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Background: Sepsis frequently results in complications such as acute respiratory
distress syndrome (ARDS) and cardiomyopathy. This study aims to identify
common diagnostic markers and elucidate the underlying mechanisms of these
sepsis-induced complications.

Methods: We obtained datasets related to ARDS and sepsis-induced
cardiomyopathy (SIC) from the GEO database and applied weighted gene co-
expression network analysis (WGCNA) to identify differentially expressed genes
(DEGs), which were integrated with key module genes. Feature genes were
selected using support vector machine-recursive feature elimination (SVM-
RFE) and random forest (RF) algorithms. An artificial neural network (ANN)
model was constructed and its diagnostic performance was evaluated using
receiver operating characteristic (ROC) curves. Machine learning algorithms
effectively identified key hub genes associated with sepsis-induced ARDS and
cardiomyopathy, with their robustness validated through ROC analysis. A cellular
model of sepsis-induced lung injury was employed to examine hub gene
expression. Additionally, we investigated inflammation and immune responses
by characterizing immune landscapes using CIBERSORT and performing
correlation analyses among feature genes, immune infiltration, and clinical
characteristics. Finally, potential small-molecule compounds were identified
from the PubChem database.

Results: Five key genes—LCNZ2, AIF1L, STAT3, SOCS3 and SDHD—were identified.
SOCS3 showed strong diagnostic potential with gene set enrichment analysis
(GSEA) highlighting its role in biological processes and immune responses.
SOCS3 expression correlated strongly with immune cells. Dexamethasone,
resveratrol and curcumin were identified as potential SOCS3-targeting drugs.
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Conclusion: Five genes were identified as diagnostic biomarkers for sepsis-
induced ARDS and cardiomyopathy, with SOCS3 serving as a key hub gene and
potential therapeutic target.
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Introduction

Sepsis, a systemic and dysregulated response to infection,
represents a major global health challenge due to its high
prevalence and mortality rates. This complex syndrome triggers
a cascade of pathophysiological responses, leading to multiple
organ dysfunction. Among its severe complications, sepsis-induced
acute respiratory distress syndrome (ARDS) and sepsis-induced
cardiomyopathy (SIC) are particularly common and devastating
(Singer et al., 2016; Rudd et al., 2020).

Acute respiratory distress syndrome (ARDS) results from severe
pulmonary inflammation and extensive alveolar damage. It is
characterized by widespread infiltration of inflammatory cells and
increased permeability of the alveolar—capillary barrier, leading to
pulmonary edema and hypoxemia (Gorman et al., 2022). Sepsis-
induced cardiomyopathy (SIC) currently lacks a uniform definition
but is generally described as an acute syndrome of nonischemic
cardiac dysfunction associated with sepsis. Factors such as
myocardial suppression, mitochondrial dysfunction, calcium
homeostasis imbalance and cytokine overload collectively impair
cardiac function (Martin et al., 2019). These complications in the
heart and lungs increase mortality risk and complicate management,
necessitating advanced clinical interventions. Despite extensive
research, the molecular mechanisms involved remain incompletely
understood, highlighting the urgent need for innovative diagnostic
and therapeutic strategies. Therefore, identifying diagnostic
biomarkers for sepsis-related vital organ dysfunction and developing
targeted therapeutic approaches are crucial for improving patient
survival rates (Coopersmith et al., 2018).

While biomarkers such as C-reactive protein and procalcitonin
are widely used for diagnosing and evaluating sepsis (Yang et al.,
2016), they have yet to demonstrate satisfactory discriminatory
power (Barichello et al, 2022). Elevated MUCI levels show
promise as predictors for the development of ARDS in sepsis
patients (Wang et al., 2020). Recent research has revealed that
genes associated with cuproptosis and ferroptosis, including
POR, SLC7A5 and STATS3, are significantly correlated with SIC
(Song et al, 2023). Machine learning algorithms have shown
remarkable potential in analyzing high-dimensional data, enabling
the precise identification of diagnostic and prognostic biomarkers
and offering a novel approach to developing diagnostic models

Abbreviations: ARDS, acute respiratory distress syndrome; SIC, sepsis-
induced cardiomyopathy; DEGs, differentially expressed genes; WGCNA,
weighted gene co-expression network analysis; SVM-RFE, support vector
machine-recursive feature elimination; RF, random forest; ANN, artificial
neural network; CIBERSORT, cell type proportions from RNA transcripts;
GSEA, gene set enrichment analysis; ALI, acute lung injury.
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septic cardiomyopathy, SOCS3, immune infiltration,

(Toh et al., 2019). For example, a study employing various machine
learning algorithms such as elastic net, SVM, random forest and
XGBoost—identified five genes capable of distinguishing between
ALI and sepsis patients (Zheng et al., 2023).

Although certain biomarkers have been identified for
diagnosing ARDS and SIC individually, there is a lack of systematic
research on shared diagnostic markers for these conditions.
Moreover, further investigation into the common pathogenic
mechanisms underlying both ARDS and SIC is necessary.
Proinflammatory cytokines such as TNF-a, IL-1p and IL-6 are
recognized as key factors in triggering ARDS and SIC in sepsis
(Kumar et al, 2007; Colds-Algora et al, 2023). Dysregulated
immune responses, oxidative stress, endothelial dysfunction
and coagulation abnormalities all play significant roles in the
pathogenesis (Meyer etal., 2021). Therefore, an in-depth exploration
of these shared mechanisms and the identification of relevant
diagnostic markers hold substantial clinical implications.

In this study, we utilized bioinformatics tools, including
weighted gene co-expression network analysis (WGCNA) and
machine learning algorithms to identify diagnostic biomarkers and
elucidate their underlying molecular mechanisms. Our objective
was to discover potential diagnostic and therapeutic targets for
sepsis-induced ARDS and SIC.

Methods and materials
Data and preprocessing

We extracted and organized data from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
The dataset GSE32707, related to sepsis-associated ARDS, includes
samples from 58 sepsis patients (30 on day 0 post-admission and
28 on day 7 post-admission), 31 sepsis-induced ARDS patients
(18 on day 0 and 13 on day 7 post-admission), 21 patients with
systemic inflammatory response syndrome (SIRS) on day 0 and 34
control whole blood samples. We used the corresponding annotation
file GPL10558 (Illumina HumanHT-12 V4.0 Expression BeadChip)
to annotate the expression matrix. For our analysis, we selected
sepsis-induced ARDS patients on day 0 and the control group as
the discovery cohort and sepsis-induced ARDS patients on day 7
as the validation cohort. For the sepsis-induced cardiomyopathy
(SIC) microarray dataset GSE79962, samples were obtained from
human cardiac tissues, including 20 sepsis cardiomyopathy patients
and 11 non-heart failure donor samples. GSE79962 is based on
the GPL6244 platform (HuGene-1_0-st Affymetrix Human Gene
1.0 ST Array [transcript (gene) version]). GSE142615 was selected
for external validation; it includes samples from mouse cardiac
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tissues, comprising 4 lipopolysaccharide (LPS)-induced sepsis
cardiomyopathy mice and 4 saline-treated control mice. GSE142615
is based on the GPL27951 platform (Agilent-084783 Mus musculus
array [circMouse_0410; Agilent Probe Name]). Using R version
4.3.2, we converted probes to gene symbols according to the platform
annotation information. We removed non-matching probes and
calculated the average expression value for genes corresponding to
multiple probes.

Identification of gene modules via
weighted gene co-expression network
analysis (WGCNA)

WGCNA was applied to the GSE32707 and GSE79962 datasets
to identify gene modules associated with sepsis-induced ARDS
and cardiomyopathy. Missing values and outliers were identified
and removed through hierarchical clustering analysis. Subsequently,
using the scale-free topology criterion, an appropriate “soft”
threshold power (p) was determined to facilitate the construction of
biologically relevant networks. A topological overlap matrix (TOM),
derived from the adjacency matrix, enabled the identification
of gene modules via a dynamic tree-cutting algorithm. Gene
significance (GS) and module membership (MM) were calculated
and their correlations with clinical characteristics were assessed,
leading to the visualization of feature gene networks. Statistical
measures, including the Pearson correlation coefficient and p-values
of eigengenes against disease traits, were used to identify key
modules closely associated with the pathogenesis of sepsis-induced
ARDS and cardiomyopathy.

Identification of differentially expressed
genes (DEGs)

The identification of DEGs from the GSE32707 and GSE79962
datasets were identified using the Limma package in R (version
4.3.2), applying significance thresholds of adjusted p-value <0.05
and |log2 fold change| > 0.5. Protein-protein interaction (PPI)
data and annotations were obtained from the STRING database
(https://cn.string-db.org/). The analysis results were visualized
through heatmaps and volcano plots, supplemented by PPI network
information, with red indicating high expression and blue indicating
low expression. Shared genes between the two datasets, derived
from the intersection of DEGs and WGCNA module genes, were
illustrated using a Venn diagram generated by jvenn (https://
jvenn.toulouse.inrae.fr/app/example.html).

Enrichment analysis

Using the clusterProfiler package in R, we analyzed Gene
Ontology (GO) annotations and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways to elucidate the functional implications
of the shared DEGs. Statistical significance was defined as an
adjusted p-value less than 0.05.
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Leveraging machine learning for
identifying diagnostic markers

We employed support vector machine recursive feature
elimination (SVM-RFE) using the “e10717, “kernlab”
“caret” packages in R for gene selection in the study of

and

sepsis-induced conditions. Through tenfold cross-validation,
this method effectively identified genes critical for disease
classification, highlighting potential biomarkers. Concurrently,
a random forest (RF) approach, implemented via the “Random
Forest” package, was used to assess gene importance. By
constructing decision trees from data subsets, this method
pinpointed genes essential for predicting septic conditions and
optimized the number of trees through error analysis. Gene
importance was ranked based on the mean decrease in the
Gini coeflicient, thereby refining our selection of diagnostic
markers.

Additionally, a neural network model, developed using the
“neuralnet” package and visualized with “NeuralNetTools”, was
employed to map gene expression to sepsis outcomes. The model
featured a single hidden layer with five neurons and was trained
using backpropagation to distinguish between the control and
treatment groups. Model performance was evaluated by the area
under the curve (AUC), revealing complex data patterns and gene
interactions.

Cell culture

Human pulmonary microvascular endothelial cells (HPMECs)
were obtained from the Shanghai Biology Institute and cultured in
endothelial cell medium (ScienCell, United States) supplemented
with endothelial cell growth supplements (ECGS) and 5%
fetal bovine serum (FBS) under a 5% CO2 atmosphere.
To establish a sepsis-induced lung injury model, HPMECs
were treated with lipopolysaccharide (LPS) at 10 ng/mL for
24 h, with phosphate-buffered saline (PBS) serving as the
control.

RNA extraction and quantitative Real-Time
PCR (gRT-PCR)

Total RNA was extracted using TRIzol reagent (Takara, Japan),
followed by cDNA synthesis with the PrimeScript™ FAST RT
reagent Kit (Takara, Japan). mRNA quantification was performed
by qRT-PCR using the TB Green® Premix Ex Taq™ IT FAST qPCR
kit (Takara, Japan) on a 7,300 Real-Time PCR System (Applied
Biosystems, United States). Expression levels were determined using
the 2722 method, with B-actin serving as the internal control.
Results are reported as means + standard deviations from triplicate
experiments. The primer sequences utilized were as follows:
SOCS3: forward: reverse: 5-TGGTCCAGGAACTCCCGAAT-
3';  PB-actin: forward: AGAGCTACGAGCTGCCTGAC 5'-
AGAGCTACGAGCTGCCTGAC-3', AGCACTGTGTTGGCGTAC
AG 5'-AGCACTGTGTTGGCGTACAG-3'.
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Gene set enrichment analysis (GSEA)

We conducted gene set enrichment analysis (GSEA) on
subgroups stratified by the median expression levels of hub genes,
considering an adjusted p-value less than 0.05 as statistically
significant.

Immune Cell Profiling The CIBERSORT algorithm was
employed to assess immune cell composition by estimating the
relative proportions of 22 immune cell types from gene expression
data. Samples with a CIBERSORT p-value less than 0.05 were
included and the output estimates were normalized to enable
comparisons across datasets. Visualization was performed using
R packages and Spearman correlation analysis was conducted
to determine associations between infiltrating immune cells and
diagnostic biomarkers.

Building the ceRNA network and mapping
TF-Gene interactions

To dissect the regulatory competing endogenous RNA (ceRNA)
network surrounding our hub genes, we integrated miRNA
target predictions from miRDB (https://mirdb.org/), TargetScan
(http://
www.microrna.org/) to identify targeted miRNAs, emphasizing

(https://www.targetscan.org/vert_80/) and miRanda
accuracy through cross-database consensus. SpongeScan (http://
spongescan.rc.ufledu/) was employed to identify long non-
coding RNAs (IncRNAs) potentially acting as miRNA sponges.
Additionally, NetworkAnalyst (https://www.networkanalyst.ca/)
was utilized to identify transcription factors (TFs) associated with
our hub genes. These predicted interaction networks were effectively
visualized using Cytoscape version 3.8.2.

Predicting drug candidates and molecular
docking

We sourced small molecules that interact with target genes from
the CTD database (http://ctdbase.org/) and performed molecular
docking using these molecules as ligands and the central genes as
receptors. The 3D structures of the ligands were downloaded in SDF
format from PubChem and processed using Chem3D 19.0, then
saved in mol2 format for compatibility. The target proteins were
modeled via SwissModel (https://swissmodel.expasy.org/) and their
structures validated using SAVES v6.0 (https://saves.mbi.ucla.edu/).
Molecular docking was conducted in MOE 2019, with PyMOL 2.5
employed to visualize the interactions. Binding affinity, indicated
by free energy values, was used to guide our analysis: values below
—1.2 kcal/mol suggested activity, while those below —5.0 keal/mol
indicated strong affinity, providing potential therapeutic insights.

Statistical analysis

Statistical analysis of the data from this study was performed
using R (version 4.3.2). A t-test was conducted to compare
continuous variables between two groups, assuming a normal
distribution. To assess the correlation between gene expression
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and immune cell fractions, the Spearman rank correlation test was
employed. The qPCR results were analyzed using a t-test with the
statistical software SPSS version 23.0. Statistical significance was
defined as a p-value less than 0.05.

Results
Screening key modules through WGCNA

Weighted gene co-expression network analysis (WGCNA) was
employed to identify co-expressed and variably expressed gene
modules in patients with sepsis-induced ARDS and SIC, and
to analyze their associations with disease spectra. For sepsis-
induced ARDS patients, a soft-thresholding power of 5 was
selected (Figure 1A). An adjacency matrix was generated using the
adjacency function, followed by hierarchical clustering based on
TOM dissimilarity, which revealed seven co-expression modules
(Figure 1C). Notably, modules with P < 0.05 were highlighted
as key modules (Figure 1E), with the red module showing the
most significant positive correlation (56 genes, r = 0.34, p =
0.02), while the turquoise module exhibited the most significant
negative correlation (6,223 genes, r = —0.37, p = 0.009). Additionally,
significant associations were found between module membership
and gene significance in the red module (r = 0.36, p = 0.0064) and the
turquoise module (r = 0.47, p < 1e-200), as shown in Figures 1G,H,
respectively. Consequently, 6,279 key genes significantly associated
with sepsis-induced ARDS were identified in the red and turquoise
modules.

For the SIC analysis, a soft-thresholding power (B) of 5 was
determined as optimal (Figure 1B), resulting in the identification
of six modules. The turquoise module exhibited a strong positive
correlation (2,450 genes, r = 0.72, p = 8e—6), while the blue module
exhibited a significant negative correlation (1,049 genes, r = —-0.88,
p = le-10, Figures 1D,F). Additionally, significant correlations were
observed between gene significance (GS) and module membership
(MM) within both the turquoise and blue modules. The turquoise
module demonstrated a correlation coefficient of 0.78 (p < 1e-200,
Figure 1I) and the blue module displayed a correlation coeflicient of
0.88 (p < le-200, Figure 1]). In total, 3,499 key genes significantly
associated with SIC were identified across the turquoise and
blue modules.

Unveiling and investigating shared
differentially expressed genes (DEGs)

Our comparative study of patients with sepsis-related ARDS
and healthy individuals identified 611 differentially expressed genes
(DEGsS), of which 114 were upregulated and 497 downregulated
(Figure 2A). These DEGs were visualized in a protein-protein
interaction (PPI) integrated volcano plot (Figure 2B) and the 30
most significant DEGs were further highlighted in a heatmap
(Figure 2A). In the comparison between SIC and the control group,
945 DEGs were identified, including 481 upregulated and 464
downregulated genes, with particular emphasis on the top 30
genes shown in Figures 2C,D. By intersecting DEGs with genes
from the WGCNA modules, 21 shared genes were identified for
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in-depth investigation (Figure 2E), suggesting their potential as To elucidate the underlying mechanisms, functional enrichment
biomarkers for the pathogenesis of sepsis-induced ARDS and SIC.  analysis was carried out through GO and KEGG pathway
The expression levels of these genes in the two disease groups and  analyses. The shared genes were associated with biological
the control group are illustrated in Figures 2EG. processes (BP) related to inflammation and immunity, including
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forest model. (D) Identification of SIC crosstalk genes with SVM-RFE. (E) Accuracy of the random forest model for SIC, depicted with error rate

confidence intervals. (F) Top 10 discriminative SIC genes in the random forest model. (G) Venn diagram illustrating the five common diagnostic genes
identified in both ARDS and SIC patients through machine learning analysis.
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the regulation of the inflammatory response, ribonucleotide
biosynthesis and T-helper 17 cell lineage commitment. These genes
are linked to specific cellular components (CC) and molecular
functions (MF) (Figures 2F-I). KEGG pathway analysis highlighted
the significant involvement of these genes in the JAK-STAT
signaling pathway (Figure 2J).

Identifying diagnostic biomarkers through
machine learning algorithms

To identify diagnostic biomarkers for sepsis-induced ARDS
and SIC, we applied two machine learning methods - support
vector machine (SVM) and random forest (RF). Using SVM, we
identified 16 crucial diagnostic genes for ARDS (Figures 3A,B).
With RE, we evaluated gene importance and highlighted the top
10 most significant genes (Figure 3C). Additionally, by employing
SVM regression and RF, we discovered 13 and 10 core diagnostic
genes for SIC, respectively (Figures 3D-F). Comparing the results
from both conditions using these machine learning techniques,
we identified five shared diagnostic genes: LCN2, AIF1L, STAT3,
SOCS3 and SDHD (Figure 3G).

Building an artificial neural network (ANN)
model for diagnosis

We developed an artificial neural network (ANN) model using
five characteristic biomarkers. The results demonstrate its strong
ability to distinguish between ARDS patients and healthy individuals
(Figure 4A; supplementary material: ANN model). Furthermore,
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ROC curves were employed to evaluate the overall diagnostic
performance of the ANN model. In the training set, the model
achieved an AUC of 0.965 (95% CI: 0.914-0.998), indicating
excellent discrimination (Figure 4B). Similarly, in the testing set,
it demonstrated positive diagnostic performance, with an AUC of
0.847 (95% CI: 0.682-0.966) (Figure 4C).

Confirmation and validation of diagnostic
marker genes

We investigated the diagnostic utility of five genes in sepsis-
related ARDS and SIC using both training and testing cohorts.
In ARDS samples, ROC analysis of the training cohort yielded
AUC-ROC values for LCN2, AIF1L, STAT3, SOCS3 and SDHD of
0.814,0.791, 0.819, 0.824 and 0.815, respectively (Figure 5A). When
GSE72707 DAY 7 was used as the test set, the AUCs of these genes
were 0.835, 0.695, 0.798, 0.744 and 0.864, respectively (Figure 5B).
For the SIC samples, the AUC values in the training cohort ranged
from 0.905 to 0.986 (Figure 5C) and reached a perfect score of 1
in the external test set, GSE142615 (Figure 5D), highlighting their
strong diagnostic potential.

Additionally, a comparative analysis of the five characteristic
biomarkers was conducted. In the test set, the expression profiles
of LCN2, STAT3 and SOCS3 notably increased, whereas those
of AIFIL and SDHD decreased in both ARDS and SIC groups,
consistent with the findings from the training set (Figure 5E). Using
qPCR, we further validated SOCS3 expression and found that
SOCS3 levels were significantly elevated in LPS-treated HPMECs
in the sepsis-induced lung injury model group compared to the
control group.
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(F) Expression profiles of LCN2, AIF1L, STAT3, SOCS3 and SDHD in the training cohorts GSE142615. (G) gPCR analysis of SOCS3 expression in HPMECs.

Establishing a septic injury model to
investigate SOCS3 expression

We observed that SOCS3 demonstrated strong and consistent
diagnostic potential. To further explore its expression and functional
roles and to establish a foundation for future mechanistic studies,
we developed a septic injury model in human pulmonary
microvascular endothelial cells (HPMEC:s) using lipopolysaccharide
(LPS) and assessed SOCS3 expression. The results revealed a
marked increase in SOCS3 expression in the LPS-treated group
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compared to the control group (P < 0.05), consistent with our
bioinformatics findings (Figure 5G).

GSEA of SOCS3 and analysis of immune
infiltration

We performed single-gene gene set enrichment analysis (GSEA)
on the SOCS3 gene within the ARDS and SIC datasets. The
analysis revealed strong associations between SOCS3 and several
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key pathways. In ARDS, these pathways included the ribosome,
spliceosome, lysosome and oxidative phosphorylation pathways
(Figure 6A). In contrast, in SIC, significant connections were
observed with the chemokine signaling pathway, Fc gamma
receptor-mediated phagocytosis, the NOD-like receptor signaling
pathway and the complement and coagulation cascades (Figure 6B).

Given the pivotal role of immune and inflammatory reactions,
we utilized the CIBERSORT algorithm for our analysis. Our findings
revealed an increase in monocytes and a decrease in CD4 memory
resting T cells and activated dendritic cells in ARDS patients
(Figure 6C), whereas neutrophil counts increased and plasma cells
and activated NK cells decreased in SIC patients (Figure 6D).

Moreover, in ARDS, SOCS3 expression was positively correlated
with CD4" naive T cells, monocytes, neutrophils and regulatory
T cells (Tregs) and negatively correlated with activated mast cells,
CD4" memory resting T cells, naive B cells and plasma cells
(Figure 6E). In the context of SIC, SOCS3 was positively correlated
with resting NK cells but inversely linked with resting mast cells
and activated NK cells (Figure 6F), emphasizing the essential role
of immune mechanisms in the progression of these conditions.

Prediction of the ceRNA network and
transcription factor interactions targeting
SOCS3

Using relevant databases, we predicted interactions within
the ceRNA network and identified transcription factors (TFs)
that target SOCS3. As illustrated in Figure 7A, we constructed a
regulatory network comprising 69 nodes—SOCS3, 11 miRNAs, and
57 IncRNAs—and 71 edges. Additionally, a TF-mRNA network
was established (Figure 7B), highlighting 9 transcription factors that
target SOCS3.

Potential drug prediction and molecular
docking analysis

Our study utilized molecular docking to identify potential
therapeutic drugs. By screening the PubChem database, we focused
on dexamethasone, resveratrol and curcumin. Docking simulations
revealed favorable binding affinities between these compounds and
the SOCS3 protein, with binding energies below —1.2 kcal/mol.
Specifically, dexamethasone, resveratrol and curcumin presented
binding energies of -5.8398 kcal/mol, —4.7891 kcal/mol and
—6.0390 kcal/mol,
highlight the potential of these compounds to target SOCS3,

respectively (Figures 8A-C). These results
supporting further investigation and development for treating
sepsis-associated lung injury and cardiomyopathy.

Discussion

Sepsis-induced acute respiratory distress syndrome (ARDS) and
sepsis-induced cardiomyopathy (SIC) are two grave complications
of sepsis that are linked to high mortality rates. These conditions
stem from an overactive inflammatory response that cause
widespread tissue and organ damage. In sepsis, inflammatory
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mediators can simultaneously trigger ARDS and impair cardiac
function, leading to cardiomyopathy, thereby complicating ARDS
management (Li et al, 2019; Zhang and Ning, 2021). Using
bioinformatics methods, we screened out the genes shared by
ARDS and SIC patients and analyzed their pathways, revealing
significant enrichment in immune and inflammatory pathways.
Effective treatment of these complications requires rapid and precise
diagnosis. Although the SIC signature was originally derived from
cardiac tissue, which is not a feasible source for routine clinical
diagnostics, the concomitant discovery of these same biomarkers in
the readily accessible peripheral blood of ARDS patients provides
a clear and practical path for translational application. Our work
suggests that a blood-based test for this gene signature could
non-invasively report on the status of distant organ dysfunction,
a concept that warrants vigorous future validation. A thorough
understanding of the shared pathophysiological mechanisms
between ARDS and SIC is crucial for developing effective therapies
and improving patient outcomes. Our study not only advances the
current knowledge of the pathogenesis of ARDS and SIC but also
identifies potential diagnostic biomarkers and therapeutic targets,
opening new avenues for research and clinical intervention.

Sepsis pathogenesis involves a highly intricate process
characterized by dysregulated inflammatory responses, immune
system mitochondrial ~ damage,
disorders, abnormalities in the neuroendocrine immune network,

dysfunction, coagulation

endoplasmic reticulum stress, autophagy and various other
These
contribute to organ dysfunction (Zhang et al., 2023).

pathophysiological ~mechanisms. factors  collectively

The application of machine learning algorithms to identify
diagnostic biomarkers represents an innovative approach, bridging
the gap between genomic data and clinical practice (Handelman et al.,
2018). We utilized weighted gene co-expression network analysis
(WGCNA) and machine learning algorithms to identify shared
diagnostic markers potentially linked to sepsis-induced acute
respiratory distress syndrome (ARDS) and cardiomyopathy. Our
findings indicate that biomarkers such as LCN2, AIF1L, STATS3,
SOCS3 and SDHD have significant potential for the early detection
and prognosis of ARDS and SIC. Furthermore, the development of
an artificial neural network (ANN) model for diagnosis marks a
promising advancement in precision medicine; however, integrating
this technology into clinical practice will require overcoming
substantial technological and regulatory challenges. Notably, these
promising biomarkers must undergo rigorous validation in larger and
more diverse patient cohorts before clinical application.

Our study has three key limitations. First, as a discovery-phase
investigation, it focused on the computational identification of novel
shared biomarkers rather than clinical validation, leaving critical
parameters (e.g., cut-off values and dose-effect relationships) for
future multi-center prospective studies. Second, the cross-sectional
design of the datasets (GSE32707, GSE79962), combined with
inherent heterogeneity in sepsis etiology and limited sample sizes,
restricts our ability to analyze temporal biomarker dynamics or their
correlation with disease progression. Primarily, the lack of clinical
feature data (e.g., age, gender, comorbidities) in these genomic
datasets hinders the integration of model predictions with clinical
factors. Third, although we identified shared molecular pathways
(e.g., those involving SOCS3) associated with sepsis-induced organ
damage, the underlying biological mechanisms through which
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dysregulation of these pathways directly drives tissue injury remain
poorly understood and require further functional validation (e.g.,
via in vitro cell models or animal studies). Addressing these
gaps is indispensable for translating our computational findings
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into actionable clinical tools and advancing targeted therapeutic
strategies.

LCN2, also known as neutrophil gelatinase-associated lipocalin
(NGAL), serves as a key inflammatory marker closely linked to
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infection and inflammation. Research indicates that LCN2 plays a SOCS3 functions as a negative regulator by controlling
significant role in inflammation and oxidative stress in acute lung ~ immune and inflammatory responses through the inhibition
injury (Wang et al., 2022). It has been identified as a potential  of cytokine signaling pathways, particularly the JAK/STAT3
therapeutic target for conditions such as pneumonia and acute  pathway, which is essential for cytokine signal transduction
lung injury (An et al, 2023). Allograft inflammatory factor 1-like ~ (Gao et al, 2018). Research has shown that ADARI targets
(AIFIL) is expressed primarily in immune cells and may contribute ~ miR-30a to regulate SOCS3 expression, thereby reducing IL-6
to regulating the inflammatory response (Yasuda-Yamahara et al.,  levels, mitigating inflammation and organ damage and providing
2018). Recent research has revealed that lactate inhibits T cell  protection against sepsis (Shangxun et al., 2020). In sepsis-induced
activation by reducing the expression of CD40LG and suppressing ~ ARDS, dysregulated inflammation is a major contributor to lung
the SOCS3-mediated JAK1/STAT3 signaling pathway (Zhang et al.,  injury and hypoxemia, with SOCS3 potentially influencing the
2025a). STAT3 and SOCS3 are critical regulators of inflammatory  occurrence and progression of ARDS by modulating inflammatory
signaling pathways (Wang et al., 2024). STAT3 functions as both  signaling pathways (Sun et al, 2024). Similarly, in sepsis-
a signaling activator and a transcriptional activator, influencing  induced cardiomyopathy, SOCS3 may participate in pathological
cellular proliferation, differentiation and apoptosis. A recent study  processes by regulating cardiomyocyte growth, apoptosis and
demonstrated that verapamil and tangeretin confer protection  immune response modulation. Feng etal. established a septic
against lipopolysaccharide (LPS)-induced sepsis by reducing the  cardiomyopathy (SCM) model by stimulating HL-1 and AC16
population of M1 macrophages. This protective effect is also  cells with LPS, which resulted in a significant increase in
mediated through the inhibition of P-glycoprotein expression, — SOCS3 expression (Lu et al., 2022). Weng demonstrated that the
achieved by the downregulation of STAT1 and STAT3 signaling  neutralization of interleukin-33 (IL-33) attenuates inflammation,
pathways alongside the upregulation of SOCS3 expression within  oxidative stress, and apoptosis in cardiomyocytes through the
macrophages (Kundu et al, 2024). In recent years, increasing  modulation of the nuclear factor kappa B (NF-kB), signal transducer
evidence indicates that severe sepsis causes mitochondrial structural ~ and activator of transcription 3 (STAT3), and suppressors of
damage in heart muscle cells, including apoptosis, incomplete  cytokine signaling 3 (SOCS3) signaling pathway (Weng et al,
autophagy, and mitophagy and impairs their function, resulting in ~ 2025). Therefore, in this study, we utilized LPS stimulation of only
ATP depletion (Kuroshima et al., 2024). SDHD is a subunit of the =~ human pulmonary microvascular endothelial cells (HPMECs) to
mitochondrial respiratory chain complex II, which is crucial for ~ construct a sepsis-induced lung injury model in which a notable
cellular energy metabolism and the management of oxidative stress  increase in SOCS3 expression was observed. The role of SOCS3
(Linetal, 2021; Han et al., 2023). Dysregulated expression of SDHD  in inflammation and immune regulation may be critical for
can lead to mitochondrial dysfunction and heightened oxidative =~ ARDS and myocardial disease induced by sepsis. By regulating
stress, potentially contributing to tissue damage in the heart and  the inflammatory signaling pathway and immune response,
lungs (Bejarano-Garcia et al., 2016; Zhao et al., 2021). SOCS3 may influence the onset, progression, and severity of
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Molecular docking of dexamethasone. (A) Resveratrol. (B) Curcumin. (C) With SOCS3.
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these conditions, offering new targets and strategies for their
treatment.

The discovery of these genes opens new avenues for diagnosing
and treating sepsis-induced ARDS and cardiomyopathy. However,
further clinical research and validation are necessary to assess their
feasibility and effectiveness in clinical settings. The discrepancies
between our findings and those of previous studies pose intriguing
questions about the variability in sepsis pathophysiology. For
example, while our study highlights the significant role of the
SOCS3 gene in both ARDS and SIC—a gene that has been relatively
understudied in the literature—this underscores the complexity of
sepsis and its complications. Factors such as genetic background,
environmental influences and the nature of the initiating infection
may profoundly influence disease outcomes. Exploring the potential
long-term and latent effects of these identified biomarkers and
therapeutic targets is essential. Additionally, the interaction between
these genetic factors and other determinants of sepsis severity, such
as comorbidities and treatment interventions, remains an important
area for further investigation.
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We performed targeted screening of the diagnostic gene
SOCS3 to develop a novel therapeutic approach for reducing
organ damage in sepsis. Dexamethasone, a corticosteroid widely
used for treating inflammatory diseases, significantly reduces
mortality in early-stage moderate-to-severe ARDS patients
(Villar et al, 2020). However, high systemic doses can lead
to severe side effects such as hyperglycemia, peptic ulcers and
electrolyte imbalances (Madamsetty et al., 2022). Resveratrol, an
antioxidant and anti-inflammatory polyphenol, reduces oxidative
stress and inflammation, thereby improving lung function and
cardiac protection (Meng et al., 2020). Resveratrol also inhibited
CD45+Siglec F- and CD45"CD206— M1 subtype macrophages
via the SOCS3 signaling pathway in a murine model of LPS-
induced acute lung injury (ALI) (Hu et al., 2019). A self-assembling
nanopeptide and resveratrol hydrogel composite enhances Sirtl-
mediated deacetylation of p62, promoting mitochondrial autophagy
and immunometabolic remodeling, thereby mitigating sepsis-
induced inflammation (Wang et al, 2025). Curcumin has the
capacity to mitigate the cytokine storm and reduce organ damage
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induced by sepsis through various mechanisms. These include
its anti-inflammatory and antioxidant properties, suppression of
inflammatory cell death, protection of vascular endothelial integrity,
maintenance of mitochondrial function and regulation of immune
cell activity (Zhang et al., 2025b). Curcumin, known for its potent
anti-inflammatory effects, acts on the NF-kB, MAPK, AP-1 and
Jak/STAT pathways but faces pharmacokinetic challenges that
limit its clinical use (Luo et al., 2025). Current research focuses
on curcumin derivatives, prodrugs and combination therapies to
enhance its delivery and efficacy (Peng et al., 2021). These three
compounds have demonstrated high-affinity binding to SOCS3
and their combined application is expected to amplify therapeutic
benefits while minimizing side effects. Overall, our findings
highlight dexamethasone, resveratrol and curcumin as promising
SOCS3-targeting agents for treating sepsis-induced lung injury and
cardiomyopathy, paving the way for further in vitro, in vivo and
clinical development.

Our study provides valuable insights into the molecular basis
of ARDS and SIC in the context of sepsis, identifying novel
biomarkers and pathways for potential therapeutic intervention.
While we have made significant progress in understanding these
complex conditions, our work also reveals the vast array of
unknowns that remain. Moving forward, a multidisciplinary
approach integrating advanced genomic analysis, bioinformatics
and clinical research will be essential to fully unravel the
complexities of sepsis and its devastating complications. As we
explore this uncharted territory, our findings lay a foundation
for future studies aimed at improving outcomes for patients with
ARDS and SIC.
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