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UHPLC-MS/MS-based plasma 
untargeted lipidomic analysis in 
patients with diabetes mellitus 
combined with hyperuricemia
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Jinxi Fang1,2, Wenchu Xu1,2 and Xiaoyang Zhang1,2*
1The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, 
Fuzhou, China, 2School of Public Health, Fujian Medical University, Fuzhou, China

Objective: To compare the differences in lipid metabolites between patients 
with diabetes mellitus combined with hyperuricemia (DH) and diabetes mellitus 
(DM) and healthy controls, and to initially reveal the changes in lipid metabolic 
pathways in DH.
Methods: Using a present study method, 17 patients each diagnosed with 
diabetes mellitus and diabetes mellitus combined with hyperuric acid among 
permanent residents aged 18 years and above in Fuzhou City, Fujian Province, 
China, from June 2019 to July 2020 were selected, matched 1:1 by sex and 
age, and 17 healthy controls were randomly selected and fasting blood samples 
were collected. The untargeted lipid histology analysis was performed using 
ultra performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) based technique, and the Student’s t-test and multiple of difference (FC) 
were used to initially screen the differential lipid molecules and determine their 
trends; principal component analysis (PCA) and orthogonal partial least squares 
discriminant analysis (OPLS-DA) were used to observe the overall distribution 
of the two groups of samples. Finally, we used Metabo Analyst 5.0 platform to 
analyze the differential lipid metabolism pathways.
Results: We identified 1,361 lipid molecules across 30 subclasses. Multivariate 
analyses revealed a significant separation trend among the DH, DM, and 
NGT groups, confirming distinct lipidomic profiles. A total of 31 significantly 
altered lipid metabolites were pinpointed in the DH group compared to 
the NGT controls. Among the most relevant individual metabolites, 13 
triglycerides (TGs), such as TG (16:0/18:1/18:2), 10 phosphatidylethanolamines 
(PEs), e.g., PE (18:0/20:4), and 7 phosphatidylcholines (PCs) including PC 
(36:1), were significantly upregulated, while one phosphatidylinositol (PI) 
was downregulated. The collective analysis of these metabolite groups 
revealed their enrichment in six major metabolic pathways. Crucially, 
glycerophospholipid metabolism with an impact value of 0.199 and glycerolipid 
metabolism with an impact value of 0.014 were identified as the most 
significantly perturbed pathways in DH patients. Furthermore, comparison 
of DH versus DM groups identified 12 differential lipids, which were also 
predominantly enriched in these same core pathways, underscoring their 
central role in the pathophysiology of hyperuricemia complicating diabetes.
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Conclusion: Patients with combined diabetes mellitus and hyperuricemia have 
significantly altered lipid metabolites compared to diabetic patients and healthy 
controls. A total of 31 significantly different lipid molecules were identified, and 
abnormalities in glycerophospholipid metabolism and glycerolipid metabolism 
pathways were found in DH patients.

KEYWORDS

diabetes mellitus, hyperuricemia, lipid metabolism, lipidomics, triglycerides, 
phosphatidylethanolamine 

1 Introduction

Diabetes mellitus (DM) is a group of chronic metabolic 
diseases caused by impaired insulin secretion, insulin resistance 
or both, with hyperglycemia as the main feature (Mozaffarian, 
2016). According to the International Diabetes Federation’s (IDF) 
Diabetes Atlas 2021 (Sun et al., 2022),The global prevalence 
of diabetes in people aged 20–71 years is approximately 10.5% 
(536.6 million individuals), an increase of 12.9% from the 9.0% 
prevalence reported in the 2019 IDF. As the disease progresses, 
diabetic patients are prone to chronic lesions of the fundus, nerves, 
kidneys, cardiovascular and other tissues and organs, leading to the 
decompensation or failure of the patient’s organism, which in turn 
seriously affects the patient’s life and health (Garberg et al., 2025;
Hu et al., 2024).

Blood uric acid is a metabolic product of the breakdown 
of purine nucleotides in the body, and disorders of purine 
metabolism and/or decreased uric acid excretion can lead to 
the development of hyperuricemia, which was originally seen in 
Europe and North America, but with the development of society, 
the disease has become prevalent in Eastern countries, and the 
number of cases is gradually increasing in China. In a recent cross-
sectional study conducted in 31 provinces in mainland China, 
17.7% of the study participants were diagnosed with hyperuricemia 
(J et al., 2022). Hyperuricemia, a common comorbidity of diabetes 
(Hyperuricemia, 2017), is inseparable from diabetes. Studies have 
shown that the incidence of hyperuricemia is higher in diabetic 
than in non-diabetic population (Anothaisintawee et al., 2017), 
and that the risk of diabetes increases by 17% for every 1 mL/dL 
increase in serum uric acid (Kodama et al., 2009), while elevated 
uric acid levels in diabetic patients are also closely associated with 
diabetic complications such as diabetic nephropathy, adverse cardiac 
events and peripheral vascular disease (Katsiki et al., 2013). Both 
diabetes mellitus and hyperuricemia are metabolic diseases and are 
often accompanied by lipid abnormalities in the development of the 
disease (Borges et al., 2010). It has been found that hyperuricemia 
can lead to lipid abnormalities (Xie et al., 2021), and at the same time, 
disorders of lipid metabolism are risk factors for diabetes mellitus 
(Petrenko et al., 2023). However, conventional clinical and blood 
biomarkers such as BMI, fasting glucose, HbA1c levels, and other 
conventional biochemical tests cannot capture all lipid molecules, 
making it necessary to detect early aspects of lipid disorders 
associated with the disease. In addition, gene expression profiling 
is limited in exploring the molecular mechanisms of diabetes 
combined with hyperuricemia given the environmental and genetic 
heterogeneity (Suomi et al., 2023). Therefore, new approaches 
are needed to advance the understanding of the mechanisms 

underlying the development of diabetes mellitus combined with
hyperuricemia.

Metabolomics, a rapidly evolving technology, can provide 
a comprehensive picture of metabolic disorders throughout the 
body, and it can also provide a new avenue for identifying 
new biomarkers (Wang et al., 2020). Lipidomics, a branch of 
metabolomics, is an effective tool to study the changes in lipid 
metabolism in organisms and the role of lipid regulation in life 
activities, allowing the identification of many individual lipids 
and also the ability to characterize the specific biological role 
of lipid molecules, which is well suited to characterize the lipid 
perturbations that precede diabetes and can be used to develop 
specific disease biomarkers (Knebel et al., 2016). Studies have 
shown that diabetes can be effectively prevented or delayed by 
lifestyle and pharmacological interventions (Samocha-Bonet et al., 
2018). Previous studies have reported the association between 
lipid alterations and diabetes (Lu et al., 2019; Drogan et al., 
2015) and hyperuricemia (Liu et al., 2020; Liu et al., 2022). 
Alterations in plasma triglycerides (TGs), diglycerides (DAGs), 
phosphatidylethanolamines (PEs) and phosphatidylcholine (PC) 
have been associated with type 2 diabetes in different populations 
(Lu et al., 2019; Drogan et al., 2015). Significant alterations in 
plasma lipids such as TGs and PCs were identified in patients with 
hyperuricemia (Liu et al., 2020). However, most of the available 
studies measured only baseline lipids in patients with diabetes or 
hyperuricemia and did not reflect changes in the plasma lipidome 
in patients with diabetes or diabetes combined with hyperuricemia.

In this study, we used ultra-high liquid chromatography-
mass spectrometry (UHPLC-MS/MS) to characterize lipid 
metabolic profiles in patients with diabetes mellitus and 
diabetes mellitus combined with hyperuricemia. In addition, we 
identified differentially expressed lipid molecules and enriched 
metabolic pathways in patients with diabetes mellitus, diabetes 
mellitus combined with hyperuricemia, and healthy subjects to 
elucidate the potential role of lipid molecules in detecting the 
development of diabetes mellitus, diabetes mellitus combined with
hyperuricemia. 

2 Materials & methods

2.1 Study population

Multi-stage proportional stratified whole-group sampling 
method was used to sample 17 patients each diagnosed with 
diabetes mellitus, diabetes mellitus combined with hyperuricemia, 
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and healthy controls in Fuzhou City, Fujian Province, selected 
from 2019 to 2020, based on this present study, according 
to the 1:1 matched case-control study method. Inclusion 
criteria were (1) 18 years of age or older; (2) completion of 
questionnaires and blood collection; (3) signing of informed 
consent; and (4) meeting the American Diabetes Association’s 
diagnostic criteria (2018) WHO diagnostic criteria for diabetes 
(2, 2018), i.e., fasting blood glucose ≥7.0 mmol/L, or random 
blood glucose >11.0 mmol/L, and meeting in the survey 
Fasting blood uric acid levels were higher than 420 μmol/L 
in men and 360 μmol/L in women. exclusion criteria: (1) 
use of hypoglycemic agents; (2) recent use of drugs affecting 
uric acid metabolism, such as diuretics, lipid-lowering drugs, 
aspirin, benzbromarone, and allopurin; (3) gout, primary 
kidney disease, renal insufficiency, leukemia, and tumors; (4) 
combination of other psychiatric (4) combination of other 
psychiatric diseases or low cooperation; (5) pregnant and lactating 
women. This study was approved by the Ethics Committee of 
the Fuzhou Center for Disease Control and Prevention (approval
number: 2,019,006).

2.2 Sample collection and pre-processing

5 mL of fasting morning blood was collected and centrifuged 
at 3,000 rmp for 10 min at room temperature. 0.2 mL of the upper 
layer of plasma was divided into 1.5 mL centrifuge tubes, and three 
equal groups of samples were mixed as quality control samples and 
stored at −80 °C in the refrigerator. The samples were thawed on 
ice and vortexed, 100 μL was taken into a 1.5 mL centrifuge tube, 
200 μL of 4 °C water was added, 240 μL of pre-cooled methanol 
was added after mixing, 800 μL of methyl tert-butyl ether (MTBE) 
was added after mixing, 20 min of sonication in a low temperature 
water bath, 30 min of standing at room temperature, 14 000 g, 
and 15 min of centrifugation at 10 °C, take the upper organic 
phase, blow dry under nitrogen, and number for detection. The 
assay was repeated with 100 μL of isopropanol, and the quality 
control samples were randomly inserted into the assay sequence of
the samples. 

2.3 Test conditions

2.3.1 Chromatographic conditions
The samples were separated by ultra-high performance liquid 

chromatography (UHPLC) system. The analysis was performed 
on a Waters ACQUITY UPLC BEH C18 column (2.1 mm i. 
d. × 100 mm length, 1.7 μm particle size). The mobile phase 
consisted of A: 10 mM ammonium formate acetonitrile solution in 
water and B: 10 mM ammonium formate acetonitrile isopropanol 
solution. Elution procedure: B was maintained at 30% (0–2 min), 
B was varied linearly from 30% to 100% (2–25 min), and B 
was maintained at 30% (25–35 min). The samples were placed 
in the autosampler at 10 °C during the whole analysis. To avoid 
the effect caused by the fluctuation of the instrument detection 
signal, a random order was used and the samples were analyzed
continuously. 

2.3.2 Mass spectrometry conditions
Electrospray ionization (ESI) positive ion and negative ion 

modes were used for detection, respectively. Samples were separated 
by UHPLC and then analyzed by mass spectrometry using a Q 
Exactive plus mass spectrometer (Thermo Scientific™). 

2.3.3 Mass-to-charge ratio (m/z) acquisition of 
lipid molecules and lipid fragments

The electrospray ionization source operates in positive and 
negative ion modes respectively. The spray voltage of the MS 
(primary mass spectrometer) is inferred to be 3.0–4.0 kV in positive 
mode and 2.5–3.5 kV in negative mode. The temperature of the 
transfer tube is approximately 300 °C–350 °C, and the full scanning 
range covers m/z 150-1,500. The resolution reaches 70,000 at m/z 
200, the target value of automatic gain control (AGC) is inferred 
to be 1e6, and the maximum injection time may be 100 m. The 
MS/MS (secondary mass spectrometry) adopts a data-dependent 
acquisition mode, with the duty cycle optimized to within 1–2 s. 
The top 10 parent ions with the highest intensity are selected, 
and HCD fragmentation (collision energy 20–40 eV) is used. The 
quadrupole isolation window is m/z 1.0-2.0, and the dynamic 
exclusion time is set at 10–20 s. The resolution is 17,500 at m/z 200. 
This method ensures the precise identification and quantification of 
lipid molecules through high-resolution MS scanning and targeted 
MS/MS fragmentation. 

2.4 Data processing

The basal peak profile (BPC) plots of the QC samples were 
compared for spectral overlap to examine the stability of the 
instrument and the reproducibility of the experiment. LipidSearch 
was used for peak identification, peak extraction, and lipid 
identification. Univariate and multivariate statistical analyses were 
performed on the extracted data, mainly including t-test, multiple 
of difference (FC) analysis, principal component analysis (PCA), 
orthogonal partial least squares discriminant analysis (OPLS-DA) 
and visualization of volcano and cluster plots. The strength of 
influence and explanatory power of each lipid molecule on the 
categorical discrimination of each group of samples was measured 
by the variable weight value (VIP). Lipid molecules with VIP>1 
had significant contribution in the model interpretation. Finally, 
the metabolic pathway analysis of differential lipid molecules was 
carried out in combination with the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database and Metabo Analyst 5.0 online 
analysis platform. In this experiment, VIP>1, P < 0.05 and FC > 1.5 
or <0.67 were used as criteria to screen for significant differential 
lipid molecules. 

3 Results

3.1 Characteristics of the general 
population

There were no statistically significant differences (P > 0.05) 
between the three groups in terms of age, gender, marital 
status, education, occupation, history of diabetes, smoking, alcohol 
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TABLE 1  Comparison of baseline information for lipidomics study subjects, n (%).

List Total (n = 51) NGT (n = 17) DM (n = 17) DH (n = 17) χ2 P

Age 0.605 0.962

<45 5 (9.8) 2 (11.8) 2 (11.8) 1 (5.9)

45–60 32 (62.7) 10 (58.8) 11 (64.7) 11 (64.7)

≥60 14 (27.5) 5 (29.4) 4 (23.5) 5 (29.4)

Gender 0.158 0.924

Male 28 (54.9) 9 (52.9) 10 (58.8) 9 (52.9)

Female 23 (45.1) 8 (47.1) 7 (41.2) 8 (47.1)

Marital 1.041 0.594

Married 49 (96.1) 17 (100.0) 16 (94.1) 16 (94.1)

Other 2 (3.9) 0 (0.0) 1 (5.9) 1 (5.9)

Educational 7.515 0.111

Primary school 22 (43.1) 4 (23.5) 9 (52.9) 9 (52.9)

High School 18 (35.3) 8 (47.1) 3 (17.6) 7 (41.2)

University 11 (21.6) 5 (29.4) 5 (29.4) 1 (5.9)

Occupation 8.442 0.077

Brain worker 7 (13.7) 4 (23.5) 3 (17.6) 0 (0.0)

Manual worker 33 (64.7) 12 (70.6) 8 (47.1) 13 (76.5)

Retiree 11 (21.6) 1 (5.9) 6 (35.3) 4 (23.5)

Family diabetes 3.4 0.183

Yes 6 (11.8) 0 (0.0) 3 (17.6) 3 (17.6)

No 45 (88.2) 17 (100.0) 14 (82.4) 14 (82.4)

Alcohol use 4.577 0.101

Yes 12 (23.5) 3 (17.6) 7 (41.2) 2 (11.8)

No 39 (76.5) 14 (82.4) 10 (58.8) 15 (88.2)

Smoker 0.197 0.906

Yes 14 (27.5) 5 (29.4) 4 (23.5) 5 (29.4)

No 37 (72.5) 12 (70.6) 13 (76.5) 12 (70.6)

Sleep (h/d) 2.2 0.699

<7 18 (35.3) 6 (35.3) 6 (35.3) 6 (35.3)

7∼ 30 (58.8) 11 (64.7) 10 (58.8) 9 (52.9)

≥9 3 (5.9) 0 (0.0) 1 (5.9) 2 (11.8)

(Continued on the following page)
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TABLE 1  (Continued) Comparison of baseline information for lipidomics study subjects, n (%).

List Total (n = 51) NGT (n = 17) DM (n = 17) DH (n = 17) χ2 P

Exercise 
(times/week)

1.417 0.492

<3 27 (52.9) 7 (41.2) 10 (58.8) 10 (58.8)

≥3 24 (47.1) 10 (58.8) 7 (41.2) 7 (41.2)

The NGT (Normal Glucose Tolerance) group served as the healthy control population. The DM (Diabetes Mellitus) group comprised patients with diabetes alone, while the DH (Diabetes with 
Hyperuricemia) group included individuals suffering from both metabolic disorders simultaneously.

consumption, sleep duration and exercise, indicating that the three 
groups were balanced and comparable Table 1. 

3.2 Experimental quality control

By overlaying the base peak chromatogram (BPC) spectra of 
quality control (QC) samples and analyzing their correlation maps, 
distinct separation among different categories of lipid metabolites in 
plasma was observed. The consistency in peak response intensities 
and retention times across all QC samples demonstrated high 
instrument stability, excellent experimental reproducibility, and 
reliable data quality (Figure 1). 

3.3 Analysis of lipid components

Lipid Search software was used to analyze the data, and a total of 
30 lipid subclasses and 1,361 lipid molecules were identified in this 
experiment. There were 621 glycerophospholipids, 388 glycerolipids, 
314 sphingolipids, and 38 other lipids (Figure 2). 

3.4 Multivariate statistical analysis of lipid 
molecules

3.4.1 Principal component analysis
The PCA method was used to observe the overall distribution 

trend of samples between groups and the degree of difference of 
samples between groups. The data were processed to obtain the 
distribution of metabolites and PCA scores of plasma samples from 
DH group vs. NGT control group and DM control group, and the 
results showed that the separation of DH and NGT and DH and DM 
groups was good. The main parameters of the PCA model model 
interpretation rate R2X = 0.552 (DH vs. NGT) and R2X = 0.509 (DH 
vs. DM), with R2X values greater than 0.5 indicating that the model 
is reliable (Figure 3). 

3.4.2 Orthogonal partial least squares 
discriminant analysis

The OPLS-DA method was applied to further validate the 
separation of plasma samples and to screen for differential 
metabolites associated with the subgroups. The results showed a 
significant trend of separation between DH and NGT and DH 
and DM samples, indicating a reliable model. After 7 cycles of 

cross-validation, the model interpretation rate of R2Y = 0.380 and 
the predictive power Q2 = 0.551 were obtained for the DH vs. 
NGT group, indicating a stable and reliable model (Figure 4A). 
The model interpretation rate of R2Y = 0.682 and the predictive 
power Q2 = 0.167 were obtained for the DH vs. DM group 
(Figure 4B), indicating a more stable model. The replacement results 
of both groups showed that the R2 and Q2 of the stochastic 
model gradually decreased as the replacement retention gradually 
decreased, indicating that there was no overfitting in the original 
model and that the model was robust (Figures 4C, D). 

3.5 Analysis of plasma lipid molecular 
differences among the three groups

To analyze the significance of changes in plasma lipid molecules 
between DH vs. NGT and DH vs. DM groups and to screen for 
potential lipid biomarkers, this study visualized lipid molecule level 
by visualizing the overall differential level fold in the comparison 
groups with FC > 1.5 or FC < 0.67 and P < 0.05 as screening 
conditions. Compared with the NGT control group, 405 lipid 
molecules were upregulated and 15 levels were downregulated in the 
DH group, as shown in Figure 5A. Compared with the DM control 
group, the DH group exhibited upregulation of 118 lipid molecules 
and downregulation of 22., as shown in Figure 5B. 

3.6 Clustering analysis of differential lipid 
molecules in the three populations

S-plot load plots were used in the OPLS-DA model to obtain 
the variance variables with high correlation and covariance, and 
further selected the variables that contributed more to the grouping 
in the model. The strength of influence and explanatory power 
of each lipid molecule on the categorical discrimination of each 
group of samples was measured by the variable weight value (VIP). 
Lipid molecules with VIP>1 had significant contribution in the 
model explanation. The information of the three dimensions of 
differential level multiple, P value and VIP value of lipid molecules 
were again visualized in the form of bubble plots by combining 
the FC > 1.5 or FC < 0.67 and P < 0.05 conditions, as shown in
Figure 6.

FC > 1.5 or FC < 0.67, P < 0.05 and VIP >1 were used to 
select significantly different lipid molecules between groups and 
to perform hierarchical clustering of samples from each group, 
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FIGURE 1
BPC overlay spectra of positive ions (A) and negative ions (B) from QC samples, and correlation map of QC samples (C). Note: The BPC is the base 
peak plot; the horizontal coordinates indicate the retention time of each peak, and the vertical coordinates indicate the intensity of the peak; the 
quality control samples were prepared by mixing equal amounts of case and control samples to be tested. The QC sample correlation map features 
QC samples on the x-axis and QC samples on the y-axis. Each point within a cell represents an ion peak (metabolite) extracted from the QC sample, 
with the x- and y-coordinates denoting the logarithmic values of the ion peak signal intensity.
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FIGURE 2
Histogram of lipid subclasses.

FIGURE 3
Principal Component Analysis (PCA) Plot. Note: (A) shows DH vs. NGT and (B) shows DH vs. DM. The horizontal coordinate t (Mozaffarian, 2016) 
represents principal component 1, the vertical coordinate t (Sun et al., 2022) represents principal component 2, and the ellipse represents the 95% 
confidence interval. DH, diabetes combined with high uric acid; DM, diabetes mellitus; NGT, normal glucose tolerance.

thus assisting us to accurately screen for marker lipids and to 
investigate changes in related metabolic processes. A total of 73 
significantly different lipid molecules were expressed upregulated 
in the DH group compared with the NGT control group. A total 
of 34 lipid molecules were significantly altered in the DH group 
compared to the DM control group, with 27 upregulated level and 
7 downregulated level. Figure 7 shows the results of hierarchical 
clustering of significantly different lipid molecules in DH vs. NGT 
and the results of hierarchical clustering of significantly different 
lipid molecules in DH vs. DM. From the figure (Figure 7A), it can 
be learned that the identified differential lipid metabolites in the 
DH group compared with the NGT group all had higher level high 
in the DH group, and the grouping of differential lipid metabolites 

in both groups was obvious and reproducible. From Figure 7B, 
it can be learned that the DH group had significantly better 
reproducibility of differential lipid metabolite grouping compared to
the DM group.

Significantly different lipid molecules identified above with FC 
> 1.5 or FC < 0.67, P < 0.05 and VIP >1 were further designated by 
MetaboAnalyst 5.0 platform. There were 31 significantly different 
lipid molecules in the DH group compared to the NGT group, 
including 13 TGs, followed by 7 phosphatidylcholine (PC), 10 
phosphatidylethanolamine (PE) and one phosphatidylinositol (PI) 
(Table 2). There were 12 significantly different lipid molecules 
in the DH group compared to the DM group, including 
10 TGs and 2 PCs (Table 3). 
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FIGURE 4
Multivariate analysis of plasma metabolites. Note: (A) shows the DH vs. NGT OPLS-DA and (B) shows the DH vs. DM OPLS-DA. Figure A/B horizontal 
coordinate t (Mozaffarian, 2016) represents principal component 1, vertical coordinate t (Sun et al., 2022) represents principal component 2, and the 
ellipse represents the 95% confidence interval; (C) shows the DH vs. NGT replacement results, and (D) shows the DH vs. DM replacement results. The 
horizontal axis of Figure C/D represents the replacement retention, the vertical axis represents the values of R2 (green) and Q2 (blue), and the two 
dashed lines represent the regression lines of R2 and Q2 respectively. OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis; DH, diabetes 
combined with high uric acid; DM, diabetes mellitus; NGT, normal glucose tolerance.

3.7 Analysis of plasma differential lipid 
molecule metabolic pathways

In this study, lipid molecule metabolic pathway analysis was 
conducted on 31 significantly differential lipid molecules identified 
by Metabo Analyst 5.0 platform. The results showed that six 
lipid metabolic pathways were perturbed in DH patients, namely, 
glycerophospholipid metabolism, linoleic acid metabolism, α-
linolenic acid metabolism, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, glycerolipid metabolism, and arachidonic acid 
metabolic pathway (Figure 8A). Among them, glycerophospholipid 
metabolic pathway (effect value 0.199) and glycerolipid 
metabolic pathway (effect value 0.014) were significantly 

changed (Figure 8B) and were mapped on the KEGG pathway 
map. Among them, PCs and PEs were mainly involved in 
glycerophospholipid metabolism (Figure 9A), and triglycerides 
(TGs) were mainly involved in glycerol ester metabolism
(Figure 9B).

KEGG enrichment analysis revealed 12 significantly altered 
lipid molecules in the DH group compared with DM, which 
were analyzed for significantly different lipid molecule metabolic 
pathways. The results showed that the 12 lipid molecules 
were mainly enriched in two lipid metabolic pathways, 
namely, glycerophospholipid metabolic pathway (effect value 
0.094) and triglyceride metabolic pathway (effect value 0.014) 
(Figure 10A). Among them, the glycerophospholipid metabolic 
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FIGURE 5
Volcano Plots of Differential Lipid Molecules in DH vs. NGT and DH vs. DM Groups. Note: (A) DH vs. NGT; (B) DH vs. DM; horizontal coordinates in the 
figure indicate log2-transformed differential level ploidy values, vertical coordinates indicate log10-transformed P value values, and dots indicate lipid 
molecules, where red dots are lipid molecules that meet the differential level ploidy screening criteria (FC > 1.5 or FC < 0.67, P value <0.05). DH, diabetes 
combined with high uric acid; DM, diabetes mellitus; NGT, normal glucose tolerance; FC fold change; VIP variable importance for the projection.

pathway was significantly changed, and PCs were found 
to be mainly involved in glycerophospholipid metabolism
(Figure 10B). 

4 Discussion

This study extensively explored the characteristics of lipid 
metabolites in patients with diabetes mellitus combined with 
hyperuricemia using non-targeted lipidomics techniques. The 
results of PCA and OPLS-DA analysis showed a clear trend of 

separation of the three groups of samples and a reliable model. 
A total of 73 differential lipid metabolites between diabetic 
patients, diabetic patients with combined hyperuricemia and 
healthy controls were identified by combining the conditions 
of VIP>1, FC > 1.5 or FC < 0.67 and P < 0.05. A total of 31 
identifiable differential lipid metabolites were further compared in 
the Metabo Analyst 5.0 analysis platform. The results of differential 
lipid metabolic pathway analysis showed that patients with 
diabetes mellitus combined with high uric acid were significantly 
associated with glycerophospholipid and glycerolipid metabolic 
pathways. Among them, PCs and PEs were mainly involved 
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FIGURE 6
Bubble plot of differential lipid molecules. Note: (A) DH vs. NGT; (B) DH vs. DM; The horizontal coordinates indicate the log2-transformed difference 
level multiplier values, the vertical coordinates indicate the log10-transformed P value values, the purple dots indicate lipid molecules that satisfy both 
FC > 1.5, P value <0.05 and VIP >1, the blue dots indicate lipid molecules that satisfy both FC < 0.67, P value <0.05 and VIP >1. The larger the air bubble 
area, the larger the VIP value. DH, diabetes combined with high uric acid; DM, diabetes mellitus; NGT, normal glucose tolerance; FC fold change; VIP 
variable importance for the projection.

in glycerophospholipid metabolism, and triglycerides (TGs) 
were mainly involved in glycerolipid metabolism, suggesting 
that they can be used as potential biomarkers for more in-
depth study in patients with diabetes mellitus combined with
hyperuricemia.

Glycerophospholipids are the major lipids of mammalian 
cell membranes and play a crucial role in cellular functions 
such as signal transduction, regulation of protein functions 
and transport processes (Ecker and Liebisch, 2014). Among 
them, phosphatidylcholine (PC) and phosphatidylethanolamine 
(PE) are the two most dominant phospholipids. In the liver, 
PC can be synthesized via the choline pathway or converted 

by PE through the action of phosphatidylethanolamine-
N-methyltransferase (PEMT) (Vance, 2015). Phospholipid 
composition is closely related to hepatic insulin signaling. It was 
found that an elevated ratio of hepatocyte phosphatidylcholine 
to phosphatidylethanolamine (PC/PE) can directly affect insulin 
signaling (Van Der Veen et al., 2019). Conversely, a decrease 
in PC/PE improves lipid accumulation, inflammation and 
fibrosis in hepatocyte (Van Der Veen et al., 2016),and facilitates 
glucose homeostasis in obese mice (Fu et al., 2011). In this 
study, we found abnormally elevated 7 PCs and 10 PEs in 
patients with combined diabetes mellitus and hyperuricemia, 
suggesting abnormal glycerophospholipid metabolism in DH 

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1656458
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Xu et al. 10.3389/fmolb.2025.1656458

FIGURE 7
Heatmap of hierarchical clustering analysis for significantly altered plasma lipid molecules. Note: (A) DH vs. NGT; (B) DH vs. DM; Rows represent lipid 
molecules, and columns represent individual samples. The color intensity in each cell corresponds to the relative abundance of the lipid molecule 
(darker shades indicate higher level). Lipid molecules with similar level patterns are clustered together. Key lipid subclasses identified include: TG, 
triglyceride; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol.

patients. Other studies have also found (Drogan et al., 2015),that 
alterations in glycerophospholipid classes in patients with type 
2 diabetes suggest that PC (22:4/dm18:0), PC (38:4), PC (36:1) 
and PE (O-18:0/O-18:0) and PE (O-20:0/O-16:0) are positively 
associated with the risk of diabetes mellitus. In addition, serious 
disturbances in glycerophospholipid metabolic pathways have 
been identified in both in vivo/in vitro studies of hyperuricemia 
(Liu et al., 2020). It was also found that uric acid induces 
lipid metabolism disorders through lysophosphatidylcholine 
acyltransferase 3 (LPCAT3)-mediated activation of sterol regulatory 
element binding protein 1c (SREBP-1c) and inhibition of 
phosphorylation signaling transducer and activator of transcription 
3 (p-STAT3 (Liu et al., 2020). It is suggested that LPCAT3 may 
be a key regulator linking hyperuricemia and disorders of lipid
metabolism.

Triglycerides (TGs) are the major form of fatty acids stored 
and transported intracellularly and in the blood plasma. When 
the body exceeds the maximum storage capacity of adipocytes, 
lipids are released into the circulation as free fatty acids 
(FAs) and are transported to accumulate in lipid droplets in 
skeletal muscle and liver, ultimately leading to insulin resistance 
(Ritter et al., 2015). However, stored TGs in vivo are usually 
metabolically inert. Impaired insulin signaling in hepatocytes is 
not caused by the accumulation of triglycerides, but by direct 

damage to hepatocytes from intermediates produced during their 
metabolism (e.g., diglycerides, ceramides, and acylcarnitines) 
(Semova and Biddinger, 2021). In addition, the accumulation of 
excess lipids (especially saturated fatty acids) is closely associated 
with endoplasmic reticulum oxidative stress and mitochondrial 
dysfunction (Wymann and Schneiter, 2008). Also, elevated 
free fatty acids in plasma can cause a direct inflammatory 
response by binding to toll-like receptors (SONG et al., 2019). 
Lipid molecules can also be used as biomarkers of disease. 
It was found (Yang et al., 2019) that neurolipid dysregulation 
(especially of TGs) was significantly associated with peripheral 
neuropathy in a murine model of diabetes and that the disease 
was associated with the “fat digestion and absorption” pathway 
through the KEGG website. In addition, elevated serum uric 
acid is usually accompanied by elevated TG levels. It was found 
(Liu et al., 2022)that serum levels of all types of TG were 
higher in patients with hyperuricemia than in normal subjects, 
which may be related to the activation of phospholipases. 
The mechanism by which triglycerides (TGs) affect diabetes 
mellitus combined with hyperuricemia may be related to its 
role in inflammation (Van Dierendonck et al., 2022), oxidative 
stress (Sun et al., 2020) and insulin signaling (Smith et al., 
2020), which may affect glucose metabolism and insulin
resistance.
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TABLE 2  Significantly altered lipid metabolites in DH compared to NGT plasma.

Lipids Lipid subclass Molecular 
formula

Theoretical 
mass to charge 

ratio

Retention 
period (min)

FC P VIP

PC(16:0/16:1)+HCOO PC C41 H79 O10 N1 P1 776.5447 9.9531 1.8183 3.23 × 10−3 2.1227

PC(16:0/20:4)+HCOO PC C45 H81 O10 N1 P1 826.5604 9.9588 1.7246 1.98 × 10−2 1.5866

PC(18:0/16:0)+Na PC C42 H84 O8 N1 P1 
Na1

784.5827 10.3784 1.5080 2.92 × 10−4 1.7613

PC(18:0/20:3)+HCOO PC C47 H87 O10 N1 P1 856.6073 11.3578 1.8167 5.41 × 10−5 5.2682

PC(18:0/22:5)+HCOO PC C49 H87 O10 N1 P1 880.6073 11.3020 1.7770 4.60 × 10−3 1.3706

PC(20:0/20:4)+HCOO PC C49 H89 O10 N1 P1 882.6230 11.6216 1.6171 1.45 × 10−3 1.3183

PC(36:0)+Na PC C44 H88 O8 N1 P1 
Na1

812.6140 11.3160 1.7442 4.16 × 10−4 3.1812

PE (16:0/18:1)-H PE C39 H75 O8 N1 P1 716.5236 11.2232 2.1317 9.34 × 10−4 1.1945

PE (16:0/18:2)-H PE C39 H73 O8 N1 P1 714.5079 10.4423 1.9056 3.39 × 10−4 1.4847

PE (16:0/20:4)-H PE C41 H73 O8 N1 P1 738.5079 10.2525 1.8427 5.11 × 10−4 1.5114

PE (16:0/22:6)-H PE C43 H73 O8 N1 P1 762.5079 9.9431 1.5883 3.20 × 10−3 1.5807

PE (18:0/18:1)-H PE C41 H79 O8 N1 P1 744.5549 12.2351 2.0671 5.03 × 10−4 1.2186

PE (18:0/18:2)-H PE C41 H77 O8 N1 P1 742.5392 11.4109 1.9647 1.69 × 10−4 2.6506

PE (18:0/20:3)-H PE C43 H79 O8 N1 P1 768.5549 11.6504 2.3852 3.56 × 10−4 1.0843

PE (18:0/20:4)-H PE C43 H77 O8 N1 P1 766.5392 11.2259 1.7332 2.81 × 10−4 2.8162

PE (18:0/20:5)-H PE C43 H75 O8 N1 P1 764.5236 10.5966 2.2163 2.45 × 10−4 1.1841

PE (18:0/22:6)-H PE C45 H77 O8 N1 P1 790.5392 10.9251 1.8742 2.47 × 10−4 1.6682

PI(18:0/20:3)-H PI C47 H84 O13 N0 P1 887.5655 10.3162 1.5062 1.21 × 10−2 1.2277

TG 
(16:0/16:0/18:1)+NH4

TG C53 H104 O6 N1 850.7858 21.7533 2.6524 5.67 × 10−5 5.6638

TG 
(16:0/16:0/18:2)+NH4

TG C53 H102 O6 N1 848.7702 20.8156 2.2687 8.21 × 10−4 3.3256

TG 
(16:0/16:0/20:4)+NH4

TG C55 H102 O6 N1 872.7702 20.6176 3.7993 6.20 × 10−4 2.0225

TG 
(16:0/16:1/18:2)+NH4

TG C53 H100 O6 N1 846.7545 18.6511 2.7763 1.46 × 10−4 1.1419

TG 
(16:0/18:1/18:1)+NH4

TG C55 H106 O6 N1 876.8015 21.7168 1.9140 7.30 × 10−6 7.6742

TG 
(16:0/18:1/18:2)+NH4

TG C55 H104 O6 N1 874.7858 20.9303 1.7354 8.35 × 10−6 7.1289

TG 
(16:0/18:1/20:4)+NH4

TG C57 H104 O6 N1 898.7858 20.6030 2.8153 8.71 × 10−5 3.7601

TG 
(16:0/18:2/20:4)+NH4

TG C57 H102 O6 N1 896.7702 19.5268 2.9567 6.51 × 10−5 2.9516

(Continued on the following page)
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TABLE 2  (Continued) Significantly altered lipid metabolites in DH compared to NGT plasma.

Lipids Lipid subclass Molecular 
formula

Theoretical 
mass to charge 

ratio

Retention 
period (min)

FC P VIP

TG 
(16:1/18:1/18:2)+NH4

TG C55 H102 O6 N1 872.7702 18.9597 2.1633 3.40 × 10−3 1.2901

TG 
(16:1/18:2/20:4)+NH4

TG C57 H100 O6 N1 894.7545 18.5472 2.8838 1.05 × 10−2 1.2103

TG 
(18:0/18:0/18:1)+NH4

TG C57 H112 O6 N1 906.8484 23.0595 4.8503 5.22 × 10−5 2.4330

TG 
(18:0/18:1/18:1)+NH4

TG C57 H110 O6 N1 904.8328 22.4446 2.8051 1.45 × 10−6 4.8965

TG 
(18:2/18:2/20:4)+NH4

TG C59 H102 O6 N1 920.7702 18.4881 2.5356 1.11 × 10−3 1.2670

The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain; three sets of numbers indicate that 
the compound consists of three longer carbon chains; p indicates a phosphorus-containing group on the carbon chain; +HCOO, +NH4 and -H, are lipid molecule change groups; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; TG, triglyceride; FC, fold change; VIP, variable importance for the projection.

TABLE 3  Significantly different lipid metabolites identified in plasma from the DH group compared to the DM group.

Lipids Lipid subclass Molecular 
formula

Theoretical 
mass to charge 

ratio

Retention 
period (min)

FC P VIP

PC(34:3)+H PC C42 H79 O8 N1 P1 7.5655 9.1739 1.5247 1.33 × 10−2 1.3857

PC(38:4)+H PC C46 H85 O8 N1 P1 8.1060 1.0418 1.5425 1.29 × 10−2 1.3319

TG 
(16:0/14:0/18:2)+NH4

TG C51 H98 O6 N1 8.2074 1.9748 1.9222 2.06 × 10−2 3.5702

TG 
(16:0/16:0/18:1)+NH4

TG C53 H104 O6 N1 8.5079 2.1753 1.6046 1.96 × 10−2 4.0657

TG 
(16:0/16:0/18:3)+NH4

TG C53 H100 O6 N1 8.4675 1.9769 1.7153 4.74 × 10−3 6.6316

TG 
(16:0/16:1/18:2)+NH4

TG C53 H100 O6 N1 8.4675 1.8651 1.6625 2.17 × 10−2 1.2037

TG 
(16:1/18:1/18:2)+NH4

TG C55 H102 O6 N1 8.7277 1.8960 1.9847 8.66 × 10−3 1.5602

TG 
(16:1/18:2/20:4)+NH4

TG C57 H100 O6 N1 8.9475 1.8547 1.9601 5.12 × 10−2 1.1011

TG 
(18:0/16:0/18:1)+NH4

TG C55 H108 O6 N1 8.7882 2.2469 1.5952 5.39 × 10−2 4.3940

TG 
(18:0/18:0/18:1)+NH4

TG C57 H112 O6 N1 9.0685 2.3060 1.6926 4.38 × 10−2 1.7484

TG 
(18:1/18:1/20:5)+NH4

TG C59 H104 O6 N1 9.2279 1.9505 1.5736 2.28 × 10−2 2.2372

TG 
(18:2/18:2/20:4)+NH4

TG C59 H102 O6 N1 9.2077 1.8488 1.9327 1.39 × 10−2 1.0867

The number before the ratio in parentheses is the length of the carbon chain, the number after the ratio is the number of double bonds on the carbon chain, three sets of numbers indicate that 
the compound consists of three longer carbon chains, p indicates a phosphorus-containing group on the carbon chain; +NH4 and +H are lipid molecule change groups. PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; TG, triglyceride; FC, fold change; VIP, variable importance for the projection.
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FIGURE 8
DH vs. NGT plasma significantly different lipid molecule metabolic pathways. Note: (A) Bars indicate the size of the P-value; longer bars indicate 
smaller P-values; dots indicate the number of lipid metabolites; larger dots indicate more lipid metabolites. (B) X-axis indicates pathway influence, 
Y-axis indicates -log(P); significance and statistical significance of pathways are proportional to the radius and colour of the nodes, respectively.

FIGURE 9
Diagram of glycerophospholipid metabolic pathway and glycerolipid metabolic pathway. Note: (A) shows the glycerophospholipid metabolic pathway 
map, and (B) shows the glycerol ester metabolic pathway map. The numbers in the diagrams represent the ID of each lipid subclass; the red∗indicates 
the lipid molecule that is mapped on the KEGG pathway map.

There are some limitations to this study. First, the relatively 
small number of participants in each group and the nature 
of the cross-sectional study methodology itself can limit the 
interpretation of the findings from a pathophysiological perspective. 
In addition, because blood samples were collected at multiple 
different sites, a batch effect may have occurred but could have 
been mitigated by a standardized sample collection, processing, and 
storage protocol. Second, other unmeasurable factors, including 
dietary habits, medications/supplements, and other unknown 
environmental factors may also have influenced the results of the 
study; however, we captured a portion of the potential confounders’ 
in the follow-up analysis to adjust for them. Finally, this study was 
conducted with a sample of the population in Fujian Province; 

therefore, the generalizability of our findings to other populations 
is limited. 

5 Conclusion

In summary, a total of 31 significantly different lipid metabolites 
were identified as potential biomarkers of DH by UHPLC-
MS/MS technique in this study, and they were enriched in 
glycerophospholipid metabolism, linoleic acid metabolism, α-
linolenic acid metabolism, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, glycerolipid metabolism, and arachidonic 
acid metabolism pathways. Among them, glycerophospholipid and 
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FIGURE 10
DH vs. DM plasma significantly different lipid molecule metabolic pathways. Note: (A) X-axis indicates pathway impact, Y-axis - log(P); pathway 
significance and statistical significance are proportional to the radius and colour of the node, respectively. (B) Numbers in the figure represent the ID of 
each lipid subclass; red∗indicates the lipid molecule mapped on the KEGG pathway map.

glycerolipid metabolic pathways are the most important. PCs and 
PEs are mainly involved in glycerophospholipid metabolic pathway, 
and TGs are closely related to glycerolipid metabolic pathway.
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