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Objective: Despite advances in EGFR-TKIs for lung adenocarcinoma (LUAD), 
resistance remains a major hurdle. This study aimed to develop a prognostic 
model integrating immune microenvironment features and in vitro resistance 
mechanisms to predict outcomes and guide therapy.
Materials and methods: erlotinib-, gefitinib-, and osimertinib-resistant 
HCC827 cell lines were established by exposing them to increasing EGFR-
TKIs concentrations. RNA-sequencing was conducted on non-resistant 
HCC827 and erlotinib/gefitinibresistant cell lines. From the erlotinib-resistant, 
gefitinib-resistant cell lines and The Cancer Genome Atlas Program-Lung 
adenocarcinoma (TCGA-LUAD) data, a prognostic risk score model was 
constructed via Least Absolute Shrinkage and Selection Operator-Cox 
Proportional Hazards Model (LASSO-COX). Furthermore, immune infiltration 
was assessed using Gene Set Variation Analysis (GSVA), and single-cell RNA-seq 
(GSE241934) resolved expression patterns in EGFR-mutant vs. wild-type tumors.
In vitro validation included RT-PCR in Osimertinib resistant (OR)-HCC827 cells.
Results: A 3-gene (PPP1R3G, CREG2, LYPD3) RiskScore were developed. 
The RiskScore predicted poor survival and resistance across all EGFR-
TKI generations, with osimertinib-resistant HCC827 cells showing significant 
upregulation of signature genes. High-risk patients exhibited immune-
suppressive microenvironments (enriched regulatory T cells, depleted mast 
cells) and distinct scRNA-seq profiles. A nomogram (C-index = 0.7) integrated 
RiskScore with clinical factors for personalized prognosis.
Conclusion: This model bridges in vitro resistance mechanisms with clinical 
immune landscapes, offering a tool to stratify patients for EGFR-TKIs, 
immunotherapies, or combinatorial strategies.
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Highlights

• Novel prognostic model: A robust RiskScore model for 
lung adenocarcinoma (LUAD) was developed using three 
resistance-associated genes (PPP1R3G, CREG2, and LYPD3), 
validated across erlotinib-, gefitinib-, and osimertinib-
resistant cell lines and clinical cohorts.

• Immune microenvironment insights: The RiskScore stratifies 
LUAD patients into distinct immune profiles, with high-
risk groups showing elevated regulatory T cells and 
activated CD4+ T cells, suggesting potential resistance to 
immunotherapies. Single-cell RNA-seq (scRNA-seq) revealed 
differential gene expression in EGFR-mutant tumors, linking 
immune evasion to resistance mechanisms.

• Clinical implications: The model stratifies patients into high-
risk groups who may be more prone to developing EGFR-TKI 
resistance, supported by in vitro data showing overexpression 
of the signature genes in osimertinib-resistant cells, which 
lends preliminary support to its potential clinical relevance.

• Integrated tool: A nomogram combining RiskScore and 
clinical factors predicts survival and resistance risk, offering a 
actionable framework for personalized therapy selection.

1 Introduction

Lung cancer is still a significant contributor to cancer-related 
mortality over the world (Siegel et al., 2021). Lung adenocarcinoma, 
a subtype of non-small cell lung cancer (NSCLC), represents 
the predominant histological type of lung cancer in humans 
(Tan et al., 2015). According to World Health Organization (WHO) 
statistics, adenocarcinoma constitutes roughly 40% of all lung cancer 
diagnoses. (Yang et al., 2019). Notably, it is the most prevalent 
lung cancer subtype among non-smokers and is disproportionately 
common in women as well as in younger individuals (Li et al., 
2022). Although the identification of EGFR mutations and the 
advancement of EGFR tyrosine kinase inhibitors (EGFR-TKIs) 
have enhanced patient outcomes, the emergence of drug resistance 
impedes the effectiveness and long-term success of such treatments, 
presenting a significant challenge in the management of lung 
adenocarcinoma (Du et al., 2021; Hrustanovic et al., 2013). In light 
of this, researchers continue to conduct innovative studies aimed 
at improving the therapeutic efficacy, survival rates, and prognostic 
outcomes for individuals with lung adenocarcinoma.

Recent research has progressively elucidated the mechanisms 
underlying resistance to EGFR tyrosine kinase inhibitors (EGFR-
TKIs) and established a strong correlation between this resistance 
and the clinical outcomes of cancer patients following EGFR-
TKI therapy (Hayakawa et al., 2013; Kobayashi et al., 2005).After 

Abbreviations: LUAD, Lung Adenocarcinoma; scRNA-seq, single-cell 
RNA sequencing; EGFR-TKI, Epidermal Growth Factor Receptor–Tyrosine 
Kinase Inhibitor; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide; TCGA-LUAD, The Cancer Genome Atlas Program-Lung 
Adenocarcinoma; GSVA, Gene Set Variation Analysis; rms, Regression 
Modeling Strategies; GEO, Gene Expression Omnibus; OR, Osimertinib 
resistant; EDR, erlotinib drug resistant; GDR, gefitinib drug resistant; LASSO-
COX, Least Absolute Shrinkage and Selection Operator- Cox Proportional 
Hazards Model.

conducting the RNA-sequencing and detecting the differentially 
expressed genes among erlotinib-resistant cell line, gefitinib-
resistant cell line and TCGA-LUAD patients, a prognostic prediction 
model based on three differentially expressed genes (PPP1R3G, 
CREG2, LYPD3) was established. Besides, the immune landscape 
of these three genes in LUAD were explored by immune cell 
infiltration analysis. This prognostic prediction model has been 
validated in the Gene Expression Omnibus (GEO) database and has 
the potential to accurately forecast the outcomes for patients with 
lung adenocarcinoma (LUAD).

Considering all the above facts, this work aims at developing a 
prognostic prediction model, based on drug resistant genes, so as 
to provide prognosis information, stratify patients into different risk 
group, and guide personalized treatment. 

2 Materials and methods

2.1 Establishment of erlotinib-resistant 
cells and gefitinib-resistant cells

The HCC827 cell line was obtained from the Shanghai 
Institute for Biological Sciences, which is affiliated with the 
Chinese Academy of Sciences. These cells were maintained in 
RPMI-1640 medium, supplemented with 10% fetal bovine serum 
provided by Gibco™ and sourced from Grand Island, New York. 
To establish erlotinib-resistant and gefitinib-resistant derivatives 
of the HCC827 cell line, the parental cells were incrementally 
exposed to increasing concentrations of either erlotinib or gefitinib. 
The dosing regimen commenced at 100 nM and culminated 
at 10 μM (Ikeda et al., 2011; Yamamoto et al., 2010). During 
the development of the corresponding EGFR-TKI resistance, the 
medium and drug were replaced twice per week. Subsequent 
experiments were conducted on these adapted cell lines. HCC827 
Osimertinib resistant cell line was kindly given by Prof. Kim Tam 
from University of Macao. 

2.2 The 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay

MTT reagent (Sigma, Catalog Number: M2128) was used to 
conducted and evaluate the effectiveness of various treatments. 
Initially, the EGFR-TKIs resistant cells were plated into a 96-well 
plate at a density of 5,000 cells per well and allowed to incubate for 
24 h. After exposure to PBS or drug treatments for an additional 
24 h period, 10 μL of the MTT reagent were introduced into each 
well, and the cells were incubated for a further 2–4 h. The media 
were subsequently removed, and 100 μL of dimethyl sulfoxide 
(DMSO) were added to each well to dissolve the resultant formazan 
crystals. The optical density (OD) of the wells was then measured 
at a wavelength of 570 nm using a Thermo Scientific Microplate 
Reader (Multiskan Spectrum) to quantify the response to treatment. 
For each treatment condition, we included triplicates (n = 3) in 
the 96-well plate format, and the entire experiment was repeated 
three times. IC50, or half maximal inhibitory concentration, is a 
key measure in pharmacology and drug development. IC50 is the 
concentration of a substance (usually a drug or inhibitor) required 

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1654426
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Li et al. 10.3389/fmolb.2025.1654426

to inhibit a specific biological or biochemical function by 50%. It’s 
commonly used to assess the potency of a compound—the lower the 
IC50 value, the more potent the inhibitor. 

2.3 mRNA extraction and RNA-sequencing

To conduct mRNA extraction and subsequent RNA sequencing, 
total RNA was isolated utilizing a RNeasy Kit (catalog number 
74136, Qiagen, Germany). Complementary DNA (cDNA) libraries 
were then created using the NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina® (catalog number E7760, New 
England Biolabs, Ipswich, MA, USA). These cDNA libraries 
underwent sequencing on an Illumina Hi-Seq platform (Illumina, 
San Diego, CA). The initial RNA-sequencing data were assessed 
with FastQC for quality control. The RNA-sequencing (including 
data QC, mapping, quantification and differential analysis) for 
erlotinib drug resistant (EDR) cell line, gefitinib drug resistant 
(GDR) cell line and HCC827 was conducted by the leading provider 
of genomic services and solutions company Novogene Co., Ltd. 
(https://www.novogene.com/amea-en/).

High-quality RNA-sequencing reads from each library were 
aligned and mapped to the reference genome using STAR v2.6.1day 
software (developed by the Cold Spring Harbor Laboratory). Total 
mapping rates of all samples are all larger than 95%.

Genes with expression levels that exhibited a change of more 
than 2-fold (|log2FoldChange| > 1) and an adjusted p-value (FDR) 
< 0.05 in the paired samples were considered as upregulated or 
downregulated. For functional annotation and interpretation of the 
transcriptome profiles, differentially expressed genes were analyzed 
through Gene Ontology (GO) analysis. This was performed using 
the web-based tool DAVID v6.8 (The Database for Annotation, 
Visualization, and Integrated Discovery, supported by the National 
Institute of Allergy and Infectious Diseases, part of the NIH). 
R version 4.3.1 was used for the comparative analysis of RNA-
sequencing. Differential expression genes (DEGs) analysis of LUAD 
in TCGA was performed by R package Deseq2 and raw count was 
used as input. DEGs analysis between two risk group in GEO data 
was conducted by R package “Limma”. Fragments per kilobase of 
transcript per million mapped reads (FPKM) was used for survival 
anlysis and gene expression in cross-sample comparison. 

2.4 Data acquisition

The transcriptome profiles along with the corresponding clinical 
data for 50 normal and 504 lung adenocarcinoma (LUAD) 
samples were downloaded from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). The RNA expression data 
and clinical information were download and accessed by the 
project name TCGA-LUAD and Experimental Strategy RNA-Seq. 
In addition, the microarray data and related clinical details for 
11 normal and 57 LUAD samples were obtained from the Gene 
Expression Omnibus (GEO) under accession number GSE116959, 
using platform GPL17077 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE116959). Also, we retrieved microarray data for 
442 LUAD samples from the GEO dataset with accession number 
GSE72094, which is based on platform GPL15048, accessed on the 27 

May 2024 through the GEO website (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE72094). The single-cell RNA sequencing 
(scRNA-seq) data GSE241934 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE241934, download in 27 March 2025) 
comprises of 11 resected tumors from earlystage EGFR-mutant 
patients as well as 34 tumors which were all confirmed wildtype lung 
adenocarcinoma (LUAD) or adenosquamous carcinoma (AdSqC). 
Candidate genes were analyzed in LUAD patients harboring EGFR 
mutation in (L858R, exon 19 deletions [Exon19del], and exon 20 
insertions [Exon20ins]), compared with LUAD patients with wild 
type EGFR. R package “Seurat” V5 was used to filter and process 
scRNA-seq data. R package ‘singleR’ was conducted for cell cluster 
annotation, which is a commonly used computational framework 
for the annotation of scRNA-seq by reference to bulk transcriptomes 
(Xin et al., 2024; Aran et al., 2019). TCGA-LUAD cohort was used 
as training dataset and the other three independent dataset GSE 
116959, GSE72094 and GSE241934 were used as validation datasets, 
to delineate mutation-specific transcriptional signatures. 

2.5 GO and KEGG functional enrichment 
analyses

Functional enrichment analyses using Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
performed to investigate the biological processes associated 
with differentially expressed genes. This analysis was conducted 
utilizing R statistical software packages, including “clusterProfiler,” 
“org.Hs.e.g.,.db,” “enrichplot,” “ggplot2,” and “GOplot.” The GO analysis 
provided insights into three main categories: cellular component (CC), 
biological process (BP), and molecular function (MF). 

2.6 LASSO-COX dimension reduction 
analysis

The LASSO-COX dimension reduction method was utilized 
to analyze data, employing the “glmnet” (Lasso and Elastic-Net 
Regularized Generalized Linear Models) and “survival” packages 
within the R programming environment. Lambda is regularization 
parameter, controlling the amount of shrinkage. We used Cox 
regression model with the LASSO to achieve shrinkage and variable 
selection simultaneously. Ten-fold cross validation was used to 
determine the optimal value of λ. This method divided the TCGA-
LUAD RNA-sequencing data into 10 subsets (folds). For each 
fold, the model was trained on k-1 folds and validate it on the 
remaining fold and the performance metric like partial likelihood 
deviation was recorded in a range of λ value. Then the partial 
likelihood deviation was averaged across all folds for each λ. In the 
training process, a subset of variables was identified by shrinking 
the coefficients of less important variables into zero. We selected 
λ.min for our final model. We note that the more parsimonious λ.1se 
criterion resulted in a null model (zero genes). Given that the 3-gene 
signature at λ.min was highly predictive and successfully validated 
externally, we proceeded with this model to identify a biologically 
and clinically relevant signature.The optimal λ value lambda.min 
(λ.min) for our research was identified as the one that corresponded 
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to the lowest partial likelihood deviance and minimum mean cross-
validated error. Ultimately, based on the optical optimalλ (λ.min 
= 0.09785), we identified three genes of interest along with their 
respective coefficient: PPP1R3G (0.07797704), CREG2 (0.04387373) 
and LYPD3 (0.02302433). The risk score for each patient was derived 
using the following formula:

risk score = (expression of PPP1R3G× coefficient for PPP1R3G)

+ (expression of CREG2× coefficient for CREG2)

+ (expression of LYPD3× coefficient for LYPD3)

In this formula, “expression of gene” refers to the gene’s 
expression level, and “coefficient for gene” is its coefficient 
corresponding λ.min. 

2.7 Nomogram construction and 
time-dependent AUC

A nomogram analysis was developed within the training cohort 
using the Regression Modeling Strategies (rms) package in R. This 
nomogram is bifurcated, with the upper section serving as a scoring 
guide and the lower section as a predictive tool. The nomogram 
enables the precise prediction of the 1-, 2-, 3-, 5-, and 10-year 
survival for patients with LUAD, based on the cumulative points 
of each contributing factor. The accuracy of the nomogram in 
predicting overall survival (OS) was validated in the validation 
group. Calibration curves and C-Index values were employed to 
assess and quantify the precision of these survival predictions. Time-
dependent AUC was calculated using the “timeROC” R package at 
1, 2, and 3-year time points. Bootstrap C-index with 1000 resamples 
was performed using the “boot” package. 

2.8 Immune cell infiltration analysis

We utilized Gene Set Variation Analysis (GSVA) to analyze 
the immune microenvironment within LUAD tumors (Li, 2017). 
This technique enables the identification of 28 distinct immune 
cell populations, such as seven subtypes of T cells, plasma cells, 
naive and memory B cells (Charoentong et al., 2017). We depicted 
the variations in immune cell composition between high-RiskScore 
and low-RiskScore groups through bar plots. The GSVA generates 
normalized scores ranging from 0–1, representing the abundance 
of the immune cell population. In subsequent analyses aimed at 
identifying differences in immune cell infiltration levels between 
these two groups, only samples with a p-value of less than 0.05 were 
taken into account (Systematic RNA, 2009). 

2.9 Statistical analysis

Statistical analyses were conducted utilizing R (https://www.r-
project.org/, v3.5.0), available at R Project, SPSS software version 
25.0 from IBM, headquartered in Chicago, IL, and GraphPad 
Prism version 8.0, which is a product of La Jolla, CA. The 
prognostic significance was assessed through Kaplan-Meier survival 
analysis and COX proportional hazards modeling. Gene Set 

Enrichment Analysis (GSEA) was conducted using the GSEA 
package accessible through the Broad Institute’s website at GSEA 
(http://software.broadinstitute.org/gsea/index.jsp), while Gene 
Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) analysis was carried out using the clusterProfiler package. 
A p-value of less than 0.05 was set as the threshold for statistical 
significance across all methods. 

3 Results

3.1 Differential expressed genes (DEGs) 
among EGFR-TKIs resistant cells and LUAD 
patients

To simulate the clinical development of drug resistance and 
enhance the potency of EGFR-TKIs therapies, we developed EGFR-
TKIs-resistant HCC827 cell lines. This was achieved by culturing 
the cells in increasing doses of erlotinib and gefitinib, resulting in 
the HCC827 EDR (erlotinib-resistant cell line) and HCC827 GDR 
(gefitinib-resistant cell line), respectively. As shown in Figure 1A, 
HCC827 EDR cells were less sensitive to erlotinib treatment alone 
than parental HCC827 cells. Additionally, the IC50 value for 
erlotinib was significantly higher in the HCC827 EDR cells (54.8 
± 1.87 uM) than parental HCC827 cells (0.033 ± 0.015 uM) 
(Figure 1C). The phenomenon also be observed with the HCC827 
GDR cells (Figures 1B,C). These results collectively indicate that we 
have successfully established EGFR-TKI-resistant cell lines, which 
will serve as valuable models for further investigation.

Following the development of drug-resistant cell lines, 
RNA-sequencing was per-formed for the parental HCC827 
cells, HCC827 EDR cells and HCC827 GDR cells. We then 
conducted a comparative analysis of the RNA sequencing data 
between the parental HCC827 cells and each of the resistant cell 
lines—HCC827 EDR and HCC827 GDR—to discern the genes 
that were differentially expressed. Using a threshold of FDR<0.05 
and |log2FC| > 1 (2 fold change),the volcano plot analysis of 
HCC827 GDR cells uncovered 3264 differentially expressed genes 
(DEGs), with 2099 genes upregulated and 1165 genes downregulated 
(Figure 1D). Meanwhile, the HCC827 EDR cells exhibited a different 
pattern, with 415 genes upregulated and 514 genes downregulated 
(Figure 1E). To dissect and pinpoint the central genes associated 
with resistance to EGFR-TKIs and the prognostic indicators of lung 
cancer, a Venn diagram analysis was employed. This method was 
utilized to identify genes that were co-regulated across both the 
experimentally derived drug-resistant lung cancer cells and samples 
from clinical patients. The Venn diagram analysis demonstrated 
a shared upregulation of 414 genes in both the HCC827 GDR 
cells and tumor tissues from lung adenocarcinoma (LUAD) 
patients (Figure 1F). Additionally, it revealed that 104 genes were 
commonly upregulated in the HCC827 EDR cells and LUAD tumor 
tissues (Figure 1G). Only 24 genes were found to be concurrently 
upregulated in both drug-resistant cells and LUAD tumor tissues, 
as depicted in Figure 1H. Additionally, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were 
performed on the total 494 upregulated genes in drug-resistant cells 
and LUAD tumor tissues. These analyses indicated an enrichment 
of genes associated with amino acid biosynthesis and metabolism, 
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FIGURE 1
Establishment of erlotinib and gefitinib resistance cell line. (A–C) The IC50 of erlotinib and gefitinib were detected in erlotinib-resistant cell line, 
gefitinib-resistant cell line and paternal HCC827 cell line via MTT, respectively.∗∗∗P < 0.001, by Student’s t-test. (D,E) Differential expression genes were 
detected via RNA-sequencing in gefitinib-resistant cell line and erlotinib-resistant cell line. (F–H) Venn plot showed the overlap of upregulated genes 
between gefitinib/erlotinib resistant cell line and LUAD patients’ tissues in TCGA. (I,J) GO and KEGG analyses revealed the enriched pathways among 
the upregulated differentially expressed genes in GDR&TCGA and EDR&TCGA.
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which may play a role in tumor progression and the development of 
acquired drug resistance, as illustrated in Figures 1I,J. 

3.2 Model construction based on the 
(DEGs) among EGFR-TKIs resistant cells 
and LUAD patients

To establish a prognostic model for LUAD patients, LASSO-
COX dimension reduction analysis was conducted based on those 
494 DEGs. The cross-validation plot shows the deviance across 
log(λ) values. The left dashed line indicates λ.min, which selected 
a 3-gene signature. The right dashed line indicates λ.1se, which 
resulted in a null model (zero genes) (Figures 2A,B). Finally, 
three candidate genes (PPP1R3G, CREG2 and LYPD3) and their 
corresponding lambda values were used to calculate the RiskScore 
for each patient. All three of these were newly identified biomarkers 
for lung cancer and EGFR-TKIs resistance. The median RiskScore 
(0.19182) of the training database was set as the cutoff value.

To explore the prognostic prediction value of PPP1R3G, CREG2
and LYPD3 in LUAD patients, we conducted Kaplan-Meier analyses 
based on the TCGA and GEO databases respectively. Patients with 
higher expression of PPP1R3G, CREG2 and LYPD3 all had significantly 
shorter overall survival compared with those with lower expression 
in the TCGA database (Figures 2C–E). In addition, the survival rate 
of PPP1R3G, CREG2 and LYPD3 was verified in the GEO database 
(Figures 2F–H). Besides, the individual gene expression analyses of 
PPP1R3G, CREG2, and LYPD3 indicated that the expression levels 
of all three genes were significantly elevated in lung tumor tissues 
as compared to normal tissues. This overexpression was consistently 
observed in both the training and validation datasets (Figures 3A–F). 
To validate the translational relevance of our signature, we investigated 
the protein expression of our three genes using the CPTAC-LUAD 
proteomic dataset. This analysis revealed that the protein levels 
of both LYPD3 and PPP1R3G were significantly elevated in lung 
adenocarcinoma tissues compared to matched normal adjacent tissues 
(p < 0.05 for both; Reference to the supplementary S1A,B). The protein 
for CREG2 was not detected in this cohort. These results demonstrate 
that the prognostic signal from our transcriptomic signature is reflected 
in actual protein abundance changes for the majority of its components 
in patient tumors, strengthening its biological and clinical relevance. 

These findings collectively indicate that the expression levels 
of PPP1R3G, CREG2, and LYPD3 are strong prognostic indicators 
for LUAD patients, suggesting their potential utility in predicting 
outcomes of EGFR-TKI treated patients and guiding personalized 
treatment decisions. 

3.3 Relationship between RiskScores of the 
prognostic signature and 
clinical-pathologic characteristics

In order to figure out the relationship between RiskScores 
and clinical-pathologic characteristics, the correlation between the 
RiskScore and various clinical and pathological factors was further 
examined. It was found that the RiskScore was significantly higher 
in tumor tissues compared to normal tissues in both TCGA and 
GEO patient cohorts (Figures 3G,H). In addition, the RiskScore 

exhibited a moderate, albeit slight, increase in patients with more 
advanced tumor stages, as observed in both the training and 
validation databases (Figures 3I,J). Nonetheless, in both the training 
and validation datasets, no association was observed between the 
RiskScore and factors such as gender, age and race. These findings 
suggest that the RiskScore is primarily associated with tumor biology 
rather than demographic factors, highlighting its potential as a 
valuable biomarker for predicting LUAD prognosis and guiding 
personalized treatment strategies. 

3.4 Relationship between RiskScore and 
patients’ survival

Then, patients were further categorized into distinct RiskScore 
groups and demon-strated comparable profiles in terms of clinical 
and pathological traits, mirroring the patterns observed in the 
training dataset (Figures 4A,B). However, no significant different in 
terms of clinical and pathological traits between the high-RiskScore 
group and low-RiskScore group.

Subsequently, Kaplan-Meier analyses were performed 
taking into account the RiskScore. The prognostic models 
exhibited enhanced predictive accuracy for overall survival 
and progression-free survival across both the training and 
validation datasets (Figures 4C,D). These results indicate that the 
RiskScore is a powerful predictor of clinical outcomes in LUAD. 

3.5 The RiskScore is closely related to cell 
division and DNA metabolism

In an effort to uncover the biological functions and pathways 
that correlate with the RiskScore, a series of analytical methods 
were employed. Initially, genes with the strongest ties to the 
RiskScore were identified. We conducted a comparative analysis 
of the differentially expressed genes between the high-RiskScore 
group and low-RiskScore group, and the volcano plot analysis 
uncovered 731 differentially expressed genes (DEGs), with 405 genes 
upregulated and 326 genes downregulated (Figure 5A).

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were utilized to conduct a functional 
enrichment analysis on this refined set of genes. Additionally, 
Gene Set Enrichment Analysis (GSEA) was applied to further 
elucidate the biological significance behind the RiskScore. The 
GO analysis showed that the RiskScore was closely related to the 
connective tissue development and serine-type peptidase activity 
(Figure 5B). The KEGG analysis showed that the RiskScore was 
closely related to the protein digestion and absorption signaling 
pathway (Figure 5C). Furthermore, the close association of the 
RiskScore with key biofunctions and signaling pathways—such as 
cytoskeleton organization, late endosome function, skin and epi-
dermal development—was corroborated through GSEA analysis of 
data from the TCGA databases (Figures 5D–G). GSEA revealed 
significant upregulation of pathways associated with cytoskeleton 
organization, epidermal development, and skin development. 
In contrast, the late endosome pathway exhibited significant 
downregulation. The similar finding could also be observed in the 
validation datasets (Figures 6A–G).
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FIGURE 2
Screening and validation of genes most associated with resistance to EGFR-TKIs. (A) Trace plot of coeffecient fit by LASSO-Cox: each curve 
corresponding to a variable; (B) Cross-validation curve for the LASSO-Cox regression model. The left dashed line indicates λ.min, and right dashed line 
indicates λ.1se; (C–E) Kaplan-Meier survival analysis was conducted on the TCGA dataset to evaluate the influence of three individual genes, LYPD3, 
PPP1R3G, and CREG2, on patients’ overall survival. (F–H) The KM survival analysis was validated in another independent dataset GSE72094.
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FIGURE 3
Expression analysis and validation of three prognostic genes in LUAD patients. (A–C) The expression levels of three genes—PPP1R3G, CREG2, and 
LYPD3—were detected and compared between tumor tissues and normal tissues in TCGA dataset. (D–F) This pattern was further validated in 
GSE116959 dataset. (G, H) the RiskScore, derived from the expression of the genes PPP1R3G, CREG2, and LYPD3, was assessed and compared between 
tumor and normal tissues in both the training and validation datasets (I, J) The Kruskal–Wallis test was applied to identify overall differences in risk 
scores across various tumor stages, while the Wilcoxon test was used for pairwise comparisons to pinpoint specific stage-related disparities.
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FIGURE 4
Heatmap visualization and survival analysis of clinical-pathological factors and gene expression in cancer cohorts. (A,B) Clinical-pathological factors 
and the expression of three representative genes—PPP1R3G, CREG2, and LYPD3—were visualized in heatmaps arranged by descending risk score, both 
in the training dataset and the validation dataset. (C,D) The association between the risk score and patients’ overall survival was then examined using 
Kaplan-Meier survival curves, with separate analyses conducted for the training and validation cohorts.

3.6 Association analysis of RiskScore with 
tumor immune microenvironment 
characteristics and EGFR mutation status

In addition, the presence of immune cells within tumors 
significantly influences both neoplastic progression and the 
effectiveness of therapies designed to combat cancer. Herein, we 
conducted an analysis to determine the extent of immune cell 
infiltration in both TCGA database and GEO database. Our findings 

indicated that in the high RiskScore group, there was an increase 
in the infiltration of regulatory T cell, Memory B cell and activated 
CD4 T cell. Conversely, in the low RiskScore group, a higher level 
of infiltration was observed for mast cell and eosinophil with these 
differences being statistically significant (p < 0.05) (Figure 5H). 
The similar finding could also be observed in the validation GEO 
database, strongly suggesting that high-RiskScore patients may 
exhibit reduced responsiveness to immunotherapies due to their 
immunosuppressive microenvironment (Figure 6H). However, the 
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FIGURE 5
Correlation between RiskScore and biological functions in training dataset. (A) Volcano plot was utilized to illustrate the differentially expressed genes 
(DEGs) between the high-risk and low-risk groups in the TCGA dataset. (B,C) GO and KEGG analyses were conducted to identify the enriched signaling 
pathways associated with these DEGs. (D–G) GSEA revealed significant upregulation of pathways related to cytoskeleton organization, cell cycle 
processes, epidermal and skin development; Besides, the late endosome pathway was found to be significantly downregulated. (H) Immune cell 
infiltration analysis was conducted to demonstrate a close association between DEGs and various immune cells.

tumor immune microenvironment is an intricate system, and it is 
premature to categorically determine whether the presence of immune 
cell infiltration is beneficial or harmful to patients. The multifaceted 
nature of these cells within the tumor microenvironment necessitates 
further investigation to elucidate their precise roles. Various studies 
are essential to clarify the implications of these immune cells on 

patient outcomes. These results suggest that the high RiskScore 
group and low RiskScore group possess distinct immune profiles 
and exhibit varied reactions to immunotherapeutic interventions that 
target distinct immune checkpoints. 

Moreover, we conducted single-cell RNA sequencing (scRNA-
seq) analysis of GSE241934 dataset to reveal distinct expression 
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FIGURE 6
Correlation between RiskScore and biological functions in validation dataset. (A) Volcano plot was utilized to illustrate the differentially expressed genes 
(DEGs) between the high-risk and low-risk groups in the GEO dataset. (B,C) GO and KEGG analyses were conducted to identify the enriched signaling 
pathways associated with these DEGs. (D–G) GSEA revealed significant upregulation of pathways related to cytoskeleton organization, cell cycle 
processes, epidermal and skin development; Besides, the late endosome pathway was found to be significantly downregulated. (H) Immune cell 
infiltration analysis was conducted to demonstrate a close association between DEGs and various immune cells.

patterns of LYPD3, PPP1R3G, and CREG2 between EGFR-mutant 
and wild-type LUAD patients. We note that this cohort consists of 
LUAD patients who received neoadjuvant immunochemotherapy, 

a potential confounder for gene expression. With this important 
caveat, we observed that these three genes exhibited significant 
downregulation in tumor cells from EGFR-mutant patients 
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(L858R/Exon19del/Exon20ins) compared with non-mutant 
counterparts (Figures 7A–F), though we cannot rule out that 
this expression pattern was influenced by the prior therapy. This 
observation appears paradoxical to our cell line model where 
these genes were upregulated in acquired resistance. However, 
this discrepancy may reflect fundamental differences in resistance 
mechanisms and could be explained by several hypothesis: 1. We 
speculate that the cell line model simulates acquired resistance 
through progressive drug selection, whereas clinical samples in 
GSE241934 represent intrinsic resistance or early treatment-naive 
mutations. 2. Alternatively, the clinical cohort received neoadjuvant 
immunochemotherapy, which may induce immunomodulatory 
changes that suppress these genes’ expression. These findings 
collectively suggest that these genes are closely associated with 
acquired resistance (as shown in vitro). Their expression patterns 
in clinical settings may be influenced by additional layers of 
tumor heterogeneity, treatment interventions, and immune system 
interactions that require further investigation. To address the 
potential confounding effect of neoadjuvant immunochemotherapy 
in the single-cell cohort (GSE241934), we investigated the 
relationship between our 3-gene signature and treatment response. 
We found no significant difference in the signature risk score 
between patients who achieved a Major Pathological Response 
(MPR) and those who did not (p = 0.46; Reference to supplementary 
S2A). This indicates that the signature is not a direct predictor of 
response to this regimen. Despite this, the signature retained its 
power to stratify patients by overall survival, suggesting it captures 
fundamental aspects of tumor biology and intrinsic aggressiveness 
that are independent of the response to immunochemotherapy.

3.7 The individualized prediction model 
showed robust predictive accuracy

To enhance the practicality of the prognostic prediction model 
in clinical settings, a personalized prediction model was developed. 
A personalized model for predicting Progression-Free Survival 
(PFS) was developed, incorporating a set of independent predictive 
factors. These included the RiskScore, gender and pathologic 
stage. Figure 8A illustrates that the individualized prediction model 
can be used to estimate the tumor recurrence probability for 
Lung Adenocarcinoma (LUAD) patients at various time points, 
including 1-, 3-, 5-, and 10-year post-treatment. The calibration 
curve, which compares the nomogram predictions with actual 
outcomes, demonstrates a good match in both the training and 
validation datasets, as depicted in Figures 8B,C, suggesting high 
predictive accuracy. Furthermore, to quantify the precision of the 
model’s predictive accuracy, we computed the C-index with a 95% 
confidence interval via 1000 bootstrap resamples. The prognostic 
performance of the 3-gene signature was consistent across both the 
training and external validation cohorts. In the training set, the 
model achieved a C-index of 0.643 (95% CI: 0.594–0.687), which 
was closely replicated in the independent validation set with a C-
index of 0.612 (95% CI: 0.556–0.671). Similarly, time-dependent 
AUC values ranged between 0.62 and 0.67 in both cohorts at 
key time points (Figures 8D,E). These results indicate that the 
signature provides a modest but stable and generalizable level of 
discriminative ability.The C-index of this nomogram model was 0.7, 

which is higher than any other prediction model (Figure 8F). These 
findings collectively underscore the potent predictive capability of 
our developed model. To evaluate the potential of the RiskScore 
as a predictive biomarker, we assessed its association with clinical 
response to therapy. In the GSE241934 cohort of patients treated 
with neoadjuvant immunochemotherapy, we found no significant 
difference in the RiskScore between patients who achieved a Major 
Pathological Response (MPR) and those who did not (p = 0.46; 
supplementary S2A). This indicates that the RiskScore is not 
predictive of response to this treatment regimen. Its validated utility 
remains its significant association with overall survival, establishing 
it as a prognostic biomarker.

3.8 Validation of the prognostic model in 
osimertinib-resistant cell lines

To further validate the reliability of our prognostic model, we 
extended our analysis to third-generation EGFR-TKI (osimertinib)-
resistant cell lines. Specifically, we established an osimertinib-
resistant HCC827 cell line (OR-HCC827) by progressively exposing 
parental HCC827 cells to increasing concentrations of osimertinib. 
Consistent with our observations in erlotinib- and gefitinib-resistant 
models, the OR-HCC827 cells exhibited significantly higher IC50 
values compared to the parental HCC827 cells (Figure 9A), 
confirming the successful development of osimertinib resistance.

Subsequently, RT-PCR analysis revealed that the expression 
levels of LYPD3, PPP1R3G, and CREG2 were markedly upregulated 
in OR-HCC827 cells relative to the parental line (Figures 9B–D). 
These findings corroborate the robustness of our prognostic 
signature across multiple generations of EGFR-TKIs. The consistent 
overexpression of these biomarkers in osimertinib-resistant cells 
further supports their potential utility in stratifying high-risk 
LUAD patients. 

4 Discussion

The discovery of EGFR-activating mutations in a subset of 
lung cancer patients led to the use of EGFR tyrosine kinase 
inhibitors (EGFR-TKIs) to treat non-small cell lung cancer (NSCLC) 
with these specific mutations (Kobayashi et al., 2005; Bean et al., 
2007; Ninomiya et al., 2018). While EGFR-TKIs have significantly 
improved outcomes for these patients, resistance to these drugs is 
a common issue. Furthermore, lung adenocarcinoma (LUAD) is 
characterized by a poor prognosis and a lack of effective screening 
techniques, contributing to a low rate of successful clinical treatment 
(Lee et al., 2020; Altintas and Tothill, 2013). Consequently, there is a 
pressing need to develop innovative biomarkers that can accurately 
predict the prognosis of LUAD after EGFR-TKIs treatments.

In the current study, we embarked on a multifaceted approach 
to tackle the challenge of acquired resistance to EGFR-TKIs in 
LUAD. Initially, we developed EGFR-TKIs resistant cell lines and 
this in vitro model provided a valuable platform for identifying genes 
that are crucial in the resistance mechanism. The discovery of 494 
co-upregulated genes in resistant cells and LUAD patient samples 
represents a significant step forward in understanding the molecular 
underpinnings of resistance. Through bioinformatics analysis, we 
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FIGURE 7
The expression of three model genes in EGFR-TKI resistant LUAD patients revealed by single cell transcriptomics profiling. UMAP visualization of 
single-cell RNA-seq data, illustrating the distribution of distinct cellular populations in tumor tissue from LUAD patients with exon19del (A), exon20ins
(C) and L858R (E). Each cluster represents a transcriptionally distinct cell type, with epithelial cells prominently marked. Dot plot displaying the 
expression levels of PPP1R3G, LYPD3, and CREG2 in epithelial cell subsets between wild type and patients with exon19del (B), exon20ins (D) and L858R
(F) mutation. Dot size indicates the proportion of cells expressing each gene, while color intensity reflects the average expression level.

identified pathways related to amino acid biosynthesis and metabolism 
as being central to the resistant phenotype. Amino acid metabolism 
is intricately linked to drug resistance in cancer cells, where certain 
amino acids, such as glutamine and serine, can fuel metabolic pathways 
that neutralize drug effects or promote repair mechanisms, leading 
to decreased treatment efficacy. These results have facilitated the 
identification of potential resistance-related markers and have led 

to the development of a prognostic model that shows promise in 
guiding clinical treatment strategies. Then, the LASSO-COX method 
for dimensionality reduction was employed to pinpoint an optimal 
set of prognostic indicators. This analysis led to the discovery of a 
3-gene signature—comprising PPP1R3G, CREG2, and LYPD3—that 
is characteristic of the resistant lung cancer cells. We acknowledge that 
the LASSO λ.1se criterion, which favors maximum parsimony, did not 
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FIGURE 8
Prognostic model validation and personalized prediction of LUAD 
patient survival post-EGFR-TKI treatment. (A) The nomogram 
accurately predicted the 1-, 3-, 5-, and 10-year overall survival (OS) 
times for lung adenocarcinoma (LUAD) patients following treatment 
with gefitinib and erlotinib. (B,C) Calibration plots were employed to 
assess the concordance between the predicted and actual OS rates at 
1-, 2-, and 3-year intervals for both the training and validation 
datasets, demonstrating the model’s reliability. (D,E) time-dependent 
ROC and bootstrap C-index analyses of the 3-gene signature in 
TCGA-LUAD and external validation cohort GSE72094 (F) The 
predictive efficacy of the personalized prognostic model, along with 
the individual risk score and clinical prognostic factors for LUAD 
patients’ OS, was evaluated using the concordance index (C-Index).

select any genes, indicating the challenge of deriving a highly stable 
signature from this gene set. However, the external validation of our 
λ.min-derived 3-gene signature confirms its robust prognostic value, 
suggesting these genes capture a meaningful biological signal related 
to prognosis in lung adenocarcinoma. 

Researchers have identified several genes associated with 
cancer progression and treatment resistance. PPP1R3G, encoding a 
regulatory subunit of protein phosphatase 1 (PP1), plays a role in 
cellular processes like cell division and signal transduction (Shi et al., 
2023; Zhuo et al., 2021). Its dysregulation may contribute to 
cancer therapy resistance by helping cancer cells evade drug effects. 
CREG2, involved in cellular respiration and energy metabolism, 
has potential indirect effects on cancer development. The CREG2 
gene is implicated in Lung Adenocarcinoma (LUAD), where its high 
expression is linked to poor prognosis and advanced tumor stages. 
CREG2’s role in cancer is complex, with some studies suggesting 
it may have a pro-cancer effect by influencing stromal cells and 
proliferation, while other research has identified it as a potential 
prognostic biomarker that could help in predicting patient outcomes 
and guiding personalized treatment strategies. (Kunita et al., 2002; 
Min et al., 2025; Hao et al., 2025). LYPD3, encoding a lysozyme-like 
protein, is implicated in immune response and cell differentiation 
(Gruet et al., 2020; Wang et al., 2017). It may modulate immune 
cell activity against tumors, with its expression linked to distinct 
immune profiles and responses to immunotherapy in different risk 
groups (Xin et al., 2024; Hu et al., 2020). While LYPD3’s role in cancer 
is becoming more defined, additional studies are needed to confirm 
its involvement in cancer development or progression.

Then, a novel RiskScore-based nomogram was constructed to 
predict the prognosis and resistance of LUAD following curative 
resection. The nomogram, incorporating the RiskScore, patient 
age, gender and pathologic stage successfully identify patients 
at high risk of acquired resistance. The nomogram serves as a 
visual aid for clinicians to estimate the risk of acquired resistance 
and tailor treatment strategies accordingly, thereby enhancing the 
precision of patient care. Additionally, the successful validation in 
OR-HCC827 cells (Figures 9B–D) confirms these genes' potential 
role in resistance mechanisms spanning all generations of EGFR-
TKIs. Our study successfully derives and validates a 3-gene 
prognostic signature for lung adenocarcinoma, rooted in the 
biology of experimentally-defined drug resistance. The model 
demonstrated consistent and statistically significant performance 
in both the discovery and external validation cohorts, with C-
indices consistently around 0.65. While the discriminative accuracy 
is modest, this level of consistency strongly argues against overfitting 
and confirms that the signature captures a real and reproducible 
biological signal relevant to patient outcomes. It is important to note 
that such compact transcriptomic signatures often explain a portion 
of the prognostic variance; their clinical utility may ultimately lie 
in being integrated with established clinical variables like stage 
or performance status to build more powerful composite models. 
The independent validation of LYPD3 and PPP1R3G protein 
overexpression in LUAD tumors via the CPTAC database provides 
crucial support for our findings. It moves our signature beyond a 
transcriptomic correlation to a finding with direct implications for 
the tumor’s functional proteomic state. The absence of CREG2 data 
in this resource highlights a limitation but does not diminish the 
collective evidence supporting the signature’s biological plausibility.

Additionally, we also examined the relationship between RiskScore 
and both Tumor Immune Microenvironment (TME) characteristics 
and EGFR mutation status. Our immune infiltration analyses revealed 
that high-RiskScore tumors exhibit an immunosuppressive profile 
characterized by elevated regulatory T cells (Tregs) and activated 
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FIGURE 9
Establishment of Osimertinib resistance cell line. The IC50 of Osimertinib were detected in osimertinib-resistant cell line and paternal HCC827 cell line 
via MTT,∗∗∗P < 0.001, by Student’s t-test. (A) The bar graph showed the expression of three drug resistant associated genes LYPD3 (B), CREG2 (C) and 
PPP1R3G (D) between osimertinib-resistant cell line and paternal HCC827 cell line, detected by RT-PCR.

CD4+ T cells, alongside depletion of mast cells and eosinophils 
(Figures 5H, 6H). This specific immune contexture may explain the 
observed correlation with poor immunotherapy response, as Tregs are 
known to suppress anti-tumor immunity while mast cells/eosinophils 
often associate with favorable outcomes. Interestingly, Our single-
cell RNA-seq analysis of clinical samples (GSE241934) revealed an 
intriguing paradox: these genes were paradoxically downregulated 
in EGFR-mutant tumors compared to the upregulation observed 
in resistant cell lines (Figures 7A–F). This divergence likely reflects 
fundamental biological differences between in vitro models and 
clinical samples. In vitro models capture acquired resistance through 
direct drug selection pressure, where these genes may confer survival 
advantages. However, clinical samples represent a more complex 
ecosystem, as the patients in the GSE241934 dataset underwent 
neoadjuvant immunochemotherapy, introducing additional variables 
that differentiate them from in vitro models. A key finding from 
our single-cell validation was that the prognostic power of our 
signature persisted in a cohort uniformly treated with neoadjuvant 

immunochemotherapy. Crucially, a sensitivity analysis revealed that 
the signature score was not associated with MPR status. This 
dissociation is highly informative: it suggests that the aggressive 
biology captured by our drug resistance-derived signature operates 
through mechanisms distinct from those determining immediate 
response to immunochemotherapy. It may instead reflect a tumor’s 
inherent capacity for long-term progression, immune evasion, or 
relapse, explaining its stable prognostic value across different clinical 
contexts. A limitation of our study is the use of a single-cell 
cohort where all patients received neoadjuvant therapy. However, 
our analysis showing no link between the signature and MPR status 
strengthens our confidence that the prognostic signal is genuine and 
not merely a reflection of treatment response. Our study clarifies the 
clinical applicability of the 3-gene signature. While the genes were 
identified in a model of drug resistance, the integrated RiskScore 
functions primarily as a prognostic, not a predictive, biomarker. 
This is evidenced by our finding that the score did not predict 
pathological response to neoadjuvant immunochemotherapy in a 
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clinical cohort. This distinction is critical: our signature identifies a 
patient subgroup with aggressive tumor biology and poor survival 
outcomes, but it does not appear to determine initial response to this 
specific therapy. Consequently, this signature could be used to stratify 
high-risk patients who may require more intensive monitoring or 
alternative therapeutic strategies, rather than to guide the selection of 
initial immunochemotherapy. 

5 Conclusion

This research bridges the gap between in vitro EGFR-TKI 
resistance and clinical outcomes in LUAD. We established a 
RiskScore model using PPP1R3G, CREG2, and LYPD3, validated its 
predictive accuracy for survival across multiple EGFR-TKIs, and 
linked it to specific immune microenvironmental characteristics. 
The identification of distinct immune profiles and the development 
of a combined nomogram underscore the model’s potential to guide 
personalized therapy selection, including combination strategies. 
Despite the need for further experimental confirmation, this work 
offers a promising tool for improving risk stratification for LUAD 
patients facing the challenge of EGFR-TKI resistance.
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