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Background: Sepsis frequently results in complications such as acute respiratory 
distress syndrome (ARDS) and cardiomyopathy. This study aims to identify 
common diagnostic markers and elucidate the underlying mechanisms of these 
sepsis-induced complications.
Methods: We obtained datasets related to ARDS and sepsis-induced 
cardiomyopathy (SIC) from the GEO database and applied weighted gene co-
expression network analysis (WGCNA) to identify differentially expressed genes 
(DEGs), which were integrated with key module genes. Feature genes were 
selected using support vector machine-recursive feature elimination (SVM-
RFE) and random forest (RF) algorithms. An artificial neural network (ANN) 
model was constructed and its diagnostic performance was evaluated using 
receiver operating characteristic (ROC) curves. Machine learning algorithms 
effectively identified key hub genes associated with sepsis-induced ARDS and 
cardiomyopathy, with their robustness validated through ROC analysis. A cellular 
model of sepsis-induced lung injury was employed to examine hub gene 
expression. Additionally, we investigated inflammation and immune responses 
by characterizing immune landscapes using CIBERSORT and performing 
correlation analyses among feature genes, immune infiltration, and clinical 
characteristics. Finally, potential small-molecule compounds were identified 
from the PubChem database.
Results: Five key genes—LCN2, AIF1L, STAT3, SOCS3 and SDHD—were identified. 
SOCS3 showed strong diagnostic potential with gene set enrichment analysis 
(GSEA) highlighting its role in biological processes and immune responses. 
SOCS3 expression correlated strongly with immune cells. Dexamethasone, 
resveratrol and curcumin were identified as potential SOCS3-targeting drugs.
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Conclusion: Five genes were identified as diagnostic biomarkers for sepsis-
induced ARDS and cardiomyopathy, with SOCS3 serving as a key hub gene and 
potential therapeutic target.

KEYWORDS

sepsis-induced ALI/ARDS, septic cardiomyopathy, SOCS3, immune infiltration, 
molecular docking 

Introduction

Sepsis, a systemic and dysregulated response to infection, 
represents a major global health challenge due to its high 
prevalence and mortality rates. This complex syndrome triggers 
a cascade of pathophysiological responses, leading to multiple 
organ dysfunction. Among its severe complications, sepsis-induced 
acute respiratory distress syndrome (ARDS) and sepsis-induced 
cardiomyopathy (SIC) are particularly common and devastating 
(Singer et al., 2016; Rudd et al., 2020).

Acute respiratory distress syndrome (ARDS) results from severe 
pulmonary inflammation and extensive alveolar damage. It is 
characterized by widespread infiltration of inflammatory cells and 
increased permeability of the alveolar–capillary barrier, leading to 
pulmonary edema and hypoxemia (Gorman et al., 2022). Sepsis-
induced cardiomyopathy (SIC) currently lacks a uniform definition 
but is generally described as an acute syndrome of nonischemic 
cardiac dysfunction associated with sepsis. Factors such as 
myocardial suppression, mitochondrial dysfunction, calcium 
homeostasis imbalance and cytokine overload collectively impair 
cardiac function (Martin et al., 2019). These complications in the 
heart and lungs increase mortality risk and complicate management, 
necessitating advanced clinical interventions. Despite extensive 
research, the molecular mechanisms involved remain incompletely 
understood, highlighting the urgent need for innovative diagnostic 
and therapeutic strategies. Therefore, identifying diagnostic 
biomarkers for sepsis-related vital organ dysfunction and developing 
targeted therapeutic approaches are crucial for improving patient 
survival rates (Coopersmith et al., 2018).

While biomarkers such as C-reactive protein and procalcitonin 
are widely used for diagnosing and evaluating sepsis (Yang et al., 
2016), they have yet to demonstrate satisfactory discriminatory 
power (Barichello et al., 2022). Elevated MUC1 levels show 
promise as predictors for the development of ARDS in sepsis 
patients (Wang et al., 2020). Recent research has revealed that 
genes associated with cuproptosis and ferroptosis, including 
POR, SLC7A5 and STAT3, are significantly correlated with SIC 
(Song et al., 2023). Machine learning algorithms have shown 
remarkable potential in analyzing high-dimensional data, enabling 
the precise identification of diagnostic and prognostic biomarkers 
and offering a novel approach to developing diagnostic models 

Abbreviations: ARDS, acute respiratory distress syndrome; SIC, sepsis-
induced cardiomyopathy; DEGs, differentially expressed genes; WGCNA, 
weighted gene co-expression network analysis; SVM-RFE, support vector 
machine-recursive feature elimination; RF, random forest; ANN, artificial 
neural network; CIBERSORT, cell type proportions from RNA transcripts; 
GSEA, gene set enrichment analysis; ALI, acute lung injury.

(Toh et al., 2019). For example, a study employing various machine 
learning algorithms such as elastic net, SVM, random forest and 
XGBoost—identified five genes capable of distinguishing between 
ALI and sepsis patients (Zheng et al., 2023).

Although certain biomarkers have been identified for 
diagnosing ARDS and SIC individually, there is a lack of systematic 
research on shared diagnostic markers for these conditions. 
Moreover, further investigation into the common pathogenic 
mechanisms underlying both ARDS and SIC is necessary. 
Proinflammatory cytokines such as TNF-α, IL-1β and IL-6 are 
recognized as key factors in triggering ARDS and SIC in sepsis 
(Kumar et al., 2007; Colás-Algora et al., 2023). Dysregulated 
immune responses, oxidative stress, endothelial dysfunction 
and coagulation abnormalities all play significant roles in the 
pathogenesis (Meyer et al., 2021). Therefore, an in-depth exploration 
of these shared mechanisms and the identification of relevant 
diagnostic markers hold substantial clinical implications.

In this study, we utilized bioinformatics tools, including 
weighted gene co-expression network analysis (WGCNA) and 
machine learning algorithms to identify diagnostic biomarkers and 
elucidate their underlying molecular mechanisms. Our objective 
was to discover potential diagnostic and therapeutic targets for 
sepsis-induced ARDS and SIC.

Methods and materials

Data and preprocessing

We extracted and organized data from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 
The dataset GSE32707, related to sepsis-associated ARDS, includes 
samples from 58 sepsis patients (30 on day 0 post-admission and 
28 on day 7 post-admission), 31 sepsis-induced ARDS patients 
(18 on day 0 and 13 on day 7 post-admission), 21 patients with 
systemic inflammatory response syndrome (SIRS) on day 0 and 34 
control whole blood samples. We used the corresponding annotation 
file GPL10558 (Illumina HumanHT-12 V4.0 Expression BeadChip) 
to annotate the expression matrix. For our analysis, we selected 
sepsis-induced ARDS patients on day 0 and the control group as 
the discovery cohort and sepsis-induced ARDS patients on day 7 
as the validation cohort. For the sepsis-induced cardiomyopathy 
(SIC) microarray dataset GSE79962, samples were obtained from 
human cardiac tissues, including 20 sepsis cardiomyopathy patients 
and 11 non-heart failure donor samples. GSE79962 is based on 
the GPL6244 platform (HuGene-1_0-st Affymetrix Human Gene 
1.0 ST Array [transcript (gene) version]). GSE142615 was selected 
for external validation; it includes samples from mouse cardiac 
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tissues, comprising 4 lipopolysaccharide (LPS)-induced sepsis 
cardiomyopathy mice and 4 saline-treated control mice. GSE142615 
is based on the GPL27951 platform (Agilent-084783 Mus musculus
array [circMouse_0410; Agilent Probe Name]). Using R version 
4.3.2, we converted probes to gene symbols according to the platform 
annotation information. We removed non-matching probes and 
calculated the average expression value for genes corresponding to 
multiple probes. 

Identification of gene modules via 
weighted gene co-expression network 
analysis (WGCNA)

WGCNA was applied to the GSE32707 and GSE79962 datasets 
to identify gene modules associated with sepsis-induced ARDS 
and cardiomyopathy. Missing values and outliers were identified 
and removed through hierarchical clustering analysis. Subsequently, 
using the scale-free topology criterion, an appropriate “soft” 
threshold power (β) was determined to facilitate the construction of 
biologically relevant networks. A topological overlap matrix (TOM), 
derived from the adjacency matrix, enabled the identification 
of gene modules via a dynamic tree-cutting algorithm. Gene 
significance (GS) and module membership (MM) were calculated 
and their correlations with clinical characteristics were assessed, 
leading to the visualization of feature gene networks. Statistical 
measures, including the Pearson correlation coefficient and p-values 
of eigengenes against disease traits, were used to identify key 
modules closely associated with the pathogenesis of sepsis-induced 
ARDS and cardiomyopathy. 

Identification of differentially expressed 
genes (DEGs)

The identification of DEGs from the GSE32707 and GSE79962 
datasets were identified using the Limma package in R (version 
4.3.2), applying significance thresholds of adjusted p-value <0.05 
and |log2 fold change| > 0.5. Protein–protein interaction (PPI) 
data and annotations were obtained from the STRING database 
(https://cn.string-db.org/). The analysis results were visualized 
through heatmaps and volcano plots, supplemented by PPI network 
information, with red indicating high expression and blue indicating 
low expression. Shared genes between the two datasets, derived 
from the intersection of DEGs and WGCNA module genes, were 
illustrated using a Venn diagram generated by jvenn (https://
jvenn.toulouse.inrae.fr/app/example.html). 

Enrichment analysis

Using the clusterProfiler package in R, we analyzed Gene 
Ontology (GO) annotations and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways to elucidate the functional implications 
of the shared DEGs. Statistical significance was defined as an 
adjusted p-value less than 0.05.

Leveraging machine learning for 
identifying diagnostic markers

We employed support vector machine recursive feature 
elimination (SVM-RFE) using the “e1071”, “kernlab” and 
“caret” packages in R for gene selection in the study of 
sepsis-induced conditions. Through tenfold cross-validation, 
this method effectively identified genes critical for disease 
classification, highlighting potential biomarkers. Concurrently, 
a random forest (RF) approach, implemented via the “Random 
Forest” package, was used to assess gene importance. By 
constructing decision trees from data subsets, this method 
pinpointed genes essential for predicting septic conditions and 
optimized the number of trees through error analysis. Gene 
importance was ranked based on the mean decrease in the 
Gini coefficient, thereby refining our selection of diagnostic
markers.

Additionally, a neural network model, developed using the 
“neuralnet” package and visualized with “NeuralNetTools”, was 
employed to map gene expression to sepsis outcomes. The model 
featured a single hidden layer with five neurons and was trained 
using backpropagation to distinguish between the control and 
treatment groups. Model performance was evaluated by the area 
under the curve (AUC), revealing complex data patterns and gene 
interactions. 

Cell culture

Human pulmonary microvascular endothelial cells (HPMECs) 
were obtained from the Shanghai Biology Institute and cultured in 
endothelial cell medium (ScienCell, United States) supplemented 
with endothelial cell growth supplements (ECGS) and 5% 
fetal bovine serum (FBS) under a 5% CO2 atmosphere. 
To establish a sepsis-induced lung injury model, HPMECs 
were treated with lipopolysaccharide (LPS) at 10 ng/mL for 
24 h, with phosphate-buffered saline (PBS) serving as the
control. 

RNA extraction and quantitative Real-Time 
PCR (qRT‒PCR)

Total RNA was extracted using TRIzol reagent (Takara, Japan), 
followed by cDNA synthesis with the PrimeScriptTM FAST RT 
reagent Kit (Takara, Japan). mRNA quantification was performed 
by qRT-PCR using the TB Green® Premix Ex TaqTM II FAST qPCR 
kit (Takara, Japan) on a 7,300 Real-Time PCR System (Applied 
Biosystems, United States). Expression levels were determined using 
the 2−ΔΔCt method, with β-actin serving as the internal control. 
Results are reported as means ± standard deviations from triplicate 
experiments. The primer sequences utilized were as follows: 
SOCS3: forward: reverse: 5′-TGGTCCAGGAACTCCCGAAT-
3′; β-actin: forward: AGAGCTACGAGCTGCCTGAC 5′-
AGAGCTACGAGCTGCCTGAC-3′, AGCACTGTGTTGGCGTAC
AG 5′-AGCACTGTGTTGGCGTACAG-3′.
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Gene set enrichment analysis (GSEA)

We conducted gene set enrichment analysis (GSEA) on 
subgroups stratified by the median expression levels of hub genes, 
considering an adjusted p-value less than 0.05 as statistically 
significant.

Immune Cell Profiling The CIBERSORT algorithm was 
employed to assess immune cell composition by estimating the 
relative proportions of 22 immune cell types from gene expression 
data. Samples with a CIBERSORT p-value less than 0.05 were 
included and the output estimates were normalized to enable 
comparisons across datasets. Visualization was performed using 
R packages and Spearman correlation analysis was conducted 
to determine associations between infiltrating immune cells and 
diagnostic biomarkers. 

Building the ceRNA network and mapping 
TF‒Gene interactions

To dissect the regulatory competing endogenous RNA (ceRNA) 
network surrounding our hub genes, we integrated miRNA 
target predictions from miRDB (https://mirdb.org/), TargetScan 
(https://www.targetscan.org/vert_80/) and miRanda (http://
www.microrna.org/) to identify targeted miRNAs, emphasizing 
accuracy through cross-database consensus. SpongeScan (http://
spongescan.rc.ufl.edu/) was employed to identify long non-
coding RNAs (lncRNAs) potentially acting as miRNA sponges. 
Additionally, NetworkAnalyst (https://www.networkanalyst.ca/) 
was utilized to identify transcription factors (TFs) associated with 
our hub genes. These predicted interaction networks were effectively 
visualized using Cytoscape version 3.8.2. 

Predicting drug candidates and molecular 
docking

We sourced small molecules that interact with target genes from 
the CTD database (http://ctdbase.org/) and performed molecular 
docking using these molecules as ligands and the central genes as 
receptors. The 3D structures of the ligands were downloaded in SDF 
format from PubChem and processed using Chem3D 19.0, then 
saved in mol2 format for compatibility. The target proteins were 
modeled via SwissModel (https://swissmodel.expasy.org/) and their 
structures validated using SAVES v6.0 (https://saves.mbi.ucla.edu/).
Molecular docking was conducted in MOE 2019, with PyMOL 2.5 
employed to visualize the interactions. Binding affinity, indicated 
by free energy values, was used to guide our analysis: values below 
−1.2 kcal/mol suggested activity, while those below −5.0 kcal/mol 
indicated strong affinity, providing potential therapeutic insights. 

Statistical analysis

Statistical analysis of the data from this study was performed 
using R (version 4.3.2). A t-test was conducted to compare 
continuous variables between two groups, assuming a normal 
distribution. To assess the correlation between gene expression 

and immune cell fractions, the Spearman rank correlation test was 
employed. The qPCR results were analyzed using a t-test with the 
statistical software SPSS version 23.0. Statistical significance was 
defined as a p-value less than 0.05.

Results

Screening key modules through WGCNA

Weighted gene co-expression network analysis (WGCNA) was 
employed to identify co-expressed and variably expressed gene 
modules in patients with sepsis-induced ARDS and SIC, and 
to analyze their associations with disease spectra. For sepsis-
induced ARDS patients, a soft-thresholding power of 5 was 
selected (Figure 1A). An adjacency matrix was generated using the 
adjacency function, followed by hierarchical clustering based on 
TOM dissimilarity, which revealed seven co-expression modules 
(Figure 1C). Notably, modules with P < 0.05 were highlighted 
as key modules (Figure 1E), with the red module showing the 
most significant positive correlation (56 genes, r = 0.34, p = 
0.02), while the turquoise module exhibited the most significant 
negative correlation (6,223 genes, r = −0.37, p = 0.009). Additionally, 
significant associations were found between module membership 
and gene significance in the red module (r = 0.36, p = 0.0064) and the 
turquoise module (r = 0.47, p < 1e-200), as shown in Figures 1G,H, 
respectively. Consequently, 6,279 key genes significantly associated 
with sepsis-induced ARDS were identified in the red and turquoise
modules.

For the SIC analysis, a soft-thresholding power (β) of 5 was 
determined as optimal (Figure 1B), resulting in the identification 
of six modules. The turquoise module exhibited a strong positive 
correlation (2,450 genes, r = 0.72, p = 8e−6), while the blue module 
exhibited a significant negative correlation (1,049 genes, r = −0.88, 
p = 1e−10, Figures 1D,F). Additionally, significant correlations were 
observed between gene significance (GS) and module membership 
(MM) within both the turquoise and blue modules. The turquoise 
module demonstrated a correlation coefficient of 0.78 (p < 1e-200, 
Figure 1I) and the blue module displayed a correlation coefficient of 
0.88 (p < 1e-200, Figure 1J). In total, 3,499 key genes significantly 
associated with SIC were identified across the turquoise and 
blue modules. 

Unveiling and investigating shared 
differentially expressed genes (DEGs)

Our comparative study of patients with sepsis-related ARDS 
and healthy individuals identified 611 differentially expressed genes 
(DEGs), of which 114 were upregulated and 497 downregulated 
(Figure 2A). These DEGs were visualized in a protein–protein 
interaction (PPI) integrated volcano plot (Figure 2B) and the 30 
most significant DEGs were further highlighted in a heatmap 
(Figure 2A). In the comparison between SIC and the control group, 
945 DEGs were identified, including 481 upregulated and 464 
downregulated genes, with particular emphasis on the top 30 
genes shown in Figures 2C,D. By intersecting DEGs with genes 
from the WGCNA modules, 21 shared genes were identified for 
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FIGURE 1
Analysis and identification of modules in the weighted gene co-expression network (WGCNA). (A) Determination of the soft-thresholding power for 
WGCNA in ARDS. (B) Calculation of the soft-thresholding power for SIC. (C) Cluster dendrogram for ARDS, highlighting key modules of highly 
connected genes. (D) Cluster dendrogram for SIC, showing modules with highly connected genes. (E) Module‒trait relationships in ARDS, including 
correlation coefficients and p-values for each module. (F) Module‒trait relationships in SIC, detailing correlations and p-values for each module. (G)
Scatter plots illustrating gene significance (GS) versus module membership (MM) for genes within the red modules in ARDS. (H) Scatter plots illustrating 
gene significance (GS) versus module membership (MM) for genes within the turquoise modules in ARDS. (I) Scatter plots showing the GS against MM 
for genes in the turquoise modules in SIC. (J) Scatter plots showing the GS against MM for genes in the blue modules in SIC.
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FIGURE 2
Exploring shared DEGs and their functional significance. (A) Heatmap of DEGs in the GSE32707-day0 dataset. (B) Volcano plot of DEGs in the 
GSE32707-day0 dataset. (C) Heatmap of DEGs in the GSE79962 dataset. (D) Volcano plot of DEGs in the GSE79962 dataset. (E) Venn diagram 
highlighting 21 key shared genes identified from the DEGs and network modules. (F) Boxplots showing expression variations of the 21 shared genes in 
the ARDS and SIC groups compared to the normal group. (G) Boxplots showing expression variations of the 21 shared genes in the ARDS and SIC 
groups compared to the normal group. (H) Circle chart illustrating the results of the GO enrichment analysis. (I) Network graph illustrating the results of 
the GO enrichment analysis. (J) Network graph depicting KEGG pathway enrichment results.

in-depth investigation (Figure 2E), suggesting their potential as 
biomarkers for the pathogenesis of sepsis-induced ARDS and SIC. 
The expression levels of these genes in the two disease groups and 
the control group are illustrated in Figures 2F,G.

To elucidate the underlying mechanisms, functional enrichment 
analysis was carried out through GO and KEGG pathway 
analyses. The shared genes were associated with biological 
processes (BP) related to inflammation and immunity, including 
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FIGURE 3
Machine learning identifies diagnostic genes for sepsis-induced ARDS and SIC. (A) Screening of ARDS crosstalk genes with SVM-RFE. (B) Accuracy of 
the random forest model for ARDS, shown with error rate confidence intervals. (C) Top 10 ARDS genes ranked by discriminative power in the random 
forest model. (D) Identification of SIC crosstalk genes with SVM-RFE. (E) Accuracy of the random forest model for SIC, depicted with error rate 
confidence intervals. (F) Top 10 discriminative SIC genes in the random forest model. (G) Venn diagram illustrating the five common diagnostic genes 
identified in both ARDS and SIC patients through machine learning analysis.

the regulation of the inflammatory response, ribonucleotide 
biosynthesis and T-helper 17 cell lineage commitment. These genes 
are linked to specific cellular components (CC) and molecular 
functions (MF) (Figures 2F–I). KEGG pathway analysis highlighted 
the significant involvement of these genes in the JAK-STAT 
signaling pathway (Figure 2J). 

Identifying diagnostic biomarkers through 
machine learning algorithms

To identify diagnostic biomarkers for sepsis-induced ARDS 
and SIC, we applied two machine learning methods - support 
vector machine (SVM) and random forest (RF). Using SVM, we 
identified 16 crucial diagnostic genes for ARDS (Figures 3A,B). 
With RF, we evaluated gene importance and highlighted the top 
10 most significant genes (Figure 3C). Additionally, by employing 
SVM regression and RF, we discovered 13 and 10 core diagnostic 
genes for SIC, respectively (Figures 3D–F). Comparing the results 
from both conditions using these machine learning techniques, 
we identified five shared diagnostic genes: LCN2, AIF1L, STAT3, 
SOCS3 and SDHD (Figure 3G).

Building an artificial neural network (ANN) 
model for diagnosis

We developed an artificial neural network (ANN) model using 
five characteristic biomarkers. The results demonstrate its strong 
ability to distinguish between ARDS patients and healthy individuals 
(Figure 4A; supplementary material: ANN model). Furthermore, 

ROC curves were employed to evaluate the overall diagnostic 
performance of the ANN model. In the training set, the model 
achieved an AUC of 0.965 (95% CI: 0.914–0.998), indicating 
excellent discrimination (Figure 4B). Similarly, in the testing set, 
it demonstrated positive diagnostic performance, with an AUC of 
0.847 (95% CI: 0.682–0.966) (Figure 4C).

Confirmation and validation of diagnostic 
marker genes

We investigated the diagnostic utility of five genes in sepsis-
related ARDS and SIC using both training and testing cohorts. 
In ARDS samples, ROC analysis of the training cohort yielded 
AUC-ROC values for LCN2, AIF1L, STAT3, SOCS3 and SDHD of 
0.814, 0.791, 0.819, 0.824 and 0.815, respectively (Figure 5A). When 
GSE72707 DAY 7 was used as the test set, the AUCs of these genes 
were 0.835, 0.695, 0.798, 0.744 and 0.864, respectively (Figure 5B). 
For the SIC samples, the AUC values in the training cohort ranged 
from 0.905 to 0.986 (Figure 5C) and reached a perfect score of 1 
in the external test set, GSE142615 (Figure 5D), highlighting their 
strong diagnostic potential.

Additionally, a comparative analysis of the five characteristic 
biomarkers was conducted. In the test set, the expression profiles 
of LCN2, STAT3 and SOCS3 notably increased, whereas those 
of AIF1L and SDHD decreased in both ARDS and SIC groups, 
consistent with the findings from the training set (Figure 5E). Using 
qPCR, we further validated SOCS3 expression and found that 
SOCS3 levels were significantly elevated in LPS-treated HPMECs 
in the sepsis-induced lung injury model group compared to the 
control group. 
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FIGURE 4
ANN Model Diagnostics. (A) Ability of the ANN model to differentiate between ARDS patients and healthy subjects. (B) ROC curve of the model using 
the training dataset. (C) ROC curve from the evaluation of the testing dataset.

FIGURE 5
Prediction efficiency of the intersected genes. (A) ROC curves for LCN2, AIF1L, STAT3, SOCS3 and SDHD in GSE32707 Day 0, (B) ROC curves for LCN2, 
AIF1L, STAT3, SOCS3 and SDHD in GSE32707 Day 7. (C) ROC curves for LCN2, AIF1L, STAT3, SOCS3 and SDHD in GSE79962. (D) ROC curves for LCN2, 
AIF1L, STAT3, SOCS3 and SDHD in GSE142615. (E) Expression profiles of LCN2, AIF1L, STAT3, SOCS3 and SDHD in the training cohorts GSE32707 Day 7.
(F) Expression profiles of LCN2, AIF1L, STAT3, SOCS3 and SDHD in the training cohorts GSE142615. (G) qPCR analysis of SOCS3 expression in HPMECs.

Establishing a septic injury model to 
investigate SOCS3 expression

We observed that SOCS3 demonstrated strong and consistent 
diagnostic potential. To further explore its expression and functional 
roles and to establish a foundation for future mechanistic studies, 
we developed a septic injury model in human pulmonary 
microvascular endothelial cells (HPMECs) using lipopolysaccharide 
(LPS) and assessed SOCS3 expression. The results revealed a 
marked increase in SOCS3 expression in the LPS-treated group 

compared to the control group (P < 0.05), consistent with our 
bioinformatics findings (Figure 5G). 

GSEA of SOCS3 and analysis of immune 
infiltration

We performed single-gene gene set enrichment analysis (GSEA) 
on the SOCS3 gene within the ARDS and SIC datasets. The 
analysis revealed strong associations between SOCS3 and several 
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key pathways. In ARDS, these pathways included the ribosome, 
spliceosome, lysosome and oxidative phosphorylation pathways 
(Figure 6A). In contrast, in SIC, significant connections were 
observed with the chemokine signaling pathway, Fc gamma 
receptor-mediated phagocytosis, the NOD-like receptor signaling 
pathway and the complement and coagulation cascades (Figure 6B).

Given the pivotal role of immune and inflammatory reactions, 
we utilized the CIBERSORT algorithm for our analysis. Our findings 
revealed an increase in monocytes and a decrease in CD4 memory 
resting T cells and activated dendritic cells in ARDS patients 
(Figure 6C), whereas neutrophil counts increased and plasma cells 
and activated NK cells decreased in SIC patients (Figure 6D).

Moreover, in ARDS, SOCS3 expression was positively correlated 
with CD4+ naive T cells, monocytes, neutrophils and regulatory 
T cells (Tregs) and negatively correlated with activated mast cells, 
CD4+ memory resting T cells, naive B cells and plasma cells 
(Figure 6E). In the context of SIC, SOCS3 was positively correlated 
with resting NK cells but inversely linked with resting mast cells 
and activated NK cells (Figure 6F), emphasizing the essential role 
of immune mechanisms in the progression of these conditions. 

Prediction of the ceRNA network and 
transcription factor interactions targeting 
SOCS3

Using relevant databases, we predicted interactions within 
the ceRNA network and identified transcription factors (TFs) 
that target SOCS3. As illustrated in Figure 7A, we constructed a 
regulatory network comprising 69 nodes—SOCS3, 11 miRNAs, and 
57 lncRNAs—and 71 edges. Additionally, a TF‒mRNA network 
was established (Figure 7B), highlighting 9 transcription factors that 
target SOCS3.

Potential drug prediction and molecular 
docking analysis

Our study utilized molecular docking to identify potential 
therapeutic drugs. By screening the PubChem database, we focused 
on dexamethasone, resveratrol and curcumin. Docking simulations 
revealed favorable binding affinities between these compounds and 
the SOCS3 protein, with binding energies below −1.2 kcal/mol. 
Specifically, dexamethasone, resveratrol and curcumin presented 
binding energies of −5.8398 kcal/mol, −4.7891 kcal/mol and 
−6.0390 kcal/mol, respectively (Figures 8A–C). These results 
highlight the potential of these compounds to target SOCS3, 
supporting further investigation and development for treating 
sepsis-associated lung injury and cardiomyopathy.

Discussion

Sepsis-induced acute respiratory distress syndrome (ARDS) and 
sepsis-induced cardiomyopathy (SIC) are two grave complications 
of sepsis that are linked to high mortality rates. These conditions 
stem from an overactive inflammatory response that cause 
widespread tissue and organ damage. In sepsis, inflammatory 

mediators can simultaneously trigger ARDS and impair cardiac 
function, leading to cardiomyopathy, thereby complicating ARDS 
management (Li et al., 2019; Zhang and Ning, 2021). Using 
bioinformatics methods, we screened out the genes shared by 
ARDS and SIC patients and analyzed their pathways, revealing 
significant enrichment in immune and inflammatory pathways. 
Effective treatment of these complications requires rapid and precise 
diagnosis. Although the SIC signature was originally derived from 
cardiac tissue, which is not a feasible source for routine clinical 
diagnostics, the concomitant discovery of these same biomarkers in 
the readily accessible peripheral blood of ARDS patients provides 
a clear and practical path for translational application. Our work 
suggests that a blood-based test for this gene signature could 
non-invasively report on the status of distant organ dysfunction, 
a concept that warrants vigorous future validation. A thorough 
understanding of the shared pathophysiological mechanisms 
between ARDS and SIC is crucial for developing effective therapies 
and improving patient outcomes. Our study not only advances the 
current knowledge of the pathogenesis of ARDS and SIC but also 
identifies potential diagnostic biomarkers and therapeutic targets, 
opening new avenues for research and clinical intervention.

Sepsis pathogenesis involves a highly intricate process 
characterized by dysregulated inflammatory responses, immune 
system dysfunction, mitochondrial damage, coagulation 
disorders, abnormalities in the neuroendocrine immune network, 
endoplasmic reticulum stress, autophagy and various other 
pathophysiological mechanisms. These factors collectively 
contribute to organ dysfunction (Zhang et al., 2023).

The application of machine learning algorithms to identify 
diagnostic biomarkers represents an innovative approach, bridging 
the gap between genomic data and clinical practice (Handelman et al., 
2018). We utilized weighted gene co-expression network analysis 
(WGCNA) and machine learning algorithms to identify shared 
diagnostic markers potentially linked to sepsis-induced acute 
respiratory distress syndrome (ARDS) and cardiomyopathy. Our 
findings indicate that biomarkers such as LCN2, AIF1L, STAT3, 
SOCS3 and SDHD have significant potential for the early detection 
and prognosis of ARDS and SIC. Furthermore, the development of 
an artificial neural network (ANN) model for diagnosis marks a 
promising advancement in precision medicine; however, integrating 
this technology into clinical practice will require overcoming 
substantial technological and regulatory challenges. Notably, these 
promising biomarkers must undergo rigorous validation in larger and 
more diverse patient cohorts before clinical application. 

Our study has three key limitations. First, as a discovery-phase 
investigation, it focused on the computational identification of novel 
shared biomarkers rather than clinical validation, leaving critical 
parameters (e.g., cut-off values and dose-effect relationships) for 
future multi-center prospective studies. Second, the cross-sectional 
design of the datasets (GSE32707, GSE79962), combined with 
inherent heterogeneity in sepsis etiology and limited sample sizes, 
restricts our ability to analyze temporal biomarker dynamics or their 
correlation with disease progression. Primarily, the lack of clinical 
feature data (e.g., age, gender, comorbidities) in these genomic 
datasets hinders the integration of model predictions with clinical 
factors. Third, although we identified shared molecular pathways 
(e.g., those involving SOCS3) associated with sepsis-induced organ 
damage, the underlying biological mechanisms through which 
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FIGURE 6
GSEA of hub genes and analysis of immune infiltration. (A) GSEA of SOCS3 in ARDS. (B) GSEA of SOCS3 in SIC. (C) Comparison of immune cell 
infiltration between ARDS patients and normal controls. (D) Comparison of immune cell infiltration between SIC patients and normal controls. (E)
Association between SOCS3 expression and infiltration of different immune cells in ARDS. (F) Association between SOCS3 expression and infiltration of 
different immune cells in SIC.∗p < 0.05;∗∗P < 0.01;∗∗∗P < 0.001.

dysregulation of these pathways directly drives tissue injury remain 
poorly understood and require further functional validation (e.g., 
via in vitro cell models or animal studies). Addressing these 
gaps is indispensable for translating our computational findings 

into actionable clinical tools and advancing targeted therapeutic 
strategies.

LCN2, also known as neutrophil gelatinase-associated lipocalin 
(NGAL), serves as a key inflammatory marker closely linked to 
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FIGURE 7
Prediction of the ceRNA network and transcription factor (TF) interactions that target SOCS3. (A) Construction of the lncRNA‒miRNA-mRNA ceRNA 
network involving SOCS3. (B) Regulatory interaction network illustrating connections between SOCS3 and TFs. Hub genes are depicted in red‒orange, 
miRNAs in green, lncRNAs in blue and TFs in purple.

infection and inflammation. Research indicates that LCN2 plays a 
significant role in inflammation and oxidative stress in acute lung 
injury (Wang et al., 2022). It has been identified as a potential 
therapeutic target for conditions such as pneumonia and acute 
lung injury (An et al., 2023). Allograft inflammatory factor 1-like 
(AIF1L) is expressed primarily in immune cells and may contribute 
to regulating the inflammatory response (Yasuda-Yamahara et al., 
2018). Recent research has revealed that lactate inhibits T cell 
activation by reducing the expression of CD40LG and suppressing 
the SOCS3-mediated JAK1/STAT3 signaling pathway (Zhang et al., 
2025a). STAT3 and SOCS3 are critical regulators of inflammatory 
signaling pathways (Wang et al., 2024). STAT3 functions as both 
a signaling activator and a transcriptional activator, influencing 
cellular proliferation, differentiation and apoptosis. A recent study 
demonstrated that verapamil and tangeretin confer protection 
against lipopolysaccharide (LPS)-induced sepsis by reducing the 
population of M1 macrophages. This protective effect is also 
mediated through the inhibition of P-glycoprotein expression, 
achieved by the downregulation of STAT1 and STAT3 signaling 
pathways alongside the upregulation of SOCS3 expression within 
macrophages (Kundu et al., 2024). In recent years, increasing 
evidence indicates that severe sepsis causes mitochondrial structural 
damage in heart muscle cells, including apoptosis, incomplete 
autophagy, and mitophagy and impairs their function, resulting in 
ATP depletion (Kuroshima et al., 2024). SDHD is a subunit of the 
mitochondrial respiratory chain complex II, which is crucial for 
cellular energy metabolism and the management of oxidative stress 
(Lin et al., 2021; Han et al., 2023). Dysregulated expression of SDHD 
can lead to mitochondrial dysfunction and heightened oxidative 
stress, potentially contributing to tissue damage in the heart and 
lungs (Bejarano-García et al., 2016; Zhao et al., 2021).

SOCS3 functions as a negative regulator by controlling 
immune and inflammatory responses through the inhibition 
of cytokine signaling pathways, particularly the JAK/STAT3 
pathway, which is essential for cytokine signal transduction 
(Gao et al., 2018). Research has shown that ADAR1 targets 
miR-30a to regulate SOCS3 expression, thereby reducing IL-6 
levels, mitigating inflammation and organ damage and providing 
protection against sepsis (Shangxun et al., 2020). In sepsis-induced 
ARDS, dysregulated inflammation is a major contributor to lung 
injury and hypoxemia, with SOCS3 potentially influencing the 
occurrence and progression of ARDS by modulating inflammatory 
signaling pathways (Sun et al., 2024). Similarly, in sepsis-
induced cardiomyopathy, SOCS3 may participate in pathological 
processes by regulating cardiomyocyte growth, apoptosis and 
immune response modulation. Feng et al. established a septic 
cardiomyopathy (SCM) model by stimulating HL-1 and AC16 
cells with LPS, which resulted in a significant increase in 
SOCS3 expression (Lu et al., 2022). Weng demonstrated that the 
neutralization of interleukin-33 (IL-33) attenuates inflammation, 
oxidative stress, and apoptosis in cardiomyocytes through the 
modulation of the nuclear factor kappa B (NF-κB), signal transducer 
and activator of transcription 3 (STAT3), and suppressors of 
cytokine signaling 3 (SOCS3) signaling pathway (Weng et al., 
2025). Therefore, in this study, we utilized LPS stimulation of only 
human pulmonary microvascular endothelial cells (HPMECs) to 
construct a sepsis-induced lung injury model in which a notable 
increase in SOCS3 expression was observed. The role of SOCS3 
in inflammation and immune regulation may be critical for 
ARDS and myocardial disease induced by sepsis. By regulating 
the inflammatory signaling pathway and immune response, 
SOCS3 may influence the onset, progression, and severity of 
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FIGURE 8
Molecular docking of dexamethasone. (A) Resveratrol. (B) Curcumin. (C) With SOCS3.

these conditions, offering new targets and strategies for their 
treatment.

The discovery of these genes opens new avenues for diagnosing 
and treating sepsis-induced ARDS and cardiomyopathy. However, 
further clinical research and validation are necessary to assess their 
feasibility and effectiveness in clinical settings. The discrepancies 
between our findings and those of previous studies pose intriguing 
questions about the variability in sepsis pathophysiology. For 
example, while our study highlights the significant role of the 
SOCS3 gene in both ARDS and SIC—a gene that has been relatively 
understudied in the literature—this underscores the complexity of 
sepsis and its complications. Factors such as genetic background, 
environmental influences and the nature of the initiating infection 
may profoundly influence disease outcomes. Exploring the potential 
long-term and latent effects of these identified biomarkers and 
therapeutic targets is essential. Additionally, the interaction between 
these genetic factors and other determinants of sepsis severity, such 
as comorbidities and treatment interventions, remains an important 
area for further investigation.

We performed targeted screening of the diagnostic gene 
SOCS3 to develop a novel therapeutic approach for reducing 
organ damage in sepsis. Dexamethasone, a corticosteroid widely 
used for treating inflammatory diseases, significantly reduces 
mortality in early-stage moderate-to-severe ARDS patients 
(Villar et al., 2020). However, high systemic doses can lead 
to severe side effects such as hyperglycemia, peptic ulcers and 
electrolyte imbalances (Madamsetty et al., 2022). Resveratrol, an 
antioxidant and anti-inflammatory polyphenol, reduces oxidative 
stress and inflammation, thereby improving lung function and 
cardiac protection (Meng et al., 2020). Resveratrol also inhibited 
CD45+Siglec F− and CD45+CD206− M1 subtype macrophages 
via the SOCS3 signaling pathway in a murine model of LPS-
induced acute lung injury (ALI) (Hu et al., 2019). A self-assembling 
nanopeptide and resveratrol hydrogel composite enhances Sirt1-
mediated deacetylation of p62, promoting mitochondrial autophagy 
and immunometabolic remodeling, thereby mitigating sepsis-
induced inflammation (Wang et al., 2025). Curcumin has the 
capacity to mitigate the cytokine storm and reduce organ damage
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induced by sepsis through various mechanisms. These include 
its anti-inflammatory and antioxidant properties, suppression of 
inflammatory cell death, protection of vascular endothelial integrity, 
maintenance of mitochondrial function and regulation of immune 
cell activity (Zhang et al., 2025b). Curcumin, known for its potent 
anti-inflammatory effects, acts on the NF-κB, MAPK, AP-1 and 
Jak/STAT pathways but faces pharmacokinetic challenges that 
limit its clinical use (Luo et al., 2025). Current research focuses 
on curcumin derivatives, prodrugs and combination therapies to 
enhance its delivery and efficacy (Peng et al., 2021). These three 
compounds have demonstrated high-affinity binding to SOCS3 
and their combined application is expected to amplify therapeutic 
benefits while minimizing side effects. Overall, our findings 
highlight dexamethasone, resveratrol and curcumin as promising 
SOCS3-targeting agents for treating sepsis-induced lung injury and 
cardiomyopathy, paving the way for further in vitro, in vivo and 
clinical development.

Our study provides valuable insights into the molecular basis 
of ARDS and SIC in the context of sepsis, identifying novel 
biomarkers and pathways for potential therapeutic intervention. 
While we have made significant progress in understanding these 
complex conditions, our work also reveals the vast array of 
unknowns that remain. Moving forward, a multidisciplinary 
approach integrating advanced genomic analysis, bioinformatics 
and clinical research will be essential to fully unravel the 
complexities of sepsis and its devastating complications. As we 
explore this uncharted territory, our findings lay a foundation 
for future studies aimed at improving outcomes for patients with
ARDS and SIC.
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