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Background: SOX2 and LPCAT1 are implicated in tumor progression, but
their roles in osteosarcoma pathogenesis and cholesterol metabolism
remain unclear.

Method: SOX2 and LPCAT1 expression in osteosarcoma tissues and cell
lines was assessed via qRT-PCR and Western blot. Functional assays (CCK-8,
wound healing and Transwell) evaluated proliferation, migration, and invasion
of osteosarcoma cells. SOX2-LPCAT1 binding was confirmed by dual-luciferase
reporter assay and ChIP assays. RNA sequencing and bioinformatics analyses
explored cholesterol metabolism pathways. In vitro and in vivo models
(xenograft tumor model and lung metastasis model) validated mechanistic roles.
Result: SOX2 and LPCAT1 were overexpressed in osteosarcoma. LPCAT1
or SOX2 overexpression promoted malignant behaviors and cholesterol
metabolism (free cholesterol/total cholesterol levels, SREBP1/INSIG1
expression) of osteosarcoma cells, while shSOX2 or shLPCAT1 did the opposite.
SOX2 transcriptionally activated LPCAT1. LPCAT1 reversed shSOX2-induced
suppression, while LPCAT1 knockdown attenuated SOX2-driven oncogenicity.
In vivo, LPCAT1 enhanced tumor growth, lung metastasis, and cholesterol
metabolism, while these effects were counteracted by SOX2 inhibition.
Conclusion: The SOX2/LPCAT1 axis drives osteosarcoma progression by
modulating cholesterol metabolism.

osteosarcoma, SOX2, LPCAT1, cholesterol metabolism, metastasis

1 Introduction

Osteosarcoma is the most common primary malignant bone tumor, predominantly
affecting children and adolescents, with a second incidence peak in older adults (Cole et al.,
2022). Despite advancements in multimodal therapies—including surgery, chemotherapy,
and radiotherapy—the 5-year survival rate for patients with metastatic or recurrent
disease remains below 30% (Jiang et al., 2022; Beird et al., 2022). The aggressive nature
of osteosarcoma, coupled with its propensity for lung metastasis and chemoresistance,
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underscores the urgent need to elucidate novel molecular
drivers and therapeutic targets (Beird et al, 2022). Recent
studies have highlighted metabolic reprogramming, particularly
cholesterol dysregulation, as a critical factor in osteosarcoma
progression, offering potential avenues for intervention
(Xu et al., 2022; Yin et al., 2025).

Cholesterol metabolism plays a pivotal role in cancer cell
proliferation, membrane integrity, and signal transduction
(King et al., 2022). Elevated cholesterol levels are associated with
tumor aggressiveness, metastasis, and therapy resistance in multiple
cancers (Xiao et al, 2023; Liu et al, 2023). In osteosarcoma,
dysregulated cholesterol biosynthesis has been linked to enhanced
survival and migration (Pasello et al.,, 2022), with key enzymes
such as sterol regulatory element-binding protein 1 (SREBP1)
contributing to oncogenic phenotypes (Huang X. et al., 2024).
However, the upstream regulators of cholesterol metabolism
in osteosarcoma remain poorly understood. Identifying these
molecular switches could provide new strategies to disrupt
osteosarcoma progression by targeting metabolic vulnerabilities.
(LPCAT1), an

enzyme critical for phospholipid remodeling, has emerged as

Lysophosphatidylcholine acyltransferase 1

a regulator of lipid metabolism and cancer progression (Wang
and Tontonoz, 2019). LPCAT1 overexpression is reported in
hepatocellular carcinoma, lung cancer, and breast cancer, where
it promotes proliferation, metastasis, and chemoresistance (Li et al.,
20245 Jiang J. et al., 2024; Korbecki et al., 2024). Mechanistically,
LPCAT1 modulates phosphatidylcholine composition, especially
for the accumulation of polyunsaturated fatty acids (Korbecki et al.,
2024). In osteosarcoma, the functional role and regulatory
mechanisms of LPCAT1 remain unexplored. Given the reliance
of osteosarcoma on lipid metabolism, investigating LPCAT1’s
contribution could uncover novel therapeutic targets.

SOX2, a core transcription factor in pluripotency and stemness,
is frequently overexpressed in cancers, including osteosarcoma,
where it sustains tumor initiation, metastasis, and therapy resistance
(Huang P. et al., 2024). Recent studies implicate SOX2 in metabolic
reprogramming, particularly in lipid and glucose metabolism
(de Wet et al., 2022). Intriguingly, bioinformatic analysis predicts
SOX2-binding sites in the LPCAT1 promoter, suggesting a direct
regulatory relationship. While SOX2’s role in osteosarcoma is
established (Maurizi et al, 2018), its impact on cholesterol
metabolism via LPCAT1 remains unknown. Elucidating this axis
could reveal how transcriptional and metabolic networks converge
to fuel osteosarcoma progression.

Therefore, we hypothesize that the SOX2/LPCAT1 axis drives
osteosarcoma progression by reprogramming cholesterol metabolism,
thereby enhancing malignancy and metastatic potential.

2 Materials and methods
2.1 Tissue samples

This study was approved by the Institutional Review Board of
Henan Provincial People’s Hospital. From January 2022 to January

2024, 20 paired osteosarcoma and adjacent non-tumor tissue
specimens were collected from Henan Provincial People’s Hospital.
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Written informed consent was obtained from all participants prior
to sample collection.

2.2 Cell culture

Human osteosarcoma cell lines 143B (SNL-192), MG-63
(SNL-229), U-2 OS (SNL-054), and MNNG/HOS (SNL-372) and
the human osteoblastic cell line hFOB 1.19 (SNL-217) were
obtained from SUNNCELL (China) and cultured in RPMI-1640
complete medium (SNM-001E) at 37°C in a humidified 5%
CO, incubator. Based on baseline LPCAT1 expression across our
osteosarcoma panel (Figures 1E,F), we used MG63 (relatively lower
endogenous LPCAT1) for gain-of-function (overexpression) studies
and U20S (relatively higher endogenous LPCAT1) for loss-of-
function (shRNA knockdown) studies. This pairing minimizes
non-physiologic ceiling/floor effects of perturbation and increases
generalizability by evaluating LPCAT1 dependence in two distinct
osteosarcoma genetic backgrounds.

2.3 Cell transfection

Osteosarcoma cells were transfected using a lipo8000 reagent
(C0533, Beyotime, China). The full-length cDNA sequences of
LPCAT1 (RefSeq NM_024830.5; NP_079110.3) and SOX2 (RefSeq
NM_003106.4; NP_003097.1) were cloned into the pcDNA3.1
vector (VT1001, Youbio, China) to generate overexpression
plasmids (oe-LPCAT1 and oe-SOX2), with the empty vector
serving as a negative control (NC). Short hairpin RNAs (shRNAs)
targeting LPCAT1 (shLPCATI1, sc-91777-SH, target sequence:
5'-GGAACTCTGATCCAGTATATA-3') and SOX2 (shSOX2, sc-
38408-SH, target sequence: 5'-AGGAGCACCCGGATTATAAAT-
3') were purchased from Santa Cruz (United States). Twenty-four
hours prior to transfection, 5 x 10° cells were seeded into 6-well
plates. For each well, the transfection mixture was prepared by
combining transfection reagent, plasmid, and serum-free medium,
followed by incubation with cells for 48 h. Transfection efficiency
was assessed via quantitative reverse transcription-polymerase chain
reaction (QRT-PCR) and Western blot (WB).

2.4 gRT-PCR

Total RNA was extracted from cells or tissues using the
Total RNA Extraction Kit (AG21024, Agbio, China). cDNA
was synthesized using the c¢DNA Synthesis Kit (AG11615,
Agbio), followed by quantitative PCR with SYBR Green
qPCR MasterMix (AG11762, Agbio) on an ABI7900-HT-Fast
system (Applied Biosystems, United States). Gene expression
was normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and analyzed using the 2724€T method. Primer sequences
are listed in Table 1.

2.5 Western blot

Cells or tissues were lysed in 0.5 mL of RIPA buffer (G3424,
GBCBIO, China). Protein concentrations were quantified using the
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FIGURE 1

Expression levels of SOX2 and LPCAT1 in osteosarcoma. (A,B) gRT-PCR analysis of SOX2 and LPCAT1 expression in tumor tissues (n = 20) and adjacent
normal tissues (n = 20) from osteosarcoma patients. (C,D) Western blot analysis of SOX2 and LPCAT1 protein levels in osteosarcoma tissues and paired
adjacent normal tissues. (E=H) gRT-PCR and Western blot detection of SOX2 and LPCAT1 expression in normal osteoblast cell line hFOB1.19 and
osteosarcoma cell lines (MG63, 143B, U20S, and MNNG/HOS). Data are presented as mean + SD. P<0.01, ""P<0.001vs. PT or hFOB1.19.
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TABLE 1 Primers used in this study.

Genes Forward primer 5’ -3’ Reverse primer 5’ -3’ Product size (bp)
SOX2 AACCAGCGCATGGACAGTTA GACTTGACCACCGAACCCAT 278

LPCATI1 CATGAGGCTGCGGGGATG TTCCCCAGATCGGGATGTCT 494

INSIG1 CTCTCGGCCAGGAAGCG AGGCGGAGGAAAAGATGGTG 417

SREBP1 TTCCGAGGAACTTTTCGCCG GGGAGGGCTTCCTGTAGAGA 700

Vimentin CTCTGGCACGTCTTGACCTT TTGCGCTCCTGAAAAACTGC 871

N-cadherin TCAGGCGTCTGTAGAGGCTT ATGCACATCCTTCGATAAGACTG 94

GAPDH GATTCCACCCATGGCAAATTC CTGGAAGATGGTGATGGGATT 87

TABLE 2 Antibodies used in this study.

Catalog Dilution Species Manufacturer

SOX2 AF5140 1/1000 Rabbit Affinity

SOX2 (ChIP) CST #23064 1/50 Rabbit Cell signaling Tech, USA
LPCAT1 DF12033 1/1000 Rabbit Affinity
INSIG1 DF12412 1/1000 Rabbit Affinity
SREBP1 AF6283 1/1000 Rabbit Affinity
Vimentin AF7013 1/1000 Rabbit Affinity
N-cadherin AF5239 1/1000 Rabbit Affinity
GAPDH ab8245 1/2000 Mouse Abcam
Goat anti rabbit ab205718 1/10000 Goat Abcam
Goat anti mouse ab205719 1/10000 Goat Abcam

BCA Protein Assay Kit (G3522, GBCBIO). Proteins were separated
by 10% SDS-PAGE (G3402, GBCBIO) and transferred onto PVDF
membranes (36125ES03, Yeasen, China). After blocking with 5% BSA
(0332, GBCBIO), membranes were incubated overnight at 4 °C with
primary antibodies (Table 2), followed by HRP-conjugated secondary
antibodies for 1 h at room temperature. Protein bands were visualized
using ECL reagent (G3308, GBCBIO) and imaged on an iBright FL1500
system (A44115, Invitrogen, United States). GAPDH served as the
loading control. Band intensities were quantified using Image] (version
1.8.0, NIH, Bethesda, MD, United States).

2.6 Cell counting kit 8 (CCK-8)

Cells (3 x 10%/well) were seeded in 96-well plates and
cultured for 0-72h. Cell viability was assessed using the CCK-
8 kit (R22305, Shyuanye, China) by measuring absorbance at
490 nm after 2 h of incubation.

Frontiers in Molecular Biosciences

2.7 Wound healing assay

Cells (5 x 10°/well) were seeded in 6-well plates. A scratch
was made using a sterile pipette tip, and migration was monitored
in serum-free medium. Images were captured at Oh and 24h
using an optical microscope (Nikon, Japan). Migration distance was
quantified with Image].

2.8 Transwell assay

Transwell inserts (Millipore, United States) were pre-coated
with Matrigel (1 mg/mL; 356234, BD Biosciences, United States).
Cells (1 x 10°) in serum-free medium were seeded into the
upper chamber, while the lower chamber contained 10% FBS as
a chemoattractant. After 24 h, invaded cells were fixed, stained
with 0.1% crystal violet (G9507, GBCBIO), and counted under
a microscope.
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2.9 Dual-luciferase reporter assay

Potential SOX2-binding sites in the LPCAT1 promoter
were predicted using JASPAR (https://jaspar.elixirno/). A 2.2kb
promoter fragment of human LPCAT1 (-2000 to +200 bp relative
to the transcription start site [TSS] of RefSeq transcript NM_
024830.5, GRCh38) was amplified and cloned into the pGL3.0-
Basic vector (VT1554, Youbio, China). The corresponding hg38
genomic span is chr5: 1,523,760-1,525,960. Within this region, a
SOX2 motif was identified at —1961 to —1971 bp upstream of the
TSS, with the wild-type (WT) sequence 5'-TTTCAATGGAA-3> A
mutant (MUT) reporter was generated by replacing the core motif
“CAAT” with “GCCT” (mutant sequence 5 -TTTGCCTGGAA-3'),
abolishing SOX2 binding. For reporter assays, osteosarcoma cells
(1 x 10°/well) were co-transfected with WT or MUT promoter-
luciferase constructs, the Renilla control plasmid pRL-TK (VT1568,
Youbio, China), and 0e-SOX2 or negative control (NC) using
Lipo8000 (C0533, Beyotime, China). Luciferase activity was
measured 48 h post-transfection using the Dual-Luciferase Reporter
Assay Kit (11402ES60, Yeasen, China). Firefly luciferase activity was
normalized to Renilla luciferase activity.

2.10 Chromatin immunoprecipitation
(ChlIP)

ChIP was performed using a ChIP assay kit (NR3302M,
Newonebio, China). Briefly, cells (1 x 10°) were crosslinked with 1%
formaldehyde, lysed, and sonicated to obtain 200-500 bp chromatin
fragments. Lysates were immunoprecipitated overnight with anti-
SOX2 (23064, Cell signaling technology, United States) or IgG,
followed by protein A/G agarose beads. After washing, DNA was
eluted and analyzed by qPCR.

2.11 RNA sequencing and analysis

RNA-seq was performed in MG63 for oe-LPCAT1 vs. NC (lower
endogenous baseline) and in U20S for shLPCAT1 vs. shNC (higher
endogenous baseline) to maintain perturbations within a physiologic
dynamic range and to reduce cell-line-specific bias. Total RNA
from MG63 (0e-LPCAT1/NC) and U20S (shLPCAT1/shNC) cells
were extracted for RNA-seq (Illumina NovaSeq 6000). Differentially
expressed genes (DEGs) were identified using the limma package
(Jlog2FC| > 1, adj. P < 0.05). Functional enrichment was analyzed
via Gene Ontology (GO) and Reactome pathways (P < 0.05).

2.12 Cholesterol quantification
Free cholesterol (FC, E-BC-K004-M) and total cholesterol (TC,

E-BC-K109-M) levels in cells (5 x 10°) or tissues (50 mg) were
measured using commercial kits (Elabscience, China).

2.13 Animals

All animal procedures were approved by the Institutional
Animal Care and Use Committee of Henan Provincial People’s
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Hospital. BALB/c nude mice (5-6 weeks old; Vital River, China)
were subcutaneously injected with MG63 cells (1 x 107) transfected
with oe-LPCAT1 and/or shSOX2 (n = 6/group) as previously
described (Fu et al, 2024). Tumor volume was measured every
3 days. Mice were anesthetized with isoflurane inhalation (2%-3%
for induction, 1%-2% for maintenance) during all surgical and
invasive procedures to minimize pain and distress. At day 28,
mice were humanely euthanized by intraperitoneal injection of
an overdose of pentobarbital sodium (>150 mg/kg), and tumors
were excised and weighed. For lung metastasis, cells (2 x 10°)
were injected via the tail vein as previously described (Fu et al.,
2024). After 8 weeks, mice were euthanized using the same
method (overdose pentobarbital sodium), and metastatic nodules
were counted.

2.14 Statistical analysis

Statistical analysis was experimented by GraphPad Prism 8.0.
The measurement data were expressed by mean + standard
deviation. The independent sample t-test was used for the
comparison between groups. One-way or two-way ANOVA was
used for multiple group comparisons. Figures 1A,B was analyzed by
Paired t-test. Differences with P < 0.05 were considered statistically

significant.

3 Results

3.1 SOX2 and LPCAT1 were highly
expressed in osteosarcoma tissues and
cells

Scatter plots of 20 matched patient pairs showed higher SOX2
and LPCAT1 mRNA in osteosarcoma tissues and adjacent normal
tissues (Figures 1A,B). Immunoblotting of three representative
pairs confirmed increased SOX2 and LPCAT1 protein in tumor
relative to matched normal tissue, with GAPDH as loading
control (Figures 1C,D). Across cell models, qRT-PCR showed
higher SOX2 and LPCAT1 transcripts in osteosarcoma lines
(MG-63, 143B, U20S, MNNG/HOS) than in the human
osteoblastic line hFOB 1.19 (Figures 1E,F). Western blotting further
corroborated these findings at protein level in these cell models
(Figure G, H).

3.2 LPCAT1 overexpression or knockdown
modulated the biological behavior of
osteosarcoma cells

To investigate the functional role of LPCAT1 in osteosarcoma,
we overexpressed LPCAT1 in MG63 cells and silenced it in U20S
cells with two independent shRNAs. qRT-PCR and Western blot
verified the intervention efficiency of LPCAT1 (Figures 2A-C).
LPCAT1 overexpression significantly enhanced cell viability,
migration, and invasion, whereas LPCAT1 knockdown exerted the
opposite effects (Figures 2C-H).
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FIGURE 2
LPCAT1 promotes osteosarcoma of LPCAT1 on osteosarcoma cell viability, migration and invasion. (A—C) gRT-PCR and Western blot verification of
transfection efficiency for LPCAT1 overexpression plasmid and shLPCAT1. For (D—H), MG63 cells were transfected with NC or LPCAT1 overexpression
plasmid, while U20S cells were transfected with shNC or shLPCATL1. (C,D) Cell viability assessed by CCK-8 assay. (E,F) Cell migration ability was
evaluated by wound healing assay. (G,H) Cell invasion capacity was determined by Transwell assay. Scale bars: 200 um. Data are representative of three
independent experiments (mean + SD). P <0.01, P < 0.001 vs. NC or shNC.
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3.3 SOX2 mediated LPCAT1 transcription

Bioinformatic analysis using JASPAR predicted a potential
SOX2-binding site in the promoter region of LPCAT1 (Figure 3A).
Reporter assays with a motif-mutant construct showed reduced
activity upon motif disruption (Figures 3B,C). ChIP-qPCR using
anti-SOX2 demonstrated significant enrichment of LPCAT1
promoter amplicons compared with IgG in MG63 and U20S
(Figure 3D), validated the direct binding of SOX2 to the LPCAT1
promoter. To assess the regulatory role of SOX2, we transfected
MG63 and U20S cells with SOX2 overexpression plasmid or
shSOX2, verifying transfection efficiency (Figures 3E,F). QRT-PCR
and Western blot analyses revealed that SOX2 overexpression
upregulated LPCAT1 SOX2 knockdown
suppressed it (Figures 3G,H).

expression, while

3.4 Bioinformatic analysis of LPCAT1's role
in cholesterol metabolism in osteosarcoma

RNA sequencing was performed on MG63 cells transfected with
NC/LPCAT1 and U20S cells transfected with shNC/shLPCAT1,

with DEGs illustrated in Figures4A-D. GO enrichment
analysis indicated that LPCATI significantly influenced
cholesterol biosynthesis in both cell lines (Figures4EF).

Further pathway analysis using the Reactome database revealed
that LPCAT1 overexpression or silencing altered cholesterol
biosynthesis pathways (Figure 4G).

3.5 In vitro validation of LPCAT1's role in
cholesterol metabolism in osteosarcoma
cells

We measured TC and FC levels in osteosarcoma cells following
LPCAT1 modulation. LPCAT1 overexpression increased TC and FC
levels, whereas LPCAT1 knockdown reduced them (Figures 5A,B).
Additionally, LPCAT1 upregulated the expression of cholesterol
metabolism-related proteins (INSIG1 and SREBP1), while its
silencing had the opposite effect (Figures 5C,D). Intervention
efficiency for these assays was confirmed by RT-qPCR and
Western blot (Supplementary Figure S1).

3.6 SOX2/LPCAT1 axis regulates
osteosarcoma cell behavior and
cholesterol metabolism

Epistasis assays were performed in MG63 and U20S,
and intervention efficiency was confirmed by RT-qPCR and
Western blot (Supplementary Figures S2A,B). In MG63 cells,
shSOX2
(Figures 6C,D), and invasion (Figures 6EF), reduced TC and
FC levels (Figures 6G,H), as well as downregulated LPCATI,
metastasis-related proteins (Vimentin and N-cadherin), and
(Figures 61,]). These
effects were rescued by LPCATI1 overexpression (Figures 6A-]).

suppressed cell viability (Figures 6A,B), migration

cholesterol metabolism-related proteins
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Conversely, in U20S cells, SOX2 overexpression enhanced above-
mentioned malignant phenotypes and cholesterol metabolism,
which were attenuated by LPCAT1 knockdown (Figures 6A-]).

3.7 In vivo validation of SOX2/LPCAT1 in
osteosarcoma growth, metastasis, and
cholesterol metabolism

In a xenograft tumor model, LPCAT1 overexpression increased
tumor volume (Figures 7A,B), elevated TC and FC levels
(Figure 7C), and upregulated LPCAT1, metastasis-related proteins,
(Figures 7D,E),
whereas shSOX2 exerted opposing effects (Figures 7A-E). In a
lung metastasis model, LPCAT1 increased metastatic nodule
formation, while shSOX2 reduced it (Figure 7F). Notably, LPCAT1
overexpression reversed the inhibitory effects of shSOX2 on

and cholesterol metabolism-related proteins

osteosarcoma growth, metastasis, and cholesterol metabolism.
The intervention used in the xenograft tumor model were
verified for the intended perturbations by RT-qPCR and
Western blot (Supplementary Figure S3).

4 Discussion

This study provides compelling evidence establishing the
SOX2/LPCAT1/cholesterol metabolism axis as a novel molecular
mechanism driving osteosarcoma progression and metastasis.
Through integrated analysis of clinical samples, molecular biology
experiments, and animal models, we demonstrated that both
SOX2 and LPCAT]1 are significantly overexpressed in osteosarcoma
tissues and cell lines compared to normal controls. Functional
studies revealed that this axis plays a dual role in regulating both
malignant behaviors and metabolic reprogramming. Specifically,
we identified that LPCAT1 serves as a key mediator connecting
SOX2 transcriptional regulation with cholesterol biosynthesis,
thereby creating a vicious cycle that promotes tumor aggressiveness.
Additionally, our in vivo experiments provided direct evidence that
targeting this axis significantly inhibits both primary tumor growth
and pulmonary metastasis, suggesting its therapeutic potential.

The significance of cholesterol metabolism in osteosarcoma
pathogenesis has been increasingly recognized but remains
incompletely understood. Our current work substantially advances
this field by elucidating how aberrant cholesterol biosynthesis
contributes to osteosarcoma progression at multiple levels. On
one hand, cholesterol levels can modulate lipid raft activity
(Zaborowska-Mazurkiewicz et al., 2025), while on the other hand,
increased cholesterol content reduces membrane fluidity, which may
render tumors more aggressive as characterized by enhanced cell
migration and metastatic potential (Yin et al., 2025; Jiang W. et al.,
2024). This finding helps explain the frequent lung metastasis
observed in osteosarcoma patients, as pulmonary tissue is known to
be cholesterol-rich (Dang and Reboldi, 2024).

LPCAT1 emerges from our study as a central player in
osteosarcoma biology with multifaceted functions. Beyond
its well-characterized role in phospholipid remodeling, we
uncovered its previously unrecognized capacity to orchestrate
cholesterol metabolism in osteosarcoma cells. Mechanistically,
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FIGURE 3

SOX2 mediated transcriptional regulation of LPCAT1. (A) JASPAR prediction of SOX2 binding sites in the LPCAT1 promoter region. (B,C) Dual-luciferase
reporter assay validating the interaction between SOX2 and LPCAT1 promoter. (D) ChIP assay demonstrating the binding of SOX2 to LPCAT1 promoter
region. (E,F) gRT-PCR confirmation of SOX2 overexpression and knockdown efficiency. (G—-1) Western blot and gRT-PCR analysis of LPCAT1 expression
following SOX2 modulation. Data are representative of three independent experiments (mean + SD). "P<0.01 ""P<0.001vs. NC, anti-IgG or shNC.
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LPCATI1 appears to exert its oncogenic effects through both
metabolic and non-metabolic mechanisms. On one hand, it
directly modulates the activity of SREBP signaling pathway
to enhance cholesterol biosynthesis (Tao et al, 2021). On
the other hand, it facilitates epithelial-mesenchymal transition
(EMT) by regulating the expression of vimentin and N-
cadherin, thereby promoting migratory and invasive capacities
of tumor cells (Shen et al., 2022). The striking observation that
LPCAT1 overexpression alone could induce lung metastasis in our
animal model highlights its critical role in metastatic progression.
Clinically, the consistent upregulation of LPCAT1 across different
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osteosarcoma subtypes suggests its potential as a universal
therapeutic target.

Our ChIP and dual-luciferase reporter assays unequivocally
demonstrated that SOX2 directly binds to the LPCAT1 promoter
to activate its transcription. SOX2 is a critical transcription factor
that plays an important role in embryonic development and the
maintenance of stem cell pluripotency (Ding et al., 2023). However,
its aberrant expression in cancer is closely associated with tumor
initiation, progression, and therapy resistance (Grimm et al., 2020).
SOX2 can also induce epithelial-mesenchymal transition (EMT) by
regulating ZEB1, N-cadherin, and other factors, thereby enhancing
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FIGURE 5
Role of LPCAT1 in cholesterol metabolic reprogramming of osteosarcoma cells. (A,B) Cholesterol content measurement in osteosarcoma cells after
LPCAT1 modulation using commercial assay kits. (C,D) Western blot and gRT-PCR analysis of cholesterol metabolism-related proteins following
LPCAT1 overexpression or knockdown. Data are representative of three independent experiments (mean + SD). "P<0.01, ""P<0.001vs. NC.

tumor cell migration and invasion and promoting metastasis  cholesterol accumulation as actionable. Prior studies show efficacy
(Li et al, 2023). Notably, elevated SOX2 expression has been of statins, BET/CDK7 inhibitors, and SOAT1 blockade (e.g.,
reported to promote tumorigenesis and metastasis in osteosarcoma,  avasimibe) in osteosarcoma or related cancer models, with SREBP-
while SOX2 inhibition can ameliorate these malignant phenotypes  axis inhibitors (e.g., fatostatin) providing complementary upstream
(Chen et al.,, 2023; Wang et al., 2024). However, no studies to date ~ control. These agents outline immediate, literature-supported
have demonstrated that SOX2 regulates cholesterol metabolism.  strategies to test this pathway therapeutically in future work.

This study is the first to report that SOX2 indirectly participates in Several limitations of our study should be acknowledged
cholesterol metabolism in osteosarcoma cells by transcriptionally ~ to properly interpret the findings. First, while we established
regulating LPCAT1. Our data nominate SOX2/LPCAT1 driven  the SOX2-LPCAT1 regulatory relationship in vitro and in vivo,
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co-transfected with oe-LPCAT1 and/or shSOX2, while U20S cells were co-transfected with shLPCAT1 and/or SOX2. (A,B) Cell viability was determined
by CCK-8 assay. (C,D) Migration ability was assessed by wound healing assay. (E,F) Invasion capacity was evaluated by Transwell assay. (G,H)
Intracellular cholesterol level measurement. (I,J) Western blot and gRT-PCR analysis of metastasis- and cholesterol metabolism-related proteins. Data

are representative of three independent experiments (mean + SD).
SOX2+shNC or shSOX2+NC.

"P<0.05 "

P<0.01, ""P < 0.001 vs. NC+shNC, shLPCAT1+NC or LPCAT1+shNC,

the clinical correlation between their expression patterns needs
validation in larger patient cohorts with long-term follow-up.
Second, the precise mechanisms by which cholesterol metabolites
influence osteosarcoma cell invasion require further elucidation,
particularly regarding their potential roles in modifying the
tumor microenvironment. Third, while our luciferase reporter
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and ChIP-PCR assays provide strong locus-specific evidence for
SOX2 binding to the LPCAT1 promoter, we recognize that high-
resolution genome-wide analyses such as ATAC-seq or ChIP-seq
would offer more comprehensive insight into chromatin accessibility
and SOX2 occupancy. These advanced analyses are planned for
future work to expand upon our current findings. Finally, while
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FIGURE 7

In vivo validation of SOX2/LPCAT1 axis in osteosarcoma progression and cholesterol metabolism. For (A—D), MG63 cells were transfected with
oe-LPCAT1 and/or shSOX2, and then subcutaneously injected into nude mice to construct a xenograft model. (A) Representative images of xenograft
tumors. (B) Tumor volume. (C) Cholesterol content measurement in tumor tissues. (D,E) Western blot analysis of metastasis- and cholesterol
metabolism-related proteins in xenograft tumors. (F) MG63 cells transfected with oe-LPCAT1 and/or shSOX2 were injected into the tail vein of nude
mice to construct a lung metastasis model. The number of pulmonary nodules was counted. Data are representative of three independent experiments
(mean + SD). P <0.01, """P < 0.001 vs. NC+shNC, LPCAT1+shNC, and shSOX2+NC.
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shRNA knockdowns demonstrate functional effects, CRISPR/Cas9
knockout models would offer stronger causal evidence and will be
pursued in follow-up studies.

In conclusion, our study advances the understanding of

10.3389/fmolb.2025.1679244
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osteosarcoma pathogenesis by identifying the SOX2/LPCAT1/cholesterol

metabolism axis as a driver of tumor progression and metastasis.
These findings have important translational implications on
multiple fronts. Diagnostically, SOX2 and LPCAT1 expression
levels may serve as valuable biomarkers for risk stratification.
Therapeutically, our work provides strong rationale for developing
targeted interventions against this axis, either through direct
inhibition of LPCAT1 enzymatic activity or via disruption of SOX2
transcriptional function.
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