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Bone Morphogenetic Protein 4 (BMP4) plays a critical role in development, but
its function in pancreatic adenocarcinoma (PAAD) is not well understood. We
found that BMP4 is minimally expressed in the normal pancreas but markedly
upregulated in PAAD, correlating with poor patient survival. Pan-cancer analysis
revealed distinct expression and prognostic patterns of BMP4, while pathway
analyses indicated that BMP4 predominantly regulates metabolic rather than
canonical BMP signaling. Single-cell RNA-seq showed BMP4 enrichment in
cancer cells and cancer stem cells, supporting its role in tumor metabolism.
Importantly, BMP4 was identified as an independent prognostic factor for PAAD,
and a nomogram incorporating BMP4 accurately predicted patient outcomes.
Although BMP4 affected certain immune cell infiltrations, its prognostic impact
was largely independent of immune modulation. Collectively, these findings
highlight BMP4 as a potential biomarker and therapeutic target in PAAD.
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Introduction

Pancreatic cancer poses a substantial threat to human health, exhibiting the highest
mortality rates and the lowest survival rates among all cancer types. It has two
main subtypes: pancreatic adenocarcinoma (PAAD) and pancreatic neuroendocrine
tumor, with PAAD accounting for over 90% of cases. The prognosis for PAAD
remains grim, with less than 13% of patients surviving 5 years post-diagnosis
(Siegel et al., 2024). While surgery remains the primary treatment for PAAD, it is
often accompanied by complications and trauma. Chemotherapy and radiotherapy are
alternatives, yet despite progress, they have not substantially improved patient survival
(Mizrahi et al., 2020).
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Recent advances in systemic treatments, including novel
chemotherapeutic agents and targeted therapies, have shown
promise in improving outcomes for pancreatic cancer patients.
For instance, emerging treatments have provided new insights into
the therapeutic landscape and offer potential to extend patient
survival (Sahin et al, 2024). Notably, targeted therapy, proven
effective in numerous cancer types (Bhave et al., 2021; Chan et al.,
2021; Garcia Campelo et al, 2021), has not been extensively
explored in PAAD. Given that targeted therapy relies on cancer-
specific target molecules, there is an urgent need to identify
novel candidate targets in PAAD. In this context, recent efforts
to directly inhibit oncogenic KRAS—one of the most prevalent
driver mutations in PAAD—have gained increasing attention.
Several KRAS®!?© inhibitors, such as sotorasib, have demonstrated
preliminary efficacy and manageable safety in early clinical studies
of pancreatic cancer patients (Hallin et al., 2020; Canon et al., 2019;
Hong et al.,, 2020). Moreover, broader KRAS-targeted strategies,
including KRASS'?P inhibitors and pan-KRAS approaches, are
actively being developed (Moore et al., 2020). Although KRASS!2¢
mutations are rare (<2%) in PAAD, these advances highlight the
feasibility of targeting RAS signaling in subsets of patients. This
evolving therapeutic landscape underscores the pressing need to
explore additional, potentially complementary, molecular targets in
PAAD, such as BMP4.

Bone Morphogenetic Protein 4 (BMP4) plays a crucial role
in mammalian development, particularly in tissues and organs
originating from mesoderm and endoderm. As a ligand protein
in the transforming growth factor-f superfamily, BMP4 typically
binds to two receptors, BMPR1 and BMPR2, activating the
Smad-dependent BMP signaling pathway. This activation leads
to the phosphorylation of R-Smads (SMADI, SMADS5, and
SMADS), forming a complex with common-partner Smads and
initiating downstream gene transcription (Miyazono et al., 2010).
Additionally, BMP4 can regulate MAPK, PI3K/AKT, and Rho-
GTPase pathways independently of Smads (Derynck and Zhang,
2003). Previous studies have reported upregulation of BMP4 in
various cancer types, including melanoma, gastric, and ovarian
cancers (Rothhammer et al., 2005; Kim et al., 2011; Laatio et al.,
2011). Dysregulation of BMP4 is closely associated with cancer
cell growth, apoptosis, migration, and invasion (Johnson et al,
2009; Hjertner et al., 2001; Virtanen et al., 2011). While some
studies have investigated BMP4’s roles in PAAD (Virtanen et al,
20115 Hua et al., 2006; Gordon et al., 2009), they often utilized in
vitro cultured cell lines and ectopically introduced BMP4, failing to
delineate the roles of endogenously expressed BMP4 orthotopically.
Furthermore, the prognostic significance of BMP4 in pancreatic
cancer remains unclear.

In this study, we assessed BMP4 expression in pan-cancer tissues
and their matched normal counterparts, with notable dysregulation
in PAAD. Bulk transcriptomic analyses identified differentially
expressed genes associated with BMP4, and pathway analysis
revealed that BMP4 did not strongly affect canonical BMP signaling
but instead significantly altered metabolic pathways. Single-cell
transcriptomic data further showed BMP4 expression in cancer
cells and cancer stem cells. Finally, we demonstrated the prognostic
significance of BMP4 in PAAD. Together, these findings provide
new insight into BMP4 expression and function and underscore its
potential role in prognosis prediction in PAAD.
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Materials and methods

Pan-cancer analysis of BMP4 expression
and methylation

Relative levels of BMP4 mRNA and protein in various normal
tissues were obtained from the Genotype-Tissue Expression (GTEx)
and Human Protein Atlas (HPA) databases. BMP4 mRNA levels
in pan-cancer cell lines were retrieved from the Cancer Cell Line
Encyclopedia (CCLE) database. BMP4 mRNA levels in cell lines
from various normal tissues were downloaded from the HPA
database. Clinical information, mRNA, and methylation profiles of
patients across all cancer types were acquired from The Cancer
Genome Atlas (TCGA). Expression and methylation data were
visualized using the “ggplot2” package in R. Prognostic values of
BMP4 were assessed by dividing patients into high- and low-BMP4
groups based on median levels, and survival analysis was conducted
using the “survival” and “survminer” packages in R. Significance
was set at P < 0.05, and results were visualized using the “ggplot2”
package in R.

RNA-sequencing (RNA-seq) data analysis

Transcriptome data of the PAAD cohort in TCGA (TCGA-
PAAD) were analyzed. The GSE57495 and GSE78229 datasets were
downloaded from the GEO database and served as validation
cohorts. The clinical information of the TCGA-PAAD cohort
is listed in Supplementary Table S1. Differentially expressed genes
(DEGs) were determined using the “DESeq2” package in R with P
< 0.05 and [log2(FoldChange)| > 1 as cutoffs. Gene ontology (GO)
analysis was conducted using the “clusterProfiler” package in R and
visualized using the “GOplot” package in R. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis was performed
at The Database for Annotation, Visualization and Integrated
Discovery website (DAVID, https://david.ncifcrf.gov/). The results
of DEG determination and KEGG analysis were visualized using
the “ggplot2” package in R. P < 0.05 was used for the significance
threshold. Protein-protein interaction (PPI) analysis was performed
at the STRING website (https://cn.string-db.org/) and visualized
using the Cytoscape software.

Single-cell RNA sequencing (scRNA-seq)
data analysis

scRNA-seq data of PAAD from GEO database (GSE197177,
GSE214295, and GSE217845) were downloaded. GSE197177 was
used as the test cohort, while GSE214295 and GSE217845 were used
as the validation cohorts. Data were merged using the “harmony”
package in R. The integrated scRNA-seq data was filtered using
the following criteria: each cell should express 200-8,000 genes;
each gene should be expressed in at least 3 cells; the ratio of
mitochondrial genes should be less than 20%; the ratio of ribosomal
genes should be more than 10%. Subsequently, the scRNA-seq
data were subjected to doublet removal using the “DoubletFinder”
package in R. Collectively, we obtained the filtered scRNA-seq
data, including 24,495 genes and 22,639 cells. The scRNA-seq
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was primarily analyzed with the “Seurat” package in R. The Top
2000 genes were used for principal components analysis (PCA)
and the top 40 principle components were used for Uniform
Manifold Approximation and Projection (UMAP). By setting the
resolution at 0.8, all cells in the scRNA-seq data were clustered
into 23 clusters (clusters 0-22). The clusters were annotated with
previously reported markers using the following criteria: B cells
were CD79A and CD79B positive; cancer cells were IMP3, MUCI,
and S100P positive and PROM1 negative; cancer stem cells (CSCs)
were PROMI positive; endocrine cells were CHGA and CHGB
positive; endothelial cells were positive for PECAMI, CDH5, and
ENG; epithelial cells were CDH1, EPCAM, and KRTGI9 positive
and IMP3, MUCI, and S100P negative; fibroblasts were ACTA2,
COL11AI, COLIAI and THY1 positive; macrophages were AIFI,
CD68, and CD86 positive; mast cells were MS4A2 and TPSABI
positive; plasma cells were CD27, CD38, and TNFRSF17 positive; T
cells were CD3D, CD3E, and CD3G positive. DEGs were determined
using the “FindMarkers” function in the Seurat package. All results
were visualized using the built-in functions of the Seurat package
and the “ggplot2” package in R.

Kaplan-Meier survival analysis

The overall survival (OS),

disease-free survival (DFS), and progression-free survival (PFS) of

disease-specific survival (DSS),

the TCGA-PAAD cohort were retrieved along with transcriptomic
data. OS and transcriptomic data of validation cohorts (GSE57495
and GSE78229) were also downloaded. Kaplan-Meier survival
analysis was performed using the “survival” and “survminer”
packages in R. Patients were equally divided into two groups
according to median levels of specific gene expressions or immune
cell infiltrations. Significance was set at P < 0.05.

Univariant and multivariant cox analyses

Univariant and multivariant Cox analyses were performed on
the transcriptomic data and clinical information of the TCGA-
PAAD cohort. Both Cox analyses were conducted using the “coxph”
function in the “survival” R package with the gender, histological
stages, age, and BMP4 levels as the parameters. Univariant Cox
analysis was performed with one of these parameters at a time,
while multivariant Cox analysis used all these parameters together.
The values of the hazard ratio, confidence intervals of 5% and 95%,
and P-value were obtained from the Cox analyses and visualized
using the “forestplot” package in R. The GSE57495 and GSE78229
datasets served as validation cohorts. P < 0.05 was considered to be
significant.

Nomogram analysis

Nomogram analysis was performed on the transcriptomic data
and clinical information of the TCGA-PAAD cohort using the “rms”
package in R. The predictive model of pancreatic cancer prognosis
was constructed using gender, TNM stages, age, and BMP4 levels as
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the parameters. Actual OS data were used for model verification. The
GSE57495 and GSE78229 datasets served as validation cohorts.

Immune infiltration analysis

Immune infiltration was determined using the CIBERSORT
algorithm (v1.02) as described previously (Newman et al., 2015).
The LM22 signature matrix was applied. The immune infiltration
result included the relative infiltration levels of B cells (naive, plasma,
and memory), T cells (CD8", naive CD4", resting memory CD4",
activated memory CD4", follicular helper, regulatory, and gamma
delta), NK cells (resting and activated), macrophages (MO0, M1,
and M2), dendritic cells (resting and activated), mast cells (resting
and activated), monocytes, eosinophils, neutrophils. All results were
visualized using the “ggplot2” package in R. P < 0.05 was considered
to be significant.

Immunohistochemical staining

Immunohistochemical staining was conducted using an
Immunohistochemistry Kit (Sangon Biotech, Cat# D601037)
according to the manufacturers protocol. Pancreatic cancer and
its para-carcinoma slides were first dewaxed with xylene and
rehydrated with a gradient concentration of ethanol. The slides
were then sequentially subjected to antigen retrieval, bovine
serum albumin (BSA) blocking, and overnight incubation of
primary antibodies. On the next day, the slides were incubated
with HRP-conjugated secondary antibodies and then subjected
to a chromogenic reaction. The slides were further stained with
hematoxylin. Images were captured using a Leica DMi8 fluorescence
microscope. The antibodies used in this study were as follows:
BMP4 mADb (Abclonal, Cat# A11405) and Goat Anti-Rabbit HRP
secondary antibody (Biosharp, Cat# BL003A). All clinical samples
used in this study were obtained with written informed consent
from patients. Our study and all methods were approved by the
Ethics Committee of Anhui Normal University.

Cell culture

PANC-1 cells, which exhibited low basal BMP4 expression,
were cultured in the Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco) supplemented with 10% Fetal Bovine Serum (FBS), 50 U/mL
penicillin (Gibco), and 50 pg/mL streptomycin (Gibco). For BMP4
treatment, 10 ng/mL BMP4 (R&D systems) was added.

Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted with a total RNA
reagent (Biosharp). Reverse transcription was performed with
the FastKing RT kit (Tiangen) and quantitative PCR was
performed with the Powerup SYBR master mix (Applied

isolation

Biosystems). These experiments were conducted according to
their corresponding manufacturer’s protocols. f-ACTIN was used
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as the internal control. All primer sequences used in this study
are listed in Supplementary Table S2.

Results

Pan-cancer analysis of BMP4 expressions
and prognostic values

BMP4 is an important ligand regulating development and
diseases via the BMP signaling pathway, while it is also involved
in the regulation of other signaling pathways. Previous studies have
demonstrated the essential roles of BMP4 and the BMP signaling
pathway in the development and certain cancer types. However,
a systematic study on the profile and prognostic values of BMP4
from a pan-cancer perspective was still lacking. Here, we first
explored the expression patterns of BMP4 in normal tissues. We
analyzed the transcriptome and proteome data from the HPA
and GTEx databases. Both the RNA and protein of BMP4 were
highly expressed in the prostate, ovary, colon, etc., while lowly
expressed in the pancreas, substantia nigra, putamen, liver, etc.
(Supplementary Figure S1A). In contrast, by analyzing the relative
expressions of BMP4 in various cell lines of different cancer types,
we found that BMP4 was highly expressed in the cancers of the
pancreas, eye, liver, etc. (Supplementary Figure S1B). It should be
noted that BMP4 was relatively low expressed in pancreas but
aberrantly upregulated in pancreatic cancer, implying a potential
involvement of BMP4 in the tumorigenesis of pancreatic cancer.
Furthermore, we determined the detailed distributions of BMP4
in various cell types of normal tissues. For most tissues, BMP4
was enriched in fibroblasts, smooth muscle cells, and endothelial
cells (Supplementary Figure S1C). This agreed with previously
documented BMP4-secreting cell types. We next investigated the
prognostic values of BMP4 in all cancer types listed in the TCGA
database, the outcomes of which were highly divergent according
to different cancer types. When focusing on the overall survival
(OS), BMP4 was a significant hazard factor for adrenocortical
cancer (ACC), pancreatic cancer (PAAD), and pheochromocytoma
& paraganglioma (PCPG) and a beneficial factor for breast cancer
(BRCA), acute myeloid leukemia (LAML), lower grade glioma
(LGG), and stomach cancer (STAD). Particularly, in addition to
OS, BMP4 was also a beneficial factor for the disease-specific
survival (DSS), disease-free survival (DFS), and progression-free
survival (PFS) of STAD and a hazard factor for the DFS and
PES of PAAD (Supplementary Figure S1D). Taken together, the
contrast expression patterns of BMP4 in normal pancreas and
pancreatic cancer and its prognostic values implied an important
role of BMP4 in PAAD.

Pan-cancer analysis of BMP4 methylations

DNA methylation is an important epigenetic regulation of
gene expression and its dysregulation serves as a hallmark of
tumorigenesis. Hypermethylation was usually associated with
suppressed gene expressions, while hypomethylation usually led to
enhanced gene expressions. As we have shown that the expressions
of BMP4 were largely dysregulated during tumorigenesis, we
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wondered if such expression changes were due to DNA methylation.
We determined the relative methylation levels of BMP4 locus
in various cancer types and found that its methylation was
relatively low in testicular cancer (TGCT), PCPG, and mesothelioma
(MESO) but relatively high in thyroid cancer (THCA), PAAD,
and lung adenocarcinoma (LUAD) (Supplementary Figure S2A).
Next, we analyzed the correlation between the expression and
methylation of BMP4 in all cancer types. As expected, the
methylation and expression of BMP4 were adversely correlated in
most cancer types, with such correlations being significant only
in endometrioid cancer (UCEC), lung squamous cell carcinoma
(LUSC), LAML, thymoma (THYM), ocular melanomas (UVM),
ACG, uterine carcinosarcoma (UCS), and large B-cell lymphoma
(DLBC) (Supplementary Figure S2B). Subsequently, we explored the
prognostic values of BMP4 methylation in all cancer types. BMP4
methylation was a significantly beneficial factor for the OS of ACC,
glioblastoma (GBM), LGG, prostate cancer (PRAD), and UCEC.
Besides OS, BMP4 methylation was also beneficial to the DSS of
ACC, DSS, and PFS of GBM and LGG, PFS of PAAD, DSS, DFS,
and PFS of UCEC. In contrast, BMP4 methylation was hazardous
for the DSS of MESO and PCPG, PFS of PRAD, and DEFS of
sarcoma (SARC) (Supplementary Figure S2C). It is worth noting
that BMP4 expression was significantly hazardous for the OS of
PAAD, while its methylation did not affect the OS of PAAD. This
agreed with the correlation of expression and methylation of BMP4
in PAAD, which was not significant. These results indicated that
the methylation of BMP4 was not the main cause of its aberrant
upregulation and had little effect on prognosis in PAAD.

BMP4 was significantly upregulated and
associated with poor prognosis in PAAD

As we have shown that BMP4 was initially low expressed
in normal pancreas tissues and became the top expressed in
PAAD among all cancer types, we determined to systematically
study the function and prognostic values of BMP4 in PAAD. We
merged the transcriptomic data of the PAAD cohort in the TCGA
with that of the normal pancreas in the GTEx. Compared to
the normal pancreas, BMP4 was significantly upregulated in the
PAAD (Figure 1A). The expression of BMP4 showed an escalating
trend as the pathological stage progressing (Figure 1B) but was
not significantly affected by the age, gender, and recurrent status
of PAAD patients (Supplementary Figure S3A-C). For verification,
we performed immunohistochemistry against BMP4 on normal
pancreas, low-grade PAAD, and high-grade PAAD tissues. As a
result, BMP4 was remarkably expressed in both low-grade and high-
grade PAAD tissues but not in the normal pancreas, with the high-
grade PAAD showing stronger BMP4 expressions (Figure 1C). We
next evaluated the impacts of BMP4 on the OS, DFS, DSS, and
PES of PAAD using the Kaplan-Meier survival curves, respectively.
All survival assays were conducted by clustering patients into the
high- and low-BMP4 groups according to the median expression
of BMP4. As a result, the OS, DES, and PES of PAAD were
significantly shorter with high BMP4 expressions, while the DSS was
unaffected (Figures 1D-G).

Given that BMP4 upregulation was significantly hazardous for
the prognosis of PAAD, we are curious about the gene expression
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FIGURE 1
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changes caused by BMP4 dysregulation. We equally divided the
patients in the PAAD cohort of the TCGA database into the low- and
high-BMP4 groups according to the median expression of BMP4.
Subsequently, we determined the differentially expressed genes
(DEGs) between the two groups using the “DESeq2” package in R. P-
value <0.05 and |log2(Fold Change)|>1 were used as a significance
threshold. Collectively, there were 419 genes upregulated and 305
genes downregulated with BMP4 upregulation (Figure 2A). We
also plotted a heatmap of the top 50 altered genes and built a
protein-protein interaction network of essential node genes. By
looking into the DEGs, we noticed that WNT7B, SMAD6, TSPANI,
and PARP3 were among the top altered DEGs regarding BMP4
upregulation (Figures 2B,C). Such genes were related to the Wnt
and TGF-p signaling pathways and the DNA repair process, which
has been implicated as important for regulating pancreatic cancer
(Ram Makena et al., 2019; Zhao et al., 2018; Perkhofer et al., 2021).

As BMP4 was a well-known ligand for the BMP signaling
pathway, we asked if the upregulation of BMP4 indeed led to the
activation of the BMP signaling pathway in PAAD. We extracted
the expression levels of the genes related to the gene ontology
(GO) terms of both positive and negative regulation of the BMP
signaling pathway. We found that those BMP signaling pathway-
related genes were all unaffected in response to BMP4 alterations,
indicating that BMP4 levels might not consequently alter the BMP
signaling pathway in PAAD (Figure 2D). As such, we performed
gene ontology (GO) and KEGG pathway analyses to reveal the
biological processes and pathways that BMP4 regulated in PAAD.
As a result, we found that BMP4 promoted epidermis development,
channel activity, signaling receptor activator activity, receptor-
ligand activity, and passive transmembrane transporter activity-
related processes (Figure 3A). However, BMP4 suppressed the
processes of signal release, channel activity, glucose homeostasis,
protein secretion, and passive transmembrane transporter activity
(Figure 3B). As to pathways, BMP4 mainly promoted the metabolic,
chemical carcinogenesis, Wnt signaling, biosynthesis of cofactors,
and estrogen signaling-related pathways, but suppressed the PPAR
signaling, calcium signaling, insulin secretion, and cAMP signaling
pathways. Notably, there were 46 DEGs prominently associated with
the metabolic pathways, which was top-ranked as to total gene
counts enriched in each pathway, suggesting BMP4 might facilitate
tumorigenesis via adjusting metabolism (Figure 3C). We plotted a
heatmap showing the relative expressions of the 46 metabolism-
related DEGs in the PAAD samples of the TCGA and found that
these genes were relatively highly expressed in the high-BMP4
group (Figure 3D). Moreover, consistent with the above findings, the
BMP signaling was not among the significantly changed pathways.
The BMP4-associated metabolic genes were mainly enriched
in pathways related to drug/xenobiotic metabolism (UGTIA
family), lipid and phospholipid metabolism (PLA2G2F, SDR16C5),
steroid/estrogen metabolism (SULT1EI, UGTIAI), vitamin D and
A metabolism (CYP24A1, SDR16C5), and mitochondrial oxidative
phosphorylation (COX6B2). These results suggested that BMP4
might broadly reprogram pancreatic cancer cell metabolism at
multiple levels. For validation, we re-analyzed the significantly
altered pathways in response to BMP4 expression changes in two
validation cohorts, GSE57495 and GSE78229. Similarly, metabolic
pathways were the most significantly promoted pathways in
both cohorts (Supplementary Figure S4A,B). The DEGs related to
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metabolism in both cohorts were relatively highly expressed with
high BMP4 expressions (Supplementary Figure S4C,D). To further
validate the effect of BMP4 on the metabolism of PAAD, we
compared the expressions of the top ten altered metabolism-
related DEGs between the BMP4-treated and -untreated PANC-1
cells, of which the endogenous BMP4 was relatively low expressed
among PAAD cell lines (Supplementary Figure S5). Consistently,
these DEGs were also significantly upregulated with BMP4
treatment (Figure 3E).

BMP4 was mainly expressed by cancer cells
and cancer stem cells

Single-cell RNA sequencing (scRNA-seq) has been emerging
as an approach to resolve cell constitutions within specific tissues
or cell culture samples. Given the significant upregulations during
tumorigenesis and prognostic values of BMP4 in PAAD, we would
like to determine the cell types within PAAD tumors where BMP4
was expressed. We analyzed scRNA-seq data of PAAD, which
consisted of cells collected from three PAAD patients. The scRNA-
seq data were subjected to data filtration and dimension reduction.
By UMAP projection, the cells from the three patients displayed
similar cell distributions, suggesting that the cell compositions
identified here were generally representative (Figure 4A). Next,
we used the built-in function, “FindClusters”, in the “Seurat”
package and set the resolution at 0.8 to discover clusters within
the scRNA-seq data. Consequently, we obtained 23 clusters (clusters
0-22) (Figure 4B). We then annotated these cell clusters using
previously reported cell markers (Figure 4C). Collectively, the
scRNA-seq data contained 11 cell types (Figure 4D) and the top
three enriched cell types were T cells (33.48%), cancer cells
(21.12%), and fibroblasts (11.44%) (Figure 4E). Subsequently, we
investigated the distributions of BMP4 among these cell types.
As a result, we found that BMP4 was specifically enriched in
CSCs and cancer cells, and was also clearly expressed in epithelial
cells and fibroblasts (Figures 4FG). Consistent with this, we
retrieved the transcriptomic profile data of different cohorts of
PAAD and found that the expressions of BMP4 were enriched
in the malignant cancer cells, epithelial cells, and fibroblasts
(Figure 4H). For validation, we re-performed the same analyses
on the GSE214295 and GSE217845 cohorts. With the same cell-
specific markers, we successfully annotated all the above cell
types. Consistently, BMP4 was also discovered to be expressed in
CSCs and cancer cells (Supplementary Figures 56,57). These results
together showed that BMP4 was primarily expressed in cancer
cells and CSCs. However, as BMP4 is a secreting protein, its
protein distribution might differ from its transcriptomic pattern,
as indicated by immunohistochemistry results. Nevertheless, the
intrinsic mechanism that controlled the specific transcriptomic
expressions of BMP4 warrants further investigation.

As BMP4 was enriched in the cancer cells and CSCs, we
extracted these two types of cells from the scRNA-seq data and
studied the impacts of BMP4 level changes on the expressions of
other genes, respectively. First, we extracted the cancer cell subgroup
and determined the DEGs associated with BMP4 dysregulations.
By equally dividing the cancer cells into two groups, high- and
low-BMP4 cells, according to cell-intrinsic BMP4 expressions, we
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FIGURE 5
The DEGs between the high-and low-BMP4 cancer cells and CSCs in the PAAD scRNA-seq dataset GSE197177. (A) The log2|(Fold Change)| of the DEGs
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cell subgroups of the PAAD scRNA-seq data.
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The expression of BMP4 was an independent prognostic factor for PAAD. (A) Univariant and (B) multivariant Cox regression analyses were performed
on BMP4 expressions and other clinical parameters. These analyses were all performed on the TCGA-PAAD cohort.

analyzed the DEGs using a built-in function, “FindMarkers”, in
the “Seurat” package. By setting P-value <0.05 and [logFC| >
0.25 as the therashold, we found that MMP7, SOX4, PMEPAI,
AKAPI2, ATPIBI, SPINT2, RNASET2, APP, ERRFI1, KRT17, and
SLCI2A2 were significantly upregulated, while RGSI, SRGN, and
VIM were significantly downregulated (Figures 5A-C). We analyzed
the correlations between these DEGs with BMP4 and found
that SOX4, ATP1BI, SPINT2, RNASET2, and APP were among
the top correlated ones (Figure 5B). Subsequently, we conducted
similar analyses on the CSCs. Using the same criteria for DEG
determination, we only identified DUSP2 and NR4AI as the
significantly upregulated genes in the high-BMP4 CSCs when
compared to the low-BMP4 group (Figures 5D-F). By comparison,
DUSP2 was more closely correlated with BMP4 (Figure 5E).
Similarly, BMP4 treatment on PANC-1 cells significantly triggered
the upregulation of DUSP2 (Supplementary Figure S8). Emerging
studies have suggested that DUSP2 served as a favorable factor for
cancer metastasis, chemoresistance, and cancer stemness (Hou et al.,
2017; Zhang et al., 2022). The close association between DUSP2 and
BMP4 in the CSCs attracts further efforts to depict the role of BVMP4
in the CSCs of PAAD. As the KEGG pathway analysis on the TCGA-
PAAD cohort suggested that BMP4 might manipulate metabolism
pathways, we studied the relative levels of the metabolism-relative
DEGs in all cell types of the scRNA-seq data. Similar to BMP4, these
DEGs were also enriched in the cancer cells and CSCs (Figure 5G).

BMP4 could be applied into the prediction
of PAAD prognosis

To study whether BMP4 is an independent prognostic factor
for PAAD, we performed sequential univariant and multivariant
Cox analyses on the PAAD cohort of the TCGA database. The
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parameters included in the Cox analyses were gender, histological
stages, age, and BMP levels. The univariant and multivariant
Cox analyses suggested that both BMP4 levels and age were
independent hazard factors for the PAAD prognosis, while gender
and histological stages were not (Figure 6). For validation, we
performed the univariant and multivariant Cox analyses on the
validation cohorts, GSE57495 and GSE78229. Since the two
validation cohorts did not provide age and gender information, the
parameters included in the Cox analyses performed in the validation
cohorts only contained histological stages and BMP4 expressions.
Consequently, BMP4 was an independent hazard factor in both
cohorts (Supplementary Figure S9). Thus, we tested if BMP4 levels
could be applied into the prediction of PAAD prognosis along with
other parameters. For this purpose, we attempted to establish a
nomogram model consisting of BMP4 expressions, gender, TNM
stages, and age. Consistently, the constructed nomogram model
suggested that high BMP4 levels were associated with low survival
probabilities (Figure 7A). To validate this model, we compared the
predicted survival probabilities from this model to the actual clinical
survival data and found that the predicted survival probabilities
well obeyed the actual data, implying its potential application in the
prognosis prediction of PAAD (Figures 7B,C).

We also calculated the risk scores for all patients in the TCGA
cohort using the “ggrisk” R package. By equally dividing all patients
into high- and low-risk groups according to their risk scores, we
found that the patients in the high-risk group were of relatively
shorter survival time and higher mortality (Figures 7D,E). Notably,
BMP4 was specifically highly expressed in the high-risk group,
orchestrating its hazard role in PAAD prognosis (Figure 7F). As
the above studies were all performed on the PAAD cohort of
TCGA, we here employed two validation cohorts, GSE57495 and
GSE78229, to validate the prognostic value of BMP4 and thus
exclude the possibility that the effect of BMP4 on PAAD was only
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BMP4 affected PAAD prognosis not via regulating immune infiltrations. (A) Certain immune cell infiltrations were affected by altered BMP4 expressions.

(B—D) The correlations between the BMP4 levels and the significantly altered immune infiltrations. The Kaplan-Meier survival curves showing the OS of

PAAD patients with different infiltration levels of (E) naive B cells, (F) activated NK cells, and (G) eosinophils, respectively.”, P < 0.05;**, P < 0.01. These
analyses were all performed on the TCGA-PAAD cohort.

restricted to TCGA cohort. In line with our above findings, the =~ Thus, BMP4, a factor specifically enriched in the cancer cells
patients with higher BMP4 expression displayed significantly shorter ~ and CSCs of PAAD, could serve as a potential prognostic
OS in both validation cohorts (Supplementary Figure SI0A,B).  marker for PAAD.
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BMP4 affected PAAD prognosis not via
regulating immune infiltrations

As immune infiltrations within tumors have profound impacts
on tumorigenesis, metastasis, and prognosis, we wondered whether
BMP4 affected PAAD prognosis through immune infiltrations. First,
we employed the CIBERSORT algorithm to evaluate the overall
infiltrations of 22 types of immune cells. The infiltrations of naive B
cells, activated NK cells, and Eosinophils were significantly affected
by BMP4 levels (Figure 8A). Next, we studied the correlations
between BMP4 expressions and these immune infiltrations. Only
naive B cells were significantly negatively correlated with BMP4
levels (Figures 8B-D). Moreover, we investigated the impacts
of these three immune infiltrations on PAAD prognosis and
found that none of these infiltrations significantly affected PAAD
prognosis (Figures 8E-G). These results together indicated that
BMP4 regulated PAAD prognosis not through manipulating
immune infiltrations.

Discussion

BMP4 is essential in development, particularly for mesoderm
and endoderm, but its role in tumorigenesis is less understood.
Pancreatic cancer remains highly lethal with poor survival, and
whether BMP4 contributes to its progression was unclear. By
integrating bulk and single-cell transcriptomic data, we revealed that
BMP4 is enriched in cancer cells and CSCs, correlates with poor
prognosis, and shows a distinctive role in regulating metabolism
rather than canonical BMP signaling. A nomogram incorporating
BMP4 further demonstrated its prognostic value.

BMP4, as a member of the TGF-B superfamily, orchestrates
embryonic development and organogenesis (Massague, 2000). Its
essential roles in the heart, eye, limb, and various tissues have been
elucidated through expression patterns and functional analyses.
(Goldman et al., 2009; Li et al., 2008; Domyan et al., 2011; Pizette
and Niswander, 2000). Canonically, BMP4 activates SMAD1/5/8
through BMPR1/2 receptors, while non-canonical signaling involves
MAPK, PI3K/AKT, and Rho-GTPases (Derynck and Zhang, 2003;
Gipson et al., 2020). BMP4 also cross-talks with other pathways
such as Wnt/B-catenin (Bottasso-Arias et al., 2022). In our study,
however, BMP4 did not primarily activate BMP signaling but
promoted metabolic pathways, as confirmed by the upregulation
of metabolism-related genes in both bulk and single-cell data.
These findings suggested that BMP4 might broadly reprogram
tumor metabolism, influencing drug metabolism, lipid signaling,
energy production, and hormone/vitamin pathways. Such multi-
level metabolic regulation may represent a novel mechanism
through which BMP4 promotes PAAD progression. This aligns with
prior reports linking BMP4 to metabolic diseases, including obesity,
diabetes, and hepatic steatosis (Son et al., 2011; Wang et al., 2017;
Modica et al,, 2016; Peng et al., 2019), suggesting that BMP4 may
facilitate PAAD tumorigenesis via metabolic regulation.

BMP4 is mainly produced by the stem cell niche and can
act through paracrine, autocrine, or endocrine modes (Son et al.,
2011; Qi et al,, 2004; Jones and Wagers, 2008). We found BMP4
to be low in normal pancreas but aberrantly upregulated in PAAD,
particularly in cancer cells and CSCs, consistent with its origins in
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stem cell populations. Interestingly, BMP4 was also upregulated in
tumor vasculature, implying potential secretion, although proteomic
datasets (the PXD009139 cohort deposited in the Proteomics
Identifications Database (PRIDE) and the IPX0001579000 cohort
deposited in the Integrated Proteome Resources database (iProX))
did not detect BMP4 in serum. This suggests BMP4 may remain
localized, and more sensitive assays will be needed to test its value as
a circulating biomarker.

Immune infiltration is a critical component of tumorigenesis.
BMP4 has been implicated in CD4" T cell activation and M2
macrophage polarization (Martinez et al., 2015; Martinez et al.,
2017). In our study, BMP4 expression correlated with altered
infiltration of naive B cells, activated NK cells, and eosinophils.
However, these changes did not account for the prognostic impact
of BMP4, suggesting its role is largely independent of immune
modulation. Functional assays are warranted to clarify how BMP4-
driven immune changes influence PAAD biology.

This study has several limitations. Most analyses relied on
public datasets, and although validated across multiple cohorts,
additional clinical data would strengthen our conclusions. The
precise mechanisms by which BMP4 regulates metabolism remain
unclear and should be addressed in future mechanistic studies.
The prognostic model requires further clinical validation. Finally,
while BMP4 influenced immune infiltration, its lack of prognostic
relevance in this context also needs further investigation.

Despite these limitations, our findings highlight the multifaceted
roles of BMP4 in PAAD. By emphasizing its metabolic regulation,
prognostic significance, and enrichment in cancer cells and CSCs,
this study provides a foundation for future work exploring BMP4 as
both a biomarker and a therapeutic target in pancreatic cancer.
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