:' frontiers ‘ Frontiers in Molecular Biosciences

‘ @ Check for updates

OPEN ACCESS

Jian Zhi Hu,
Pacific Northwest National Laboratory (DOE),
United States

Cristian D. Gutierrez Reyes,

Texas Tech University, United States
Laura Beth Mclintire,
NewYork-Presbyterian, United States

Xiaoyang Zhang,
dawnsunz@126.com

Yougiong Xu,
joancoco@l26.com

"These authors have contributed equally
to this work

30 June 2025
20 October 2025
27 October 2025
13 November 2025

XuY, Zhu 'Y, Chen Q, Zhang X, Fang J, Xu W
and Zhang X (2025) UHPLC-MS/MS-based
plasma untargeted lipidomic analysis in
patients with diabetes mellitus combined with
hyperuricemia.

Front. Mol. Biosci. 12:1656458.

doi: 10.3389/fmolb.2025.1656458

© 2025 Xu, Zhu, Chen, Zhang, Fang, Xu and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences

Original Research
13 November 2025
10.3389/fmolb.2025.1656458

UHPLC-MS/MS-based plasma
untargeted lipidomic analysis in
patients with diabetes mellitus
combined with hyperuricemia

Yougiong Xu*?*', Yitao Zhu®?, Qihui Chen?, Xinchao Zhang'?,
Jinxi Fang'?, Wenchu Xu'? and Xiaoyang Zhang%*

'The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University,
Fuzhou, China, ?School of Public Health, Fujian Medical University, Fuzhou, China

Objective: To compare the differences in lipid metabolites between patients
with diabetes mellitus combined with hyperuricemia (DH) and diabetes mellitus
(DM) and healthy controls, and to initially reveal the changes in lipid metabolic
pathways in DH.

Methods: Using a present study method, 17 patients each diagnosed with
diabetes mellitus and diabetes mellitus combined with hyperuric acid among
permanent residents aged 18 years and above in Fuzhou City, Fujian Province,
China, from June 2019 to July 2020 were selected, matched 1:1 by sex and
age, and 17 healthy controls were randomly selected and fasting blood samples
were collected. The untargeted lipid histology analysis was performed using
ultra performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) based technique, and the Student’s t-test and multiple of difference (FC)
were used to initially screen the differential lipid molecules and determine their
trends; principal component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) were used to observe the overall distribution
of the two groups of samples. Finally, we used Metabo Analyst 5.0 platform to
analyze the differential lipid metabolism pathways.

Results: We identified 1,361 lipid molecules across 30 subclasses. Multivariate
analyses revealed a significant separation trend among the DH, DM, and
NGT groups, confirming distinct lipidomic profiles. A total of 31 significantly
altered lipid metabolites were pinpointed in the DH group compared to
the NGT controls. Among the most relevant individual metabolites, 13
triglycerides (TGs), such as TG (16:0/18:1/18:2), 10 phosphatidylethanolamines
(PEs), e.g., PE (18:0/20:4), and 7 phosphatidylcholines (PCs) including PC
(36:1), were significantly upregulated, while one phosphatidylinositol (PI)
was downregulated. The collective analysis of these metabolite groups
revealed their enrichment in six major metabolic pathways. Crucially,
glycerophospholipid metabolism with an impact value of 0.199 and glycerolipid
metabolism with an impact value of 0.014 were identified as the most
significantly perturbed pathways in DH patients. Furthermore, comparison
of DH versus DM groups identified 12 differential lipids, which were also
predominantly enriched in these same core pathways, underscoring their
central role in the pathophysiology of hyperuricemia complicating diabetes.
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Conclusion: Patients with combined diabetes mellitus and hyperuricemia have
significantly altered lipid metabolites compared to diabetic patients and healthy
controls. A total of 31 significantly different lipid molecules were identified, and
abnormalities in glycerophospholipid metabolism and glycerolipid metabolism
pathways were found in DH patients.
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1 Introduction

Diabetes mellitus (DM) is a group of chronic metabolic
diseases caused by impaired insulin secretion, insulin resistance
or both, with hyperglycemia as the main feature (Mozaffarian,
2016). According to the International Diabetes Federation’s (IDF)
Diabetes Atlas 2021 (Sun et al, 2022),The global prevalence
of diabetes in people aged 20-71 years is approximately 10.5%
(536.6 million individuals), an increase of 12.9% from the 9.0%
prevalence reported in the 2019 IDE. As the disease progresses,
diabetic patients are prone to chronic lesions of the fundus, nerves,
kidneys, cardiovascular and other tissues and organs, leading to the
decompensation or failure of the patient’s organism, which in turn
seriously affects the patient’s life and health (Garberg et al., 2025;
Hu et al., 2024).

Blood uric acid is a metabolic product of the breakdown
of purine nucleotides in the body, and disorders of purine
metabolism and/or decreased uric acid excretion can lead to
the development of hyperuricemia, which was originally seen in
Europe and North America, but with the development of society,
the disease has become prevalent in Eastern countries, and the
number of cases is gradually increasing in China. In a recent cross-
sectional study conducted in 31 provinces in mainland China,
17.7% of the study participants were diagnosed with hyperuricemia
(J et al,, 2022). Hyperuricemia, a common comorbidity of diabetes
(Hyperuricemia, 2017), is inseparable from diabetes. Studies have
shown that the incidence of hyperuricemia is higher in diabetic
than in non-diabetic population (Anothaisintawee et al., 2017),
and that the risk of diabetes increases by 17% for every 1 mL/dL
increase in serum uric acid (Kodama et al., 2009), while elevated
uric acid levels in diabetic patients are also closely associated with
diabetic complications such as diabetic nephropathy, adverse cardiac
events and peripheral vascular disease (Katsiki et al., 2013). Both
diabetes mellitus and hyperuricemia are metabolic diseases and are
often accompanied by lipid abnormalities in the development of the
disease (Borges et al., 2010). It has been found that hyperuricemia
can lead to lipid abnormalities (Xic et al., 2021), and at the same time,
disorders of lipid metabolism are risk factors for diabetes mellitus
(Petrenko et al., 2023). However, conventional clinical and blood
biomarkers such as BMI, fasting glucose, HbAlc levels, and other
conventional biochemical tests cannot capture all lipid molecules,
making it necessary to detect early aspects of lipid disorders
associated with the disease. In addition, gene expression profiling
is limited in exploring the molecular mechanisms of diabetes
combined with hyperuricemia given the environmental and genetic
heterogeneity (Suomi et al., 2023). Therefore, new approaches
are needed to advance the understanding of the mechanisms
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underlying the development of diabetes mellitus combined with
hyperuricemia.

Metabolomics, a rapidly evolving technology, can provide
a comprehensive picture of metabolic disorders throughout the
body, and it can also provide a new avenue for identifying
new biomarkers (Wang et al, 2020). Lipidomics, a branch of
metabolomics, is an effective tool to study the changes in lipid
metabolism in organisms and the role of lipid regulation in life
activities, allowing the identification of many individual lipids
and also the ability to characterize the specific biological role
of lipid molecules, which is well suited to characterize the lipid
perturbations that precede diabetes and can be used to develop
specific disease biomarkers (Knebel et al, 2016). Studies have
shown that diabetes can be effectively prevented or delayed by
lifestyle and pharmacological interventions (Samocha-Bonet et al.,
2018). Previous studies have reported the association between
lipid alterations and diabetes (Lu et al., 2019; Drogan et al,
2015) and hyperuricemia (Liu et al, 2020; Liu et al, 2022).
Alterations in plasma triglycerides (TGs), diglycerides (DAGs),
phosphatidylethanolamines (PEs) and phosphatidylcholine (PC)
have been associated with type 2 diabetes in different populations
(Lu et al, 2019; Drogan et al, 2015). Significant alterations in
plasma lipids such as TGs and PCs were identified in patients with
hyperuricemia (Liu et al., 2020). However, most of the available
studies measured only baseline lipids in patients with diabetes or
hyperuricemia and did not reflect changes in the plasma lipidome
in patients with diabetes or diabetes combined with hyperuricemia.

In this study, we used ultra-high liquid chromatography-
spectrometry (UHPLC-MS/MS)
metabolic profiles in patients with diabetes mellitus and

mass to characterize lipid
diabetes mellitus combined with hyperuricemia. In addition, we
identified differentially expressed lipid molecules and enriched
metabolic pathways in patients with diabetes mellitus, diabetes
mellitus combined with hyperuricemia, and healthy subjects to
elucidate the potential role of lipid molecules in detecting the
development of diabetes mellitus, diabetes mellitus combined with
hyperuricemia.

2 Materials & methods
2.1 Study population
Multi-stage proportional stratified whole-group sampling

method was used to sample 17 patients each diagnosed with
diabetes mellitus, diabetes mellitus combined with hyperuricemia,
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and healthy controls in Fuzhou City, Fujian Province, selected
from 2019 to 2020, based on this present study, according
to the 1:1 matched case-control study method. Inclusion
criteria were (1) 18 years of age or older; (2) completion of
questionnaires and blood collection; (3) signing of informed
consent; and (4) meeting the American Diabetes Association’s
diagnostic criteria (2018) WHO diagnostic criteria for diabetes
(2, 2018), i.e., fasting blood glucose >7.0 mmol/L, or random
blood glucose >11.0mmol/L, and meeting in the survey
Fasting blood uric acid levels were higher than 420 umol/L
in men and 360 umol/L in women. exclusion criteria: (1)
use of hypoglycemic agents; (2) recent use of drugs affecting
uric acid metabolism, such as diuretics, lipid-lowering drugs,
aspirin, benzbromarone, and allopurin; (3) gout, primary
kidney disease, renal insufficiency, leukemia, and tumors; (4)
combination of other psychiatric (4) combination of other
psychiatric diseases or low cooperation; (5) pregnant and lactating
women. This study was approved by the Ethics Committee of
the Fuzhou Center for Disease Control and Prevention (approval

number: 2,019,006).

2.2 Sample collection and pre-processing

5mL of fasting morning blood was collected and centrifuged
at 3,000 rmp for 10 min at room temperature. 0.2 mL of the upper
layer of plasma was divided into 1.5 mL centrifuge tubes, and three
equal groups of samples were mixed as quality control samples and
stored at —80 °C in the refrigerator. The samples were thawed on
ice and vortexed, 100 pL was taken into a 1.5 mL centrifuge tube,
200 uL of 4 °C water was added, 240 pL of pre-cooled methanol
was added after mixing, 800 pL of methyl tert-butyl ether (MTBE)
was added after mixing, 20 min of sonication in a low temperature
water bath, 30 min of standing at room temperature, 14 000 g,
and 15 min of centrifugation at 10 °C, take the upper organic
phase, blow dry under nitrogen, and number for detection. The
assay was repeated with 100 pL of isopropanol, and the quality
control samples were randomly inserted into the assay sequence of
the samples.

2.3 Test conditions

2.3.1 Chromatographic conditions

The samples were separated by ultra-high performance liquid
chromatography (UHPLC) system. The analysis was performed
on a Waters ACQUITY UPLC BEH C18 column (2.1 mm 1.
d. x 100 mm length, 1.7 um particle size). The mobile phase
consisted of A: 10 mM ammonium formate acetonitrile solution in
water and B: 10 mM ammonium formate acetonitrile isopropanol
solution. Elution procedure: B was maintained at 30% (0-2 min),
B was varied linearly from 30% to 100% (2-25min), and B
was maintained at 30% (25-35min). The samples were placed
in the autosampler at 10 °C during the whole analysis. To avoid
the effect caused by the fluctuation of the instrument detection
signal, a random order was used and the samples were analyzed
continuously.
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2.3.2 Mass spectrometry conditions

Electrospray ionization (ESI) positive ion and negative ion
modes were used for detection, respectively. Samples were separated
by UHPLC and then analyzed by mass spectrometry using a Q
Exactive plus mass spectrometer (Thermo Scientific™).

2.3.3 Mass-to-charge ratio (m/z) acquisition of
lipid molecules and lipid fragments

The electrospray ionization source operates in positive and
negative ion modes respectively. The spray voltage of the MS
(primary mass spectrometer) is inferred to be 3.0-4.0 kV in positive
mode and 2.5-3.5kV in negative mode. The temperature of the
transfer tube is approximately 300 °C-350 °C, and the full scanning
range covers m/z 150-1,500. The resolution reaches 70,000 at m/z
200, the target value of automatic gain control (AGC) is inferred
to be le6, and the maximum injection time may be 100 m. The
MS/MS (secondary mass spectrometry) adopts a data-dependent
acquisition mode, with the duty cycle optimized to within 1-2s.
The top 10 parent ions with the highest intensity are selected,
and HCD fragmentation (collision energy 20-40 eV) is used. The
quadrupole isolation window is m/z 1.0-2.0, and the dynamic
exclusion time is set at 10-20 s. The resolution is 17,500 at m/z 200.
This method ensures the precise identification and quantification of
lipid molecules through high-resolution MS scanning and targeted
MS/MS fragmentation.

2.4 Data processing

The basal peak profile (BPC) plots of the QC samples were
compared for spectral overlap to examine the stability of the
instrument and the reproducibility of the experiment. LipidSearch
was used for peak identification, peak extraction, and lipid
identification. Univariate and multivariate statistical analyses were
performed on the extracted data, mainly including t-test, multiple
of difference (FC) analysis, principal component analysis (PCA),
orthogonal partial least squares discriminant analysis (OPLS-DA)
and visualization of volcano and cluster plots. The strength of
influence and explanatory power of each lipid molecule on the
categorical discrimination of each group of samples was measured
by the variable weight value (VIP). Lipid molecules with VIP>1
had significant contribution in the model interpretation. Finally,
the metabolic pathway analysis of differential lipid molecules was
carried out in combination with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database and Metabo Analyst 5.0 online
analysis platform. In this experiment, VIP>1, P < 0.05 and FC > 1.5
or <0.67 were used as criteria to screen for significant differential
lipid molecules.

3 Results

3.1 Characteristics of the general
population

There were no statistically significant differences (P > 0.05)

between the three groups in terms of age, gender, marital
status, education, occupation, history of diabetes, smoking, alcohol
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TABLE 1 Comparison of baseline information for lipidomics study subjects, n (%).

Total (n = 51) NGT (n = 17) DM (n = 17) DH (n = 17)
Age 0.605 0.962
<45 5(9.8) 2(11.8) 2(11.8) 1(5.9)
45-60 32(62.7) 10 (58.8) 11 (64.7) 11 (64.7)
>60 14 (27.5) 5(29.4) 4(23.5) 5(29.4)
Gender 0.158 0.924
Male 28 (54.9) 9(52.9) 10 (58.8) 9(52.9)
Female 23 (45.1) 8 (47.1) 7 (41.2) 8 (47.1)
Marital 1.041 0.594
Married 49 (96.1) 17 (100.0) 16 (94.1) 16 (94.1)
Other 2(3.9) 0(0.0) 1(5.9) 1(5.9)
Educational 7.515 0.111
Primary school 22 (43.1) 4(23.5) 9 (52.9) 9 (52.9)
High School 18 (35.3) 8 (47.1) 3(17.6) 7 (41.2)
University 11(21.6) 5(29.4) 5(29.4) 1(5.9)
Occupation 8.442 0.077
Brain worker 7(13.7) 4(23.5) 3(17.6) 0(0.0)
Manual worker 33 (64.7) 12 (70.6) 8(47.1) 13 (76.5)
Retiree 11 (21.6) 1(5.9) 6 (35.3) 4(23.5)
Family diabetes 34 0.183
Yes 6(11.8) 0(0.0) 3(17.6) 3(17.6)
No 45 (88.2) 17 (100.0) 14 (82.4) 14 (82.4)
Alcohol use 4.577 0.101
Yes 12 (23.5) 3(17.6) 7 (41.2) 2(11.8)
No 39 (76.5) 14 (82.4) 10 (58.8) 15 (88.2)
Smoker 0.197 0.906
Yes 14 (27.5) 5(29.4) 4(23.5) 5(29.4)
No 37 (72.5) 12 (70.6) 13 (76.5) 12 (70.6)
Sleep (h/d) 22 0.699
<7 18 (35.3) 6 (35.3) 6 (35.3) 6 (35.3)
7~ 30 (58.8) 11 (64.7) 10 (58.8) 9(52.9)
29 3(5.9) 0(0.0) 1(5.9) 2(11.8)

(Continued on the following page)
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TABLE 1 (Continued) Comparison of baseline information for lipidomics study subjects, n (%).

10.3389/fmolb.2025.1656458

Total (n = 51) NGT (n = 17) DM (n = 17) DH (n = 17) ‘ P ‘ P
Exercise 1.417 0.492
(times/week)
<3 27 (52.9) 7 (41.2) 10 (58.8) 10 (58.8)
>3 24 (47.1) 10 (58.8) 7 (41.2) 7 (41.2)

The NGT (Normal Glucose Tolerance) group served as the healthy control population. The DM (Diabetes Mellitus) group comprised patients with diabetes alone, while the DH (Diabetes with

Hyperuricemia) group included individuals suffering from both metabolic disorders simultaneously.

consumption, sleep duration and exercise, indicating that the three
groups were balanced and comparable Table 1.

3.2 Experimental quality control

By overlaying the base peak chromatogram (BPC) spectra of
quality control (QC) samples and analyzing their correlation maps,
distinct separation among different categories of lipid metabolites in
plasma was observed. The consistency in peak response intensities
and retention times across all QC samples demonstrated high
instrument stability, excellent experimental reproducibility, and
reliable data quality (Figure 1).

3.3 Analysis of lipid components

Lipid Search software was used to analyze the data, and a total of
30 lipid subclasses and 1,361 lipid molecules were identified in this
experiment. There were 621 glycerophospholipids, 388 glycerolipids,
314 sphingolipids, and 38 other lipids (Figure 2).

3.4 Multivariate statistical analysis of lipid
molecules

3.4.1 Principal component analysis

The PCA method was used to observe the overall distribution
trend of samples between groups and the degree of difference of
samples between groups. The data were processed to obtain the
distribution of metabolites and PCA scores of plasma samples from
DH group vs. NGT control group and DM control group, and the
results showed that the separation of DH and NGT and DH and DM
groups was good. The main parameters of the PCA model model
interpretation rate R*X = 0.552 (DH vs. NGT) and R*X = 0.509 (DH
vs. DM), with R*X values greater than 0.5 indicating that the model
is reliable (Figure 3).

3.4.2 Orthogonal partial least squares
discriminant analysis

The OPLS-DA method was applied to further validate the
separation of plasma samples and to screen for differential
metabolites associated with the subgroups. The results showed a
significant trend of separation between DH and NGT and DH
and DM samples, indicating a reliable model. After 7 cycles of
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cross-validation, the model interpretation rate of RY = 0.380 and
the predictive power Q* = 0.551 were obtained for the DH vs.
NGT group, indicating a stable and reliable model (Figure 4A).
The model interpretation rate of R*Y = 0.682 and the predictive
power Q* = 0.167 were obtained for the DH vs. DM group
(Figure 4B), indicating a more stable model. The replacement results
of both groups showed that the R? and Q? of the stochastic
model gradually decreased as the replacement retention gradually
decreased, indicating that there was no overfitting in the original
model and that the model was robust (Figures 4C, D).

3.5 Analysis of plasma lipid molecular
differences among the three groups

To analyze the significance of changes in plasma lipid molecules
between DH vs. NGT and DH vs. DM groups and to screen for
potential lipid biomarkers, this study visualized lipid molecule level
by visualizing the overall differential level fold in the comparison
groups with FC > 1.5 or FC < 0.67 and P < 0.05 as screening
conditions. Compared with the NGT control group, 405 lipid
molecules were upregulated and 15 levels were downregulated in the
DH group, as shown in Figure 5A. Compared with the DM control
group, the DH group exhibited upregulation of 118 lipid molecules
and downregulation of 22., as shown in Figure 5B.

3.6 Clustering analysis of differential lipid
molecules in the three populations

S-plot load plots were used in the OPLS-DA model to obtain
the variance variables with high correlation and covariance, and
further selected the variables that contributed more to the grouping
in the model. The strength of influence and explanatory power
of each lipid molecule on the categorical discrimination of each
group of samples was measured by the variable weight value (VIP).
Lipid molecules with VIP>1 had significant contribution in the
model explanation. The information of the three dimensions of
differential level multiple, P value and VIP value of lipid molecules
were again visualized in the form of bubble plots by combining
the FC > 1.5 or FC < 0.67 and P < 0.05 conditions, as shown in
Figure 6.

FC > 1.5 or FC < 0.67, P < 0.05 and VIP >1 were used to
select significantly different lipid molecules between groups and
to perform hierarchical clustering of samples from each group,
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FIGURE 1
BPC overlay spectra of positive ions (A) and negative ions (B) from QC samples, and correlation map of QC samples (C). Note: The BPC is the base
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QC samples on the x-axis and QC samples on the y-axis. Each point within a cell represents an ion peak (metabolite) extracted from the QC sample,
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thus assisting us to accurately screen for marker lipids and to
investigate changes in related metabolic processes. A total of 73
significantly different lipid molecules were expressed upregulated
in the DH group compared with the NGT control group. A total
of 34 lipid molecules were significantly altered in the DH group
compared to the DM control group, with 27 upregulated level and
7 downregulated level. Figure 7 shows the results of hierarchical
clustering of significantly different lipid molecules in DH vs. NGT
and the results of hierarchical clustering of significantly different
lipid molecules in DH vs. DM. From the figure (Figure 7A), it can
be learned that the identified differential lipid metabolites in the
DH group compared with the NGT group all had higher level high
in the DH group, and the grouping of differential lipid metabolites
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in both groups was obvious and reproducible. From Figure 7B,
it can be learned that the DH group had significantly better
reproducibility of differential lipid metabolite grouping compared to
the DM group.

Significantly different lipid molecules identified above with FC
> 1.5 or FC < 0.67, P < 0.05 and VIP >1 were further designated by
MetaboAnalyst 5.0 platform. There were 31 significantly different
lipid molecules in the DH group compared to the NGT group,
including 13 TGs, followed by 7 phosphatidylcholine (PC), 10
phosphatidylethanolamine (PE) and one phosphatidylinositol (PI)
(Table 2). There were 12 significantly different lipid molecules
in the DH group compared to the DM group, including
10 TGs and 2 PCs (Table 3).
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3.7 Analysis of plasma differential lipid
molecule metabolic pathways

In this study, lipid molecule metabolic pathway analysis was
conducted on 31 significantly differential lipid molecules identified
by Metabo Analyst 5.0 platform. The results showed that six
lipid metabolic pathways were perturbed in DH patients, namely,
glycerophospholipid metabolism, linoleic acid metabolism, ao-
linolenic acid metabolism, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, glycerolipid metabolism, and arachidonic acid
metabolic pathway (Figure 8A). Among them, glycerophospholipid
metabolic 0.199)
metabolic pathway (effect value 0.014) were

pathway (effect value and  glycerolipid

significantly
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changed (Figure 8B) and were mapped on the KEGG pathway
map. Among them, PCs and PEs were mainly involved in
glycerophospholipid metabolism (Figure 9A), and triglycerides
(TGs) were mainly involved in glycerol ester metabolism
(Figure 9B).

KEGG enrichment analysis revealed 12 significantly altered
lipid molecules in the DH group compared with DM, which
were analyzed for significantly different lipid molecule metabolic
pathways. The results showed that the 12 lipid molecules
were mainly enriched in two lipid metabolic pathways,
namely, glycerophospholipid metabolic pathway (effect value
0.094) and triglyceride metabolic pathway (effect value 0.014)

(Figure 10A). Among them, the glycerophospholipid metabolic

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1656458
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Xu et al. 10.3389/fmolb.2025.1656458
Volcano Plot
o
8 =
°
6 s ©
e oo PFPo
e &8 °o o
— o
< 650105, 1PCIa0:65) oo & : 2 DQ"q o ©
‘_g BROS_SM{a37:4) %0 062° 4
> S
K= 20P0S 1GIB0AE153) omo 5@ s?%&,q’ @, ©
- =] o 1é4Pos PE(2| 3
= 4 190P08_PoDae) 452008 TPCL321) 8 S t% & R0
> [} © o o 20 55& 1FROS_PC(313
_? 204PCS ChE(226) sSrdarontio O g OBzl PE1 - oo 16POS_Oerd 1)
o @ﬁ@b&fcuﬂz;o ° °
L) B, 050% °© © 14BOS_Cand25-1)
379P08, POH?Or\ %’ OQ‘;%&?& pe@id) (] 10BPOS_PC(19.1)
& sgos pcnsy o 1003NEG_PS(7.0)
2 33EPOS. ch%n ﬁﬁ & lsys‘uam‘)
=
) %7@‘%
@0
© Qo oO ©
o o © o ©
A o
ok
' ' \ ' '
5.0 25 0.0 25 5.0
log2 Fold change (DH/N)
Volcano Plot
o . .
[+]
o o
TS ——
MISNLC Gl 2020 )
o ©
SISPOS SM{dM0:5+p0)
3+ o o S P05 Cutam
- o T08R08_PG(182) g
° 114POS. FFi?ﬁa) 18PO8_Contaa?:1)
NSZENEC I‘L(IBUDQQO o o
. . 12605_PC(21 4
1169 iSHEOp-& 6 ) o X o
—_ o 9 TAPOSNGEZ I 100INEG PS(27:0)
E 00 [=1-) < o @
= ‘Eﬁ o ° 132P08 PC(21:3)
[y 121BNEG_PE(20.2) (_700@; co0dd o
& 2F ° & o o
=% 5 °
— scercs 136, DD
2 wﬁ
- 030P0S PCENEm O O Hb\n 18:00204° -
1259NEG, PS(A0-de) 1ANES, F8(40:8p) O - "’&
o1 B o
o o °
1k ° %
o go
5] o 20
o o ©
.. B
L L L L L
-4 -2 o] 2 4
log2 Fold change (DH/DM)
FIGURE 5
Volcano Plots of Differential Lipid Molecules in DH vs. NGT and DH vs. DM Groups. Note: (A) DH vs. NGT; (B) DH vs. DM; horizontal coordinates in the
figure indicate log2-transformed differential level ploidy values, vertical coordinates indicate log10-transformed P value values, and dots indicate lipid
molecules, where red dots are lipid molecules that meet the differential level ploidy screening criteria (FC > 1.5 or FC < 0.67, P value <0.05). DH, diabetes
combined with high uric acid; DM, diabetes mellitus; NGT, normal glucose tolerance; FC fold change; VIP variable importance for the projection.

pathway was significantly changed, and PCs were found
to be mainly involved in glycerophospholipid metabolism

(Figure 10B).

4 Discussion

This study extensively explored the characteristics of lipid
metabolites in patients with diabetes mellitus combined with
hyperuricemia using non-targeted lipidomics techniques. The
results of PCA and OPLS-DA analysis showed a clear trend of
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separation of the three groups of samples and a reliable model.
A total of 73 differential lipid metabolites between diabetic
patients, diabetic patients with combined hyperuricemia and
healthy controls were identified by combining the conditions
of VIP>1, FC > 1.5 or FC < 0.67 and P < 0.05. A total of 31
identifiable differential lipid metabolites were further compared in
the Metabo Analyst 5.0 analysis platform. The results of differential
lipid metabolic pathway analysis showed that patients with
diabetes mellitus combined with high uric acid were significantly
associated with glycerophospholipid and glycerolipid metabolic
pathways. Among them, PCs and PEs were mainly involved
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in glycerophospholipid metabolism, and triglycerides (TGs)
were mainly involved in glycerolipid metabolism, suggesting
that they can be used as potential biomarkers for more in-
depth study in patients with diabetes mellitus combined with
hyperuricemia.

Glycerophospholipids are the major lipids of mammalian
cell membranes and play a crucial role in cellular functions
such as signal transduction, regulation of protein functions
and transport processes (Ecker and Liebisch, 2014). Among
them, phosphatidylcholine (PC) and phosphatidylethanolamine
(PE) are the two most dominant phospholipids. In the liver,
PC can be synthesized via the choline pathway or converted
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by PE
N-methyltransferase

through the action of phosphatidylethanolamine-

(PEMT) 2015).  Phospholipid
composition is closely related to hepatic insulin signaling. It was
found that an elevated ratio of hepatocyte phosphatidylcholine
to phosphatidylethanolamine (PC/PE) can directly affect insulin

signaling (Van Der Veen et al, 2019). Conversely, a decrease

(Vance,

in PC/PE improves lipid accumulation, inflammation and
fibrosis in hepatocyte (Van Der Veen et al.,, 2016),and facilitates
glucose homeostasis in obese mice (Fu et al, 2011). In this
study, we found abnormally elevated 7PCs and 10PEs in
patients with combined diabetes mellitus and hyperuricemia,
suggesting abnormal glycerophospholipid metabolism in DH
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2015),that
alterations in glycerophospholipid classes in patients with type
2 diabetes suggest that PC (22:4/dm18:0), PC (38:4), PC (36:1)
and PE (O-18:0/0-18:0) and PE (O-20:0/0-16:0) are positively
associated with the risk of diabetes mellitus. In addition, serious

patients. Other studies have also found (Drogan et al.,

disturbances in glycerophospholipid metabolic pathways have
been identified in both in vivo/in vitro studies of hyperuricemia
(Liu et al, 2020). It was also found that uric acid induces
lipid metabolism disorders through lysophosphatidylcholine
acyltransferase 3 (LPCAT3)-mediated activation of sterol regulatory
element binding protein 1lc (SREBP-1c) and inhibition of
phosphorylation signaling transducer and activator of transcription
3 (p-STAT3 (Liu et al, 2020). It is suggested that LPCAT3 may
be a key regulator linking hyperuricemia and disorders of lipid
metabolism.

Triglycerides (TGs) are the major form of fatty acids stored
and transported intracellularly and in the blood plasma. When
the body exceeds the maximum storage capacity of adipocytes,
lipids are released into the circulation as free fatty acids
(FAs) and are transported to accumulate in lipid droplets in
skeletal muscle and liver, ultimately leading to insulin resistance
(Ritter et al., 2015). However, stored TGs in vivo are usually
metabolically inert. Impaired insulin signaling in hepatocytes is
not caused by the accumulation of triglycerides, but by direct
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damage to hepatocytes from intermediates produced during their
metabolism (e.g., diglycerides, ceramides, and acylcarnitines)
(Semova and Biddinger, 2021). In addition, the accumulation of
excess lipids (especially saturated fatty acids) is closely associated
with endoplasmic reticulum oxidative stress and mitochondrial
dysfunction (Wymann and Schneiter, 2008). Also, elevated
free fatty acids in plasma can cause a direct inflammatory
response by binding to toll-like receptors (SONG et al., 2019).
Lipid molecules can also be used as biomarkers of disease.
It was found (Yang et al, 2019) that neurolipid dysregulation
(especially of TGs) was significantly associated with peripheral
neuropathy in a murine model of diabetes and that the disease
was associated with the “fat digestion and absorption” pathway
through the KEGG website. In addition, elevated serum uric
acid is usually accompanied by elevated TG levels. It was found
(Liu et al,
higher in patients with hyperuricemia than in normal subjects,

2022)that serum levels of all types of TG were

which may be related to the activation of phospholipases.
The mechanism by which triglycerides (TGs) affect diabetes
mellitus combined with hyperuricemia may be related to its
role in inflammation (Van Dierendonck et al.,, 2022), oxidative
stress (Sun et al, 2020) and insulin signaling (Smith et al,
2020),

resistance.

which may affect glucose metabolism and insulin
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TABLE 2 Significantly altered lipid metabolites in DH compared to NGT plasma.

Lipids Lipid subclass Molecular Theoretical Retention
formula mass to charge period (min)
ratio
PC(16:0/16:1)+HCOO PC C41 H79 O10 N1 P1 776.5447 9.9531 18183 | 3.23x107° | 21227
PC(16:0/20:4)+HCOO PC C45H81 010 N1 P1 826.5604 9.9588 17246 | 198x 107 | 1.5866
PC(18:0/16:0)+Na PC C42 H84 O8 N1 P1 784.5827 10.3784 1.5080 | 2.92x107* | 17613
Nal
PC(18:0/20:3)+HCOO PC C47 H87 O10 N1 P1 856.6073 113578 1.8167 | 541x10° | 52682
PC(18:0/22:5)+HCOO PC C49 H87 O10 N1 P1 880.6073 11.3020 17770 | 460x 107 | 13706
PC(20:0/20:4)+HCOO PC C49 H89 010 N1 P1 882.6230 11.6216 16171 | 145x10° | 13183
PC(36:0)+Na PC C44 H88 O8 N1 P1 812.6140 113160 17442 | 416x 107 | 3.1812
Nal
PE (16:0/18:1)-H PE C39 H75 08 N1 P1 716.5236 11.2232 21317 | 934x107* | 1.1945
PE (16:0/18:2)-H PE C39 H73 08 N1 P1 714.5079 10.4423 19056 | 3.39x 107 | 1.4847
PE (16:0/20:4)-H PE C41 H73 O8 N1 P1 738.5079 10.2525 18427 | 511x107 | 15114
PE (16:0/22:6)-H PE C43 H73 O8 N1 P1 762.5079 9.9431 15883 | 3.20x 107 | 15807
PE (18:0/18:1)-H PE C41 H79 O8 N1 P1 744.5549 12.2351 20671 | 5.03x 107 | 12186
PE (18:0/18:2)-H PE C41 H77 O8 N1 P1 742.5392 11.4109 19647 | 1.69x107* | 2.6506
PE (18:0/20:3)-H PE C43 H79 O8 N1 P1 768.5549 11.6504 23852 | 3.56x 107" | 1.0843
PE (18:0/20:4)-H PE C43 H77 O8 N1 P1 766.5392 11.2259 17332 | 281x107% | 28162
PE (18:0/20:5)-H PE C43 H75 08 N1 P1 764.5236 10.5966 22163 | 245x 107 | 11841
PE (18:0/22:6)-H PE C45H77 O8 N1 P1 790.5392 10.9251 18742 | 247x107% | 1.6682
PI(18:0/20:3)-H PI C47 H84 013 NO P1 887.5655 103162 15062 | 121x107% | 12277
TG TG €53 H104 06 N1 850.7858 21.7533 26524 | 567x107° | 56638
(16:0/16:0/18:1)+NH4
TG TG €53 H102 06 N1 848.7702 20.8156 22687 | 821x107* | 33256
(16:0/16:0/18:2)+NH4
TG TG €55 H102 06 N1 872.7702 20.6176 37993 | 620x 107 | 2.0225
(16:0/16:0/20:4)+NH4
TG TG €53 H100 06 N1 846.7545 18.6511 27763 | 146x 107" | 11419
(16:0/16:1/18:2)+NH4
TG TG €55 H106 06 N1 876.8015 21.7168 19140 | 7.30x10° | 7.6742
(16:0/18:1/18:1)+NH4
TG TG €55 H104 06 N1 874.7858 209303 17354 | 835x10° | 7.1289
(16:0/18:1/18:2)+NH4
TG TG €57 H104 06 N1 898.7858 20.6030 28153 871x107° | 3.7601
(16:0/18:1/20:4)+NH4
TG TG €57 H102 06 N1 896.7702 19.5268 29567 | 6.51x107° | 2.9516
(16:0/18:2/20:4)+NH4

(Continued on the following page)
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TABLE 2 (Continued) Significantly altered lipid metabolites in DH compared to NGT plasma.

Lipids Lipid subclass Molecular Theoretical Retention

formula mass to charge period (min)
ratio

TG TG C55 H102 O6 N1 872.7702 18.9597 2.1633 3.40 x 1073 1.2901
(16:1/18:1/18:2)+NH4

TG TG C57 H100 O6 N1 894.7545 18.5472 2.8838 1.05 x 107 1.2103
(16:1/18:2/20:4)+NH4

TG TG C57 H112 O6 N1 906.8484 23.0595 4.8503 522x107° 2.4330
(18:0/18:0/18:1)+NH4

TG TG C57 H110 06 N1 904.8328 22.4446 28051 | 145x10° | 4.8965
(18:0/18:1/18:1)+NH4

TG TG C59 H102 06 N1 920.7702 18.4881 25356 | 111x107° | 12670
(18:2/18:2/20:4)+NH4

The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain; three sets of numbers indicate that
the compound consists of three longer carbon chains; p indicates a phosphorus-containing group on the carbon chain; +HCOO, +NH4 and -H, are lipid molecule change groups; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; TG, triglyceride; FC, fold change; VIP, variable importance for the projection.

TABLE 3 Significantly different lipid metabolites identified in plasma from the DH group compared to the DM group.

Lipids Lipid subclass Molecular Theoretical Retention
formula mass to charge period (min)
ratio
PC(34:3)+H PC C42 H79 O8 N1 P1 7.5655 9.1739 15247 | 133x107% | 13857
PC(38:4)+H PC C46 H85 O8 N1 P1 8.1060 1.0418 15425 | 1.29% 107 | 13319
TG TG €51 H98 06 N1 8.2074 1.9748 19222 | 206x107 | 3.5702
(16:0/14:0/18:2)+NH4
TG TG €53 H104 06 N1 8.5079 21753 1.6046 | 1.96x 107 | 4.0657

(16:0/16:0/18:1)+NH4

TG TG C53 H100 06 N1 8.4675 1.9769 17153 | 474x10° | 6.6316
(16:0/16:0/18:3)+NH4
TG TG C53 H100 06 N1 8.4675 1.8651 16625 | 217x102 | 1.2037

(16:0/16:1/18:2)+NH4

TG TG C55 H102 O6 N1 8.7277 1.8960 1.9847 8.66 x 1073 1.5602
(16:1/18:1/18:2)+NH4

TG TG C57 H100 O6 N1 8.9475 1.8547 1.9601 5.12x 1072 1.1011
(16:1/18:2/20:4)+NH4

TG TG C55 H108 O6 N1 8.7882 2.2469 1.5952 539 x 1072 4.3940
(18:0/16:0/18:1)+NH4

TG TG C57 H112 06 N1 9.0685 2.3060 16926 | 438x 1072 | 1.7484
(18:0/18:0/18:1)+NH4

TG TG C59 H104 06 N1 9.2279 1.9505 15736 | 228x1072 | 22372
(18:1/18:1/20:5)+NH4

TG TG C59 H102 06 N1 9.2077 1.8488 19327 | 139x102 | 1.0867
(18:2/18:2/20:4)+NH4

The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain, three sets of numbers indicate that
the compound consists of three longer carbon chains, p indicates a phosphorus-containing group on the carbon chain; +NH4 and +H are lipid molecule change groups. PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; TG, triglyceride; FC, fold change; VIP, variable importance for the projection.
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There are some limitations to this study. First, the relatively
small number of participants in each group and the nature
of the cross-sectional study methodology itself can limit the
interpretation of the findings from a pathophysiological perspective.
In addition, because blood samples were collected at multiple
different sites, a batch effect may have occurred but could have
been mitigated by a standardized sample collection, processing, and
storage protocol. Second, other unmeasurable factors, including
dietary habits, medications/supplements, and other unknown
environmental factors may also have influenced the results of the
study; however, we captured a portion of the potential confounders’
in the follow-up analysis to adjust for them. Finally, this study was
conducted with a sample of the population in Fujian Province;
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therefore, the generalizability of our findings to other populations
is limited.

5 Conclusion

In summary, a total of 31 significantly different lipid metabolites
were identified as potential biomarkers of DH by UHPLC-
MS/MS technique in this study, and they were enriched in
glycerophospholipid metabolism, linoleic acid metabolism, o-
linolenic acid metabolism, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, glycerolipid metabolism, and arachidonic
acid metabolism pathways. Among them, glycerophospholipid and
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FIGURE 10
DH vs. DM plasma significantly different lipid molecule metabolic pathways. Note: (A) X-axis indicates pathway impact, Y-axis - log(P); pathway
significance and statistical significance are proportional to the radius and colour of the node, respectively. (B) Numbers in the figure represent the ID of
each lipid subclass; red*indicates the lipid molecule mapped on the KEGG pathway map.

glycerolipid metabolic pathways are the most important. PCs and
PEs are mainly involved in glycerophospholipid metabolic pathway,
and TGs are closely related to glycerolipid metabolic pathway.
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