not only the trajectory of tumor progression but also the patient's response to immunotherapy. CRC tumors exhibit distinct immunological phenotypes ranging from "hot" tumors, characterized by dense immune infiltration and high cytolytic activity, to "cold" tumors, which are poorly infiltrated and display immune evasion mechanisms (Bonaventura et al., 2019; Wu et al., 2024). These phenotypes often correlate with molecular subtypes—such as the immunologically active C4 and MSI-high tumors versus the immune-excluded C2 and angiogenic C3 subtypes (Wu et al., 2023).

Immune responses in CRC are shaped by both innate immunity, which provides immediate and non-specific defense, and adaptive immunity, which confers long-term, antigen-specific responses. Key players in the innate compartment include TAMs, dendritic cells (DCs), natural killer (NK) cells, neutrophils, and mast cells (Mantovani et al., 2017) (Figure 2). Adaptive immunity primarily involves CD8⁺ cytotoxic T lymphocytes (CTL), CD4⁺ helper T cells (Th1, Th2, Th17, Tregs), and B cells (Bindea et al., 2013).

3.1 Innate immune cells

Innate immune cells serve as the first line of defense against neoplastic transformation, mediating tumor surveillance and shaping subsequent adaptive responses. However, many of these cells are co-opted by tumors to support immunosuppression, angiogenesis, and metastasis (Figure 2).

3.1.1 Tumor-associated macrophages (TAMs)

TAMs are integral components of the innate immune response within the CRC microenvironment, contributing to tumor progression, immune modulation, and therapeutic resistance. Originating from circulating monocytes, TAMs polarize into two functionally distinct phenotypes: pro-inflammatory, antitumoral M1 macrophages and immunosuppressive, pro-tumoral M2 macrophages (Figure 2). This polarization is tightly regulated by

cytokine signaling, metabolic cues, and tumor-intrinsic factors, with profound implications for CRC progression and patient outcomes (Mantovani et al., 2017; Wang et al., 2021).

M1 macrophages are activated by interferon-gamma (IFNγ), Tumor necrosis factor-alpha (TNF-α), and IL-12, and are characterized by their ability to produce nitric oxide (NO) and reactive oxygen species (ROS), promoting direct tumor cell killing and enhancing Th1 responses through major histocompatibility complex (MHC) class II-mediated antigen presentation (Murray et al., 2014; Chen et al., 2023). These macrophages also activate cytotoxic CD8+T cells via IL-12 secretion, amplifying anti-tumor immunity. High infiltration of M1 macrophages is particularly evident in MSI-H CRC and consensus molecular subtype 1 (CMS1), correlating with robust immune activation, presence of tertiary lymphoid structures (TLS), and favorable prognosis (Roelands et al., 2017; Ferkel et al., 2025). High M1 infiltration is linked to tertiary lymphoid structures (TLS) and improved survival (Shin et al., 2021). Conversely, M2 macrophages promote tissue remodeling, angiogenesis, immune suppression, and metastasis (Figure 2). M2 polarization is induced by IL-4, IL-10, IL-13, and TGF-β, leading to secretion of immunosuppressive cytokines and pro-angiogenic factors such as VEGF and matrix metalloproteinase (MMP)-9 (Gordon and Martinez, 2010; Qian and Pollard, 2010; Lin et al., 2019). In consensus molecular subtype 4 (CMS4) tumors and metastatic disease, high M2 macrophage density is associated with a suppressive TME and poor clinical outcomes (HR = 1.75, 95% CI 1.19-2.58, P = 0.004) (Mlecnik et al., 2016). M2 macrophages facilitate epithelialmesenchymal transition via CCL-18 and CXCL-12, enhancing tumor invasiveness (Chen et al., 2011; Wang et al., 2021).

The M1/M2 macrophage ratio is a significant prognostic marker. Tumors with a high M1/M2 ratio—frequently MSI-H or early-stage CRC—exhibit improved immune responses and longer survival (HR = 0.58, 95% CI 0.39-0.87, P = 0.008). By contrast, M2-dominated TMEs are linked to increased tumor invasiveness and immune evasion.

M2 macrophages are key facilitators of angiogenesis and metastasis through the production of VEGF-A, VEGF-C, and bFGF, which promote neovascularization (Ferrara et al., 2003; Lewis and Pollard, 2006). Their expression of matrix metalloproteinases (e.g., MMP-2, MMP-9) degrades the ECM, facilitating tumor invasion and metastatic dissemination (Page-McCaw et al., 2007). Additionally, chemokines such as CCL-18 and CXCL-12 produced by M2 macrophages support epithelial-mesenchymal transition and metastatic progression (Wang S. et al., 2024; Zhang et al., 2024).

Polarization is governed by specific signaling cascades: IFN- γ activates STAT1 in M1 macrophages, leading to iNOS upregulation and anti-tumor activity (Mosser and Edwards, 2008), while IL-12 further enhances Th1 and CD8⁺ T cell responses (Henry et al., 2008). In contrast, IL-10 and TGF- β promote M2 polarization via STAT3 and Smad signaling, increasing arginase-1 and PD-L1 expression, suppressing anti-tumor immunity (Flavell et al., 2010; Sica and Mantovani, 2012).

Therapeutically, reprogramming M2 macrophages into an M1 phenotype is a promising strategy. CSF-1R inhibitors, such as PLX3397, deplete M2 macrophages and enhance CD8⁺ T cell activity, improving objective response rates (ORR) in MSI-H CRC (20%–30%) (Shimizu et al., 2024). IL-10 blockade

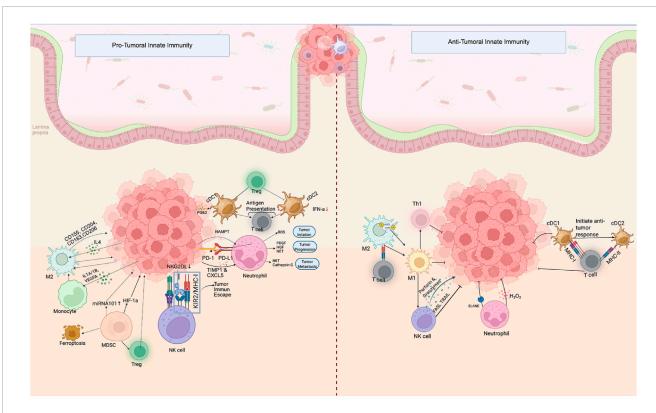


FIGURE 2
Innate immune cell-mediated pro-tumoral and anti-tumoral activities in the colorectal cancer microenvironment. *Pro-Tumoral Innate Immunity*: Tumor-associated macrophages (M2), myeloid-derived suppressor cells (MDSCs), tolerogenic dendritic cells (DCs), regulatory T cells (Tregs), and neutrophils contribute to immune suppression and tumor progression via mechanisms such as PGE2, IL-10, VEGF, PD-L1 expression, ROS, and NETs. These interactions support tumor initiation, progression, and metastasis while promoting immune escape. *Anti-Tumoral Innate Immunity*: Conversely, classical DC subsets (cDC1/cDC2), M1 macrophages, NK cells, and neutrophils exert anti-tumor activity through enhanced antigen presentation (via MHC-I/II), Th1 polarization, cytotoxic mediator release (perforin, granzyme B, TRAIL), and production of hydrogen peroxide (H₂O₂), fostering effective anti-tumor immune responses. The image was created with BioRender (https://BioRender.com).

synergizes with PD-1 inhibitors, increasing efficacy in immuneresponsive tumors (Pardoll, 2012). Additional approaches include Toll-like receptor (TLR) and CD40 agonists, which potentiate M1 macrophage activation and show promise in early-phase clinical trials (Cheng, 2010). However, their impact remains limited in MSS CRC (Andre et al., 2020).

In summary, TAMs exhibit functional plasticity within the CRC TME, with M1 macrophages promoting tumor elimination and M2 macrophages fostering progression and immune evasion (Figure 2). Understanding TAM polarization dynamics and targeting the M2 phenotype are crucial for enhancing immunotherapeutic outcomes and personalizing treatment strategies in CRC (Table 1).

3.1.2 Natural killer (NK) cells

Natural killer (NK) cells are pivotal effectors of the innate immune system in the CRC microenvironment, exerting direct cytotoxic effects on tumor cells and orchestrating broader immune responses. Unlike cytotoxic T lymphocytes, NK cells can recognize and kill transformed cells independently of MHC class I expression, making them essential in countering tumor immune evasion. However, the CRC TME—especially in microsatellite stable (MSS) and consensus molecular subtype 4 (CMS4) tumors—is

characterized by immunosuppressive factors such as TGF- β and PD-L1, which impair NK cell function and facilitate tumor progression. Understanding NK cell dynamics in the TME and developing strategies to restore or enhance their function are critical for effective immunotherapy, particularly in immunologically "cold" tumors.

NK cells eliminate tumor cells via direct lysis and modulate the adaptive immune system through cytokines such as IFN- γ and TNF- α . They are regulated by a balance of activating receptors (e.g., NKG2D, DNAM-1) and inhibitory receptors (e.g., KIRs, NKG2A) (Lanier, 2005; Vivier et al., 2011). High NK cell infiltration, especially in MSI-H tumors and early-stage CRC, correlates with favorable overall survival (HR = 0.59, 95% CI 0.38–0.92, P = 0.019) (Sconocchia et al., 2014). In CMS1 CRC (14% of cases), NK cells contribute to a robust immune milieu characterized by abundant cytotoxic T cells and tertiary lymphoid structures (TLS) (Guinney et al., 2015; Roelands et al., 2017). IFN- γ from NK cells promotes dendritic cell maturation and Th1 polarization, enhancing anti-tumoral immunity (Böttcher et al., 2018).

NK cells are uniquely effective in eliminating tumor cells with reduced or absent MHC class I, consistent with the "missing-self" hypothesis. They achieve this through NKG2D-mediated recognition of stress ligands such as MICA/B and ULBPs (Kärre et al., 1986; Lanier, 2005). In MSI-H CRC, high MICA

TABLE 1 Table summarizes the distinct functions, prognostic impacts, and clinical significance of M1 and M2 macrophages in colorectal cancer, highlighting their roles in anti-tumoral immunity versus tumor progression.

Macrophage type	Functions	Impact on CRC prognosis	Clinical significance
M1 Macrophages	NO/ROS production, antigen presentation, Th1 response via IL-12	High infiltration linked to better overall survival	Prognostic marker; predicts ICI response; target for TLR/CD40 agonists
M2 Macrophages	VEGF/MMP-9 production IL-10/TGF-β-mediated immunosuppression, epithelial-mesenchymal transition promotion	High infiltration linked to poor prognosis	Target for CSF-1R inhibitors, IL-10 blockers; associated with metastasis

Abbreviations in alphabetical order: IL: interleukin, MMP: matrix metalloproteinases, NO: nitric oxide, ROS: reactive oxygen species, TGF- β : Transforming growth factor- β , Th1: T helper 1 cells, TLR: Toll-like receptor, VEGF: vascular endothelial growth factor.

expression enhances NK cell-mediated cytotoxicity and is associated with better prognosis (Lanuza et al., 2022). Conversely, NK cell infiltration is diminished in metastatic and CMS4 CRC (1.5% vs. 5.2%, p < 0.01), correlating with adverse outcomes (HR = 1.82, 95% CI 1.20–2.76, P = 0.005) (Tosolini et al., 2011).

Beyond direct cytotoxicity, NK cells mediate antibody-dependent cellular cytotoxicity (ADCC) through Fc γ receptor III (CD16), especially when engaged by monoclonal antibodies such as cetuximab targeting EGFR (Van Cutsem et al., 2009). NK cells also induce apoptosis via FasL and TRAIL death receptor pathways (Smyth et al., 2003). However, their activity is curtailed in MSS CRC and immunosuppressive TMEs enriched with PD-L1 and TGF- β (Mlecnik et al., 2016).

TGF- β is a principal inhibitor of NK cell function, reducing NKG2D and NKp46 expression and IFN- γ production via Smad signaling (Tauriello et al., 2018; Bruno et al., 2019; Chaudhry et al., 2022). TGF- β is overexpressed in CMS4 and metastatic CRC and is linked to poor clinical outcomes (HR = 1.78, 95% CI 1.15–2.75, P = 0.009) (Tauriello et al., 2018). PD-L1 on tumor and immune cells suppresses NK activity through PD-1 engagement, dampening cytotoxicity (Quatrini et al., 2020).

Additional inhibitory influences include IL-10, hypoxia, and metabolic stress. IL-10 suppresses NK proliferation and IFN- γ production via STAT3 activation (Witalisz-Siepracka et al., 2022; Wang et al., 2023). Hypoxia-driven HIF-1 α signaling diminishes NKG2D ligand expression and impairs cytotoxicity (Baginska et al., 2013), while acidic, lactate-rich TMEs suppress NK cell metabolism and effector function (Husain et al., 2013).

Therapeutic strategies targeting NK cell activation aim to counteract immunosuppression and boost antitumoral responses. IL-15 enhances NK proliferation, survival, and IFN-γ production (Waldmann, 2003), with IL-15 super agonists (e.g., ALT-803) showing promising results in MSI-H CRC (Objective response rate-ORR 25%–35%, PFS 8–10 months) (Wrangle et al., 2018; Andre et al., 2020). While IL-2 is effective at low doses when combined with immune checkpoint inhibitors (ICIs) (ORR 20%–30%) (Rosenberg, 2014), its toxicity at high doses remains a limitation.

ICIs such as anti-PD-1 (e.g., pembrolizumab) restore NK activity and elicit high response rates in MSI-H CRC (ORR 33%–55%) (Andre et al., 2020). Anti-TGF- β agents block Smad signaling, upregulating NKG2D and enhancing NK responses (PFS 10–12 months in early trials) (Alshahrani et al., 2024;

Deng et al., 2024). Inhibitors of NKG2A (e.g., monalizumab) lift NK cell suppression mediated by HLA-E, with phase I/II trials showing encouraging results (ORR 20%–25%) (André et al., 2022). Experimental strategies such as CAR-NK cells and bispecific antibodies targeting NK receptors and tumor antigens are also under active investigation (Guillerey et al., 2016). However, therapeutic efficacy in MSS CRC remains limited (ORR 5%–10%), reinforcing the need for subtype-specific approaches.

In summary, NK cells are indispensable in the innate immune landscape of CRC, particularly in MSI-H tumors where they mediate effective immune surveillance and contribute to favorable outcomes. Their functional impairment in immunosuppressive TMEs necessitates targeted interventions. Understanding NK cell receptor signaling, tumor immune evasion strategies, and the molecular driver of suppression is essential for the development of NK-based immunotherapies tailored to CRC subtypes.

3.1.3 Dendritic cells

Dendritic cells (DCs) serve as critical antigen-presenting cells within the CRC microenvironment, bridging innate and adaptive immunity. They play a pivotal role in priming and activating tumor-specific T cell responses by processing and presenting tumor antigens via MHC class I and II molecules, thereby initiating cytotoxic CD8⁺ T cell and helper CD4⁺ T cell responses (Banchereau and Steinman, 1998; Hou et al., 2024).

In immunologically active CRC subtypes, particularly MSI-H tumors, DCs are frequently enriched and are associated with high cytotoxic T cell infiltration and the presence of tertiary lymphoid structures (TLS), correlating with improved overall survival (HR = 0.62, 95% CI 0.41–0.94, P = 0.024) (Mlecnik et al., 2016; Hou et al., 2024). Through secretion of cytokines such as IL-12 and IFN- α , DCs support Th1 polarization and natural killer (NK) cell activation, thereby amplifying anti-tumoral immunity (Trinchieri, 2003).

However, in immune-excluded or immunosuppressive CRC subtypes such as MSS and CMS4, DCs are functionally impaired. The TME inhibits DC maturation via TGF- β , IL-10, and VEGF, skewing them towards a tolerogenic phenotype that promotes immune tolerance rather than tumor elimination. This immature or tolerogenic DCs exhibit diminished antigen-presenting capacity, reduced co-stimulatory molecule expression, and increased PD-L1 expression, leading to T cell anergy and limited efficacy of ICIs (Gabrilovich, 2004; Worthington et al., 2012; Hato et al., 2024).

Low DC infiltration and functional impairment in CMS4 CRC are associated with poor prognosis (HR = 1.75, 95% CI 1.18–2.60, P = 0.005) (Guinney et al., 2015; Guo et al., 2020). While DC-based immunotherapies, such as DC vaccines, have demonstrated encouraging results in MSI-H CRC (PFS 10–12 months in phase I/II trials), their efficacy in MSS tumors remains limited (5%–10% ORR) (Saxena et al., 2021). Advancing our understanding of DC functional states and TME interactions is vital for designing DC-targeted strategies that can overcome immunosuppressive barriers and enhance anti-tumor immunity in CRC.

3.1.4 Neutrophils and mast cells

Neutrophils and mast cells are key myeloid components of the CRC microenvironment that contribute to both pro- and antitumoral processes, with their effects modulated by disease stage, molecular subtype, and the immune contexture of the TME.

Neutrophils exhibit functional plasticity in CRC. In early-stage or MSI-H CRC, they can exert anti-tumoral effects via secretion of ROS and TNF- α , directly damaging tumor cells. Their infiltration is modestly associated with improved overall survival in these settings (HR = 0.71, 95% CI 0.48–1.05, P = 0.089) (Fridlender et al., 2009; Rao et al., 2012). However, in advanced and MSS CRC, neutrophils predominantly promote tumor progression (Takesue et al., 2020; Huang et al., 2024). Elevated neutrophil-to-lymphocyte ratio (NLR) is a robust negative prognostic biomarker (Dell'Aquila et al., 2018).

Pro-tumoral neutrophil functions include the formation of neutrophil extracellular traps (NETs), which facilitate tumor invasion, metastatic niche formation, and immune evasion. NETs are associated with liver metastases in CRC (p = 0.002) and decreased disease-free survival (Demkow, 2021). NETs contribute to angiogenesis by releasing VEGF and IL-8 and are enriched in CMS4 tumors, which display immunotherapy resistance (ORR 10%–15%) (Huyghe et al., 2020; Lee et al., 2020; Mousset et al., 2023).

Mast cells, while less studied, are emerging as important regulators of angiogenesis and immune modulation in CRC. They release pro-angiogenic factors including VEGF, histamine, and IL-8, enhancing tumor vascularization and progression (Maltby et al., 2009). High mast cell infiltration in CMS4 CRC correlates with angiogenic and immunosuppressive TME features and poor prognosis (HR = 1.65, 95% CI 1.10–2.47, P = 0.015) (Omatsu et al., 2023). Nonetheless, mast cells may also support anti-tumor immunity by secreting IL-9 and TNF- α , particularly in MSI-H settings (Sinnamon et al., 2008).

Targeting NETs and mast cell-derived mediators offers therapeutic potential in CRC. DNase I disrupts NETs and, when combined with ICIs, shows enhanced efficacy (PFS 8–10 months, preclinical) (Park et al., 2016). Understanding the context-specific roles of neutrophils and mast cells is essential to unlocking new therapeutic strategies aimed at overcoming immunotherapy resistance and modulating the CRC immune landscape (Table 2).

3.2 Adaptive immune cells

Adaptive immunity plays a central role in orchestrating tumorspecific immune responses and ensuring long-term immune surveillance in CRC (Figure 3) (Bruni et al., 2020). The adaptive immune compartment is primarily composed of T lymphocytes and B cells, which recognize tumor-associated antigens through highly specific antigen receptors. These cells mediate anti-tumor effects through cytokine secretion, direct cytotoxic activity, and the establishment of immunological memory. Among them, CD8⁺ cytotoxic T lymphocytes (CTLs) and CD4⁺ helper T cells are key players in coordinating effective immune responses. However, in many CRC subtypes—particularly those with low tumor mutational burden or enriched in immunosuppressive factors—adaptive immune function is often compromised. The density, spatial distribution, and activation status of adaptive immune cells within the TME have emerged as strong prognostic indicators and form the foundation for immune-based classification (scoring) systems such as the "Immunoscore (Galon et al., 2014)."

3.2.1 CD8⁺ cytotoxic T lymphocytes (CTLs)

CD8⁺ CTLs are essential components of the anti-tumor immune response in CRC, functioning through recognition of tumor antigens presented via MHC class I molecules (Figure 3). Upon antigen engagement through the T cell receptor (TCR), activated CTLs release cytolytic molecules such as perforin and granzymes, inducing caspase-mediated apoptosis in tumor cells. They also secrete cytokines like IFN- γ , TNF- α , and IL-2, which promote MHC class I expression and recruit additional immune effector cells via chemokines including CXCL9, CXCL10, and CXCL11 (Fridman et al., 2017; Farhood et al., 2019; Huff et al., 2019; Li et al., 2021).

High infiltration of CTLs in both the tumor core and invasive margins is associated with improved overall survival (OS) and reduced recurrence in CRC patients (Reissfelder et al., 2015; Barbosa et al., 2021; Shen et al., 2022). These observations have led to the development of the Immunoscore, which quantifies CD3⁺ and CD8⁺ T cell densities and has demonstrated superior prognostic value compared to conventional TNM staging (Galon et al., 2014; Bruni et al., 2020; Mlecnik et al., 2023).

The strength and efficacy of CD8⁺ T cell responses are shaped by the tumor's immunogenicity. MSI-H tumors, which account for approximately 15% of stage II and 4% of metastatic CRC cases, harbor high neoantigen loads and are more immunogenic. These tumors typically exhibit abundant CTLs infiltration and maintain cytolytic activity, particularly in the CMS1 and immune-inflamed C4 molecular subtypes, correlating with favorable prognosis and robust responses to ICIs (Le et al., 2015; Llosa et al., 2015; André et al., 2022).

In contrast, MSS tumors often show limited CD8⁺ T cell infiltration and are less responsive to immunotherapy. This immune resistance is frequently compounded by an immunosuppressive TME, where dense ECM and soluble factors hinder effective T cell access and function (Bao et al., 2020; Borràs et al., 2023; Tang et al., 2025). Moreover, persistent antigen stimulation, hypoxia, and metabolic stressors within the TME contribute to T cell exhaustion, a dysfunctional state marked by high expression of inhibitory receptors such as PD-1, Lymphocyte-activation gene 3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), and a decline in cytotoxic capacity (Jiang et al., 2015; Thommen and Schumacher, 2018; Franco et al., 2020; Tsui et al., 2022).

To reverse T cell exhaustion and reinvigorate anti-tumor immunity, ICIs targeting PD-1 and CTLA-4 have been successfully

TABLE 2 The functions, prognostic implications, and clinical relevance of neutrophils, myeloid-derived suppressor cells (MDSCs), mast cells, and dendritic cells in colorectal cancer, emphasizing their dual roles in tumor suppression and promotion.

Cell type	Functions	Impact on CRC prognosis	Clinical significance
Neutrophils	NET formation, VEGF/IL-8 production, ROS-mediated tumor lysis	High NLR linked to poor prognosis	Prognostic marker; target for NET inhibitors
MDSCs	T cell suppression, IL-10/TGF- β production	High infiltration linked to poor prognosis	Immunotherapy resistance; target for PDE-5/anti-GM-CSF therapies
Dendritic Cells	Antigen presentation, Th1 response via IL-12	High infiltration linked to better overall survival	DC vaccines; ICI response prediction
Mast Cells	VEGF/histamine production, IL-9-mediated immune activation	High infiltration linked to poor prognosis	Angiogenesis-targeted therapies

Abbreviations in alphabetical order: DCs: Dendritic cells, GM-CSF: Granulocyte-macrophage colony-stimulating factor, ICIs: Immune checkpoint inhibitors, IL: interleukin, MDSCs: Myeloid-derived suppressor cells, NET: neutrophil extracellular trap, NLR: Neutrophil-to-lymphocyte ratio, PDE-5: Phosphodiesterase type 5, ROS: reactive oxygen species, $TGF-\beta$: Transforming growth factor- β , Th1: T helper 1 cells, VEGF: vascular endothelial growth factor.

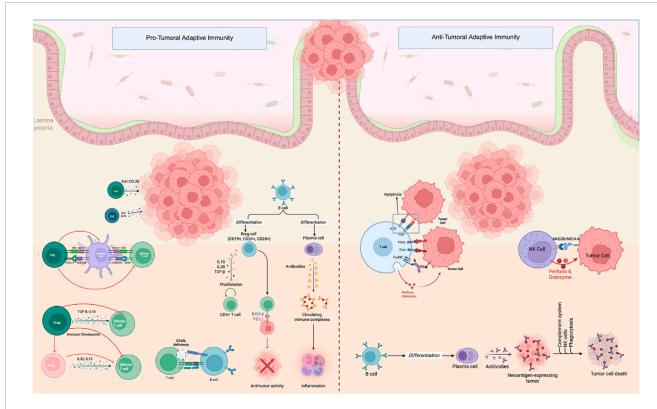


FIGURE 3

Adaptive immune cell-mediated pro-tumoral and anti-tumoral activities in the colorectal cancer microenvironment. *Pro-Tumoral Adaptive Immunity:* Regulatory T cells (Tregs), regulatory B cells (Bregs), and tolerogenic dendritic cells inhibit anti-tumor responses via checkpoint molecules (CTLA-4, PD-1), immunosuppressive cytokines (IL-10, IL-35, TGF-β), and downregulation of effector T cell activity. Bregs contribute to inflammation and immune complex formation through abnormal antibody production and impaired CD4⁺ T cell proliferation. *Anti-Tumoral Adaptive Immunity:* Effector CD8⁺ T cells and NK cells recognize and eliminate tumor cells via MHC-TCR interaction, death ligands (FasL, TRAIL), and cytotoxic granules (perforin, granzyme). Activated B cells differentiate into plasma cells, producing tumor-specific antibodies that facilitate immune-mediated tumor clearance through complement activation, phagocytosis, and ADCC. The image was created with BioRender (https://BioRender.com).

employed, particularly in MSI-H CRC patients. Agents like nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) have demonstrated durable clinical responses in this subgroup. Additional immunotherapeutic strategies under investigation include adoptive transfer of tumor-infiltrating lymphocytes

(TILs) and tumor antigen-specific vaccines designed to boost CTLs function (Dudley et al., 2008).

However, the immunologically "cold" nature of many MSS tumors necessitates combination therapies aimed at improving T cell infiltration and activity. Approaches involving chemotherapy,

anti-angiogenic agents (e.g., VEGF inhibitors), or ECM-targeting strategies are being explored to overcome immune exclusion and enhance ICI responsiveness (Liu and Sun, 2021; Melssen et al., 2023; Quan et al., 2023).

In summary, CD8⁺ T cells are central to immune-mediated tumor control in CRC, particularly in immunologically active subtypes. Yet, the functional impairment of these cells within suppressive TMEs remains a major therapeutic barrier. Future research should prioritize elucidating the mechanisms underlying T cell exhaustion and developing combinatorial strategies to enhance CTL-mediated immunity across diverse CRC subtypes.

3.2.2 CD4⁺ helper T cells

CD4⁺ T cells are pivotal regulators of adaptive immunity in CRC, exhibiting both anti-tumor and pro-tumor functions depending on their subset differentiation and local microenvironmental cues (Toor et al., 2019; Aristin Revilla et al., 2022; Li et al., 2025; Revilla et al., 2025). Upon antigen recognition via major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs), naïve CD4⁺ T cells differentiate into specialized effector subsets—Th1, Th2, Th17, and regulatory T cells (Tregs)—each governed by distinct transcriptional regulators and cytokine profiles (Figure 3) (Tosolini et al., 2011).

Th1 cells, directed by T-bet and STAT4, secrete IFN- γ , TNF- α , and IL-2, enhancing antigen presentation, promoting M1 macrophage polarization, and recruiting cytotoxic CD8⁺ T lymphocytes (Mlecnik et al., 2016; Orecchioni et al., 2019). IFN- γ also exerts direct anti-tumoral effects by inducing tumor apoptosis through Bcl-2 downregulation and impairing angiogenesis via CXCL-10 induction. Th1 cell predominance is observed in MSI-H and CMS1 tumors, correlating with enhanced immune activation and favorable responses to ICIs.

In contrast, Th2 cells, driven by GATA3, produce IL-4, IL-5, and IL-13, facilitating M2 macrophage polarization and fostering an immunosuppressive TME (Gao et al., 2022; Han et al., 2023; Xu et al., 2025). Although Th2-mediated eosinophil recruitment may occasionally support anti-tumor responses, their overall effect is tumor-promoting, primarily through suppression of Th1 responses. Th2 enrichment has been associated with poorer outcomes, particularly in CMS2 and CMS3 subtypes.

Th17 cells, defined by RORyt expression and stabilized by IL-6, IL-21, and IL-23, secrete IL-17A, IL-17F, and IL-22. These cytokines drive angiogenesis, enhance stemness and chemoresistance, and attract immunosuppressive immune subsets. While IL-17A is largely associated with tumor progression and metastasis—especially in the aggressive CMS4 subtype—IL-17F may exhibit anti-tumor activity in early-stage CRC by supporting cytotoxic T cell function. The dualistic nature of Th17 cells underscores the context-dependent complexity of their role in CRC) (Ouyang et al., 2008; Romagnani et al., 2009; Amicarella et al., 2017; Anvar et al., 2024).

Regulatory T cells (Tregs), characterized by FOXP3 expression and induced by TGF- β and IL-2, are essential for maintaining immune tolerance. They suppress anti-tumor immune responses through secretion of IL-10, IL-35, and TGF- β , and via expression of immune checkpoint molecules such as CTLA-4 and LAG-3. In CRC, Treg accumulation can signal either suppression of tumor-promoting inflammation or facilitation of immune escape, depending on tumor subtype and TME context. Notably, in CMS4

tumors, high Treg infiltration has been linked to poor prognosis (Saito et al., 2016; Tanaka and Sakaguchi, 2017). Further highlighted the prognostic significance of Treg heterogeneity, identifying FOXP3⁺ subsets with divergent effects on clinical outcomes.

The distribution and function of CD4⁺ T cell subsets are dynamically shaped by hypoxic stress, lactate accumulation, and cytokine-mediated signaling within the TME. These factors can skew CD4⁺ T cell polarization toward either effector or regulatory phenotypes, thereby influencing immune surveillance or evasion. From a clinical perspective, robust Th1 responses are predictive of favorable outcomes and sensitivity to immunotherapies such as anti-PD-1 and anti-CTLA-4 antibodies, which restore effector function and reduce Treg-mediated suppression. In MSI-H CRC, these therapies have achieved objective response rates (ORR) up to 40%–55%, while in other subtypes, resistance remains a challenge (Caza and Landas, 2015; Overman et al., 2018; Vito et al., 2020; Martínez-Méndez et al., 2022; Andreu-Sanz and Kobold, 2023).

Emerging therapeutic strategies targeting CD4⁺ T cells include blockade of IL-17 signaling to counteract Th17-driven tumor progression, and the development of CD4⁺ T cell-based vaccines and adoptive T cell therapies. However, these approaches remain largely experimental and require further clinical validation.

In conclusion, $CD4^{+}T$ cells constitute a functionally heterogeneous population within the CRC microenvironment. While Th1 cells bolster anti-tumor immunity and improve clinical outcomes, Th2, Th17, and Tregs often support tumor progression through immune suppression or inflammatory signaling. Understanding the plasticity and interplay of these subsets is critical for designing effective immunotherapeutic strategies and tailoring treatment to individual CRC immune profiles.

3.2.3 B Cells and plasma cells

B cells contribute to tumor immunity through antigen presentation, cytokine production, and antibody secretion (Figure 3) (Shimabukuro-Vornhagen et al., 2014; Wouters and Nelson, 2018). Tumor-infiltrating B cells can support T cell responses but may also have regulatory functions depending on their activation status. Plasma cells, terminally differentiated B cells, have been observed in tertiary lymphoid structures (TLSs) within CRC tumors, particularly in MSI-H and inflamed phenotypes. Their presence has been linked to enhanced immune surveillance and better response to immunotherapy.

B lymphocytes are essential components of the adaptive immune response within the CRC microenvironment, displaying context-dependent anti-tumoral or pro-tumoral effects. Their functions include antibody production, antigen presentation, cytokine secretion, and chemokine-mediated immune cell recruitment. Key subpopulations—such as tumor-infiltrating B cells (TiBc), tumor-associated B cells (TABs), and tumor-associated plasma cells (TAPCs)—modulate tumor progression and clinical outcomes by shaping the immunological landscape of CRC.

The impact of B cell infiltration on CRC prognosis is highly context specific. High infiltration of $CD20^+$ B cells, especially in MSI-H and right-sided colon tumors, is associated with improved overall survival (OS) (HR = 0.53, 95% CI 0.36–0.78; multivariable analysis HR = 0.51, 95% CI 0.33–0.80, P = 0.025) (Berntsson et al., 2016; Edin et al., 2019; Xia et al., 2023). This beneficial effect is most prominent in early-stage and immunologically "hot" tumors,

particularly in CMS1 CRC (Edin et al., 2019). CD20 $^+$ B cells contribute to anti-tumoral responses via antibody secretion (IgA, IgG, IgM), antigen presentation to CD4 $^+$ T cells, and the formation of tertiary lymphoid structures (TLS) that support local adaptive immunity (Wouters and Nelson, 2018). TLS—composed of follicular dendritic cells, T follicular helper (Tfh) cells, B cells, and plasma cells—form near invasive tumor margins and are orchestrated by signals such as LT α/β , CXCL13, and CCL21, and are strongly associated with improved disease-free survival and response to ICIs (Teillaud et al., 2024; Jammihal et al., 2025).

Despite these beneficial roles, certain B cell subsets exert immunosuppressive effects. Regulatory B cells (Bregs; CD24^{high}CD38^{high}) produce IL-10 and TGF-β, dampening CD8⁺ T cell responses and promoting tumor immune evasion in CMS4 CRC (Schwartz et al., 2016; Sarvaria et al., 2017; Liu et al., 2020; Catalán et al., 2021; Tan et al., 2022). In metastatic CRC, a decline in total B cell infiltration (2% vs. 6.9%, p < 0.05) is accompanied by an increase in Bregs (6.3% vs. 1.1%, p < 0.05) (Maus et al., 2014; Schwartz et al., 2016; Xu et al., 2022). CMS4 tumors (23% of CRCs) exhibit high Breg content and the poorest prognosis (OS: HR = 1.67, 95% CI = 1.34-2.06) (Tosolini et al., 2011; Ten Hoorn et al., 2022). Additionally, plasma cell marker CD138 expression on tumor cells correlates with poor prognosis (HR = 1.52, 95% CI 1.03-2.24) (Berntsson et al., 2016), highlighting the duality of humoral immunity in CRC. Some studies, suggest a nonsignificant survival benefit from high B/plasma cell scores (P = 0.08), reflecting a neutral effect in certain contexts (Zhang Z. et al., 2019; Karjalainen et al., 2023; Sirkiä et al., 2025).

Mechanistically, B cells recognize tumor antigens via the B cell receptor (BCR), supported by co-stimulatory molecules like CD40/CD40L and cytokines (e.g., IL-4, IL-21), which drive activation and differentiation into memory B cells, plasma cells, or Bregs. BCR engagement activates pathways including NF-κB and PI3K/AKT, regulating survival, proliferation, and antibody secretion (Kurosaki, 1999; Burger and Wiestner, 2018; Michaud et al., 2021; Wolf et al., 2022). Plasma cells (CD138+) secrete high levels of IgA, IgG, and IgM (Blanc et al., 2016; Meylan et al., 2022). B cells mediate anti-tumor activity through (Laumont and Nelson, 2023):

- *Opsonization*: Antibodies (especially IgA and IgG) bind tumor antigens, tagging cells for phagocytosis—an effect pronounced in MSI-H tumors (Kinker et al., 2021; Fridman et al., 2022).
- Antibody-Dependent Cellular Cytotoxicity (ADCC): Fcç receptor-mediated activation of NK cells and macrophages by IgG antibodies induces tumor cell lysis (Clynes et al., 1998). Cetuximab enhances this response, increasing ORR to 20%–30% in metastatic CRC (Van Cutsem et al., 2009).
- Antigen presentation: MHC class II-mediated activation of CD4⁺ T cells by B cells, particularly within TLS, amplifies adaptive responses through CXCL13 and CCL19 (Kinker et al., 2021).

In contrast, Bregs suppress anti-tumor immunity via IL-10 and TGF- β production, activating the JAK/STAT3 and Smad pathways to inhibit cytotoxic T cell and dendritic cell functions, while PD-L1⁺ B cells contribute to immune checkpoint-mediated resistance (Zhang et al., 2019b; Catalán et al., 2021; Li T. et al., 2023).

The diversity of tumor-associated B cells (TABs), as revealed by single-cell RNA sequencing, reflects a spectrum from IFN- γ -activated anti-tumor phenotypes to IL-10⁺ immunosuppressive profiles (Schwartz et al., 2016; Li M. et al., 2023; Yang Y. et al., 2024). TAPCs, particularly in MSI-H CRC, are associated with favorable humoral responses and TLS density, yet their function may be suppressed by TGF- β and IL-10 in CMS4 tumors (Baker et al., 2009; Lin et al., 2020; Küçükköse et al., 2022).

TME components dynamically shape B cell activity. Hypoxia activates HIF-1 α , limiting antibody production and enhancing IL-10 expression. Acidosis and lactate accumulation impair BCR signaling. Stromal fibroblasts and MDSCs modulate B cell differentiation via CXCL12, IL-10, and TGF- β (Xiong et al., 2023; Li et al., 2024; Yang H. et al., 2024).

Clinically, B cells offer diagnostic, prognostic, and therapeutic utility. High CD20⁺ B cell and TLS densities predict improved overall survival and disease-free survival (Wouters and Nelson, 2018; Fridman et al., 2022; Laumont et al., 2022; Laumont and Nelson, 2023). Anti-PD-1 therapies (e.g., pembrolizumab) enhance IFN-γ-producing B cells and TLS formation, showing 33%–55% ORR in MSI-H CRC (André et al., 2022). Monoclonal antibodies like cetuximab boost IgG-mediated ADCC, while IL-10 inhibitors and B cell vaccines are under early-phase evaluation (Zahavi and Weiner, 2020; Azadi et al., 2021; Hwang et al., 2021; Zhou et al., 2024).

In conclusion, B cells and plasma cells are immunologically multifaceted players in CRC. Their roles range from promoting effective humoral and cellular anti-tumor responses to driving immunosuppression via Bregs. Therapeutic modulation of B cell functions, particularly in MSI-H and CMS1 tumors, offers promising avenues for biomarker development and personalized immunotherapy in CRC.

3.3 Functional interplay and immune editing in CRC

The role of individual immune cells and their interactions with each other, as well as the mechanisms of immune regulation, are all critical in CRC. The complex interactions between immune cells and tumor cells within the CRC microenvironment play a pivotal role in shaping tumor progression, immune regulation, and the effectiveness of immunotherapeutic interventions. This dynamic crosstalk involves immune checkpoint signaling, cytokine and chemokine networks, and extracellular vesicles such as exosomes, which together modulate the balance between anti-tumor immunity and immune evasion.

3.3.1 Immune checkpoint molecules and tumor escape mechanisms

Immune checkpoint pathways are crucial regulators of T cell activation and represent a major mechanism of tumor immune escape (Kalbasi and Ribas, 2020; Zhou et al., 2020; Dutta et al., 2023; Lin et al., 2024). Tumor cells exploit molecules like PD-1, CTLA-4, and LAG-3 to suppress cytotoxic immune responses. PD-1, expressed on activated T cells, binds PD-L1 on tumor or immune cells, leading to T cell exhaustion (Pardoll, 2012; Qin et al., 2019; Tang et al., 2022). While MSI-H CRC tumors typically express high PD-L1 and show favorable responses to ICIs (ORR 33%–55%), MSS

CRCs exhibit low PD-L1 expression and are associated with poor ICI responsiveness (ORR 5%–10%) (Qin et al., 2019; Rotte, 2019).

CTLA-4 competes with CD28 for CD80/CD86 binding on antigen-presenting cells and suppresses early T cell activation. Anti-CTLA-4 therapy (e.g., ipilimumab) enhances T cell responses but is largely limited to MSI-H tumors (Overman et al., 2018). LAG-3 suppresses CD4 $^+$ T cell activity via MHC class II interaction and contributes to immune tolerance. Emerging inhibitors such as relatlimab show potential in combination regimens (ORR 20%–25%, phase I/II) (Nagasaki et al., 2020; Huo et al., 2022). Tumor-secreted cytokines like TGF- β and IL-10 amplify immune checkpoint-mediated suppression (Chen and Mellman, 2017). In CMS4 CRC, high expression of checkpoint molecules is linked to adverse prognosis (Tosolini et al., 2011).

3.3.2 Cytokines and chemokines in immune modulation

Cytokines like TGF- β , IL-10, and IL-6 orchestrate immunosuppressive networks within the TME. TGF- β activates Smad signaling, inhibits effector T cell proliferation, induces Tregs and M2 macrophages, and facilitates tumor invasion (Calon et al., 2012; Tauriello et al., 2018). Elevated TGF- β correlates with ICI resistance and poor outcomes (HR = 1.78, 95% CI 1.15–2.75, P = 0.009). IL-10, via STAT3, impairs T and NK cell responses and expands MDSCs and Tregs. IL-6 drives tumor proliferation and angiogenesis and contributes to MDSC recruitment and therapy resistance (Dahmani and Delisle, 2018; Kim B.-G. et al., 2021; Mirlekar, 2022; Peng et al., 2022). Chemokines such as CCL2 and CXCL8 attract immunosuppressive myeloid populations, while CXCL9/10 promote CTLs infiltration and are linked to improved prognosis in MSI-H CRC (Chen et al., 2019; Yang et al., 2021; Hu et al., 2025).

3.3.3 Extracellular vesicles (exosomes) in immune editing

Exosomes are critical mediators of intercellular communication in CRC. Tumor-derived exosomes carry PD-L1, TGF- β , and immunomodulatory microRNAs that inhibit T cell responses and promote immunosuppressive cell recruitment (Olejarz et al., 2020; Raimondo et al., 2020; Hao et al., 2022; Sheta et al., 2023). Elevated exosomal PD-L1 correlates with poor outcomes in metastatic CRC (Ayala-Mar et al., 2021; Xian et al., 2021; Yin et al., 2022). Exosomes can also be immunostimulatory: dendritic cell-derived exosomes present tumor antigens and enhance ICI efficacy in MSI-H CRC (Kugeratski and Kalluri, 2021; Yin et al., 2022; Lu et al., 2024). Conversely, CMS4 tumors secrete exosomes rich in miR-21 and miR-155, which suppress NK activity (Kotelevets and Chastre, 2023). Novel therapeutic approaches utilizing engineered exosomes (e.g., anti-PD-L1-loaded) have shown preclinical efficacy in reversing immune evasion (Poggio et al., 2019).

Taken together, the interplay between immune checkpoints, cytokine gradients, and exosomal signaling orchestrates immune editing in CRC. These mechanisms underlie both immune evasion and therapeutic responsiveness, especially in MSI-H versus MSS subtypes. Strategic targeting of these pathways—particularly in MSS CRC—holds promise for overcoming immunotherapy resistance and optimizing personalized treatment strategies (Table 3). These

immune cell profiles and molecular subtypes directly impact prognosis and treatment strategies.

4 Immunological prognosis and therapeutic modulation in CRC

Immune cells act as key prognostic indicators and therapeutic targets in CRC, shaping treatment strategies and patient outcomes. The density, phenotype, and spatial distribution of tumor-infiltrating immune cells (TILs) have been strongly associated with prognosis, particularly in MSI-H CRC. Immunotherapeutic approaches—most notably immune checkpoint inhibition—have yielded significant clinical benefits in MSI-H tumors, while novel strategies such as CAR-T cells and cancer vaccines offer future promise. Additionally, conventional treatments like chemotherapy and radiotherapy influence the immune landscape of the TME, modulating both pro- and anti-tumoral immune responses. This section discusses the prognostic value of immune infiltration and the immunomodulatory effects of conventional therapies in CRC.

4.1 Prognostic value of immune cell infiltration

Tumor-infiltrating immune cells, particularly CD8⁺ cytotoxic T lymphocytes, CD4⁺ helper T cells, and NK cells, are associated with favorable prognosis in CRC. High TIL densities correlate with prolonged overall survival (OS), especially in early-stage and MSI-H tumors (Wankhede et al., 2024). The Immunoscore, a quantitative measure of CD3⁺ and CD8⁺ T cell infiltration in tumor regions, has been validated as a robust prognostic biomarker (Zhao et al., 2019; Orhan et al., 2022).

In CMS1, which constitutes 14% of CRC cases, elevated TIL infiltration and the presence of tertiary lymphoid structures (TLS) contribute to an immunologically active TME and improved clinical outcomes (Guinney et al., 2015; Williams et al., 2019; Jung et al., 2022). Conversely, CMS4 and metastatic CRC subtypes are often characterized by low TIL levels and high densities of immunosuppressive cells such as MDSCs and Tregs, correlating with worse prognosis (Koi and Carethers, 2017; Edin et al., 2019; Rahimi et al., 2025).

Natural killer (NK) cell infiltration has also been linked to improved outcomes in MSI-H CRC (Sconocchia et al., 2014); however, their function is often suppressed in late-stage disease due to immunosuppressive factors within the TME. These findings underscore the clinical utility of immune profiling tools like the Immunoscore in refining CRC prognosis and guiding treatment.

4.2 Effects of conventional therapies on the immune landscape

Conventional therapies such as chemotherapy and radiotherapy not only act directly on tumor cells but also significantly modulate the immune contexture of the TME. Chemotherapeutic agents like 5-fluorouracil and oxaliplatin induce immunogenic cell death (ICD), facilitating the release of tumor antigens and recruitment

TABLE 3 Table highlights the mechanisms, prognostic impacts, and clinical significance of interactions between immune cells and tumor cells, including immune checkpoint inhibitors, cytokines, and exosomes, in colorectal cancer.

Mechanism	Functions	Impact on prognosis	Clinical significance
Immune checkpoint molecules	T cell suppression via PD-1/PD-L1, CTLA-4, LAG-3; promotes tumor immune escape	High PD-L1/LAG-3 expression linked to poor prognosis in CMS4/C3 subtypes	ICI therapies (e.g., anti-PD-1: pembrolizumab, ORR 33%–55% in MSI-H; anti-CTLA-4: ipilimumab; anti-LAG-3: relatlimab, ORR 20%–25%)
Cytokines	Immunosuppression (TGF-β, IL-10, IL-6); Treg/M2 induction; tumor growth	High TGF-β1/IL-6 levels correlate with poor outcomes and ICI resistance	Anti-TGF- β (e.g., galunisertib), anti-IL-6 (e.g., siltuximab), and JAK/STAT3 inhibitors under investigation
Chemokines	Immunosuppressive cell recruitment (CCL2, CXCL8); CTLs infiltration (CXCL9/10)	CXCL9/10 associated with improved prognosis in MSI-H/C4	Chemokine-modulating therapies (e.g., CCL2 inhibitors) to reduce MDSC recruitment; CXCL9/10 agonists to enhance CTLs infiltration
Exosomes (Tumor-Derived)	Carry PD-L1, TGF-β, miR-21/miR-155; suppress T/NK cells; promote MDSCs/Tregs	High exosomal PD-L1 linked to poor prognosis in metastatic CRC.	Anti-PD-L1-loaded engineered exosomes; exosome-based diagnostics for immunotherapy resistance
Exosomes (DC-Derived)	Present tumor antigens; stimulate effector T cell responses	Enhanced ICI efficacy in MSI-H CRC	DC-derived exosome vaccines to boost anti-tumor immunity in combination with ICIs

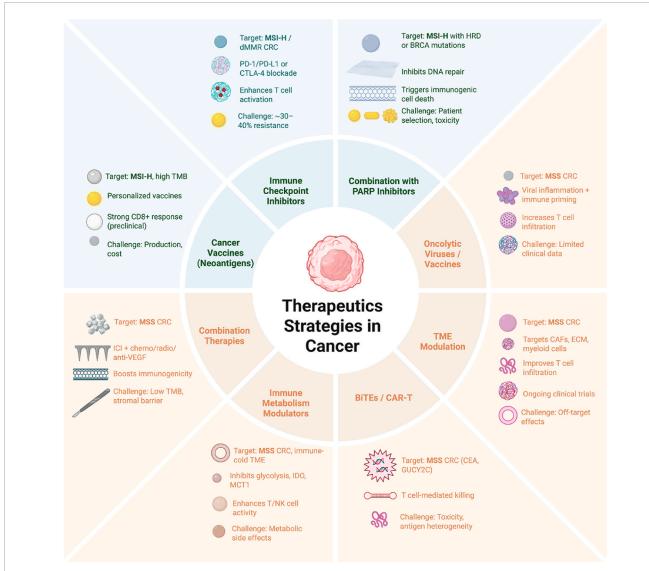
Abbreviations in alphabetical order: CCL2: C-C motif chemokine ligand 2, CMS: consensus molecular subtype, CRC: colorectal cancer, CTLA-4: Cytotoxic T-lymphocyte-associated protein 4, CTLs: Cytotoxic T lymphocytes, CXCL8: C-X-C motif chemokine ligand 8, DCs: Dendritic cells, ICIs: Immune checkpoint inhibitors, IL-6: Interleukin-6, LAG-3: Lymphocyte-activation gene 3, M2: Tumor-associated macrophages, MDSCs: Myeloid-derived suppressor cells, MSI-H: Microsatellite instability-High, ORR: objective response rate, PD-1: Programmed cell death protein 1, PD-L1: Programmed death-ligand 1, TIM-3: T-cell immunoglobulin and mucin-domain containing-3, TGF-β: Transforming growth factor-β, Treg: Regulatory T cell.

of cytotoxic immune cells (Wang et al., 2018; Zhai et al., 2023). Oxaliplatin, in particular, enhances dendritic cell maturation and demonstrates synergy with ICIs in MSI-H CRC (Yan et al., 2024).

However, chemotherapy may also promote the expansion of immunosuppressive populations like MDSCs and Tregs, thereby dampening anti-tumoral immune responses (Bilotta et al., 2022; Wang et al., 2022; Kang and Zappasodi, 2023). Similarly, radiotherapy promotes immune activation through increased antigen presentation and the abscopal effect—where local radiation leads to systemic anti-tumor responses (Bilotta et al., 2022; Kundu et al., 2024; Van Dieren et al., 2024). Clinical studies show promising results for combining stereotactic body radiotherapy with ICIs in metastatic CRC (Kumar et al., 2023; Liu and Chi, 2023; Urias et al., 2025).

Yet, radiotherapy can simultaneously enhance levels of immunosuppressive cytokines such as TGF- β and IL-10, which negatively regulate T cell and NK cell functions (Colton et al., 2020; Bergerud et al., 2024; Liao et al., 2024). Thus, the immunemodulatory duality of these therapies necessitates thoughtful integration with immunotherapy regimens.

Immune infiltration patterns and their modulation by therapies form a critical axis in CRC prognosis and treatment design. While MSI-H CRC benefits significantly from immune-based therapies, MSS subtypes remain a challenge due to TME-induced immune resistance. Tools such as the Immunoscore enhance clinical decision-making by quantifying immune infiltration, and combination therapies that harness conventional treatment-induced immunogenicity with ICIs are increasingly supported by clinical data. Future directions should focus on overcoming immunosuppression in MSS CRC, refining immune biomarkers,


and designing synergistic treatment protocols to maximize therapeutic benefit. Due to the limitations of conventional treatments, innovative approaches such as immunotherapy have become more important.

5 Immunotherapy strategies in CRC: challenges and opportunities

The emergence of immunotherapy has revolutionized the treatment landscape for various malignancies; however, its success in CRC has been largely restricted to specific molecular subtypes (Figure 4). Unlike melanoma or non-small cell lung cancer, where ICIs have become standard of care, most CRC patients do not benefit from current immunotherapeutic approaches due to intrinsic or acquired resistance mechanisms. Understanding the immune contexture of CRC is thus critical for improving patient selection and expanding the effectiveness of immunotherapy (Ganesh et al., 2019).

5.1 Immune checkpoint inhibition in MSI-H

The most significant immunotherapeutic breakthrough in CRC has been observed in patients with MSI-H or deficient mismatch repair (dMMR) tumors, which account for approximately 15% of cases. These tumors harbor a high tumor mutational burden, leading to abundant neoantigen production and robust immune cell infiltration (Ganesh et al., 2019). As of 2025, ICIs such as pembrolizumab

FIGURE 4

Therapeutic strategies tailored for colorectal cancer according to microsatellite status (Microsatellite instability-High- MSI-H and Microsatellite Stable-MSS). In microsatellite instability-High (MSI-H)/deficient mismatch repair (dMMR) colorectal cancer (CRC), the enhanced immunogenicity enables the success of immune checkpoint inhibitors (ICIs), combination strategies with PARP inhibitors, and neoantigen-based personalized cancer vaccines. These approaches aim to exploit DNA repair deficiencies and tumor antigenicity to boost anti-tumor immune responses. In contrast, MSS CRC, which exhibits low tumor mutational burden and immunologically "cold" microenvironments, requires alternative immune priming approaches. These include combination therapies with chemotherapy, oncolytic viruses and vaccines to induce local inflammation, modulation of the tumor microenvironment (TME) to improve T cell infiltration, metabolic reprogramming to enhance T/NK cell activity, and targeted cellular therapies such as bispecific T cell engagers (BiTEs) and CAR-T cells. Each segment outlines the strategy's target population, mechanism of action, clinical promise, and current limitations. Together, these approaches reflect a multifaceted effort to overcome immune resistance in CRC and guide precision immunotherapy selection. The image was created with BioRender (https://BioRender.com).

(anti-PD-1) and nivolumab, with or without ipilimumab (anti-CTLA-4), are integrated into clinical practice in both neoadjuvant and first-line settings for MSI-H/dMMR CRC. In the first-line setting for advanced or metastatic disease, pembrolizumab is approved as monotherapy, demonstrating superior progression-free survival (PFS) compared to chemotherapy (Le et al., 2015; Andrè et al., 2020). The combination of nivolumab and ipilimumab has also received FDA approval as an initial treatment, yielding durable responses with objective response rates (ORR) of 60%–70% and median overall survival (OS) exceeding 40 months in select cohorts (Overman et al., 2018; Lenz et al., 2022). In the neoadjuvant setting,

ICIs have shown remarkable efficacy for localized dMMR/MSI-H CRC. Phase II studies and real-world data indicate exceptional response rates, with single agent pembrolizumab or nivolumab plus ipilimumab achieving pathological complete response (pCR) rates of up to 60%–100% and major pathological responses (MPR), enabling organ preservation and reducing surgical morbidity (Chalabi et al., 2020; Ludford et al., 2023; Cercek et al., 2025). According to updated CSCO guidelines (2025), neoadjuvant immunotherapy induces high pathological response rates in dMMR/MSI-H patients, and integration with chemoradiotherapy improves disease-free survival (DFS) to 80%–90% at 2 years (Chinese Society of Clinical Oncology, 2025).

Despite these successes, a subset of MSI-H patients fails to respond to ICIs, suggesting the presence of additional resistance mechanisms. Factors such as Wnt/ β -catenin pathway activation, poor antigen presentation, and increased presence of immunosuppressive cells (e.g., Tregs, MDSCs) have been implicated in mediating resistance even in this "hot" tumor context (Ganesh et al., 2019; Grillo et al., 2024). Ongoing efforts are exploring rational combination regimens — such as dual PD-1/CTLA-4 blockade, VEGF inhibition, or radiotherapy-induced immune priming — to further enhance efficacy in MSI-H CRC (Overman et al., 2018; Chalabi et al., 2020).

5.2 Immune resistance in MSS CRC

The vast majority of CRC cases (~85%) are MSS and exhibit low tumor mutational burden, limited T-cell infiltration, and immunosuppressive microenvironments—features collectively referred to as "cold" tumors (Bonaventura et al., 2019). These "cold" tumors exhibit limited T-cell infiltration and generally, fail to respond to ICIs. Multiple mechanisms, including stromal barriers, MDSC accumulation, and defective antigen presentation, contribute to immune exclusion and resistance to ICIs (Bonaventura et al., 2019).

Several strategies are under investigation to overcome these barriers and convert immunologically "cold" MSS tumors into "hot" ones capable of responding to immunotherapy (Figure 4), including the investigational immunotherapy combination of botensilimab (a next-generation anti-CTLA-4 antibody) and balstilimab (an anti-PD-1 antibody) from Agenus Inc., specifically for treating refractory metastatic colorectal cancer (mCRC), particularly microsatellitestable (MSS) disease. Updated Phase 1b data from the C-800-01 trial (NCT03860272), presented at ESMO GI 2025, reported a median overall survival (OS) of 21 months and a 42% twoyear survival rate in MSS mCRC patients without active liver metastases (n = 123) (Bullock et al., 2024; El-Khoueiry et al., 2025). The regimen has been evaluated in over 1,200 patients across Phase 1/2 trials, demonstrating sustained efficacy with objective response rates (ORR) of 20%-25% and progressionfree survival (PFS) of 8-10 months in this refractory population (Agenus Inc., 2025; Kwek et al., 2025). With FDA alignment, the combination is advancing toward Phase 3 registration trials by the end of 2025, including combinations with radiation therapy (e.g., NCT07128355) (ClinicalTrials.gov, 2025; Agenus Inc, 2025). Preliminary Phase 2 results highlight its potential to reshape the immunosuppressive TME in MSS subtypes, though challenges such as liver metastasis exclusion and toxicity management persist (Ciardiello et al., 2019; Chalabi et al., 2020).

One promising approach involves combination regimens integrating ICIs with chemotherapy, radiotherapy, anti-angiogenic agents, or MEK inhibitors to enhance antigen presentation and promote immune infiltration (Ciardiello et al., 2019; Chalabi et al., 2020; Wang Y. et al., 2024). Recent preclinical and early-phase clinical data have also highlighted the potential of novel immunotherapy combinations such as botensilimab (an Fc-enhanced CTLA-4 antibody) and balstilimab (an anti-PD-1 agent). This dual checkpoint regimen has demonstrated encouraging activity in refractory MSS mCRC, with durable

partial responses and manageable safety in phase I/II trials (El-Khoueiry et al., 2023; Agenus Inc, 2024).

These tumors generally do not respond to ICIs due to insufficient neoantigen load, low expression of immune checkpoints, and the dominance of stromal barriers and regulatory immune populations. Several strategies are under investigation to overcome resistance in MSS CRC (Figure 4):

- Combination Therapies: Combining ICIs with chemotherapy, radiotherapy, anti-angiogenic agents (e.g., bevacizumab), or MEK inhibitors to enhance antigen presentation and promote immune infiltration (Ciardiello et al., 2019; Chalabi et al., 2020).
- Oncolytic Viruses and Vaccines: Engineered viruses and tumor vaccines aim to convert cold tumors into immunologically active ones by inducing local inflammation and immune priming (Tian et al., 2022; Khosravi et al., 2024; Ma J. et al., 2025; Nadafi et al., 2025a).
- Modulation of the Tumor Microenvironment: Targeting CAFs, ECM components, or suppressive myeloid cells to increase T cell access and restore immune responsiveness (Ciardiello et al., 2019).
- Bispecific Antibodies and CAR-T Cells: Novel modalities such as bispecific T-cell engagers (BiTEs) or CAR-T cells targeting CRC-associated antigens (e.g., CEA, GUCY2C) are being evaluated in preclinical and early-phase clinical studies (Bonaventura et al., 2019).

Additional therapeutic avenues include oncolytic viruses and tumor vaccines designed to induce local inflammation and immune priming, as well as modulation of the tumor microenvironment via CAF targeting or ECM-degrading strategies to improve T-cell access (Tian et al., 2022; Nadafi et al., 2025b). Bispecific antibodies and CAR-T or CAR-NK cell therapies targeting CRC-associated antigens (CEA, GUCY2C, Claudin-18.2) are emerging tools under clinical evaluation for MSS CRC (Ma N. et al., 2025; Yang et al., 2024).

Collectively, these innovations underscore a shift toward multimodal immunotherapy aimed at re programming the suppressive MSS microenvironment. Future research should focus on identifying predictive biomarkers of response, integrating spatial and single-cell multi-omics data, and rationally combining ICIs with agents that modulate stromal and metabolic barriers to achieve durable benefit in MSS CRC (Lişcu et al., 2024; Wang S. et al., 2024).

5.3 Immunoscore and immune-based classification

In response to the observed heterogeneity in CRC immunity, Galon et al. proposed the "Immunoscore"—a quantitative assessment of CD3⁺ and CD8⁺ T-cell densities in the tumor core and invasive margin—which has demonstrated superior prognostic value over traditional TNM staging (Pagès et al., 2018). High Immunoscore values correlate with favorable survival and response to therapy, and efforts are underway to incorporate this system into clinical practice for risk stratification and treatment decision-making (Pagès et al., 2018).

Similarly, transcriptomic studies have identified immune subtypes such as the C4 subtype, enriched in cytotoxic and Th1-type immune cells and characterized by high cytolytic activity, and C2/C3 subtypes, which exhibit angiogenesis, stromal enrichment, and immune exclusion (Soldevilla et al., 2019; Tang et al., 2020; Peng, 2022). These findings highlight the potential for immune-based molecular classifications to guide personalized therapy.

5.4 Emerging and future immunotherapeutic approaches in colorectal cancer

To improve the efficacy of immunotherapy in CRC, particularly in MSS tumors, several promising avenues are being explored:

- Microbiota Modulation: Preclinical and clinical evidence suggests that modulating the gut microbiota through probiotics, prebiotics, antibiotics, or fecal microbiota transplantation (FMT) can enhance immunotherapy response. Certain bacteria such as Akkermansia muciniphila and Bifidobacterium have been associated with improved ICI outcomes (Gopalakrishnan et al., 2018).
- Spatial Transcriptomics and Single-Cell Profiling: Advanced molecular profiling methods are enabling unprecedented insights into the spatial organization and phenotypic states of immune cells within CRC tumors. These technologies may help identify novel immune targets and resistance mechanisms (Roelands et al., 2017).
- Personalized Neoantigen Vaccines: Custom vaccines based on tumor-specific neoantigens are being designed to stimulate strong, patient-specific immune responses (Sahin et al., 2020).
- Targeting Innate Immune Sensors: Agonists of TLRs, STING, and other innate immune pathways are being investigated as adjuvants to promote tumor inflammation and T-cell priming (Bayyurt Kocabas et al., 2020; Bhatnagar et al., 2022; Temizoz et al., 2022).

6 Conclusion and future perspectives

CRC is a biologically heterogeneous malignancy in which the TME plays a pivotal role in shaping disease progression, immune dynamics, and therapeutic response. Within the CRC immune landscape, diverse innate and adaptive immune cells—including CTLs, natural killer NK cells, DC, Tregs, TAMs, and MDSCs—orchestrate a balance between anti-tumoral immunity and immune escape (Ferkel et al., 2025). This balance is heavily influenced by molecular subtypes of CRC, particularly MSI-H versus MSS tumors, and further modulated by the stromal architecture, ECM, and gut microbiota (Gopalakrishnan et al., 2018).

Robust evidence supports the prognostic and therapeutic significance of tumor-infiltrating lymphocytes (TILs), especially CD8⁺ T cells, with high infiltration correlating with improved outcomes and response to ICIs in MSI-H CRC (Pagès et al., 2018). This has positioned ICIs as a standard of care in this subset. However, the immunologically "cold" nature of most MSS CRCs, characterized by low TIL density and enriched immunosuppressive cell

populations, limits ICI efficacy and underscores the need for novel strategies (Bonaventura et al., 2019; He et al., 2024). Combinatorial approaches that integrate ICIs with chemotherapy, radiotherapy, stromal modulation, and microbiome-targeted therapies hold promise for converting cold tumors into immunologically active ones (Zhang et al., 2019a; Petitprez et al., 2020).

Despite these advances, several challenges persist. Methodological heterogeneity across studies, limited insight into underexplored immune populations (e.g., mast cells, B cell subsets), and a predominant focus on advanced-stage disease hinder the development of universally applicable immunotherapies. Furthermore, the lack of standardized biomarkers and small patient cohorts limit clinical translation and reproducibility (Drucker and Krapfenbauer, 2013).

To address these challenges, future research must prioritize high-resolution immune profiling—using tools such as single-cell transcriptomics and spatial analyses—to unravel immune heterogeneity, functional states, and spatial interactions within the CRC TME (Taube et al., 2018; Petitprez et al., 2020; Li J. et al., 2023). Standardization of immunological assessment tools like the Immunoscore, alongside the development of dynamic biomarkers predictive of therapy response, will be essential for guiding patient stratification and therapeutic decision-making (Pagès et al., 2018).

In summary, decoding the complex interplay between immune cells, tumor biology, and the microenvironment is critical for advancing CRC management. An integrated, biomarker-driven, and subtype-informed approach will be key to optimizing immunotherapy outcomes and improving prognosis across all CRC subtypes.

Author contributions

AA-A: Conceptualization, Data curation, Formal analysis, Visualization, Writing – original draft. GC-K: Conceptualization, Supervision, Writing – review and editing, Project administration, Funding acquisition.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Agenus Inc (2024). Botensilimab plus balstilimab in relapsed/refractory microsatellite stable metastatic colorectal cancer [press release]. Available online at: https://agenusbio.com/.

Agenus Inc (2025). Agenus' BOT/BAL achieves 42% two-year survival in refractory MSS CRC, advances toward registration with FDA alignment on phase 3 [press release]. Available online at: https://investor.agenusbio.com/news/news-details/2025/Agenus-BOTBAL-Achieves-42-Two-Year-Survival-in-Refractory-MSS-CRC-Advances-Toward-Registration-with-FDA-Alignment-on-Phase-3/default.aspx.

Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikšić, M., et al. (2018). Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. *Lancet* 391, 1023–1075. doi:10.1016/S0140-6736(17)3326-3

Alshahrani, M. Y., Uthirapathy, S., Kumar, A., Oghenemaro, E. F., Roopashree, R., Lal, M., et al. (2024). NK cell-based cancer immunotherapies: current progress, challenges and emerging opportunities. *J Biochem. and Mol. Tox* 38, e70044. doi:10.1002/jbt.70044

Amicarella, F., Muraro, M. G., Hirt, C., Cremonesi, E., Padovan, E., Mele, V., et al. (2017). Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. *Gut* 66, 692–704. doi:10.1136/gutjnl-2015-310016

André, T., Cohen, R., and Salem, M. E. (2022). Immune checkpoint blockade therapy in patients with colorectal cancer harboring microsatellite Instability/mismatch repair deficiency in 2022. American Society of Clinical Oncology Educational Book, 233–241. doi:10.1200/EDBK_349557

Andreu-Sanz, D., and Kobold, S. (2023). Role and potential of different T helper cell subsets in adoptive cell therapy. Cancers 15, 1650. doi:10.3390/cancers15061650

Andr'e, T., Shiu, K.-K., Kim, T. W., Jensen, B. V., Jensen, L. H., Punt, C., et al. (2020). Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. *N. Engl. J. Med.* 383, 2207–2218. doi:10.1056/NEJMoa2017699

Anvar, M. T., Rashidan, K., Arsam, N., Rasouli-Saravani, A., Yadegari, H., Ahmadi, A., et al. (2024). Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? *Cancer Cell Int.* 24, 355. doi:10.1186/s12935-024-03525-9

Aristin Revilla, S., Kranenburg, O., and Coffer, P. J. (2022). Colorectal cancer-infiltrating regulatory T cells: functional heterogeneity, metabolic adaptation, and therapeutic targeting. *Front. Immunol.* 13, 903564. doi:10.3389/fimmu.2022.903564

Ayala-Mar, S., Donoso-Quezada, J., and González-Valdez, J. (2021). Clinical implications of exosomal PD-L1 in cancer immunotherapy. *J. Immunol. Res.* 2021, 1–18. doi:10.1155/2021/8839978

Azadi, A., Golchini, A., Delazar, S., Abarghooi Kahaki, F., Dehnavi, S. M., Payandeh, Z., et al. (2021). Recent advances on immune targeted therapy of colorectal cancer using bi-Specific antibodies and therapeutic vaccines. *Biol. Proced. Online* 23, 13. doi:10.1186/s12575-021-00147-7

Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., et al. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. *Cell Commun. Signal* 18, 59. doi:10.1186/s12964-020-0530-4

Baginska, J., Viry, E., Berchem, G., Poli, A., Noman, M. Z., Van Moer, K., et al. (2013). Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. *Proc. Natl. Acad. Sci. U.S.A.* 110, 17450–17455. doi:10.1073/pnas.1304790110

Baker, K., Foulkes, W. D., and Jass, J. R. (2009). MSI-H colorectal cancers preferentially retain and expand intraepithelial lymphocytes rather than peripherally derived CD8+T cells. *Cancer Immunol. Immunother.* 58, 135–144. doi:10.1007/s00262-008-0534-1

Banchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. *Nature* 392, 245–252. doi:10.1038/32588

Bao, X., Zhang, H., Wu, W., Cheng, S., Dai, X., Zhu, X., et al. (2020). Analysis of the molecular nature associated with microsatellite status in colon cancer identifies clinical implications for immunotherapy. *J. Immunother. Cancer* 8, e001437. doi:10.1136/jitc-2020-001437

Barbosa, A. M., Martinho, O., Nogueira, R., Campos, J., Lobo, L., Pinto, H., et al. (2021). Increased CD3+, CD8+, or FoxP3+ T lymphocyte infiltrations are associated with the pathogenesis of colorectal cancer but not with the overall survival of patients. *Biology* 10, 808. doi:10.3390/biology10080808

Bayyurt Kocabas, B., Almacioglu, K., Bulut, E. A., Gucluler, G., Tincer, G., Bayik, D., et al. (2020). Dual-adjuvant effect of pH-sensitive liposomes loaded with STING

and TLR9 agonists regress tumor development by enhancing Th1 immune response. *J. Control. Release* 328, 587–595. doi:10.1016/j.jconrel.2020.09.040

Bergerud, K. M. B., Berkseth, M., Pardoll, D. M., Ganguly, S., Kleinberg, L. R., Lawrence, J., et al. (2024). Radiation therapy and myeloid-derived suppressor cells: breaking Down their cancerous partnership. *Int. J. Radiat. Oncology*Biology*Physics* 119, 42–55. doi:10.1016/j.ijrobp.2023.11.050

Berntsson, J., Nodin, B., Eberhard, J., Micke, P., and Jirström, K. (2016). Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. *Intl J. Cancer* 139, 1129–1139. doi:10.1002/ijc.30138

Bhatnagar, S., Revuri, V., Shah, M., Larson, P., Ferguson, D., and Panyam, J. (2022). Abstract 4215: combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy. *Cancer Res.* 82, 4215. doi:10.1158/1538-7445.AM2022-4215

Bilotta, M. T., Antignani, A., and Fitzgerald, D. J. (2022). Managing the TME to improve the efficacy of cancer therapy. *Front. Immunol.* 13, 954992. doi:10.3389/fimmu.2022.954992

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. *Immunity* 39, 782–795. doi:10.1016/j.immuni.2013.10.003

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al. (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. *Nat. Med.* 24, 541–550. doi:10.1038/s41591-018-0014-x

Blanc, P., Moro-Sibilot, L., Barthly, L., Jagot, F., This, S., De Bernard, S., et al. (2016). Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. *Nat. Commun.* 7, 13600. doi:10.1038/ncomms13600

Bonaventura, P., Shekarian, T., Alcazer, V., Valladeau-Guilemond, J., Valsesia-Wittmann, S., Amigorena, S., et al. (2019). Cold tumors: a therapeutic challenge for immunotherapy. *Front. Immunol.* 10, 168. doi:10.3389/fimmu.2019.00168

Borràs, D. M., Verbandt, S., Ausserhofer, M., Sturm, G., Lim, J., Verge, G. A., et al. (2023). Single cell dynamics of tumor specificity vs bystander activity in CD8+ T cells define the diverse immune landscapes in colorectal cancer. *Cell Discov.* 9, 114. doi:10.1038/s41421-023-00605-4

Böttcher, J. P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., et al. (2018). NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. *Cell* 172, 1022–1037.e14. doi:10.1016/j.cell.2018.01.004

Bruni, D., Angell, H. K., and Galon, J. (2020). The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. *Nat. Rev. Cancer* 20, 662–680. doi:10.1038/s41568-020-0285-7

Bruno, A., Mortara, L., Baci, D., Noonan, D. M., and Albini, A. (2019). Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. *Front. Immunol.* 10, 771. doi:10.3389/fimmu.2019.00771

Bullock, A. J., Fakih, M., Gordon, M. S., El-Khoueiry, A. B., O'Neil, B. H., and Kwek, S. S. (2024). Botensilimab plus balstilimab in relapsed/refractory microsatellite stable metastatic colorectal cancer: a phase 1 trial. *Nat. Med.* 30 (9), 2608–2618. doi:10.1038/s41591-024-03083-7

Burger, J. A., and Wiestner, A. (2018). Targeting B cell receptor signalling in cancer: preclinical and clinical advances. *Nat. Rev. Cancer* 18, 148–167. doi:10.1038/nrc.2017.121

Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D. V. F., Iglesias, M., Céspedes, M. V., et al. (2012). Dependency of colorectal cancer on a TGF- β -Driven program in stromal cells for metastasis initiation. *Cancer Cell* 22, 571–584. doi:10.1016/j.ccr.2012.08.013

Catalán, D., Mansilla, M. A., Ferrier, A., Soto, L., Oleinika, K., Aguillón, J. C., et al. (2021). Immunosuppressive mechanisms of regulatory B cells. *Front. Immunol.* 12, 611795. doi:10.3389/fimmu.2021.611795

Caza, T., and Landas, S. (2015). Functional and phenotypic plasticity of CD4+ T cell subsets. BioMed Res. Int. 2015, 521957–13. doi:10.1155/2015/521957

Cercek, A., Foote, M. B., Rousseau, B., Smith, J. J., Shia, J., Sinopoli, J., et al. (2025). Nonoperative management of mismatch repair-deficient tumors. *N. Engl. J. Med.* 392 (23), 2297–2308. doi:10.1056/NEJMoa2404512

Chalabi, M., Fanchi, L. F., Dijkstra, K. K., Van Den Berg, J. G., Aalbers, A. G., Sikorska, K., et al. (2020). Neoadjuvant immunotherapy leads to pathological responses in

MMR-Proficient and MMR-deficient early-stage colon cancers. *Nat. Med.* 26, 566–576. doi:10.1038/s41591-020-0805-8

Chaudhry, K., Dowlati, E., Long, M. D., Geiger, A., Lang, H., Gomez, E. C., et al. (2022). Comparable transforming growth factor beta-mediated immune suppression in ex vivo-expanded natural killer cells from cord blood and peripheral blood: implications for adoptive immunotherapy. *Cytotherapy* 24, 802–817. doi:10.1016/j.jcyt.2022.04.001

Chen, D. S., and Mellman, I. (2017). Elements of cancer immunity and the cancer–immune setpoint. *Nature* 541, 321–330. doi:10.1038/nature21349

Chen, J., Yao, Y., Gong, C., Yu, F., Su, S., Chen, J., et al. (2011). CCL18 from Tumor-associated macrophages promotes breast cancer metastasis *via* PITPNM3. *Cancer Cell* 19, 541–555. doi:10.1016/j.ccr.2011.02.006

Chen, J., Ye, X., Pitmon, E., Lu, M., Wan, J., Jellison, E. R., et al. (2019). IL-17 inhibits CXCL9/10-mediated recruitment of CD8+ cytotoxic T cells and regulatory T cells to colorectal tumors. *J. Immunother. cancer* 7, 324. doi:10.1186/s40425-019-0757-z

Chen, S., Saeed, A. F. U. H., Liu, Q., Jiang, Q., Xu, H., Xiao, G. G., et al. (2023). Macrophages in immunoregulation and therapeutics. *Sig Transduct. Target Ther.* 8, 207. doi:10.1038/s41392-023-01452-1

Cheng, E. (2010). The closer. *Sci. Transl. Med.* 2 (58), 58ed6. doi:10.1126/scitranslmed.3001912

Ciardiello, D., Vitiello, P. P., Cardone, C., Martini, G., Troiani, T., Martinelli, E., et al. (2019). Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. *Cancer Treat. Rev.* 76, 22–32. doi:10.1016/j.ctrv.2019.04.003

ClinicalTrials.gov (2025). "Botensilimab, balstilimab, and SBRT in colorectal cancer (B3C)," in *Identifier NCT07128355*. Bethesda, MD: U.S. National Library of Medicine. Available online at: https://clinicaltrials.gov/study/NCT07128355.

Clynes, R., Takechi, Y., Moroi, Y., Houghton, A., and Ravetch, J. V. (1998). Fc receptors are required in passive and active immunity to melanoma. *Proc. Natl. Acad. Sci. U.S.A.* 95, 652–656. doi:10.1073/pnas.95.2.652

Colton, M., Cheadle, E. J., Honeychurch, J., and Illidge, T. M. (2020). Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. *Radiat. Oncol.* 15, 254. doi:10.1186/s13014-020-01678-1

Cox, K. E., Liu, S., Hoffman, R. M., Batra, S. K., Dhawan, P., and Bouvet, M. (2024). The expression of the claudin family of proteins in colorectal cancer. *Biomolecules* 14, 272. doi:10.3390/biom14030272

Dahmani, A., and Delisle, J. (2018). TGF-B in T cell biology: implications for cancer immunotherapy. $Cancers\ 10\ (6),\ 194.\ doi:10.3390/cancers10060194$

Davis, R. J., Van Waes, C., and Allen, C. T. (2016). Overcoming barriers to effective immunotherapy: mdscs, TAMs, and tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. *Oral Oncol.* 58, 59–70. doi:10.1016/j.oraloncology.2016.05.002

De Visser, K. E., and Joyce, J. A. (2023). The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. *Cancer Cell* 41, 374–403. doi:10.1016/j.ccell.2023.02.016

Dell'Aquila, E., Cremolini, C., Zeppola, T., Lonardi, S., Bergamo, F., Masi, G., et al. (2018). Prognostic and predictive role of neutrophil/lymphocytes ratio in metastatic colorectal cancer: a retrospective analysis of the TRIBE study by GONO. *Ann. Oncol.* 29, 924–930. doi:10.1093/annonc/mdy004

Demkow, U. (2021). Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. *Cancers* 13, 4495. doi:10.3390/cancers13174495

Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024). TGF- β signaling in health, disease and therapeutics. *Sig Transduct. Target Ther.* 9, 61. doi:10.1038/s41392-024-01764

Drucker, E., and Krapfenbauer, K. (2013). Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. *EPMA I.* 4. 7. doi:10.1186/1878-5085-4-7

Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., et al. (2008). Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. *JC* 26, 5233–5239. doi:10.1200/JCO.2008.16.5449

Dutta, S., Ganguly, A., Chatterjee, K., Spada, S., and Mukherjee, S. (2023). Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors. *Biology* 12, 218. doi:10.3390/biology12020218

Edin, S., Kaprio, T., Hagström, J., Larsson, P., Mustonen, H., Böckelman, C., et al. (2019). The prognostic importance of CD20+ B lymphocytes in colorectal cancer and the relation to other immune cell subsets. *Sci. Rep.* 9, 19997. doi:10.1038/s41598-019-56441-8

El-Khoueiry, A. B., Fakih, M., Gordon, M. S., Bullock, A. J., Wilky, B. A., Henick, B., et al. (2025). Botensilimab (Fc-enhanced anti-cytotoxic lymphocyte-association protein-4 antibody) plus balstilimab (anti-PD-1 antibody) in patients with relapsed/refractory metastatic sarcomas. *J. Clin. Oncol.* 43 (11), 1358–1368. doi:10.1200/JCO.24.02524

El-Khoueiry, A. B., Fakih, M., Gordon, M. S., Tsimberidou, A. M., Bullock, A. J., Wilky, B. A., et al. (2023). Results from a phase 1a/1b study of botensilimab (BOT)

plus balstilimab (BAL) in metastatic MSS colorectal cancer. *J. Clin. Oncol.* 41 (4 suppl), LBA8. doi:10.1200/JCO.2023.41.4_suppl.LBA8

Farhood, B., Najafi, M., and Mortezaee, K. (2019). CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. *J. Cell. Physiology* 234, 8509–8521. doi:10.1002/jcp.27782

Ferkel, S. A. M., Holman, E. A., Sojwal, R. S., Rubin, S. J. S., and Rogalla, S. (2025). Tumor- infiltrating immune cells in colorectal cancer. *Neoplasia* 59, 101091. doi:10.1016/j.neo.2024.101091

Ferrara, N., Gerber, H.-P., and LeCouter, J. (2003). The biology of VEGF and its receptors. *Nat. Med.* 9, 669–676. doi:10.1038/nm0603-669

Flavell, R. A., Sanjabi, S., Wrzesinski, S. H., and Licona-Limón, P. (2010). The polarization of immune cells in the tumour environment by TGFbeta. *Nat. Rev. Immunol.* 10, 554–567. doi:10.1038/nri2808

Franco, F., Jaccard, A., Romero, P., Yu, Y.-R., and Ho, P.-C. (2020). Metabolic and epigenetic regulation of T-cell exhaustion. *Nat. Metab.* 2, 1001–1012. doi:10.1038/s42255-020-00280-9

Freitas-Rodríguez, S., Folgueras, A. R., and López-Otín, C. (2017). The role of matrix metalloproteinases in aging: tissue remodeling and beyond. *Biochimica Biophysica Acta (BBA) - Mol. Cell Res.* 1864, 2015–2025. doi:10.1016/j.bbamcr.2017.05.007

Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 16, 183–194. doi:10.1016/j.ccr.2009.06.017

Fridman, W. H., Zitvogel, L., Sautès-Fridman, C., and Kroemer, G. (2017). The immune contexture in cancer prognosis and treatment. *Nat. Rev. Clin. Oncol.* 14, 717–734. doi:10.1038/nrclinonc.2017.101

Fridman, W. H., Meylan, M., Petitprez, F., Sun, C.-M., Italiano, A., and Sautès-Fridman, C. (2022). B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. *Nat. Rev. Clin. Oncol.* 19, 441–457. doi:10.1038/s41571-022-00619-z

Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. *Nat. Rev. Immunol.* 4, 941–952. doi:10.1038/nri1498

Galon, J., Mlecnik, B., Bindea, G., Angell, H. K., Berger, A., Lagorce, C., et al. (2014). Towards the introduction of the 'immunoscore' in the classification of malignant tumours. *J. Pathology* 232, 199–209. doi:10.1002/path.4287

Ganesh, K., Stadler, Z. K., Cercek, A., Mendelsohn, R. B., Shia, J., Segal, N. H., et al. (2019). Immunotherapy in colorectal cancer: rationale, challenges and potential. *Nat. Rev. Gastroenterology Hepatology* 16, 361–375. doi:10.1038/s41575-019-0126-x

Gao, J., Liang, Y., and Wang, L. (2022). Shaping polarization of tumor-associated macrophages in cancer immunotherapy. *Front. Immunol.* 13, 888713. doi:10.3389/fimmu.2022.888713

Gatalica, Z., Vranic, S., Xiu, J., Swensen, J., and Reddy, S. (2016). High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. *Fam. Cancer* 15, 405–412. doi:10.1007/s10689-016-9884-6

Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., et al. (2018). Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. *Science* 359, 97–103. doi:10.1126/science.aan4236

Gordon, S., and Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. *Immunity* 32, 593–604. doi:10.1016/j.immuni.2010.05.007

Grillo, F., Paudice, M., Pigozzi, S., Dono, M., Lastraioli, S., Lugaresi, M., et al. (2024). BRAFV600E immunohistochemistry can reliably substitute BRAF molecular testing in the Lynch syndrome screening algorithm in colorectal cancer. *Histopathology* 84 (5), 877–887. doi:10.1111/his.15133

Gubin, M. M., and Vesely, M. D. (2022). Cancer immunoediting in the era of immuno-oncology. Clin. Cancer Res. 28, 3917–3928. doi:10.1158/1078-0432.CCR-21-1804

Guillerey, C., Huntington, N. D., and Smyth, M. J. (2016). Targeting natural killer cells in cancer immunotherapy. *Nat. Immunol.* 17, 1025–1036. doi:10.1038/ni.3518

Guinney, J., Dienstmann, R., Wang, X., Reyniès, A. D., Schlicker, A., Soneson, C., et al. (2015). The consensus molecular subtypes of colorectal cancer. *Nat. Med.* 21, 1350–1356. doi:10.1038/nm.3967

Guo, L., Wang, C., Qiu, X., Pu, X., and Chang, P. (2020). Colorectal cancer immune infiltrates: significance in patient prognosis and immunotherapeutic efficacy. *Front. Immunol.* 11, 1052. doi:10.3389/fimmu.2020.01052

Han, S., Bao, X., Zou, Y., Wang, L., Li, Y., Yang, L., et al. (2023). D -lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. *Sci. Adv.* 9, eadg2697. doi:10.1126/sciadv.adg2697

Han, Y., Zhu, B., and Meng, S. (2025). Endothelial cell in tumor angiogenesis: origins, mechanisms, and therapeutic implication. *Genes and Dis.* 12, 101611. doi:10.1016/j.gendis.2025.101611

 $Hao, Q., Wu, Y., Wu, Y., Wang, P., and Vadgama, J. V. (2022). Tumor-derived exosomes in tumor-induced immune suppression. {\it IJMS 23, 1461. doi:10.3390/ijms23031461}$

- Hato, L., Vizcay, A., Eguren, I., Pérez-Gracia, J. L., Rodríguez, J., Gállego Pérez-Larraya, J., et al. (2024). Dendritic cells in cancer immunology and immunotherapy. *Cancers* 16, 981. doi:10.3390/cancers16050981
- He, R., Huang, S., Lu, J., Su, L., Gao, X., and Chi, H. (2024). Unveiling the immune symphony: decoding colorectal cancer metastasis through immune interactions. *Front. Immunol.* 15, 1362709. doi:10.3389/fimmu.2024.1362709
- Henke, E., Nandigama, R., and Ergün, S. (2020). Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. *Front. Mol. Biosci.* 6, 160. doi:10.3389/fmolb.2019.00160
- Henry, C. J., Ornelles, D. A., Mitchell, L. M., Brzoza-Lewis, K. L., and Hiltbold, E. M. (2008). IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. *J. Immunol.* 181, 8576–8584. doi:10.4049/jimmunol.181.12.8576
- Hou, S., Zhao, Y., Chen, J., Lin, Y., and Qi, X. (2024). Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. *J. Transl. Med.* 22, 62. doi:10.1186/s12967-024-04856-x
- Hu, W., Yang, Y., Qi, L., Chen, J., Ge, W., and Zheng, S. (2019). Subtyping of microsatellite instability-high colorectal cancer. *Cell Commun. Signal* 17, 79. doi:10.1186/s12964-019-0397-4
- Hu, G., Shen, S., and Zhu, M. (2025). CXCL9 is a dual-role biomarker in colorectal cancer linked to mitophagy and modulated by ALKBH5. *Mol. Med. Rep.* 32, 188–17. doi:10.3892/mmr.2025.13553
- Huang, X., Nepovimova, E., Adam, V., Sivak, L., Heger, Z., Valko, M., et al. (2024). Neutrophils in cancer immunotherapy: friends or foes? *Mol. Cancer* 23, 107. doi:10.1186/s12943-024-02004-z
- Huff, W. X., Kwon, J. H., Henriquez, M., Fetcko, K., and Dey, M. (2019). The evolving role of CD8+CD28– immunosenescent T cells in cancer immunology. IJMS 20, 2810. doi:10.3390/ijms20112810
- Huo, J.-L., Wang, Y.-T., Fu, W.-J., Lu, N., and Liu, Z.-S. (2022). The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. *Front. Immunol.* 13, 956090. doi:10.3389/fimmu.2022.956090
- Husain, Z., Huang, Y., Seth, P., and Sukhatme, V. P. (2013). Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. *J. Immunol.* 191, 1486–1495. doi:10.4049/jimmunol.1202702
- Huyghe, N., Baldin, P., and Van Den Eynde, M. (2020). Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? *Gastroenterol. Rep.* 8, 11–24. doi:10.1093/gastro/goz061
- Hwang, K., Yoon, J. H., Lee, J. H., and Lee, S. (2021). Recent advances in monoclonal antibody therapy for colorectal cancers. *Biomedicines* 9, 39. doi:10.3390/biomedicines9010039
- Jammihal, T., Saliby, R. M., Labaki, C., Soulati, H., Gallegos, J., Peris, A., et al. (2025). Immunogenomic determinants of exceptional response to immune checkpoint inhibition in renal cell carcinoma. *Nat. Cancer* 6, 372–384. doi:10.1038/s43018-024-0896.pr
- Ji, N. Y., Kim, Y., Jang, Y. J., Kang, Y. H., Lee, C. I., Kim, J. W., et al. (2010). Identification of endothelial cell-specific molecule-1 as a potential serum marker for colorectal cancer. *Cancer Sci.* 101, 2248–2253. doi:10.1111/j.1349-7006.2010.01665.x
- Jiang, Y., Li, Y., and Zhu, B. (2015). T-cell exhaustion in the tumor microenvironment. *Cell Death Dis.* 6, e1792. doi:10.1038/cddis.2015.162
- Jung, M., Lee, J. A., Yoo, S.-Y., Bae, J. M., Kang, G. H., and Kim, J. H. (2022). Intratumoral spatial heterogeneity of tumor-infiltrating lymphocytes is a significant factor for precisely stratifying prognostic immune subgroups of microsatellite instability-high colorectal carcinomas. *Mod. Pathol.* 35, 2011–2022. doi:10.1038/s41379-022-01137-0
- Kalbasi, A., and Ribas, A. (2020). Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39. doi:10.1038/s41577-019-0218-4
- Kang, J. H., and Zappasodi, R. (2023). Modulating treg stability to improve cancer immunotherapy. *Trends Cancer* 9, 911–927. doi:10.1016/j.trecan.2023.07.015
- Karjalainen, H., Sirniö, P., Tuomisto, A., Mäkinen, M. J., and Väyrynen, J. P. (2023). A prognostic score based on B cell and plasma cell densities compared to T cell densities in colorectal cancer. *Int. J. Colorectal Dis.* 38, 47. doi:10.1007/s00384-023-04322-y
- Kärre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986). Selective rejection of H–2- deficient lymphoma variants suggests alternative immune defence strategy. *Nature* 319, 675–678. doi:10.1038/319675a0
- Khosravi, G., Mostafavi, S., Bastan, S., Ebrahimi, N., Gharibvand, R. S., and Eskandari, N. (2024). Immunologic tumor microenvironment modulators for turning cold tumors hot. *Cancer Commun.* 44, 521–553. doi:10.1002/cac2.12539
- Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J., and Driscoll, J. J. (2021a). Novel therapies emerging in oncology to target the TGF- β pathway. *J. Hematol. Oncol.* 14, 55. doi:10.1186/s13045-021-01053-x
- Kim, M.-S., Ha, S.-E., Wu, M., Zogg, H., Ronkon, C. F., Lee, M.-Y., et al. (2021b). Extracellular matrix biomarkers in colorectal cancer. *IJMS* 22, 9185. doi:10.3390/ijms22179185

- Kinker, G. S., Vitiello, G. A. F., Ferreira, W. A. S., Chaves, A. S., Cordeiro De Lima, V. C., and Medina, T. D. S. (2021). B cell orchestration of anti-tumor immune responses: a matter of cell localization and communication. *Front. Cell Dev. Biol.* 9, 678127. doi:10.3389/fcell.2021.678127
- Koi, M., and Carethers, J. M. (2017). The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol. 13, 1633-1647. doi:10.2217/fon-2017-0145
- Kotelevets, L., and Chastre, E. (2023). Extracellular vesicles in colorectal cancer: from tumor growth and metastasis to biomarkers and nanomedications. *Cancers* 15, 1107. doi:10.3390/cancers15041107
- Küçükköse, E., Heesters, B. A., Villaudy, J., Verheem, A., Cercel, M., Van Hal, S., et al. (2022). Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice. *J. Immunother. Cancer* 10, e005345. doi:10.1136/jitc-2021.06245
- Kugeratski, F. G., and Kalluri, R. (2021). Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J. 288, 10–35. doi:10.1111/febs.15558
- Kumar, S., Singh, S. K., Rana, B., and Rana, A. (2021). Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. *Drug Discov. Today* 26, 951–967. doi:10.1016/j.drudis.2021.01.002
- Kumar, R., Kim, J., Deek, M. P., Eskander, M. F., Gulhati, P., In, H., et al. (2023). Combination of immunotherapy and radiation therapy in gastrointestinal cancers: an appraisal of the current literature and ongoing research. *Curr. Oncol.* 30, 6432–6446. doi:10.3390/curroncol30070473
- Kundu, M., Butti, R., Panda, V. K., Malhotra, D., Das, S., Mitra, T., et al. (2024). Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. *Mol. Cancer* 23, 92. doi:10.1186/s12943-024-01990-4
- Kurosaki, T. (1999). Genetic analysis of b cell antigen receptor signaling. *Annu. Rev. Immunol.* 17, 555–592. doi:10.1146/annurev.immunol.17.1.555
- Kuswanto, W., Nolan, G., and Lu, G. (2023). Highly multiplexed spatial profiling with CODEX: bioinformatic analysis and application in human disease. *Semin. Immunopathol.* 45, 145–157. doi:10.1007/s00281-022-00974-0
- Kwek, S. S., Bullock, A. J., Fakih, M., Gordon, M. S., El-Khoueiry, A. B., and O'Neil, B. H. (2025). Results from phase 1/2 trials of botensilimab and balstilimab [conference session]. *ASCO Annu. Meet.* Available online at: https://ascopubs.org/.
- Lanier, L. L. (2005). Nk cell recognition. *Annu. Rev. Immunol.* 23, 225–274. doi:10.1146/annurev.immunol.23.021704.115526
- Lanuza, P. M., Alonso, M. H., Hidalgo, S., Uranga-Murillo, I., García-Mulero, S., Arnau, R., et al. (2022). Adoptive NK cell transfer as a treatment in colorectal cancer patients: analyses of tumour cell determinants correlating with efficacy *in vitro* and *in vivo*. Front. Immunol. 13, 890836. doi:10.3389/fimmu.2022.890836
- Laumont, C. M., and Nelson, B. H. (2023). B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity. *Cancer Cell* 41, 466–489. doi:10.1016/j.ccell.2023.02.017
- Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P., and Nelson, B. H. (2022). Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. *Nat. Rev. Cancer* 22, 414–430. doi:10.1038/s41568-022-00466-1
- Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. *N. Engl. J. Med.* 372 (26), 2509–2520. doi:10.1056/nejmoa1500596
- Lee, W. S., Yang, H., Chon, H. J., and Kim, C. (2020). Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. *Exp. Mol. Med.* 52, 1475–1485. doi:10.1038/s12276-020-00500-v
- Lenz, H.-J., Van Cutsem, E., Limon, M. L., Wong, K. Y. M., Hendlisz, A., Aglietta, M., et al. (2021). First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: The Phase II CheckMate 142 study. *J. Clin. Oncol.* 40 (2), 161–170. doi:10.1200/JCO.21.01015
- Lei, W., Zhou, K., Lei, Y., Li, Q., and Zhu, H. (2025). Gut microbiota shapes cancer immunotherapy responses. *npj Biofilms Microbiomes* 11, 143. doi:10.1038/s41522-025-00786-8
- Lewis, C. E., and Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. *Cancer Res.* 66, 605–612. doi:10.1158/0008-5472.CAN-05-4005
- Li, F., Li, C., Cai, X., Xie, Z., Zhou, L., Cheng, B., et al. (2021). The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. *EClinicalMedicine* 41, 101134. doi:10.1016/j.eclinm.2021.101134
- Li, J., Wu, C., Hu, H., Qin, G., Wu, X., Bai, F., et al. (2023a). Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. *Cancer Cell* 41 (6), 1152–1169.e7. doi:10.1016/j.ccell.2023.04.011
- Li, M., Quintana, A., Alberts, E., Hung, M. S., Boulat, V., Ripoll, M. M., et al. (2023b). B cells in breast cancer pathology. *Cancers* 15, 1517. doi:10.3390/cancers15051517
- Li, N., Zhu, Q., Tian, Y., Ahn, K. J., Wang, X., Cramer, Z., et al. (2023c). Mapping and modeling human colorectal carcinoma interactions with the tumor microenvironment. *Nat. Commun.* 14, 7915. doi:10.1038/s41467-023-43746-6

- Li, T., Wang, X., Niu, M., Wang, M., Zhou, J., Wu, K., et al. (2023d). Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. *Front. Immunol.* 14, 1196970. doi:10.3389/fimmu.2023.1196970
- Li, Z., Lin, A., Gao, Z., Jiang, A., Xiong, M., Song, J., et al. (2024). B-cell performance in chemotherapy: unravelling the mystery of b-cell therapeutic potential. *Clin. and Transl. Med* 14, e1761. doi:10.1002/ctm2.1761
- Li, M., Zhu, W., Lu, Y., Shao, Y., Xu, F., Liu, L., et al. (2025). Identification and validation of a CD4+ T cell-related prognostic model to predict immune responses in stage III-IV colorectal cancer. *BMC Gastroenterol.* 25 (1), 153. doi:10.1186/s12876-025-03716-2
- Liao, Z., Wang, Y., Yang, Y., Liu, X., Yang, X., Tian, Y., et al. (2024). Targeting the Cascade amplification of macrophage colony-stimulating factor to alleviate the immunosuppressive effects following radiotherapy. *Research* 7, 0450. doi:10.34133/research.0450
- Lin, Y., Xu, J., and Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. *J. Hematol. and Oncol.* 12, 76. doi:10.1186/s13045-019-0760-3
- Lin, A., Zhang, J., and Luo, P. (2020). Crosstalk between the MSI status and tumor microenvironment in colorectal cancer. *Front. Immunol.* 11, 2039. doi:10.3389/fimmu.2020.02039
- Lin, X., Kang, K., Chen, P., Zeng, Z., Li, G., Xiong, W., et al. (2024). Regulatory mechanisms of PD-1/PD-L1 in cancers. *Mol. Cancer* 23, 108. doi:10.1186/s12943-024-02023-w
- Lişcu, H., Verga, N., Atasiei, D., Badiu, D., Dumitru, A. V., Ultimescu, F., et al. (2024). Biomarkers in colorectal cancer: actual and future perspectives. *Int. J. Mol. Sci.* 25 (21), 11535. doi:10.3390/ijms252111535
- Liu, X., and Chi, A. (2023). Combining stereotactic body radiotherapy with immunotherapy in stage IV non-small cell lung cancer. *Front. Oncol.* 13, 1211815. doi:10.3389/fonc.2023.1211815
- Liu, Y.-T., and Sun, Z.-J. (2021). Turning cold tumors into hot tumors by improving T-cell infiltration. *Theranostics* 11,5365-5386. doi:10.7150/thno.58390
- Liu, J., Liu, Q., and Chen, X. (2020). The immunomodulatory effects of mesenchymal stem cells on regulatory B cells. *Front. Immunol.* 11, 1843. doi:10.3389/fimmu.2020.01843
- Liu, Z., Lu, T., Wang, L., Liu, L., Li, L., and Han, X. (2021). Comprehensive molecular analyses of a novel mutational signature classification system with regard to prognosis, genomic alterations, and immune landscape in glioma. *Front. Mol. Biosci.* 8, 682084. doi:10.3389/fmolb.2021.682084
- Liu, K., Dou, R., Yang, C., Di, Z., Shi, D., Zhang, C., et al. (2023). Exosome-transmitted miR-29a induces colorectal cancer metastasis by destroying the vascular endothelial barrier. *Carcinogenesis* 44 (4), 356–367. doi:10.1093/carcin/bgad013
- Liu, F., Li, X., Zhang, Y., Ge, S., Shi, Z., Liu, Q., et al. (2025). Targeting tumorassociated macrophages to overcome immune checkpoint inhibitor resistance in hepatocellular carcinoma. *J. Exp. Clin. Cancer Res.* 44, 227. doi:10.1186/s13046-025-03490-9
- Llosa, N. J., Cruise, M., Tam, A., Wicks, E. C., Hechenbleikner, E. M., Taube, J. M., et al. (2015). The vigorous immune microenvironment of microsatellite instable Colon cancer is balanced by multiple counter-inhibitory checkpoints. *Cancer Discov.* 5, 43–51. doi:10.1158/2159-8290.CD-14-0863
- Lu, Y., Zheng, J., Lin, P., Lin, Y., Zheng, Y., Mai, Z., et al. (2024). Tumor microenvironment-derived exosomes: a double-edged sword for advanced T cell-based immunotherapy. *ACS Nano* 18, 27230–27260. doi:10.1021/acsnano.4c09190
- Lu, D., Dong, C., Wang, K., Ye, C., Chen, L., Yuan, Y., et al. (2025). Updates of CSCO guidelines for colorectal cancer version 2025. *Chin. J. cancer Res. = Chung-kuo yen cheng yen chiu* 37 (3), 297–302. doi:10.21147/j.issn.1000-9604.2025.03.01
- Ludford, K., Ho, W. J., Thomas, J. V., Raghav, K. P., Murphy, M. B., Fleming, N. D., et al. (2023). Neoadjuvant pembrolizumab in localized microsatellite instability-high/deficient mismatch repair solid tumors. *J. Clin. Oncol.* 41 (12), 2181–2190. doi:10.1200/JCO.22.01351
- Ma, J., Ge, J., Xue, X., Xiu, W., and Zhang, R. (2025a). CAR-T therapy for the treatment of colorectal cancer. *Discov. Med.* 37 (195), 54–62. doi:10.24976/Discov.Med.202537195.54
- Ma, N., Gao, J., Pang, X., Wu, K., Yang, S., Wei, H., et al. (2025b). Formulation-optimized oncolytic viruses: advancing systemic delivery and immune amplification. *J. Control. Release* 383, 113822. doi:10.1016/j.jconrel.2025.113822
- Mafe, A. N., and Büsselberg, D. (2025). Microbiome integrity enhances the efficacy and safety of anticancer drug. Biomedicines 13, 422. doi:10.3390/biomedicines13020422
- Maltby, S., Khazaie, K., and McNagny, K. M. (2009). Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. *Biochim. Biophys. Acta* 1796, 19–26. doi:10.1016/j.bbcan.2009.02.001
- Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. *Nat. Rev. Clin. Oncol.* 14, 399–416. doi:10.1038/nrclinonc.2016.217

Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021). Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. *Mol. Cancer* 20, 131. doi:10.1186/s12943-021-01428-1

- Martínez-Méndez, D., Huerta, L., and Villarreal, C. (2022). Modeling the effect of environmental cytokines, nutrient conditions and hypoxia on CD4+ T cell differentiation. Front. Immunol. 13, 962175. doi:10.3389/fimmu.2022.962175
- Maus, M. V., Grupp, S. A., Porter, D. L., and June, C. H. (2014). Antibody-modified T cells: CARs take the front seat for hematologic malignancies. *Blood* 123, 2625–2635. doi:10.1182/blood-2013-11-492231
- Melssen, M. M., Sheybani, N. D., Leick, K. M., and Slingluff, C. L. (2023). Barriers to immune cell infiltration in tumors. *J. Immunother. Cancer* 11, e006401. doi:10.1136/jitc-2022-006401
- Meylan, M., Petitprez, F., Becht, E., Bougoüin, A., Pupier, G., Calvez, A., et al. (2022). Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. *Immunity* 55, 527–541.e5. doi:10.1016/j.immuni.2022.02.001
- Michaud, D., Steward, C. R., Mirlekar, B., and Pylayeva-Gupta, Y. (2021). Regulatory B cells in cancer. *Immunol. Rev.* 299, 74–92. doi:10.1111/imr.12939
- Mirlekar, B. (2022). Tumor promoting roles of IL-10, TGF- β , IL-4, and IL-35: its implications in cancer immunotherapy. SAGE Open Med. 10, 20503121211069012. doi:10.1177/20503121211069012
- Mlecnik, B., Bindea, G., Angell, H. K., Maby, P., Angelova, M., Tougeron, D., et al. (2016). Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. *Immunity* 44, 698–711. doi:10.1016/j.immuni.2016.02.025
- Mlecnik, B., Lugli, A., Bindea, G., Marliot, F., Bifulco, C., Lee, J.-K. J., et al. (2023). Multicenter international study of the consensus immunoscore for the prediction of relapse and survival in early-stage Colon cancer. *Cancers* 15, 418. doi:10.3390/cancers15020418
- Mosser, D. M., and Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. *Nat. Rev. Immunol.* 8, 958–969. doi:10.1038/nri2448
- Motz, G. T., and Coukos, G. (2013). Deciphering and reversing tumor immune suppression. *Immunity* 39, 61–73. doi:10.1016/j.immuni.2013.07.005
- Mousset, A., Lecorgne, E., Bourget, I., Lopez, P., Jenovai, K., Cherfils-Vicini, J., et al. (2023). Neutrophil extracellular traps formed during chemotherapy confer treatment resistance \emph{via} TGF- β activation. Cancer Cell 41, 757–775.e10. doi:10.1016/j.ccell.2023.03.008
- Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., et al. (2014). Macrophage activation and polarization: nomenclature and experimental Guidelines. *Immunity* 41, 14–20. doi:10.1016/j.immuni.2014.06.008
- Nadafi, R., Dong, W., and Van Beusechem, V. W. (2025a). Immunological impact of oncolytic adenoviruses on cancer therapy: clinical insights. *Eur. J. Immunol.* 55, e70024. doi:10.1002/eji.70024
- Nadafi, R., Ghasemi, R., and Erfani, N. (2025b). Therapeutic colorectal cancer vaccines: emerging modalities and translational opportunities. *Vaccines* 13 (7), 689. doi:10.3390/vaccines13070689
- Nagasaki, J., Togashi, Y., Sugawara, T., Itami, M., Yamauchi, N., Yuda, J., et al. (2020). The critical role of CD4+ T cells in PD-1 blockade against MHC-II–expressing tumors such as classic hodgkin lymphoma. *Blood Adv.* 4, 4069–4082. doi:10.1182/bloodadvances.2020002098
- Nagl, L., Horvath, L., Pircher, A., and Wolf, D. (2020). Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment new findings and future perspectives. *Front. Cell Dev. Biol.* 8, 766. doi:10.3389/fcell.2020.00766
- Olejarz, W., Dominiak, A., Żołnierzak, A., Kubiak-Tomaszewska, G., and Lorenc, T. (2020). Tumor-derived exosomes in immunosuppression and immunotherapy. *J. Immunol. Res.* 2020, 6272498–11. doi:10.1155/2020/6272498
- Omatsu, M., Nakanishi, Y., Iwane, K., Aoyama, N., Duran, A., Muta, Y., et al. (2023). THBS1-producing tumor-infiltrating monocyte-like cells contribute to immunosuppression and metastasis in colorectal cancer. *Nat. Commun.* 14, 5534. doi:10.1038/s41467-023-41095-y
- Orecchioni, M., Ghosheh, Y., Pramod, A. B., and Ley, K. (2019). Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. *Front. Immunol.* 10, 1084. doi:10.3389/fimmu.2019.01084
- Orhan, A., Khesrawi, F., Tvilling Madsen, M., Peuliche Vogelsang, R., Dohrn, N., Kanstrup Fiehn, A.-M., et al. (2022). Tumor-infiltrating lymphocytes as biomarkers of treatment response and long-term survival in patients with rectal cancer: a systematic review and meta-analysis. *Cancers* 14, 636. doi:10.3390/cancers14030636
- Ouyang, W., Kolls, J. K., and Zheng, Y. (2008). The biological functions of T helper 17 cell effector cytokines in inflammation. *Immunity* 28, 454–467. doi:10.1016/j.immuni.2008.03.004
- Overman, M. J., Ernstoff, M. S., and Morse, M. A. (2018). Where we stand with immunotherapy in colorectal cancer: deficient mismatch repair, proficient mismatch repair, and toxicity management. American Society of Clinical Oncology Educational Book, 239–247. doi:10.1200/EDBK_200821

- Page-McCaw, A., Ewald, A. J., and Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. *Nat. Rev. Mol. Cell Biol.* 8, 221–233. doi:10.1038/nrm2125
- Pagès, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F.-S., Bifulco, C., et al. (2018). International validation of the consensus immunoscore for the classification of Colon cancer: a prognostic and accuracy study. *Lancet* 391, 2128–2139. doi:10.1016/S0140-6736(18)30789-X
- Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. *Nat. Rev. Cancer* 12, 252–264. doi:10.1038/nrc3239
- Park, J., Wysocki, R. W., Amoozgar, Z., Maiorino, L., Fein, M. R., Jorns, J., et al. (2016). Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. *Sci. Transl. Med.* 8, 361ra138. doi:10.1126/scitranslmed.aag1711
- Patel, S. A., Nilsson, M. B., Le, X., Cascone, T., Jain, R. K., and Heymach, J. V. (2023). Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. *Clin. Cancer Res.* 29, 30–39. doi:10.1158/1078-0432.CCR-22-1366
- Pedrosa, L., Esposito, F., Thomson, T. M., and Maurel, J. (2019). The tumor microenvironment in colorectal cancer therapy. *Cancers* (*Basel*) 11, 1172. doi:10.3390/cancers11081172
- Peng, M. (2022). Immune landscape of distinct subtypes in urothelial carcinoma based on immune gene profile. *Front. Immunol.* 13, 970885. doi:10.3389/fimmu.2022.970885
- Peng, D., Fu, M., Wang, M., Wei, Y., and Wei, X. (2022). Targeting TGF- β signal transduction for fibrosis and cancer therapy. *Mol. Cancer* 21, 104. doi:10.1186/s12943-022-01569-x
- Petitprez, F., Meylan, M., De Reyniès, A., Sautès-Fridman, C., and Fridman, W. H. (2020). The tumor microenvironment in the response to immune checkpoint blockade therapies. *Front. Immunol.* 11, 784. doi:10.3389/fimmu.2020.00784
- Picard, E., Verschoor, C. P., W, G. M. A., and Pawelec, G. (2020). Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. *Front. Immunol.* 11, 369. doi:10.3389/fimmu.2020.00369
- Pickup, M., Novitskiy, S., and Moses, H. L. (2013). The roles of TGF β in the tumour microenvironment. *Nat. Rev. Cancer* 13, 788–799. doi:10.1038/nrc3603
- Poggio, M., Hu, T., Pai, C.-C., Chu, B., Belair, C. D., Chang, A., et al. (2019). Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. *Cell* 177, 414–427.e13. doi:10.1016/j.cell.2019.02.016
- Punt, C. J. A., Koopman, M., and Vermeulen, L. (2017). From tumour heterogeneity to advances in precision treatment of colorectal cancer. *Nat. Rev. Clin. Oncol.* 14, 235–246. doi:10.1038/nrclinonc.2016.171
- Qian, B., and Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell~141,~39-51.~doi:10.1016/j.cell.2010.03.014
- Qin, S., Xu, L., Yi, M., Yu, S., Wu, K., and Luo, S. (2019). Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. *Mol. Cancer* 18, 155. doi:10.1186/s12943-019-1091-2
- Quan, Y., He, J., Zou, Q., Zhang, L., Sun, Q., Huang, H., et al. (2023). Low molecular weight heparin synergistically enhances the efficacy of adoptive and anti-PD-1-based immunotherapy by increasing lymphocyte infiltration in colorectal cancer. *J. Immunother. Cancer* 11, e007080. doi:10.1136/jitc-2023-007080
- Quatrini, L., Mariotti, F. R., Munari, E., Tumino, N., Vacca, P., and Moretta, L. (2020). The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. *Cancers* 12, 3285. doi:10.3390/cancers12113285
- Rahimi, A., Baghernejadan, Z., Hazrati, A., Malekpour, K., Samimi, L. N., Najafi, A., et al. (2025). Combination therapy with immune checkpoint inhibitors in colorectal cancer: challenges, resistance mechanisms, and the role of microbiota. *Biomed. and Pharmacother.* 186, 118014. doi:10.1016/j.biopha.2025.118014
- Raimondo, S., Pucci, M., Alessandro, R., and Fontana, S. (2020). Extracellular vesicles and tumor-immune escape: biological functions and clinical perspectives. *IJMS* 21, 2286. doi:10.3390/ijms21072286
- Rao, H.-L., Chen, J.-W., Li, M., Xiao, Y.-B., Fu, J., Zeng, Y.-X., et al. (2012). Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients' adverse prognosis. *PLoS One* 7, e30806. doi:10.1371/journal.pone.0030806
- Reissfelder, C., Stamova, S., Gossmann, C., Braun, M., Bonertz, A., Walliczek, U., et al. (2015). Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. *J. Clin. Invest.* 125, 739–751. doi:10.1172/JCI74894
- Revilla, S. A., Frederiks, C. L., Prekovic, S., Mocholi, E., Kranenburg, O., and Coffer, P. J. (2025). Tumor-derived colorectal cancer organoids induce a unique treg cell population by directing CD4+ T cell differentiation. *iScience* 28, 111827. doi:10.1016/j.isci.2025.111827
- Roelands, J., Kuppen, P. J. K., Vermeulen, L., Maccalli, C., Decock, J., Wang, E., et al. (2017). Immunogenomic classification of colorectal cancer and therapeutic implications. *Int. J. Mol. Sci.* 18, 2229. doi:10.3390/ijms18102229
- Romagnani, S., Maggi, E., Liotta, F., Cosmi, L., and Annunziato, F. (2009). Properties and origin of human Th17 cells. *Mol. Immunol.* 47, 3–7. doi:10.1016/j.molimm.2008.12.019

- Rosenberg, S. A. (2014). IL-2: the first effective immunotherapy for human cancer. *J. Immunol.* 192, 5451–5458. doi:10.4049/jimmunol.1490019
- Rotte, A. (2019). Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255. doi:10.1186/s13046-019-1259-z
- Sahin, U., Oehm, P., Derhovanessian, E., Jabulowsky, R. A., Vormehr, M., Gold, M., et al. (2020). An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. *Nature* 585, 107–112. doi:10.1038/s41586-020-2537-9
- Saito, T., Nishikawa, H., Wada, H., Nagano, Y., Sugiyama, D., Atarashi, K., et al. (2016). Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. *Nat. Med.* 22, 679–684. doi:10.1038/nm.4086
- Sarvaria, A., Madrigal, J. A., and Saudemont, A. (2017). B cell regulation in cancer and anti-tumor immunity. *Cell Mol. Immunol.* 14, 662–674. doi:10.1038/cmi.2017.35
- Saxena, M., van der Burg, S. H., Melief, C. J. M., and Bhardwaj, N. (2021). Therapeutic cancer vaccines. *Nat. Rev. Cancer* 21, 360–378. doi:10.1038/s41568-021-00346-0
- Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. *Science* 331, 1565–1570. doi:10.1126/science.1203486
- Schürch, C. M., Bhate, S. S., Barlow, G. L., Phillips, D. J., Noti, L., Zlobec, I., et al. (2020). Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. *Cell* 182 (5), 1341–1359.e19. doi:10.1016/j.cell.2020.07.005
- Schwartz, M., Zhang, Y., and Rosenblatt, J. D. (2016). B cell regulation of the anti-tumor response and role in carcinogenesis. *J. Immunother. cancer* 4, 40. doi:10.1186/s40425-016-0145-x
- Sconocchia, G., Eppenberger, S., Spagnoli, G. C., Tornillo, L., Droeser, R., Caratelli, S., et al. (2014). NK cells and T cells cooperate during the clinical course of colorectal cancer. *Oncoimmunology* 3, e952197. doi:10.4161/21624011.2014.952197
- Shembrey, C., Huntington, N. D., and Hollande, F. (2019). Impact of tumor and immunological heterogeneity on the anti-cancer immune response. *Cancers* 11 (9), 1217. doi:10.3390/cancers11091217
- Shen, Y., Nussbaum, Y. I., Manjunath, Y., Hummel, J. J., Ciorba, M. A., Warren, W. C., et al. (2022). TBX21 methylation as a potential regulator of immune suppression in CMS1 subtype colorectal cancer. *Cancers* 14, 4594. doi:10.3390/cancers14194594
- Sheta, M., Taha, E. A., Lu, Y., and Eguchi, T. (2023). Extracellular vesicles: new classification and tumor immunosuppression. *Biology* 12, 110. doi:10.3390/biology12010110
- Shimabukuro-Vornhagen, A., Schlößer, H. A., Gryschok, L., Malcher, J., Wennhold, K., Garcia-Marquez, M., et al. (2014). Characterization of tumorassociated B-cell subsets in patients with colorectal cancer. *Oncotarget* 5, 4651–4664. doi:10.18632/oncotarget.1701
- Shimizu, D., Yuge, R., Kitadai, Y., Ariyoshi, M., Miyamoto, R., Hiyama, Y., et al. (2024). Pexidartinib and immune checkpoint inhibitors combine to activate tumor immunity in a murine colorectal cancer model by depleting M2 macrophages differentiated by Cancer- associated fibroblasts. *IJMS* 25, 7001. doi:10.3390/ijms25137001
- Shin, H. C., Seo, I., Jeong, H., Byun, S. J., Kim, S., Bae, S. U., et al. (2021). Prognostic impact of tumor-associated macrophages on long-term oncologic outcomes in colorectal cancer. *Life (Basel)* 11, 1240. doi:10.3390/life11111240
- Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest 122, 787–795. doi:10.1172/JCI59643
- Singh, G., Chaudhry, Z., Boyadzhyan, A., Sasaninia, K., and Rai, V. (2025). Dysbiosis and colorectal cancer: conducive factors, biological and molecular role, and therapeutic prospectives. *Explor Target Antitumor Ther.* 6, 1002329. doi:10.37349/etat.2025.1002329
- Sinnamon, M. J., Carter, K. J., Sims, L. P., LaFleur, B., Fingleton, B., and Matrisian, L. M. (2008). A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29, 880–886. doi:10.1093/carcin/bgn040
- Sirkiä, O., Karjalainen, H., Elomaa, H., Väyrynen, S. A., Tuomisto, A., Sirniö, P., et al. (2025). Multimarker assessment of B-Cell and plasma cell subsets and their prognostic role in the colorectal cancer microenvironment. *Clin. Cancer Res.* 31, 2466–2477. doi:10.1158/1078-0432.CCR-24-4083
- Smyth, M. J., Takeda, K., Hayakawa, Y., Peschon, J. J., van den Brink, M. R. M., and Yagita, H. (2003). Nature's TRAIL—on a path to cancer immunotherapy. *Immunity* 18, 1–6. doi:10.1016/s1074-7613(02)00502-2
- Soldevilla, B., Carretero-Puche, C., Gomez-Lopez, G., Al-Shahrour, F., Riesco, M. C., Gil-Calderon, B., et al. (2019). The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. *Eur. J. Cancer* 123, 118–129. doi:10.1016/j.ejca.2019.09.008
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA A Cancer J. Clin.* 71, 209–249. doi:10.3322/CAAC.21660
- Suo, M., Huang, H., Li, T., Meng, Z., Zhang, X., Jiang, S., et al. (2025). Abstract 2573: single-cell multi-omics analysis identifies a novel GPRC5B-marked endothelial

cell subset and its mechanistic role in tumor stemness in colorectal cancer. *Cancer Res.* 85 (8_Suppl. ment_1), 2573. doi:10.1158/1538-7445.am2025-2573

Tacconi, C., Correale, C., Gandelli, A., Spinelli, A., Dejana, E., D'Alessio, S., et al. (2015). Vascular endothelial growth factor C disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion. *Gastroenterology* 148 (7), 1438–51.e8. doi:10.1053/j.gastro.2015.03.005

Takesue, S., Ohuchida, K., Shinkawa, T., Otsubo, Y., Matsumoto, S., Sagara, A., et al. (2020). Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma *via* the activation of cancer-associated fibroblasts. *Int. J. Oncol.* 56, 596–605. doi:10.3892/jio.2019.4951

Tan, R., Nie, M., and Long, W. (2022). The role of B cells in cancer development. Front. Oncol. 12, 958756. doi:10.3389/fonc.2022.958756

Tanaka, A., and Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Res. 27, 109–118. doi:10.1038/cr.2016.151

Tang, C., Ma, J., Liu, X., and Liu, Z. (2020). Identification of four immune subtypes in bladder cancer based on immune gene sets. *Front. Oncol.* 10, 544610. doi:10.3389/fonc.2020.544610

Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022). The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. *Front. Immunol.* 13, 964442. doi:10.3389/fimmu.2022.964442

Tang, S., Che, X., Wang, J., Li, C., He, X., Hou, K., et al. (2025). T-bet+CD8+ T cells govern anti-PD-1 responses in microsatellite-stable gastric cancers. *Nat. Commun.* 16, 3905. doi:10.1038/s41467-025-58958-1

Taube, J. M., Galon, J., Sholl, L. M., Rodig, S. J., Cottrell, T. R., Giraldo, N. A., et al. (2018). Implications of the tumor immune microenvironment for staging and therapeutics. *Mod. Pathol.* 31, 214–234. doi:10.1038/modpathol.2017.156

Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018). TGF β drives immune evasion in genetically reconstituted colon cancer metastasis. *Nature* 554, 538–543. doi:10.1038/nature25492

Teillaud, J.-L., Houel, A., Panouillot, M., Riffard, C., and Dieu-Nosjean, M.-C. (2024). Tertiary lymphoid structures in anticancer immunity. *Nat. Rev. Cancer* 24, 629–646. doi:10.1038/s41568-024-00728-0

Temizoz, B., Hioki, K., Kobari, S., Jounai, N., Kusakabe, T., Lee, M. S. J., et al. (2022). Anti-tumor immunity by transcriptional synergy between TLR9 and STING activation. *Int. Immunol.* 34, 353–364. doi:10.1093/intimm/dxac012

Ten Hoorn, S., De Back, T. R., Sommeijer, D. W., and Vermeulen, L. (2022). Clinical value of consensus molecular subtypes in colorectal cancer: a systematic review and Meta- analysis. *JNCI J. Natl. Cancer Inst.* 114, 503–516. doi:10.1093/jnci/djab106

Thommen, D. S., and Schumacher, T. N. (2018). T cell dysfunction in cancer. Cancer Cell 33,547-562. doi:10.1016/j.ccell.2018.03.012

Tian, Y., Xie, D., and Yang, L. (2022). Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. *Signal Transduct. Target. Ther.* 7 (1), 117. doi:10.1038/s41392-022-00951-x

Toor, S. M., Murshed, K., Al-Dhaheri, M., Khawar, M., Abu Nada, M., and Elkord, E. (2019). Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. *Front. Immunol.* 10, 2936. doi:10.3389/fimmu.2019.02936

Tosolini, M., Kirilovsky, A., Mlecnik, B., Fredriksen, T., Mauger, S., Bindea, G., et al. (2011). Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. *Cancer Res.* 71, 1263–1271. doi:10.1158/0008-5472.CAN-10-2907

Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. *Nat. Rev. Immunol.* 3, 133–146. doi:10.1038/nri1001

Tsui, C., Kretschmer, L., Rapelius, S., Gabriel, S. S., Chisanga, D., Knöpper, K., et al. (2022). MYB orchestrates T cell exhaustion and response to checkpoint inhibition. *Nature* 609, 354–360. doi:10.1038/s41586-022-05105-1

Tufail, M., Jiang, C.-H., and Li, N. (2025). Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches. *Sig Transduct. Target Ther.* 10, 227. doi:10.1038/s41392-025-02280-1

Urias, E., Lee, J., Weil, C. R., Roach, E., Lloyd, S., Hashibe, M., et al. (2025). Combined immune checkpoint inhibitors and ablative radiotherapy in metastatic cancers: a meta-analysis of prospective clinical trials. *bmjonc* 4, e000732. doi:10.1136/bmjonc-2025-000732

 $Van \ Cutsem, E., K\"ohne, C.-H., Hitre, E., Zaluski, J., Chang \ Chien, C.-R., Makhson, A., et al. (2009). Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417. doi:10.1056/NEJMoa0805019$

Van Dieren, L., Quisenaerts, T., Licata, M., Beddok, A., Lellouch, A. G., Ysebaert, D., et al. (2024). Combined radiotherapy and hyperthermia: a systematic review of immunological synergies for amplifying radiation-induced abscopal effects. *Cancers* 16, 3656. doi:10.3390/cancers16213656

Vito, A., El-Sayes, N., and Mossman, K. (2020). Hypoxia-driven immune escape in the tumor microenvironment. Cells 9, 992. doi:10.3390/cells9040992

Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. *Science* 331, 44–49. doi:10.1126/science.1198687

Waldmann, T. A. (2003). IL-15 in the life and death of lymphocytes: immunotherapeutic implications. Trends Mol. Med. 9, 517–521. doi:10.1016/j.molmed.2003.10.005

Wang, Y.-J., Fletcher, R., Yu, J., and Zhang, L. (2018). Immunogenic effects of chemotherapy-induced tumor cell death. *Genes and Dis.* 5, 194–203. doi:10.1016/j.gendis.2018.05.003

Wang, G., Yang, Q., Li, M., Zhang, Y., Cai, Y., Liang, X., et al. (2019). Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. *Biol. Open* 8, bio042838. doi:10.1242/bio.042838

Wang, H., Tian, T., and Zhang, J. (2021). Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): from mechanism to therapy and prognosis. *Int. J. Mol. Sci.* 22, 8470. doi:10.3390/ijms22168470

Wang, Y., Johnson, K. C. C., Gatti-Mays, M. E., and Li, Z. (2022). Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. *J. Hematol. Oncol.* 15, 118. doi:10.1186/s13045-022-01335-y

Wang, L., Chen, Z., Liu, G., and Pan, Y. (2023). Functional crosstalk and regulation of natural killer cells in tumor microenvironment: significance and potential therapeutic strategies. *Genes and Dis.* 10, 990–1004. doi:10.1016/j.gendis.2022.07.009

Wang, S., Wang, J., Chen, Z., Luo, J., Guo, W., Sun, L., et al. (2024a). Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. *Precis. Onc.* 8, 31. doi:10.1038/s41698-024-00522-z

Wang, Y., Chen, L., Wang, Y., and Xu, J. (2024b). Immunotherapy in colorectal cancer: statuses and strategies. Front. Immunol. 15, 1339591. doi:10.3389/fimmu.2024.1339591

Wang, H., Qiu, B., Li, X., Ying, Y., Wang, Y., Chen, H., et al. (2025). Single cell analysis reveals that SPP1+ macrophages enhance tumor progression by triggering fibroblast extracellular vesicles. *Transl. Oncol.* 55, 102347. doi:10.1016/j.tranon.2025.102347

Wankhede, D., Yuan, T., Kloor, M., Halama, N., Brenner, H., and Hoffmeister, M. (2024). Clinical significance of combined tumour-infiltrating lymphocytes and microsatellite instability status in colorectal cancer: a systematic review and network meta-analysis. *Lancet Gastroenterology and Hepatology* 9, 609–619. doi:10.1016/S2468-1253(24)00091-8

Williams, D. S., Mouradov, D., Jorissen, R. N., Newman, M. R., Amini, E., Nickless, D. K., et al. (2019). Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes. Gut 68, 465-474. doi:10.1136/gutjnl-2017-315664

Witalisz-Siepracka, A., Klein, K., Zdársky, B., and Stoiber, D. (2022). The multifaceted role of STAT3 in NK-Cell tumor surveillance. *Front. Immunol.* 13, 947568. doi:10.3389/fimmu.2022.947568

Wolf, C., Maus, C., Persicke, M. R. O., Filarsky, K., Tausch, E., Schneider, C., et al. (2022). Modeling the b-cell receptor signaling on single cell level reveals a stable network circuit topology between nonmalignant B cells and chronic lymphocytic leukemia cells and between untreated cells and cells treated with kinase inhibitors. *Intl J. Cancer* 151, 783–796. doi:10.1002/ijc.34112

Wong, S. H., and Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. *Nat. Rev. Gastroenterol. Hepatol.* 16, 690–704. doi:10.1038/s41575-019-0209-8

Worthington, J. J., Fenton, T. M., Czajkowska, B. I., Klementowicz, J. E., and Travis, M. A. (2012). Regulation of TGF β in the immune system: an emerging role for integrins and dendritic cells. *Immunobiology* 217, 1259–1265. doi:10.1016/j.imbio.2012.06.009

Wouters, M. C. A., and Nelson, B. H. (2018). Prognostic significance of Tumor-infiltrating B cells and plasma cells in human cancer. *Clin. Cancer Res.* 24, 6125–6135. doi:10.1158/1078-0432.CCR-18-1481

Wrangle, J. M., Velcheti, V., Patel, M. R., Garrett-Mayer, E., Hill, E. G., Ravenel, J. G., et al. (2018). ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. *Lancet Oncol.* 19, 694–704. doi:10.1016/S1470-2045(18)30148-7

Wu, X., Yan, H., Qiu, M., Qu, X., Wang, J., Xu, S., et al. (2023). Comprehensive characterization of tumor microenvironment in colorectal cancer *via* molecular analysis. *eLife* 12, e86032. doi:10.7554/eLife.86032

Wu, B., Zhang, B., Li, B., Wu, H., and Jiang, M. (2024). Cold and hot tumors: from molecular mechanisms to targeted therapy. *Sig Transduct. Target Ther.* 9, 274. doi:10.1038/s41392-024-01979-x

Xia, J., Xie, Z., Niu, G., Lu, Z., Wang, Z., Xing, Y., et al. (2023). Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. *Immunology* 168, 135–151. doi:10.1111/imm.13568

Xian, D., Niu, L., Zeng, J., and Wang, L. (2021). LncRNA KCNQ1OT1 secreted by tumor cell-derived exosomes mediates immune escape in colorectal cancer by regulating PD-L1 ubiquitination *via* MiR-30a-5p/USP22. *Front. Cell Dev. Biol.* 9, 653808. doi:10.3389/fcell.2021.653808

Xiong, J., Chi, H., Yang, G., Zhao, S., Zhang, J., Tran, L. J., et al. (2023). Revolutionizing anti-tumor therapy: unleashing the potential of B cell-derived exosomes. *Front. Immunol.* 14, 1188760. doi:10.3389/fimmu.2023.1188760

Xu, Y., Wei, Z., Feng, M., Zhu, D., Mei, S., Wu, Z., et al. (2022). Tumor-infiltrated activated B cells suppress liver metastasis of colorectal cancers. *Cell Rep.* 40, 111295. doi:10.1016/j.celrep.2022.111295

Xu, L., Wu, Q., Zhao, K., Li, X., and Yao, W. (2024). Prognostic prediction signature and molecular subtype for liver cancer: a CTC/CTM-related gene prediction model and independent external validation. *Oncol. Lett.* 28, 531. doi:10.3892/ol.2024.14664

- Xu, H., Fu, X., Wang, S., Ge, Y., Zhang, L., Li, J., et al. (2025). Immunoglobulin-like transcript 5 polarizes M2 -like tumor-associated macrophages for immunosuppression in non- small cell lung cancer. *Intl J. Cancer* 156, 2225–2236. doi:10.1002/ijc.35360
- Xue, X., Li, R., Chen, Z., Li, G., Liu, B., Guo, S., et al. (2023). The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. *Front. Immunol.* 14, 1235827. doi:10.3389/fimmu.2023.1235827
- Yan, S., Wang, W., Feng, Z., Xue, J., Liang, W., Wu, X., et al. (2024). Immune checkpoint inhibitors in colorectal cancer: limitation and challenges. *Front. Immunol.* 15, 1403533. doi:10.3389/fimmu.2024.1403533
- Yang, X., Wei, Y., Sheng, F., Xu, Y., Liu, J., Gao, L., et al. (2021). Comprehensive analysis of the prognosis and immune infiltration for CXC chemokines in colorectal cancer. *Aging* 13, 17548–17567. doi:10.18632/aging.203245
- Yang, Z., Zhang, Y., Gao, X., Li, K., Shi, S., and Wang, H. (2024). CAR-NK cell therapy: a transformative approach to overcoming oncological challenges. *Biomolecules* 14 (8), 1035. doi:10.3390/biom14081035
- Yang, H., Zhang, Z., Li, J., Wang, K., Zhu, W., and Zeng, Y. (2024a). The dual role of B cells in the tumor microenvironment: implications for cancer immunology and therapy. *IJMS* 25, 11825. doi:10.3390/ijms252111825
- Yang, Y., Chen, X., Pan, J., Ning, H., Zhang, Y., Bo, Y., et al. (2024b). Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. *Cell* 187, 4790–4811.e22. doi:10.1016/j.cell.2024.06.038
- Yin, Y., Liu, B., Cao, Y., Yao, S., Liu, Y., Jin, G., et al. (2022). Colorectal cancer- derived small extracellular vesicles promote tumor immune evasion by upregulating PD- L1 expression in tumor-associated macrophages. *Adv. Sci.* 9, 2102620. doi:10.1002/advs.202102620
- Yu, J., Fu, L., Wu, R., Che, L., Liu, G., Ran, Q., et al. (2025). Immunocytes in the tumor microenvironment: recent updates and interconnections. *Front. Immunol.* 16, 1517959. doi:10.3389/fimmu.2025.1517959

- Yue, B. (2014). Biology of the extracellular matrix: an overview. J. Glaucoma 23, S20–S23. doi:10.1097/IJG.000000000000108
- Zahavi, D., and Weiner, L. (2020). Monoclonal antibodies in cancer therapy. Antibodies 9, 34. doi:10.3390/antib9030034
- Zhai, J., Gu, X., Liu, Y., Hu, Y., Jiang, Y., and Zhang, Z. (2023). Chemotherapeutic and targeted drugs-induced immunogenic cell death in cancer models and antitumor therapy: an update review. *Front. Pharmacol.* 14, 1152934. doi:10.3389/fphar.2023.1152934
- Zhang, Y., Xu, J., Zhang, N., Chen, M., Wang, H., and Zhu, D. (2019a). Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. *Cancer Lett.* 458, 123–135. doi:10.1016/j.canlet.2019.05.017
- Zhang, Y., Zeng, Y., Liu, T., Du, W., Zhu, J., Liu, Z., et al. (2019b). The canonical TGF- β /Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR- TKIs in EGFR-mutant non-small-cell lung cancer. *Respir. Res.* 20, 164. doi:10.1186/s12931-019-1137-4
- Zhang, Z., Ma, L., Goswami, S., Ma, J., Zheng, B., Duan, M., et al. (2019c). Landscape of infiltrating B cells and their clinical significance in human hepatocellular carcinoma. *OncoImmunology* 8, e1571388. doi:10.1080/2162402X.2019.1571388
- Zhang, Y., Ding, X., Zhang, X., Li, Y., Xu, R., Li, H.-J., et al. (2024). Unveiling the contribution of tumor-associated macrophages in driving epithelial-mesenchymal transition: a review of mechanisms and therapeutic strategies. *Front. Pharmacol.* 15, 1404687. doi:10.3389/fphar.2024.1404687
- Zhao, Y., Ge, X., He, J., Cheng, Y., Wang, Z., Wang, J., et al. (2019). The prognostic value of tumor-infiltrating lymphocytes in colorectal cancer differs by anatomical subsite: a systematic review and meta-analysis. *World J. Surg. Onc* 17, 85. doi:10.1186/s12957-019-1621-9
- Zhou, K., Guo, S., Li, F., Sun, Q., and Liang, G. (2020). Exosomal PD-L1: new insights into tumor immune escape mechanisms and therapeutic strategies. *Front. Cell Dev. Biol.* 8, 569219. doi:10.3389/fcell.2020.569219
- Zhou, Y., Tao, L., Qiu, J., Xu, J., Yang, X., Zhang, Y., et al. (2024). Tumor biomarkers for diagnosis, prognosis and targeted therapy. *Sig Transduct. Target Ther.* 9, 132. doi:10.1038/s41392-024-01823-2