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RNA m5C methylation refers to the process wherein the 5th carbon atom of 
cytosine in RNA molecules is methylated by the action of methyltransferase, 
thus forming 5-methylcytosine (m5C). This crucial epigenetic modification 
significantly impacts gene expression and various biological processes. The 
abnormal regulation of this process is closely linked to the occurrence and 
development of various diseases. The liver is the largest digestive metabolic 
organ, where numerous critical physiological processes take place. Recent 
studies have emphasized the unique role of m5C modifications in liver 
physiology and pathology. This review summarizes the common m5C regulatory 
factors and their functions, with a particular emphasis on the biological roles of 
m5C RNA methylation regulators in liver injury, liver immunology, viral hepatitis, 
fatty liver disease, and liver cancer. Furthermore, it compiles findings on m5C 
regulators and their inhibitors in the treatment and prognosis of liver diseases.

KEYWORDS
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 1 Introduction

RNA epigenetic modifications constitute an important mechanism for regulating 
gene expression. Among them, m5C methylation is an increasingly known RNA 
modification mechanism that is widely present in various RNA molecules. Its functions 
include regulating RNA stability, translation, and multiple cellular functions such 
as proliferation and differentiation (Zhao et al., 2017; Xue et al., 2022). In recent 
years, owing to the advancement of RNA m5C locus detection methods, m5C has 
attracted increasing research interest. The m5C methyltransferase family continues to 
expand, highlighting the crucial role of m5C methylation modification in various 
diseases. In particular, recent studies have shown that m5C methylation modification 
has a significant impact on the progression of liver diseases (Chen L. et al., 2019; 
Mann, 2014). Because the abnormal expression of m5C methyltransferase has a 
complex relationship with the occurrence, development and treatment response of 
a variety of liver diseases, they have become the focus of research as prognostic
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disease markers and potential therapeutic targets (Li O. et al., 2025; 
Li ZL. et al., 2024; Shi et al., 2025; Huang L. et al., 2024).

The liver is the central metabolic and immune organ of the 
human body (Heymann and Tacke, 2016; Trefts et al., 2017), where 
many critical physiological processes, including immune response, 
lipid regulation, tissue damage and remodeling, are carried out. 
Therefore, the health of the liver is essential for survival (Russell and 
Monga, 2018). Liver diseases are responsible for 4% of all deaths 
worldwide (i.e., 1 in 25 deaths) (Devarbhavi et al., 2023). Among 
them, Acute-on-Chronic Liver Failure (ACLF) is a significant and 
unique syndrome that has a high economic burden due to the 
complex treatment involved (Allen and Kim, 2016; Moreau et al., 
2021). In the latest statistics of viral hepatitis-related diseases in 
2020, hepatitis B and C viruses led to 1.1 million deaths, far 
exceeding the number of deaths caused by infectious diseases such 
as AIDS and malaria. Interestingly, the global resources used to 
control and eliminate viral hepatitis are far less than those used 
for these two infectious diseases. Liver cancer is also a major 
cause of cancer-related deaths. Despite these facts, we are still 
at a critical period in the understanding and management of 
liver disease (Devarbhavi et al., 2023).

Studies have found that the m5C methylation affects liver 
diseases, with an intricate pathological mechanism involved. 
Therefore, this review discusses the role of m5C modification-related 
enzymes and other key aspects of liver inflammation, immunity, 
steatosis, tumorigenesis, and other biological functions along with 
their clinical significance. Moreover, it summarizes the potential role 
of m5C regulatory factors and m5C regulatory factor inhibitors in 
the treatment of liver diseases. Thus, this paper aims to provide a 
new theoretical framework for the occurrence, development and 
treatment of liver diseases. 

2 Molecular regulatory mechanisms of 
m5C RNA methylation

2.1 M5C RNA methylation

Chemical modification stands for the covalent modification of 
specific chemical groups on biological macromolecules (Proteins, 
DNA, RNA, sugars, lipids) through chemical reactions to regulate 
their structure, function or interaction. Over the past 50 years, the 
greatest number of modifications have been found on proteins and 
RNA in animal cells (Barbieri and Kouzarides, 2020). On RNA, 
important effects on gene expression are mainly exerted through 
chemical changes in RNA bases and ribose. Post-transcriptional 
RNA modifications, while they do not alter the sequence of 
the genome, can change gene expression and the function of 
RNA in various ways, playing an important role in epigenetics 
(Gu et al., 2023). RNA methylation modification has been proven 
to be involved in various metabolic-related diseases such as type 2 
diabetes and hyperlipidemia. In recent years, m5C RNA methylation 
has also gradually attracted the attention of researchers and been 
the subject of study in relation to lipid metabolism and glucose 
metabolism in the liver (Li Q. et al., 2024). RNA methylation 
modification plays an important role in epigenetic modification. 170 
kinds of modifications have been discovered on RNA, and among 
these RNA modifications, various methylations account for about 

70% of the total (Barbieri and Kouzarides, 2020; Jo et al., 2017; 
Roundtree et al., 2017; Cui L. et al., 2022).

M5C methylation was discovered on the fifth carbon atom 
of cytosine in RNA molecules in 1958, and is currently known 
as a common form of chemical modification, widely distributed 
in various coding and non-coding RNA (Gu et al., 2023; García-
Vílchez et al., 2019; Shi et al., 2023). More than 90,000 m5C 
sites have been detected in the human genome so far, and these 
are mainly enriched in the 3′-untranslated region (3'-UTR) or 
near the translation start codon (Boo and Kim, 2020). The classic 
method of detecting m5C sites is bisulfite sequencing, while 
subsequent studies have suggested that there may be a large number 
of false positive results (Bartee et al., 2021). Hence, scholars 
have increasingly developed new detection methods (Table 1), 
such as applying high temperature before bisulfite sequencing 
or destroying the secondary structure of RNA by formamide 
treatment to improve the conversion rate from C-T/U and reduce 
the rate of false positives (Khoddami et al., 2019; Huang et al., 
2019). These technological developments have greatly advanced 
the understanding of the critical role of m5C RNA methylation 
in the regulation of gene expression, disease progression, and
cellular function.

2.2 Enzymatic system and biological 
function of m5C modification

Currently, m5C methylation is known to be present on 
various RNA molecules in multiple cellular organelles, such as 
mitochondria and ribosomes (Qiu et al., 2023; Bohnsack et al., 
2019; Song et al., 2022). For example, m5C modification affects 
mRNA ribosome biosynthesis and tRNA translation, and is 
related to the development of a variety of human diseases 
(Huang L. et al., 2024). The m5C RNA methylation process 
involves three main enzyme classes, including methyltransferases, 
demethyltransferases and m5C readers, commonly referred to as 
“writers,” “erasers,” and “readers,” respectively (Gu et al., 2023; 
Meng et al., 2024). The effectors differ among RNAs, and this 
specificity of effectors or modification sites have brought more 
opportunities and challenges to the pathogenesis and treatment of 
various diseases (Liu WW. et al., 2024) (Table 2).

Methylation is the formation of a covalent intermediate between 
a cysteine residue in methyltransferases and a cytosine in the target 
RNA, which makes the C atom at the C5 position a nucleophilic 
molecule, binding to the methyl group of S-adenosylmethionine 
and facilitating the transfer of the methyl group (Bohnsack et al., 
2019). Methyltransferases in the m5C RNA methylation are mainly 
NSUN (NOL1/NOP2/SUN domain) family members (NSUN1-7) 
and DNMT2 (DNA methyltransferase homolog 2) (Meng et al., 
2024). NSUN2 is one of the main m5C mRNA methyltransferases 
in human cell lines (Yang S. et al., 2023; Zou et al., 2024), which 
has been the subject of extensive research and found to be linked 
to the occurrence and development of various diseases. NSUN2 can 
catalyze m5C modification to enhance the stability of tRNA and 
mRNA (Li et al., 2023). Lukas et al. confirmed that NSUN3 regulates 
ESCs cell differentiation by promoting mitochondrial activity, 
playing a crucial role in determining stem cell fate (Trixl et al., 2018). 
NSUN4 has a pivotal function in the immune response through the 
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TABLE 1  Approaches for the mapping of m5C in RNA.

Detection method Experimental 
principle

Advantages Disadvantages References

BS-Seq Converts unmethylated 
cytosine (C) to uracil (U) via 
bisulfite

Single-base resolution High 
sensitivity
Non-toxic BS reagent
No complex procedures

Long reaction time
RNA prone to degradation
Low-abundance RNA 
detection challenging

Xue et al. (2020), Zhang et al. 
(2024), Dai et al. (2024)

UBS-seq Converts unmethylated 
cytosine C to uracil U using 
high-concentration 
ammonium bisulfite at 
elevated temperatures

Rapid reaction
RNA damage is minor.
Low background noise
High accuracy

Mapping issues
Difficulty distinguishing 5 mC 
and 5 hmC

Dai et al. (2024)

m5C-RIP-seq Requires specific antibodies for 
m5C recognition and binding

Suitable for genome-wide 
modification detection

Lack single-base resolution 
and m5C stoichiometry info
Fail to identify low-abundance 
mRNA methylation

Xue et al. (2020), Zhang et al. 
(2024), Chen et al. (2021b)

miCLIP-seq Immunoprecipitation based on 
RNA m5C methyltransferase 
(specific RCMT) antibodies

Specific analysis of 
NSUN2-targeted m5C 
transcriptome structure

Incomplete transcriptome 
coverage
Limited to specific m5C sites

Chen et al. (2021b)

Aza-IP- seq Covalent complex formation 
of 5-azacytidine with 
methytransferase, followed by 
antibody capture and 
sequencing

No enzyme engineering 
required.
Suitable for multiple biological 
systems.

Lacks single-base resolution
Potential to alter gene 
expression
May induce toxicity
Biased towards short-lived, 
dynamic RNAs

Bartee et al. (2021), Xue et al. 
(2020), Zhang et al. (2024)

AWO-seq TET demethylase converts 
m5C to hm5C, while original 
hm5C is not converted to 
trihydroxythymine

Minimize false positives Uncertain chemical conversion 
efficiency
Dependent on TET 
demethylase
Inapplicable for 
transcriptome-wide m5C 
detection

Selmi et al. (2021)

M5C- tac -seq Detection at base resolution 
via TET-assisted oxidation and 
chemical labeling

Mild reaction conditions
Direct m5C detection in 
low-abundance and 
low-complexity RNAs

Underestimates true m5C 
modification levels
Suitable for low-input RNA or 
single-cell samples

Lu et al. (2024)

NSUN enzyme engineering Mutated NSUN family 
enzymes form stable covalent 
bonds with substrate cytosine 
residues enabling enrichment 
of modified RNA via 
immunoprecipitation

Low interference
Higher sensitivity

— Bartee et al. (2021),
Hussain et al. (2013)

Machine learning prediction 
model

Train classifiers based on RNA 
sequence features to predict 
m5C sites

Fast and cost-effective Requires experimental 
validation and specific 
selection

Zhang et al. (2018), Jiang et al. 
(2025c), Dou et al. (2020)

Nanopore Sequencing Based on changes in current 
signal

Sequence full-length native 
RNA molecules
Investigate RNA secondary 
structure
Analyze dynamics of RNA 
metabolism

Dependent on 
sequence-encoded 
information Inapplicable for 
low-abundance, low-content 
RNA modifications

Wang et al. (2021), Xu et al. 
(2024), Begik et al. (2021)

regulation of the stability and transport of mitochondrial double-
stranded RNA (dsRNA), thereby maintaining cellular homeostasis 
(Li D. et al., 2024). NSUN5 plays a significant role in promoting 
cell growth, enhancing protein translation efficiency, strengthening 
antioxidant stress resistance and prolonging the lifespan of cells 

and organisms (Heissenberger et al., 2019). For example, the loss 
of NSUN5 impairs necortical neuronal layered structure formation 
and pyramidal cell development (Yuan et al., 2019). Meanwhile, 
research on the mechanism of NSUN7 in the occurrence and 
development of liver diseases is relatively scarce, and its function 

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1657502
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1657502

T
A

B
LE

 2
  M

5
C

 m
o

d
ifi

ca
ti

o
n

s 
in

 li
ve

r d
is

ea
se

.

Ty
p

e
s

R
e

g
u

la
to

r
U

p
/D

o
w

n
re

g
u

la
te

d
R

e
le

va
n

t 
ta

rg
e

ts
Ta

rg
e

t 
R

N
A

s
D

is
e

as
e

Fu
n

ct
io

n
s

Ye
ar

s
R

e
fe

re
n

ce
s

W
rit

er
N

SU
N

2
U

p
C

20
17

, C
13

1
m

RN
A

pg
RN

A
H

ep
at

iti
s B

N
SU

N
2 

po
sit

iv
el

y 
re

gu
la

te
s H

BV
 e

xp
re

ss
io

n 
an

d 
re

pl
ic

at
io

n
20

23
Fe

ng
 et 

al
. (

20
23

)

W
rit

er
N

SU
N

2
U

p
Ep

sil
on

 el
em

en
t

m
RN

A
pg

RN
A

H
ep

at
iti

s B
N

SU
N

2 
de

fic
ie

nc
y 

re
du

ce
s t

he
 p

ro
du

ct
io

n 
of

 H
Bc

20
24

Su
 et 

al
. (

20
24

)

W
rit

er
N

SU
N

2
D

ow
n

EG
R1

 IF
N

-β
m

RN
A

 p
gR

N
A

H
ep

at
iti

s B
N

SU
N

2 
pr

om
ot

es
 H

BV
 e

xp
or

t
Th

e 
de

cr
ea

se
 in

 N
SU

N
2 

ex
pr

es
sio

n 
re

du
ce

s t
he

 p
ro

du
ct

io
n 

of
 IF

N
20

24
D

in
g e

t a
l. 

(2
02

4)

W
rit

er
N

SU
N

2
U

p
E2

F1
m

RN
A

H
ep

at
iti

s C
N

SU
N

2 
pr

om
ot

es
 H

C
V

 st
ab

ili
ty

, r
ep

lic
at

io
n,

 a
ss

em
bl

y, 
an

d 
bu

dd
in

g;
 

N
SU

N
2 

de
fic

ie
nc

y 
in

hi
bi

ts
 H

C
V

 R
N

A
 re

pl
ic

at
io

n 
by

 u
pr

eg
ul

at
in

g 
ho

st
 a

nt
iv

ira
l i

m
m

un
e 

re
sp

on
se

 g
en

es
 in

hi
bi

t H
C

V
 R

N
A

 re
pl

ic
at

io
n

20
25

Li
 et 

al
. (

20
25

b)

W
rit

er
N

SU
N

2
U

p
Ra

s p
at

hw
ay

m
RN

A
H

C
C

M
ul

tip
le

 N
SU

N
2-

re
la

te
d 

ge
ne

s a
re

 in
vo

lv
ed

 in
 o

nc
og

en
ic

 p
at

hw
ay

s
20

23
So

ng
 et 

al
. (

20
23

)

W
rit

er
N

SU
N

2
U

p
W

nt
 si

gn
al

in
g 

pa
th

w
ay

 S
A

RS
2

m
RN

A
H

C
C

N
SU

N
2 

pr
om

ot
es

 H
C

C
 ce

ll 
pr

ol
ife

ra
tio

n,
 m

ig
ra

tio
n,

 a
nd

 in
va

sio
n 

by
 

re
gu

la
tin

g 
W

nt
 si

gn
al

in
g

20
24

X
in

g e
t a

l. 
(2

02
4)

W
rit

er
N

SU
N

2
—

C
D

K
N

1A
m

RN
A

M
A

SH
N

SU
N

2 
aff

ec
ts

 th
e 

pr
og

re
ss

io
n 

of
 th

e 
ce

ll 
cy

cl
e 

an
d 

th
e 

pr
oc

es
s o

f f
at

 
pr

od
uc

tio
n.

20
21

Li
u e

t a
l. 

(2
02

1)

W
rit

er
N

SU
N

2
U

p
YA

P1
ln

cR
N

A
C

C
A

N
SU

N
2 

pr
om

ot
es

 C
C

A
 p

ro
lif

er
at

io
n 

an
d 

m
et

as
ta

sis
 b

y 
st

ab
ili

zi
ng

 
N

K
IL

A
 e

xp
re

ss
io

n
20

22
Zh

en
g e

t a
l. 

(2
02

2)

W
rit

er
N

SU
N

2
U

p
G

3B
P1

, M
YC

ln
cR

N
A

H
C

C
N

SU
N

2 
pr

om
ot

es
 H

C
C

 d
ev

el
op

m
en

t b
y 

ac
cu

m
ul

at
in

g 
on

co
ge

ni
c 

pr
ot

ei
ns

20
20

Su
n e

t a
l. 

(2
02

0)

W
rit

er
N

SU
N

2
U

p
SR

EB
P2

ln
cR

N
A

H
C

C
N

SU
N

2 
dr

iv
es

 H
C

C
 p

ro
gr

es
sio

n 
by

 p
ro

m
ot

in
g 

ch
ol

es
te

ro
l s

yn
th

es
is

20
24

Li
 et 

al
. (

20
24

d)

W
rit

er
N

SU
N

2
U

p
PK

M
2

m
RN

A
H

C
C

N
SU

N
2 

pr
om

ot
es

 H
C

C
 m

et
ab

ol
ism

 a
nd

 p
ro

gr
es

sio
n 

by
 st

ab
ili

zi
ng

 
PK

M
2 

m
RN

A
20

25
Q

i et
 al.

 (2
02

5)

W
rit

er
N

SU
N

4
U

p
—

—
H

C
C

N
SU

N
4 

pr
om

ot
es

 p
ro

lif
er

at
io

n 
an

d 
m

ig
ra

tio
n 

of
 H

C
C

 c
el

ls
20

22
C

ui
 et 

al
. (

20
22

b)

Er
as

er
TE

T2
—

SR
EB

P1
m

RN
A

A
FL

D
TE

T2
 re

gu
la

te
s S

RE
BP

1d
 p

ro
te

in
 e

xp
re

ss
io

n,
 a

ffe
ct

in
g 

fa
tty

 a
ci

d 
sy

nt
he

sis
20

24
Li
 et 

al
. (

20
24

b)

(C
on

tin
ue

d 
on

 th
e 

fo
llo

w
in

g 
pa

ge
)

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1657502
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1657502

T
A

B
LE

 2
  (C

o
n
ti
n
u
ed

) M
5

C
 m

o
d

ifi
ca

ti
o

n
s 

in
 li

ve
r d

is
ea

se
.

Ty
p

e
s

R
e

g
u

la
to

r
U

p
/D

o
w

n
re

g
u

la
te

d
R

e
le

va
n

t 
ta

rg
e

ts
Ta

rg
e

t 
R

N
A

s
D

is
e

as
e

Fu
n

ct
io

n
s

Ye
ar

s
R

e
fe

re
n

ce
s

Er
as

er
TE

T2
—

C
20

17
, C

13
1

m
RN

A
H

ep
at

iti
s B

TE
T2

 in
ve

rs
el

y 
re

gu
la

te
s H

BV
 R

N
A

 e
xp

re
ss

io
n

20
23

Fe
ng

 et 
al

. (
20

23
)

Re
ad

er
YB

X
1

U
p

M
A

X
H

ep
at

iti
s C

YB
X

1 
en

ha
nc

es
 H

C
V

 R
N

A
 st

ab
ili

ty
 a

nd
 p

ro
m

ot
es

 H
C

V
 R

N
A

 re
pl

ic
at

io
n 

an
d 

vi
ra

l a
ss

em
bl

y
20

24
Li
 et 

al
. (

20
24

a)

Re
ad

er
YB

X
1

U
p

RN
F1

15
-D

H
O

D
H

m
RN

A
H

C
C

YB
X

1 
pr

om
ot

es
 th

e 
pr

og
re

ss
io

n 
of

 h
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a 
by

 in
hi

bi
tin

g 
fe

rr
op

to
sis

.
20

25
Li
 et 

al
. (

20
25

a)

Re
ad

er
A

LY
RE

F
U

p
—

—
H

C
C

A
LY

RE
F 

pr
om

ot
es

 H
C

C
 p

ro
gr

es
sio

n 
by

 re
gu

la
tin

g 
ex

pr
es

sio
n 

of
 m

ul
tip

le
 

ta
rg

et
 g

en
es

20
23

Xu
e e

t a
l. 

(2
02

3)

Re
ad

er
A

LY
RE

F
U

p
ST

AT
3

m
RN

A
H

C
C

A
LY

RE
F 

pr
om

ot
es

 H
C

C
 ce

ll 
pr

ol
ife

ra
tio

n,
 m

ig
ra

tio
n,

 a
nd

 in
va

sio
n 

by
 

ac
tiv

at
in

g 
th

e 
ST

AT
3 

pa
th

w
ay

20
24

N
ul

al
i et

 al.
 (2

02
4)

Re
ad

er
A

LY
RE

F
—

YB
X

2
M

O
m

RN
A

M
A

SH
A

LY
RE

F 
in

cr
ea

se
s t

he
 e

xp
re

ss
io

n 
of

 Y
BX

2 
pr

ot
ei

n 
an

d 
in

hi
bi

ts
 fa

t 
fo

rm
at

io
n

20
22

Li
u e

t a
l. 

(2
02

2a
) has not yet been fully understood. On the one hand, DNMT2 can 

act on different m5C sites of tRNA to promote protein synthesis 
and cell differentiation; on the other hand, it can also act on m5C 
site of mRNA to participate in the process of cell proliferation and 
migration (Goll et al., 2006; Schaefer et al., 2010; Tuorto et al., 2012).

Proteins in the ALKBH1 (ALKB homolog 1) and TET (10–11 
translocation) family (TET1-3) are known demethyltransferases. 
The TET family relies on α-ketoglutarate to demethylate m5C to 
produce 5-hydroxymethylcytosine (hm5C) (Gu et al., 2023), and 
hm5C can be produced by TET2 and ALKBH1, while 5-formyl 
cytosine (f5C) can only be formed by ALKBH1, which process is 
essential for the maintenance of normal mitochondrial function 
(Kawarada et al., 2017). TET1 ensures the proper completion 
of DNA repair and cell survival after DNA damage. TET2 has 
the potential of promoting or suppressing cancer: it can play 
an inhibitory role in ovarian cancer, prostate cancer, clear cell 
renal cell carcinoma, while it has a promoting role in low-
grade glioma (Gu et al., 2023). Studies have suggested that ALKBH1 
mainly targets mRNA, followed by IncRNA, and participates in the 
development of a variety of cancers via the regulation of various 
mechanisms.

The biological function of m5C modification depends on the 
specific recognition of the corresponding reading proteins and 
subsequent initiation of the regulation of biological processes 
(Huang L. et al., 2024; Yang et al., 2017; Zou et al., 2020). ALYREF 
(Aly/REF export factor) and YBX1 (Y-box binding protein 1) 
are widely studied m5C reading proteins. They promote mRNA 
splicing by recognizing m5C and regulate correct mRNA output, 
protein expression and stability, thereby affecting gene expression 
and post-transcriptional regulation (Cordiner et al., 2023; Pa et al., 
2023; Zuo et al., 2023; Wang et al., 2023; Liu et al., 2022a). The 
role of ALYREF is to recognize and bind to the m5C sites in 
RNA, thereby facilitating RNA export (Xue et al., 2023). It binds 
to m5C-methylated mRNA through its cold shock domain to 
stabilize mRNA, and can also regulate gene transcription and the 
proliferation rate of related tumor cells (Song et al., 2022; Li et al., 
2017; Tao et al., 2023; Chen X. et al., 2019). Recent studies have 
also suggested that SRSF2 (serine/arginine-rich splicing factor 2) is 
a splicing factor that recognizes m5C through its unique domain 
and participates in the splicing regulation of pre-mRNA, thereby 
ensuring the correct processing of RNA and regulating the diversity 
of proteins (Ma et al., 2023). 

3 Physiology and pathology of m5C 
RNA methylation in the liver

Despite recent advances in the mechanistic understanding of 
liver development, metabolism and repair processes, liver diseases 
still represent a significant global morbidity and mortality burden 
(Trefts et al., 2017). The 2023 update of the Global Burden of Liver 
disease also pointed out that liver diseases have a high mortality and 
disability rate, and the main areas of liver disease concern include 
metabolic dysfunction-associated fatty liver disease (MAFLD), viral 
hepatitis and liver cancer. Nonetheless, through the knowledge of 
liver physiology and emerging research targets (Devarbhavi et al., 
2023), we can enhance our in-depth understanding of liver 
physiological and pathological processes. Next, we discuss liver 
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FIGURE 1
Role of M5C methyltransferase in liver injury. The NSUN2 methyltransferase has a dual mechanism of action: (1) it promotes liver injury by increasing 
ROS; and (2) it inhibits liver injury by increasing global protein levels. The NSUN5 methyltransferase promotes liver injury through the 
ferroptosis pathway.

injury and regeneration, liver immune response, lipid metabolism, 
liver viral invasion, and the terminal outcome of liver lesions from 
the perspective of the m5C RNA methylation modification. 

3.1 Hepatic lipid metabolism

Hepatic steatosis is a liver condition resulting from obesity 
and metabolic syndrome (Anstee et al., 2019). Liver disease may 
progress from isolated steatosis to more severe forms such as 
steatohepatitis, fibrosis and cirrhosis (Saeed et al., 2025; He X. et al., 
2025). Currently, it is suggested that the dynamic regulation of m5C 
is crucial for hepatic lipid metabolism (Li D. et al., 2024) (Figure 1).

ALYREF relies on M5C methylation modification to affect the 
transport of Y-box binding protein 2 (YBX2) and G protein-coupled 
receptor Smoothened (SMO) from the nucleus to the cytoplasm 
and the protein expression, thereby regulating fat production 
(Liu et al., 2022a). During mitotic clonal expansion (MCE) in early 
adipogenesis, NSUN2 triggers the m5C modification of CDKN1A 
mRNA and recruits the reader protein ALYREF to recognize m5C 

targets, promoting the CDKN1A mRNA shuttle from nucleus to 
cytoplasm and enhancing its translation. As a result, the cell cycle 
progression of adipocytes is inhibited (Liu et al., 2021). Cell cycle-
dependent kinase 13 (CDK13) promotes the phosphorylation of 
NSUN5 at Ser327, increases the m5C modification of acetyl-CoA 
carboxylase (ACC1) mRNA and enhances the stability and nuclear 
exports of ACC1 mRNA, leading to the upregulation of ACC1 
expression and increased lipid deposition (Zhang et al., 2023). This 
study indicates that regulating the m5C methylation modification 
may become a new strategy for intervening in diseases related to fat 
metabolism.

In metabolic-related fatty liver diseases, the regulatory factors 
m5C have also been observed to have an impact on lipid metabolism. 
For example, TET2 plays a crucial regulatory role in alcoholic fatty 
liver disease (AFLD). Specifically, it mediates the demethylation of 
the 3′UTR of Srebp1 mRNA by binding to the core protein NONO 
of the heterochromatin. The lack of TET2 disrupts the mechanism 
of nuclear mRNA retention achieved through the heterochromatin-
dependent inverted repeat sequences, promoting the translation 
of Srebp1 protein, thereby upregulating fatty acid synthesis and 
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regulating liver lipid metabolism and the formation of fatty live. 
Moreover, TET2 knockout significantly aggravates the disorders of 
glucose metabolism in mice, such as impaired glucose tolerance 
and insulin resistance. Excessive glycogen accumulation has been 
demonstrated to destroy glucose metabolism and promotes the 
conversion of glycogen to triglyceride, thereby aggravating fatty 
liver. There is evidence that TET2-mediated Srebp1 mRNA affects 
epigenetic modifications in lipid metabolism (Li Q. et al., 2024). 
MAFLD is a pathological condition based on the pathological 
physiology of fat metabolism. If left untreated, it will lead to a poorer 
prognosis. Therefore, research on the pathogenesis of MAFLD has 
gradually increased (Sotoudeheian, 2024). In MAFLD, SREBP1 
is also important in regulating the occurrence and development 
of fatty liver (Han et al., 2015). Therefore, in addition to the 
mechanism by which TET2 affects MAFLD, we can speculate that 
TET2 may similarly affect the nuclear and cytoplasmic distribution 
of Srebp1mRNA in MAFLD and thereby influence liver lipid 
metabolism. In Metabolic dysfunction-associated steatohepatitis 
(MASH), the changes in the m5C modification pattern are 
mainly influenced by lipid metabolism regulation, inflammatory 
response regulation and cellular stress response, which affect the 
progression of MASH. For instance, NSUN5 works in conjunction 
with ALYREF to promote the nuclear export and translation 
of ACC1 mRNA through m5C modification, accelerating fat 
accumulation (Zhang et al., 2023). M5C modification can also 
influence the expression of inflammation-related genes, intensifying 
liver inflammation and ultimately leading to the promotion of 
MASH progression to liver fibrosis and cirrhosis (Li D. et al., 2024). 
NSUN2 regulates the expression of ACSL6 mRNA through m5C 
methylation modification, thereby modulating the glucose and lipid 
metabolism disorders in type 2 diabetes. Therefore, by regulating 
the NSUN2-ACSL6 axis, it may restore the dysregulated glucose and 
lipid metabolism in the liver (Jiang X. et al., 2025). 

3.2 Dynamic reprogramming liver damage 
and regeneration

NSUN2 can be localized in the nuclei of liver cells (such 
as liver parenchymal cells, hepatic sinusoidal endothelial cells 
and Kupffer cells) under non-stress conditions (Ying et al., 
2023). The RNA methyltransferase NSUN2 regulates the Nrf2-
mediated antioxidant response through ALYREF-dependent m5C 
modification, thereby alleviating doxorubicin (Dox)-induced liver 
cell damage (Huang Y. et al., 2024) (Figure 2). The absence of 
NSUN2 leads to a reduction in the methylation modifications of 
m5U and m5C on tRNA, thereby causing tRNA degradation and 
the production of a large number of protective tsRNAs. These 
small RNA fragments can significantly enhance the survival rate 
and proliferation ability of liver cells under oxidative stress and 
chemical damage, suggesting that NSUN2 and its regulated tsRNA 
pathway are important regulatory factors for liver injury repair. 
(Ying et al., 2023) (Figure 2).

Epigenetic modifications play an essential role in liver disease 
and cellular ferroptosis, which process has received considerable 
attention in recent years (Huang L. et al., 2024). Ferroptosis 
caused by the disruption of iron metabolism-related pathways 
can lead to massive hepatocyte necrosis and a variety of liver 

diseases (Huang L. et al., 2024; Wang et al., 2019). The m5C 
RNA methyltransferase NSUN5 methylates the mRNAs of 
ferritin subunits FTH1 and FTL through the m5C modification, 
promoting their expression and thereby regulating intracellular 
iron homeostasis. NSUN5 interacts with mitochondrial heat shock 
protein TRAP1 to form a complex that jointly regulates the 
expression of FTH1 and FTL. Knockdown of NSUN5 leads to a 
reduction in m5C modification of FTH1 and FTL mRNA, decreased 
protein expression, increased iron accumulation and oxidative 
stress, and promotes ferroptosis (Liu J. et al., 2022). Another study 
elucidated the molecular mechanism of hepatocyte ferroptosis 
during the course of ACLF, and found that it is closely related to m5C 
RNA methylation and the methylation enzyme NSUN5; in the ACLF 
model group, the mRNA and protein expression levels of NSUN5 
were significantly downregulated. NSUN5 can bind to SLC7A11 
mRNA and promote the protein translation of SLC7A11 via m5C 
methylation modification. When the level of methylation transferase 
of NSUN5 decreases or its activity reduces, the protein translation 
of SLC7A11 is inhibited, resulting in a decrease in intracellular 
glutathione (GSH) levels. This, via the pathway of increased lipid 
peroxides, leads to cell ferroptosis and promotes the development 
of ACLF (Huang L. et al., 2024) (Figure 2).

The physiological role of NSUN6 in the liver has also been 
studied, and the deletion of NSUN6 did not show obvious 
phenotypic differences in the liver of developing and adult mice; 
it was found to be unnecessary for organ homeostasis but affecting 
the reduction-oxidation reaction of the liver in response to external 
stimuli, especially immune challenges (Wang et al., 2022). NSUN7 
and the m5C RNA methylation modification mediated by it help 
regulate the stability of eRNA, and this mechanism cooperates 
with the precise regulation of PGC-1α on lysine to finely control 
the expression of genes related to energy metabolism, enabling a 
sensitive response to metabolic stress (Aguilo et al., 2016).

The liver has a significant regenerative capacity (Chen Y. et al., 
2024). The proliferation of hepatic progenitor cells (HPCs) during 
chronic liver injury can promote liver regeneration and fibrosis. In 
the pathological environment after liver injury, the interaction of 
a variety of cytokines can lead to the activation of hepatic stellate 
cells (Hsc) and HPCs, resulting in the excessive production of 
extracellular matrix, as seen in non-alcoholic fatty liver disease, 
viral hepatitis, etc. (Li et al., 2017; Li B. et al., 2022). YBX-1 can 
not only negatively regulate the expression of extracellular matrix 
in HPCs by repressing PDGFR-β transcription but also inhibit 
the expression of collagen in HPCs by disrupting the PDGFR-
β/ERK/p90RSK signaling pathway (Li et al., 2017). YBX-1 can also 
suppress HPC proliferation and reduce liver fibrosis through tumor 
protein P53 (Li B. et al., 2022). The M5C demethylase TET2 inhibits 
the phosphorylation of Stat1, thereby suppressing the activation 
of macrophages induced by Interferon-γ (IFN-γ), and negatively 
regulates liver regeneration (Chen Y. et al., 2024). 

3.3 Liver inflammation

The liver is not only the central metabolic organ but also and the 
main immune organ of the human body. From an immunological 
point of view, there are a variety of cells in the liver, such as 
macrophages (Kupffer cells), lymphocytes (such as natural killer 
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FIGURE 2
M5C regulatory factors play a role in the formation of fatty liver. The NSUN2/NSUN5 methyltransferases promote or inhibit the expression of related 
proteins through the ALYREF interpretation protein, thereby promoting fat production. TET2 demethyltransferase facilitates fat production by 
enhancing the expression of related proteins.

cells, T cells or B cells) and hepatic dendritic cells (DC), which are 
able to present antigens and produce cytokines and chemokines. 
They are all key players in initiating and shaping the liver immune 
response. Certainly, while the activation of immune cells in the 
liver is crucial for maintaining homeostasis, it can also contribute 
to liver injury (Heymann and Tacke, 2016).

Macrophages are classified as M1s (proinflammatory), M2 (anti-
inflammatory), or Mreg (immunosuppressive). Studies have shown 
that M1-M2 polarization is strongly correlated with the degree of 
liver inflammation and repair (Epelman et al., 2014). The infiltration 
of immune cells such as B cells, CD8+T cells, M1 macrophages 
and M2 macrophages was found in some m5C gene clusters, and 
a differential expression of NSUN6, TET1 and TET3 between 
m5C immune subtypes was shown (Yu et al., 2022). NSUN6 
and TET2 negatively regulate the recruitment of M2 macrophages 
and M2-related factors through m5C methylation (Yan et al., 
2023; Fan et al., 2024). In addition, in both in vitro and in vivo
experiments, the knockdown of NSUN3 increased the infiltration 
of M1 macrophages and decreased the infiltration rate of M2 
macrophages (Jin et al., 2024).

Ferroptosis-related genes are closely related to immune cells, 
especially M0 macrophages and regulatory T cells. These genes have 
an important regulatory mechanism in hepatocellular carcinoma 

(Zhu et al., 2022). DNA-methyltransferase 3A (DNMT3A) is closely 
associated with dendritic cells, CD4+T cells and B cells, while 
NSUN6 is closely linked to B cells and CD8+T cells, and can 
regulate the tumor immune microenvironment (Fang et al., 2022). 
The deletion of NSUN2 in CD4+ T cells specifically inhibited Th17 
cell differentiation (Yang WL. et al., 2023).

In previous bioinformatics analyses, it was found that m5C 
is associated with the immune microenvironment of liver cell 
carcinoma, but the specific mechanism remains unclear (Liu T. et al., 
2023; Li D. et al., 2022). The latest research conducted in July 
2025 revealed that NSUN2 mediates the 5-methylcytosine (m5C) 
modification of key glycolytic enzyme (GLUT1, HK2, PFKM) 
mRNA, enhancing their stability and expression, forming a 
positive feedback loop, which further improves the glucose uptake 
ability of tumor cells, aggravating the metabolic restriction and 
functional impairment of CD8+ T cells, thereby promoting tumor 
immune escape and malignant progression (He J. et al., 2025). 
NSUN2 enhances the stability and transcriptional activity of 
the lipid metabolism-related gene SOAT2 by promoting the 5-
methylcytosine (m5C) modification of its mRNA. This, in turn, 
promotes cholesterol synthesis and accumulation. This metabolic 
reprogramming not only supports the rapid proliferation and 
invasive ability of tumor cells, but also achieves the evasion of 

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1657502
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1657502

immune surveillance by inhibiting the activity and cytotoxicity of 
CD8+ T cells (Jiang J. et al., 2025).

In the review by Meng et al., the potential roles of m5C 
methylation regulatory factors in the innate immune pathway of 
hepatocellular carcinoma (HCC) were summarized. However, these 
do not represent the direct interaction between m5C methylation 
regulatory factors and HCC. (Meng et al., 2024). Therefore, the 
research on m5C methylation modification and liver immunity is 
still in its infancy. Therefore, researchers need to conduct more in-
depth studies on the connections among the liver, m5C methylation 
modification, and immunity. 

3.4 HBV, HCV

The epigenetic modification of hepatitis B virus (HBV)/hepatitis 
C virus (HCV) has recently become a research hotspot. In the past, 
many studies addressed the m6A RNA modification in hepatitis 
virus (Kim and Siddiqui, 2021). Meanwhile, with the development 
of m5C detection technology, researchers gradually began to explore 
the role of m5C modification in HBV/HCV replication and better 
understand the function of m5C methylation in the life cycle of 
HBV and HCV (Figure 3).

M5C modification mediated by the m5C methyltransferase 
NSUN2 promotes HBV RNA stability, and knockdown or knockout 
of NSUN2 results in reduced HBV expression and replication 
(Su et al., 2024). Feng et al.'s study reached the same conclusion: 
the absence of NSUN2 leads to a reduction in m5C modification 
on HBV RNA, thereby negatively regulating HBV expression. On 
the other hand, m5C demethylase TET2 inversely regulates HBV 
RNA expression, and the absence of recognition protein YBX1 
does not result in significant changes in HBV antigen and RNA 
levels (Feng et al., 2023). Furthermore, it was found that m5C 
modifications are primarily concentrated on the epsilon hairpin 
structure of HBV RNA, and NSUN2 deposits m5Cs on the epsilon 
RNA element, enhancing the production of viral particles. This 
is a host-mediated mechanism and may be a target for future 
antiviral drug development (Su et al., 2024). Another study showed 
that during HBV infection, the HBx protein inhibits the binding 
of early growth response 1 (EGR1) to the NSUN2 promoter, 
leading to a decrease in NSUN2 expression. This reduction in 
NSUN2 expression decreases the production of interferon-α/β (IFN-
α/β), allowing the virus to evade retinoic acid-inducible protein 
I (RIG-I)-mediated immune responses. However, the decrease 
in NSUN2 expression enhances viral replication and antigen 
secretion (Ding et al., 2024).

Zhu et al. first revealed the key regulatory role of the host 
m5C reading protein YBX1 in the life cycle of HCV in 2024: 
HCV infection significantly upregulated the expression of the 
host m5C reader YBX1 through the transcription factor MAX. 
YBX1 specifically recognizes the m5C modification of the NS5A 
C7525 site in the NS5A region of the HCV RNA genome by 
its tryptophan residue 65 (W65), which significantly improves 
the stability of HCV RNA and promotes HCV RNA replication 
and viral assembly. The m5C mutation of HCV RNA (such as 
C7525A) has a negative regulatory effect (Li ZL. et al., 2024). 
In 2025, building on previous results, the research team used 
cell and mouse models to find that HCV infection increases the 

expression of the host m5C writer NSUN2 via the transcription 
factor E2F1. NSUN2 can regulate HCV RNA by two mechanisms: 
(1) NSUN2 positively regulates HCV RNA methylation, promoting 
its stability, replication, and viral assembly and budding; (2) 
the loss of NSUN2 upregulates the expression of host antiviral 
immune response genes, thereby inhibiting HCV RNA replication
(Li ZL. et al., 2025). 

3.5 Liver cancer

In liver cancer, the expression levels of m5C methylating 
regulatory factors show significant differences from those in 
normal liver tissues. These regulatory factors are encoded by 
genes located on different chromosomal positions. The expression 
patterns and this unique chromosomal distribution of m5C 
methylating regulators can affect their expression and function, 
thereby being closely related to cellular functions (Liu HT. et al., 
2023; Zhang et al., 2020). The important role of m5C modification 
in the development and progression of liver cancer has been 
identified by epigenetically regulating the function, translation and 
stability of a variety of RNAs (Pan et al., 2022). For example, 
NOP2-mediated m5C methylation increases the stability of XPD 
(Xeroderma pigmentosum gene D) mRNA, thereby inhibiting 
the proliferation, migration and invasion of HCC cells (Sun 
and Ding, 2023). In the next part, we will elaborate on the 
regulatory mechanism of m5C modification in liver cancers 
such as hepatocellular carcinoma, hepatobiliary carcinoma and 
hepatoblastoma (Figure 4).

Globally, hepatocellular carcinoma (HCC) ranks as the third 
most common cause of cancer-related deaths (Shi et al., 2025). 
In hepaticellular carcinoma, m5C modifications show significant 
differences in terms of immune cell infiltration and the pathway 
characteristics, while the occurrence, development and metastasis 
of disease are closely related to m5C-modified enzyme (Xiao et al., 
2023; Liu et al., 2022c). Among them, the m5C modification of 
NSUN2 plays an important role in HCC, and its expression is 
closely related to HCC immune regulation and the abundance 
and distribution of the m5C RNA methylation (Xing et al., 2024). 
NSUN2 is highly expressed in HCC tissues, and the mRNA 
m5C modification in these tissues is also higher than that in 
adjacent normal tissues (Zhang et al., 2020; Song et al., 2023). 
It has been found that NSUN2 regulates the occurrence and 
development of HCC through multiple pathways. For example, 
NSUN2 promotes the proliferation, migration and invasion of 
HCC cells by regulating Wnt signaling (Xing et al., 2024). 
Furthermore, it regulates the m5C modification of H19 lncRNA 
and recruits the G3BP1 oncoprotein to accumulate oncogenic 
proteins and promote the occurrence and development of HCC 
(Sun et al., 2020). NSUN2 also promotes HCC progression by 
regulating the GRB2 mRNA m5C methylation (Song et al., 2023). 
NSUN2 can further promote the growth and metastasis of HCC 
by regulating cholesterol metabolism and glycolysis pathway in 
HCC cells. LINC00618 regulates cholesterol metabolism in liver 
cancer cells through the ubiquitin-protease-NSUN2-YBX1-SREBP2 
axis, ultimately promoting the growth and metastasis of HCC 
(Li R. et al., 2024). NSUN2-mediated m5C modification at the 
C773 site in mRNA 3′-UTR can upregulate PKM2 (Pyruvate 
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FIGURE 3
Impact of M5C writers, readers and erasers on HBV/HCV metabolism. The m5C methylation mediated by the NSUN2 methyltransferase plays a positive 
regulatory role in HBV RNA replication and expression, as well as in modulating HBV RNA replication through immune pathways. The interaction 
between the YBX1 reading protein and the NSUN2 methyltransferase with HCV RNA m5C methylation promotes viral replication.

Kinase M2) to promote glycolysis and HCC progression (Qi et al., 
2025). Bioinformatics analysis showed that NSUN4 stimulates the 
progression of HCC, while the specific mechanism has not been 
clearly studied (Cui M. et al., 2022).

The m5C reader plays an important role in the occurrence, 
development, metastasis, and tumor immune microenvironment 
of HCC. Ferroptosis, previously mentioned in the section on liver 
immunology, is also involved in HCC development and treatment 
response (Chen X. et al., 2021; Lei et al., 2022; Gurusinghe et al., 
1986). This is mainly related to YBX1, which inhibits ferroptosis 
via the YBX1-RNF115-DHODH signaling pathway in an m5C-
dependent manner and promotes the progression of HCC 
(Li O. et al., 2025). In addition, the m5C reader ALYREF regulates 
HCC by directly binding to the 295 HCC cell cycle and apoptosis-
related target genes, including the binding of ALYREF to the m5C 
site in EGFR 3′-UTR to stabilize EGFR mRNA, thereby activating 
the STAT3 pathway. The upregulation of ALYREF enhanced 
the proliferation, migration and invasion of liver hepatocellular 
carcinoma cells (LIHC). Meanwhile, ALYREF deficiency exerted 

an inhibitory effect on HCC tumors in vivo; ALYREF knockdown 
significantly inhibited the proliferation of HCC cells and increased 
their apoptosis rate (Xue et al., 2023; Nulali et al., 2024).

Cholangiocarcinoma (CCA) is globally the second most 
prevalent primary liver cancer, with low survival rates 
(Bridgewater et al., 2014). Traditional radiotherapy and 
chemotherapy have no significant effect on the long-term survival 
rate of CCA patients (Sato et al., 2021). Studies found that NSUN2, 
by interacting with NKILA (NF-kappa B interacting lncRNA), not 
only increases the m5C level of NKILA but also promotes the stable 
expression of NKILA, further facilitating the interaction between 
NKILA and YBX1. NKILA is related to the TNM staging, lymph 
node metastasis and distant metastasis of CCA, and can promote 
the proliferation and metastasis of CCA (Zheng et al., 2022).

Hepatoblastoma (HB), as the most common liver cancer in 
infants and young children, originates from undifferentiated hepatic 
progenitor cells (Sharma et al., 2017). YBX-1 can translocate into 
the nucleus and regulate cell proliferation, adhesion and cancer cell 
resistance through transcription (Chua et al., 2018; Su et al., 2020). 
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FIGURE 4
Schematic diagram of regulation between m5C modification and cancer progression. The molecular mechanism mediated by NSUN2, ALYREF and 
YBX1 for the m5C modification of lncRNAs and mRNAs regulates downstream effectors, thereby promoting cholangiocarcinoma. The progression of 
hepatocellular Table 1 Approaches for the mapping of m5C in RNA Table 2 M5C modifications in liver disease.

Lau et al. reported that the PDGFR-β inhibitor AG1296 impaired the 
viability of p53-knockout induced tumorigenic hepatic progenitor 
cell line (PIL2) in HPCs (Lau et al., 2009). Li et al. showed that 
HPCs can express both PDGF-β and PDGFR-β. Moreover, YBX-1 
can negatively regulate PDGFR-β transcription (Lau et al., 2009); 
however, the direct role of YBX-1 in HB has not been explored, and 
more studies are needed to further clarify the regulatory network of 
m5C modification in HB. 

4 Therapeutic strategies for liver 
diseases targeting the m5C 
modification

It has been clarified that the RNA modification of m5C can be 
based on complex mechanisms in liver injury, liver inflammation, 
steatosis, and tumors, which could provide potential intervention 
points for the treatment of liver diseases, open up new possibilities in 
drug development, and offer a valuable prediction for the prognosis 
of liver diseases. 

4.1 Drug studies targeting the m5C 
modification

Developing therapeutic approaches for HCC based on m5C 
modification is highly attractive, showing great promise both 
in targeted tumor therapy and in improving drug resistance in 
advanced HCC. For example, through bioinformatics analysis, 
investigators found that m5C regulatory proteins are closely related 
to the ErbB/PI3K-Akt axis, and GSK3B (glycogen synthase kinase 
3 beta) is an important target of m5C regulators. In the molecular 
targeted therapy of gastrointestinal (GI) cancers, the compound 
streptozotocin may be a key candidate for targeting GSK3B 
(Xiang et al., 2020). NSUN2 and ALYREF-catalyzed methylation 
of m5C contributes to RNA stabilization and metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) upregulation. In 
sorafenib-resistant cells, the NSUN2/ALYREF/MALAT1 signaling 
axis is activated and the upregulation of MALAT1 inhibits sorafenib-
induced ferroptosis, thereby driving sorafenib resistance (Shi et al., 
2025). In HCC, the GRB2, AATF and RNF115 genes show 
hypermethylation status, which can participate in carcinogenic 
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pathways. The knockdown of NSUN2 inhibits the cell cycle and 
significantly reduces the mRNA expression of oncogenes GRB2, 
RNF115 and AATF. That is, NSUN2 inhibits Ras signaling pathway 
activation and reduces the levels of Phospho-extracellular regulated 
protein kinases (p-ErK) in HCC, resulting in an increased sensitivity 
of HCC cells to sorafenib (Song et al., 2023).

Although no specific inhibitor of m5C RNA regulator has 
reached the clinical application stage, such treatment has been 
investigated in hepatitis. MALAT1 is a lncRNA that is aberrantly 
expressed in sorafenib-resistant HCC cells. The m5C methylation, 
catalyzed by NSUN2 and ALYREF, enhances RNA stability and leads 
to the upregulation of MALAT1. The MALAT1 inhibitor MALAT1-
IN1 can significantly enhance the efficacy of sorafenib in treating 
HCC both in vivo and in vitro (Shi et al., 2025). YBX1 acts as a 
specific “reader” for m5C modifications at the C7525 site of the viral 
NS5A gene, enhancing the stability of the viral RNA and promoting 
the replication of viral RNA as well as the assembly and budding 
of viral particles. The key amino acid residue W65 is crucial for 
the function of YBX1. The absence of YBX1 or the application of 
its inhibitor SU056 can significantly inhibit the RNA replication 
and expression of viral proteins of HCV. Moreover, the specific 
mutation of the m5C site in HCV RNA (C7525A) not only reduces 
the stability and replication efficiency of the viral RNA, but also 
hinders the co-localization of YBX1 with lipid droplets and viral 
core proteins, thereby affecting the assembly and release of the virus 
(Li ZL. et al., 2024). In addition, the treatment of HBV-infected cells 
with a small nucleotide epigenetic drug, 5-azacytidine (5-AzaC), 
achieved a significant reduction in HBV replication, but its side 
effects make it currently unsuitable for clinical application in the 
treatment of HBV (Christman, 2002). Nonetheless, these studies 
suggest that derivatives of this nucleotide analogue or other m5C 
regulator inhibitors could be considered as viable alternatives to 
current viral reverse transcription inhibitors.

The M5C regulatory factor, when combined with traditional 
treatments, also showed surprisingly positive effects in recovery 
from liver damage: during the process of ferroptosis in ACLF 
hepatocytes, the levels of m5C and m5C methyltransferase 
NSUN5 were downregulated. NSUN5 may have an inhibitory 
effect on intracellular ferroptosis in ACLF hepatocytes by directly 
regulating genes related to the ferroptosis pathway. In addition, 
Horn Dihuang Jiedu Decoction (NDD) ameliorated ferroptosis 
in ACLF through the NSUN5-SLC7A11 signaling pathway. 
These findings collectively suggest that SLC7A11 is a promising 
target for NSUN5-mediated intervention (Huang L. et al., 2024). 
Furthermore, research shows that the well-known traditional herb 
Danshen can protect the liver, reduce liver oxidative stress and 
improve fatty degeneration and cancer, among other conditions 
(Ge et al., 2025). Regarding the pharmacokinetic characteristics of 
traditional medicine, it is possible to perform analysis using the 
newly developed LC-MS method. As society progresses, the field 
of drug development is constantly evolving, with traditional drug 
discovery steps gradually transitioning to network pharmacology 
(Dai et al., 2022). Especially, the combination of genomics 
technology and network pharmacology allows us to conduct 
more comprehensive analyses of drug targets, biological pathways, 
genes, and related diseases. In addition, the organoid technology 
holds great potential for understanding the mechanisms of liver 
diseases and their development, as well as for drug screening and 

personalized medicine (Liu Y. et al., 2024). Thus, we can combine 
m5C methylation modification with various traditional technologies 
such as network pharmacology, traditional Chinese medicine, and 
organoid technology, and establish a new reference methodology 
for future drug development.

Furthermore, there have been some recent studies reporting 
on targeted m5C drugs. Even without considering the liver 
background, these studies provide valuable guidance for the 
subsequent development of m5C-targeted drugs for specific liver 
backgrounds, or can help researchers investigate whether these 
drugs can also function in the liver. Because some important 
regulatory mechanisms such as ferroptosis are also common in the 
liver. For instance, the flavonoid kaempferol is a new m5C-targeting 
drug. Kaempferol can inhibit the m5C modification level mediated 
by NSUN7, thereby regulating iron apoptosis in lung epithelial cells. 
It may play an important role in the treatment of acute lung injury 
caused by sepsis (Zhang et al., 2025). In addition, by targeting the 
m5C modification mediated by NSUN2, the NSUN2 inhibitor MY-
1B and the FSP1 inhibitor iFSP1 were able to significantly inhibit 
the survival of acute myeloid leukemia (AML) cells (Ye et al., 2025). 
Based on the structure of the natural product caerulomycin A, 
90 new 2,2′-bipyridine derivatives were synthesized. Compound 
B19 was identified as the specific target of NSUN3. B19 plays a 
crucial role in the mitochondrial tRNA methylation of CRC cells 
by binding to NSUN3, and it regulates mitochondrial function and 
metabolism (Tang et al., 2024). 

4.2 Prognostic biomarkers

M5C-related genes can predict the prognosis of hepatocellular 
carcinoma (Xiao et al., 2023; Liu et al., 2022c). Firstly, the m5C score 
serves as a biomarker to predict patient responses to immunotherapy 
and identify potential targeted drugs. For instance, HCC patients 
with low m5C score are more sensitive to Immune Checkpoint 
Blockers such as anti-CTLA4 monotherapy. However, pancreatic 
cancer patients with low m5C score benefited significantly from 
anti-CTLA4 and anti-PD1 combination therapy (Zhan et al., 2023; 
Liu P. et al., 2022). In the process of differential expression analysis 
and Cox regression analysis between normal samples and tumor 
samples in the TCGA database, it was found that NSUN4 was 
significantly correlated with poor prognosis for HCC patients 
(Cui M. et al., 2022). Secondly, the m5C reader has great research 
significance in the prognosis of HCC. ALYREF expression in HCC 
mainly affects the level of immune cell infiltration and is not 
only related to the overall survival time of patients (Shi et al., 
2025; Nulali et al., 2024). Pan-cancer analysis showed that ALYREF 
overexpression was significantly associated with advanced tumor-
lymph node metastasis stage and poor HCC prognosis (Xue et al., 
2021), so the constructed immune prognostic model could 
effectively evaluate patients. Therefore, the increased expression 
of ALYREF may serve as a novel biomarker for HCC diagnosis 
and prognostic prediction. In experimental studies, ALYREF 
knockdown significantly inhibited HCC cell proliferation and tumor 
growth, suggesting that ALYREF may be a potential prognostic 
marker and therapeutic target (Xue et al., 2023; Nulali et al., 2024). 
YBX-1 is significantly overexpressed in a variety of cancer types 
and is associated with poor outcomes, especially in HCC, and
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YBX-1 can be used as a prognostic indicator for HCC (Li Z. et al., 
2024). Risk models are also valuable tools to assess the prognosis 
of cancer patients (Guo et al., 2022). Using the risk model of m5C 
regulated genes, it was found that the overexpression of YBX1 
gene led to poor prognosis of HCC patients (Li D. et al., 2022); 
ALYREF and NSUN4 could also be used as carcinogenic indicators 
of HCC prognosis and were related to immune infiltration in the 
tumor microenvironment. Similarly, Li’s experiment showed that 
high expression of YBX1/RNF115 predicted poor overall survival 
in HCC (Li and Yang, 2022). In 2024, Chen et al. evaluated the 
association between single nucleotide polymorphisms (SNPS) in 
m5C modifier genes and overall survival (OS) in patients with HBV-
related HCC. It was found that NSUN7 and TRDMT1 may regulate 
the survival of HBV-related HCC patients after hepatectomy alone 
or in combination in the Chinese population (Chen B. et al., 2024).

The above studies establish an important link between 
m5C modification and liver-related diseases, thereby enhancing 
our understanding of the mechanism of the development and 
progression of liver-related diseases. This indicates that m5C is not 
only a promising target for developing therapeutic antiviral and 
antitumor drugs but also has the potential to evaluate the prognosis 
of patients through m5C-related genes. 

5 Conclusion

Due to recent advances in m5C detection technology, m5C 
RNA methylation are identified at an increasing rate. However, 
there is still an unmet biological need for new sequencing 
technologies, and researchers are developing more sensitive and 
less expensive assays such as UBS-seq, facilitating both research 
and clinical applications of the m5C RNA methylation. This 
review highlights the significant impact of m5C modification 
on liver lipid metabolism, hepatitis virus infection and HCC. 
However, it is evident that the dynamic development and underlying 
mechanisms are still poorly understood, especially the regulation 
of m5C modification in autoimmune liver diseases. Transcriptomic 
information of each liver disease should be actively collected to 
fully evaluate the potential mechanisms and dynamic changes of 
RNA modifications, especially m5C RNA methylation, during the 
progression of liver diseases. In addition, using mouse models 
and specific cell lines to explore m5C regulators, inhibitors of 
m5C regulators can be combined with existing medical methods 
(Western medicine, Chinese traditional medicine, chemotherapy, 
radiotherapy), etc., which may lead to more promising results 
and effective treatments. Additional studies in mouse models are 
necessary to assess the drugs’ specificity and potential side effects 
in the treatment of liver diseases.
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