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Objective: Despite advances in EGFR-TKIs for lung adenocarcinoma (LUAD),
resistance remains a major hurdle. This study aimed to develop a prognostic
model integrating immune microenvironment features and in vitro resistance
mechanisms to predict outcomes and guide therapy.

Materials and methods: erlotinib-, gefitinib-, and osimertinib-resistant
HCCB827 cell lines were established by exposing them to increasing EGFR-
TKls concentrations. RNA-sequencing was conducted on non-resistant
HCCB827 and erlotinib/gefitinibresistant cell lines. From the erlotinib-resistant,
gefitinib-resistant cell lines and The Cancer Genome Atlas Program-Lung
adenocarcinoma (TCGA-LUAD) data, a prognostic risk score model was
constructed via Least Absolute Shrinkage and Selection Operator-Cox
Proportional Hazards Model (LASSO-COX). Furthermore, immune infiltration
was assessed using Gene Set Variation Analysis (GSVA), and single-cell RNA-seq
(GSE241934) resolved expression patterns in EGFR-mutant vs. wild-type tumors.
In vitro validation included RT-PCR in Osimertinib resistant (OR)-HCC827 cells.
Results: A 3-gene (PPP1R3G, CREGZ2, LYPD3) RiskScore were developed.
The RiskScore predicted poor survival and resistance across all EGFR-
TKI generations, with osimertinib-resistant HCC827 cells showing significant
upregulation of signature genes. High-risk patients exhibited immune-
suppressive microenvironments (enriched regulatory T cells, depleted mast
cells) and distinct scRNA-seq profiles. A nomogram (C-index = 0.7) integrated
RiskScore with clinical factors for personalized prognosis.

Conclusion: This model bridges in vitro resistance mechanisms with clinical
immune landscapes, offering a tool to stratify patients for EGFR-TKIs,
immunotherapies, or combinatorial strategies.

KEYWORDS

lung cancer, prognosis prediction, EGFR-TKIs resistance, immune microenvironment,
single cell RNA-seq (scRNA-seq)
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Highlights

o Novel prognostic model: A robust RiskScore model for
lung adenocarcinoma (LUAD) was developed using three
resistance-associated genes (PPP1R3G, CREG2, and LYPD3),
validated across erlotinib-, gefitinib-, and osimertinib-
resistant cell lines and clinical cohorts.

« Immune microenvironment insights: The RiskScore stratifies
LUAD patients into distinct immune profiles, with high-
risk groups showing elevated regulatory T cells and
activated CD4" T cells, suggesting potential resistance to
immunotherapies. Single-cell RNA-seq (scRNA-seq) revealed
differential gene expression in EGFR-mutant tumors, linking
immune evasion to resistance mechanisms.

Clinical implications: The model stratifies patients into high-
risk groups who may be more prone to developing EGFR-TKI
resistance, supported by in vitro data showing overexpression
of the signature genes in osimertinib-resistant cells, which
lends preliminary support to its potential clinical relevance.

Integrated tool: A nomogram combining RiskScore and
clinical factors predicts survival and resistance risk, offering a
actionable framework for personalized therapy selection.

1 Introduction

Lung cancer is still a significant contributor to cancer-related
mortality over the world (Siegel et al., 2021). Lung adenocarcinoma,
a subtype of non-small cell lung cancer (NSCLC), represents
the predominant histological type of lung cancer in humans
(Tan etal., 2015). According to World Health Organization (WHO)
statistics, adenocarcinoma constitutes roughly 40% of all lung cancer
diagnoses. (Yang et al., 2019). Notably, it is the most prevalent
lung cancer subtype among non-smokers and is disproportionately
common in women as well as in younger individuals (Li et al,
2022). Although the identification of EGFR mutations and the
advancement of EGFR tyrosine kinase inhibitors (EGFR-TKIs)
have enhanced patient outcomes, the emergence of drug resistance
impedes the effectiveness and long-term success of such treatments,
presenting a significant challenge in the management of lung
adenocarcinoma (Du et al., 2021; Hrustanovic et al., 2013). In light
of this, researchers continue to conduct innovative studies aimed
at improving the therapeutic efficacy, survival rates, and prognostic
outcomes for individuals with lung adenocarcinoma.

Recent research has progressively elucidated the mechanisms
underlying resistance to EGFR tyrosine kinase inhibitors (EGFR-
TKIs) and established a strong correlation between this resistance
and the clinical outcomes of cancer patients following EGFR-
TKI therapy (Hayakawa et al., 2013; Kobayashi et al., 2005).After

Abbreviations: LUAD, Lung Adenocarcinoma; scRNA-seq, single-cell
RNA sequencing; EGFR-TKI, Epidermal Growth Factor Receptor—Tyrosine
Kinase Inhibitor; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; TCGA-LUAD, The Cancer Genome Atlas Program-Lung
Adenocarcinoma; GSVA, Gene Set Variation Analysis; rms, Regression
Modeling Strategies; GEO, Gene Expression Omnibus; OR, Osimertinib
resistant; EDR, erlotinib drug resistant; GDR, gefitinib drug resistant; LASSO-
COX, Least Absolute Shrinkage and Selection Operator- Cox Proportional
Hazards Model.
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conducting the RNA-sequencing and detecting the differentially
expressed genes among erlotinib-resistant cell line, gefitinib-
resistant cell line and TCGA-LUAD patients, a prognostic prediction
model based on three differentially expressed genes (PPPIR3G,
CREG2, LYPD3) was established. Besides, the immune landscape
of these three genes in LUAD were explored by immune cell
infiltration analysis. This prognostic prediction model has been
validated in the Gene Expression Omnibus (GEO) database and has
the potential to accurately forecast the outcomes for patients with
lung adenocarcinoma (LUAD).

Considering all the above facts, this work aims at developing a
prognostic prediction model, based on drug resistant genes, so as
to provide prognosis information, stratify patients into different risk
group, and guide personalized treatment.

2 Materials and methods

2.1 Establishment of erlotinib-resistant
cells and gefitinib-resistant cells

The HCC827 cell line was obtained from the Shanghai
Institute for Biological Sciences, which is affiliated with the
Chinese Academy of Sciences. These cells were maintained in
RPMI-1640 medium, supplemented with 10% fetal bovine serum
provided by Gibco™ and sourced from Grand Island, New York.
To establish erlotinib-resistant and gefitinib-resistant derivatives
of the HCC827 cell line, the parental cells were incrementally
exposed to increasing concentrations of either erlotinib or gefitinib.
The dosing regimen commenced at 100 nM and culminated
at 10 uM (Tkeda et al, 2011; Yamamoto et al., 2010). During
the development of the corresponding EGFR-TKI resistance, the
medium and drug were replaced twice per week. Subsequent
experiments were conducted on these adapted cell lines. HCC827
Osimertinib resistant cell line was kindly given by Prof. Kim Tam
from University of Macao.

2.2 The 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay

MTT reagent (Sigma, Catalog Number: M2128) was used to
conducted and evaluate the effectiveness of various treatments.
Initially, the EGFR-TKIs resistant cells were plated into a 96-well
plate at a density of 5,000 cells per well and allowed to incubate for
24 h. After exposure to PBS or drug treatments for an additional
24 h period, 10 pL of the MTT reagent were introduced into each
well, and the cells were incubated for a further 2-4 h. The media
were subsequently removed, and 100 pL of dimethyl sulfoxide
(DMSO) were added to each well to dissolve the resultant formazan
crystals. The optical density (OD) of the wells was then measured
at a wavelength of 570 nm using a Thermo Scientific Microplate
Reader (Multiskan Spectrum) to quantify the response to treatment.
For each treatment condition, we included triplicates (n = 3) in
the 96-well plate format, and the entire experiment was repeated
three times. ICsj, or half maximal inhibitory concentration, is a
key measure in pharmacology and drug development. IC; is the
concentration of a substance (usually a drug or inhibitor) required
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to inhibit a specific biological or biochemical function by 50%. It’s
commonly used to assess the potency of a compound—the lower the
IC;, value, the more potent the inhibitor.

2.3 mRNA extraction and RNA-sequencing

To conduct mRNA extraction and subsequent RNA sequencing,
total RNA was isolated utilizing a RNeasy Kit (catalog number
74136, Qiagen, Germany). Complementary DNA (cDNA) libraries
were then created using the NEBNext® Ultra™ Directional RNA
Library Prep Kit for Illumina® (catalog number E7760, New
England Biolabs, Ipswich, MA, USA). These cDNA libraries
underwent sequencing on an Illumina Hi-Seq platform (Illumina,
San Diego, CA). The initial RNA-sequencing data were assessed
with FastQC for quality control. The RNA-sequencing (including
data QC, mapping, quantification and differential analysis) for
erlotinib drug resistant (EDR) cell line, gefitinib drug resistant
(GDR) cell line and HCC827 was conducted by the leading provider
of genomic services and solutions company Novogene Co., Ltd.
(https://www.novogene.com/amea-en/).

High-quality RNA-sequencing reads from each library were
aligned and mapped to the reference genome using STAR v2.6.1day
software (developed by the Cold Spring Harbor Laboratory). Total
mapping rates of all samples are all larger than 95%.

Genes with expression levels that exhibited a change of more
than 2-fold (|log2FoldChange| > 1) and an adjusted p-value (FDR)
< 0.05 in the paired samples were considered as upregulated or
downregulated. For functional annotation and interpretation of the
transcriptome profiles, differentially expressed genes were analyzed
through Gene Ontology (GO) analysis. This was performed using
the web-based tool DAVID v6.8 (The Database for Annotation,
Visualization, and Integrated Discovery, supported by the National
Institute of Allergy and Infectious Diseases, part of the NIH).
R version 4.3.1 was used for the comparative analysis of RNA-
sequencing. Differential expression genes (DEGs) analysis of LUAD
in TCGA was performed by R package Deseq2 and raw count was
used as input. DEGs analysis between two risk group in GEO data
was conducted by R package “Limma”. Fragments per kilobase of
transcript per million mapped reads (FPKM) was used for survival
anlysis and gene expression in cross-sample comparison.

2.4 Data acquisition

The transcriptome profiles along with the corresponding clinical
data for 50 normal and 504 lung adenocarcinoma (LUAD)
samples were downloaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). The RNA expression data
and clinical information were download and accessed by the
project name TCGA-LUAD and Experimental Strategy RNA-Seq.
In addition, the microarray data and related clinical details for
11 normal and 57 LUAD samples were obtained from the Gene
Expression Omnibus (GEO) under accession number GSE116959,
using platform GPL17077 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE116959). Also, we retrieved microarray data for
442 LUAD samples from the GEO dataset with accession number
GSE72094, which is based on platform GPL15048, accessed on the 27
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May 2024 through the GEO website (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE72094). The single-cell RNA sequencing
(scRNA-seq) data GSE241934 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE241934, download in 27 March 2025)
comprises of 11 resected tumors from earlystage EGFR-mutant
patients as well as 34 tumors which were all confirmed wildtype lung
adenocarcinoma (LUAD) or adenosquamous carcinoma (AdSqC).
Candidate genes were analyzed in LUAD patients harboring EGFR
mutation in (L858R, exon 19 deletions [Exon19del], and exon 20
insertions [Exon20ins]), compared with LUAD patients with wild
type EGFR. R package “Seurat” V5 was used to filter and process
scRNA-seq data. R package ‘singleR was conducted for cell cluster
annotation, which is a commonly used computational framework
for the annotation of scRNA-seq by reference to bulk transcriptomes
(Xin et al., 2024; Aran et al., 2019). TCGA-LUAD cohort was used
as training dataset and the other three independent dataset GSE
116959, GSE72094 and GSE241934 were used as validation datasets,
to delineate mutation-specific transcriptional signatures.

2.5 GO and KEGG functional enrichment
analyses

Functional enrichment analyses using Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) were
performed to investigate the biological processes associated
with differentially expressed genes. This analysis was conducted
utilizing R statistical software packages, including “clusterProfiler;”

» ¢ »

“org.Hs.e.g.,.db;” “enrichplot;” “ggplot2,” and “GOplot.” The GO analysis
provided insights into three main categories: cellular component (CC),

biological process (BP), and molecular function (MF).

2.6 LASSO-COX dimension reduction
analysis

The LASSO-COX dimension reduction method was utilized
to analyze data, employing the “glmnet” (Lasso and Elastic-Net
Regularized Generalized Linear Models) and “survival” packages
within the R programming environment. Lambda is regularization
parameter, controlling the amount of shrinkage. We used Cox
regression model with the LASSO to achieve shrinkage and variable
selection simultaneously. Ten-fold cross validation was used to
determine the optimal value of \. This method divided the TCGA-
LUAD RNA-sequencing data into 10 subsets (folds). For each
fold, the model was trained on k-1 folds and validate it on the
remaining fold and the performance metric like partial likelihood
deviation was recorded in a range of A value. Then the partial
likelihood deviation was averaged across all folds for each \. In the
training process, a subset of variables was identified by shrinking
the coeflicients of less important variables into zero. We selected
A.min for our final model. We note that the more parsimonious A.1se
criterion resulted in a null model (zero genes). Given that the 3-gene
signature at A.min was highly predictive and successfully validated
externally, we proceeded with this model to identify a biologically
and clinically relevant signature.The optimal A value lambda.min
(A\.min) for our research was identified as the one that corresponded
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to the lowest partial likelihood deviance and minimum mean cross-
validated error. Ultimately, based on the optical optimal\ (A.min
= 0.09785), we identified three genes of interest along with their
respective coefficient: PPPIR3G (0.07797704), CREG2 (0.04387373)
and LYPD3 (0.02302433). The risk score for each patient was derived
using the following formula:

risk score = (expression of PPP1R3G x coefficient for PPP1R3G)
+ (expression of CREG2 x coefficient for CREG2)
+ (expression of LYPD3 X coefficient for LYPD3)

In this formula, “expression of gene” refers to the gene’s
expression level, and “coeflicient for gene” is its coefficient
corresponding A.min.

2.7 Nomogram construction and
time-dependent AUC

A nomogram analysis was developed within the training cohort
using the Regression Modeling Strategies (rms) package in R. This
nomogram is bifurcated, with the upper section serving as a scoring
guide and the lower section as a predictive tool. The nomogram
enables the precise prediction of the 1-, 2-, 3-, 5-, and 10-year
survival for patients with LUAD, based on the cumulative points
of each contributing factor. The accuracy of the nomogram in
predicting overall survival (OS) was validated in the validation
group. Calibration curves and C-Index values were employed to
assess and quantify the precision of these survival predictions. Time-
dependent AUC was calculated using the “timeROC” R package at
1, 2, and 3-year time points. Bootstrap C-index with 1000 resamples
was performed using the “boot” package.

2.8 Immune cell infiltration analysis

We utilized Gene Set Variation Analysis (GSVA) to analyze
the immune microenvironment within LUAD tumors (Li, 2017).
This technique enables the identification of 28 distinct immune
cell populations, such as seven subtypes of T cells, plasma cells,
naive and memory B cells (Charoentong et al.,, 2017). We depicted
the variations in immune cell composition between high-RiskScore
and low-RiskScore groups through bar plots. The GSVA generates
normalized scores ranging from 0-1, representing the abundance
of the immune cell population. In subsequent analyses aimed at
identifying differences in immune cell infiltration levels between
these two groups, only samples with a p-value of less than 0.05 were
taken into account (Systematic RNA, 2009).

2.9 Statistical analysis

Statistical analyses were conducted utilizing R (https://www.r-
project.org/, v3.5.0), available at R Project, SPSS software version
25.0 from IBM, headquartered in Chicago, IL, and GraphPad
Prism version 8.0, which is a product of La Jolla, CA. The
prognostic significance was assessed through Kaplan-Meier survival
analysis and COX proportional hazards modeling. Gene Set
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Enrichment Analysis (GSEA) was conducted using the GSEA
package accessible through the Broad Institute’s website at GSEA
(http://software.broadinstitute.org/gsea/index.jsp), while Gene
Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) analysis was carried out using the clusterProfiler package.
A p-value of less than 0.05 was set as the threshold for statistical
significance across all methods.

3 Results

3.1 Differential expressed genes (DEGs)
among EGFR-TKIs resistant cells and LUAD
patients

To simulate the clinical development of drug resistance and
enhance the potency of EGFR-TKIs therapies, we developed EGFR-
TKIs-resistant HCC827 cell lines. This was achieved by culturing
the cells in increasing doses of erlotinib and gefitinib, resulting in
the HCC827 EDR (erlotinib-resistant cell line) and HCC827 GDR
(gefitinib-resistant cell line), respectively. As shown in Figure 1A,
HCC827 EDR cells were less sensitive to erlotinib treatment alone
than parental HCC827 cells. Additionally, the IC50 value for
erlotinib was significantly higher in the HCC827 EDR cells (54.8
+ 1.87 uM) than parental HCC827 cells (0.033 + 0.015 uM)
(Figure 1C). The phenomenon also be observed with the HCC827
GDR cells (Figures 1B,C). These results collectively indicate that we
have successfully established EGFR-TKI-resistant cell lines, which
will serve as valuable models for further investigation.

Following the development of drug-resistant cell lines,
RNA-sequencing was per-formed for the parental HCC827
cells, HCC827 EDR cells and HCC827 GDR cells. We then
conducted a comparative analysis of the RNA sequencing data
between the parental HCC827 cells and each of the resistant cell
lines—HCC827 EDR and HCC827 GDR—to discern the genes
that were differentially expressed. Using a threshold of FDR<0.05
and |log2FC| > 1 (2 fold change),the volcano plot analysis of
HCC827 GDR cells uncovered 3264 differentially expressed genes
(DEGs), with 2099 genes upregulated and 1165 genes downregulated
(Figure 1D). Meanwhile, the HCC827 EDR cells exhibited a different
pattern, with 415 genes upregulated and 514 genes downregulated
(Figure 1E). To dissect and pinpoint the central genes associated
with resistance to EGFR-TKIs and the prognostic indicators of lung
cancer, a Venn diagram analysis was employed. This method was
utilized to identify genes that were co-regulated across both the
experimentally derived drug-resistant lung cancer cells and samples
from clinical patients. The Venn diagram analysis demonstrated
a shared upregulation of 414 genes in both the HCC827 GDR
cells and tumor tissues from lung adenocarcinoma (LUAD)
patients (Figure 1F). Additionally, it revealed that 104 genes were
commonly upregulated in the HCC827 EDR cells and LUAD tumor
tissues (Figure 1G). Only 24 genes were found to be concurrently
upregulated in both drug-resistant cells and LUAD tumor tissues,
as depicted in Figure 1H. Additionally, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were
performed on the total 494 upregulated genes in drug-resistant cells
and LUAD tumor tissues. These analyses indicated an enrichment
of genes associated with amino acid biosynthesis and metabolism,
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which may play a role in tumor progression and the development of
acquired drug resistance, as illustrated in Figures 11,].

3.2 Model construction based on the
(DEGs) among EGFR-TKIs resistant cells
and LUAD patients

To establish a prognostic model for LUAD patients, LASSO-
COX dimension reduction analysis was conducted based on those
494 DEGs. The cross-validation plot shows the deviance across
log(\) values. The left dashed line indicates A.min, which selected
a 3-gene signature. The right dashed line indicates A.1se, which
resulted in a null model (zero genes) (Figures 2A,B). Finally,
three candidate genes (PPPIR3G, CREG2 and LYPD3) and their
corresponding lambda values were used to calculate the RiskScore
for each patient. All three of these were newly identified biomarkers
for lung cancer and EGFR-TKIs resistance. The median RiskScore
(0.19182) of the training database was set as the cutoft value.

To explore the prognostic prediction value of PPPIR3G, CREG2
and LYPD3 in LUAD patients, we conducted Kaplan-Meier analyses
based on the TCGA and GEO databases respectively. Patients with
higher expression of PPPIR3G, CREG2and LYPD3 all had significantly
shorter overall survival compared with those with lower expression
in the TCGA database (Figures 2C-E). In addition, the survival rate
of PPPIR3G, CREG2 and LYPD3 was verified in the GEO database
(Figures 2F~H). Besides, the individual gene expression analyses of
PPPIR3G, CREG2, and LYPD3 indicated that the expression levels
of all three genes were significantly elevated in lung tumor tissues
as compared to normal tissues. This overexpression was consistently
observed in both the training and validation datasets (Figures 3A-F).
To validate the translational relevance of our signature, we investigated
the protein expression of our three genes using the CPTAC-LUAD
proteomic dataset. This analysis revealed that the protein levels
of both LYPD3 and PPPIR3G were significantly elevated in lung
adenocarcinoma tissues compared to matched normal adjacent tissues
(p <0.05 for both; Reference to the supplementary S1A,B). The protein
for CREG2 was not detected in this cohort. These results demonstrate
that the prognostic signal from our transcriptomic signature is reflected
inactual protein abundance changes for the majority of its components
in patient tumors, strengthening its biological and clinical relevance.

These findings collectively indicate that the expression levels
of PPPIR3G, CREG2, and LYPD3 are strong prognostic indicators
for LUAD patients, suggesting their potential utility in predicting
outcomes of EGFR-TKI treated patients and guiding personalized
treatment decisions.

3.3 Relationship between RiskScores of the
prognostic signature and
clinical-pathologic characteristics

In order to figure out the relationship between RiskScores
and clinical-pathologic characteristics, the correlation between the
RiskScore and various clinical and pathological factors was further
examined. It was found that the RiskScore was significantly higher
in tumor tissues compared to normal tissues in both TCGA and
GEO patient cohorts (Figures 3G,H). In addition, the RiskScore
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exhibited a moderate, albeit slight, increase in patients with more
advanced tumor stages, as observed in both the training and
validation databases (Figures 31,]). Nonetheless, in both the training
and validation datasets, no association was observed between the
RiskScore and factors such as gender, age and race. These findings
suggest that the RiskScore is primarily associated with tumor biology
rather than demographic factors, highlighting its potential as a
valuable biomarker for predicting LUAD prognosis and guiding
personalized treatment strategies.

3.4 Relationship between RiskScore and
patients’ survival

Then, patients were further categorized into distinct RiskScore
groups and demon-strated comparable profiles in terms of clinical
and pathological traits, mirroring the patterns observed in the
training dataset (Figures 4A,B). However, no significant different in
terms of clinical and pathological traits between the high-RiskScore
group and low-RiskScore group.

Subsequently, Kaplan-Meier analyses were performed
taking into account the RiskScore. The prognostic models
exhibited enhanced predictive accuracy for overall survival
and progression-free survival across both the training and
validation datasets (Figures 4C,D). These results indicate that the

RiskScore is a powerful predictor of clinical outcomes in LUAD.

3.5 The RiskScore is closely related to cell
division and DNA metabolism

In an effort to uncover the biological functions and pathways
that correlate with the RiskScore, a series of analytical methods
were employed. Initially, genes with the strongest ties to the
RiskScore were identified. We conducted a comparative analysis
of the differentially expressed genes between the high-RiskScore
group and low-RiskScore group, and the volcano plot analysis
uncovered 731 differentially expressed genes (DEGs), with 405 genes
upregulated and 326 genes downregulated (Figure 5A).

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) were utilized to conduct a functional
enrichment analysis on this refined set of genes. Additionally,
Gene Set Enrichment Analysis (GSEA) was applied to further
elucidate the biological significance behind the RiskScore. The
GO analysis showed that the RiskScore was closely related to the
connective tissue development and serine-type peptidase activity
(Figure 5B). The KEGG analysis showed that the RiskScore was
closely related to the protein digestion and absorption signaling
pathway (Figure 5C). Furthermore, the close association of the
RiskScore with key biofunctions and signaling pathways—such as
cytoskeleton organization, late endosome function, skin and epi-
dermal development—was corroborated through GSEA analysis of
data from the TCGA databases (Figures 5D-G). GSEA revealed
significant upregulation of pathways associated with cytoskeleton
organization, epidermal development, and skin development.
In contrast, the late endosome pathway exhibited significant
downregulation. The similar finding could also be observed in the
validation datasets (Figures 6A-G).
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FIGURE 2

Screening and validation of genes most associated with resistance to EGFR-TKIs. (A) Trace plot of coeffecient fit by LASSO-Cox: each curve
corresponding to a variable; (B) Cross-validation curve for the LASSO-Cox regression model. The left dashed line indicates X.min, and right dashed line
indicates A.1se; (C—E) Kaplan-Meier survival analysis was conducted on the TCGA dataset to evaluate the influence of three individual genes, LYPD3,
PPP1R3G, and CREG2, on patients’ overall survival. (F-=H) The KM survival analysis was validated in another independent dataset GSE72094.
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0.1

Heatmap visualization and survival analysis of clinical-pathological factors and gene expression in cancer cohorts. (A,B) Clinical-pathological factors
and the expression of three representative genes—PPP1R3G, CREG2, and LYPD3—were visualized in heatmaps arranged by descending risk score, both
in the training dataset and the validation dataset. (C,D) The association between the risk score and patients’ overall survival was then examined using

Kaplan-Meier survival curves, with separate analyses conducted for the training and validation cohorts.

3.6 Association analysis of RiskScore with
tumor immune microenvironment
characteristics and EGFR mutation status

In addition, the presence of immune cells within tumors
significantly influences both neoplastic progression and the
effectiveness of therapies designed to combat cancer. Herein, we
conducted an analysis to determine the extent of immune cell
infiltration in both TCGA database and GEO database. Our findings
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indicated that in the high RiskScore group, there was an increase
in the infiltration of regulatory T cell, Memory B cell and activated
CD4 T cell. Conversely, in the low RiskScore group, a higher level
of infiltration was observed for mast cell and eosinophil with these
differences being statistically significant (p < 0.05) (Figure 5H).
The similar finding could also be observed in the validation GEO
database, strongly suggesting that high-RiskScore patients may
exhibit reduced responsiveness to immunotherapies due to their
immunosuppressive microenvironment (Figure 6H). However, the
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FIGURE 5
Correlation between RiskScore and biological functions in training dataset. (A) Volcano plot was utilized to illustrate the differentially expressed genes
(DEGs) between the high-risk and low-risk groups in the TCGA dataset. (B,C) GO and KEGG analyses were conducted to identify the enriched signaling
pathways associated with these DEGs. (D—G) GSEA revealed significant upregulation of pathways related to cytoskeleton organization, cell cycle
processes, epidermal and skin development; Besides, the late endosome pathway was found to be significantly downregulated. (H) Immune cell
infiltration analysis was conducted to demonstrate a close association between DEGs and various immune cells.

tumor immune microenvironment is an intricate system, and it is
premature to categorically determine whether the presence of immune
cell infiltration is beneficial or harmful to patients. The multifaceted
nature of these cells within the tumor microenvironment necessitates
further investigation to elucidate their precise roles. Various studies
are essential to clarify the implications of these immune cells on
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patient outcomes. These results suggest that the high RiskScore
group and low RiskScore group possess distinct immune profiles
and exhibit varied reactions to immunotherapeutic interventions that
target distinct immune checkpoints.

Moreover, we conducted single-cell RNA sequencing (scRNA-
seq) analysis of GSE241934 dataset to reveal distinct expression
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Correlation between RiskScore and biological functions in validation dataset. (A) Volcano plot was utilized to illustrate the differentially expressed genes
(DEGs) between the high-risk and low-risk groups in the GEO dataset. (B,C) GO and KEGG analyses were conducted to identify the enriched signaling
pathways associated with these DEGs. (D—G) GSEA revealed significant upregulation of pathways related to cytoskeleton organization, cell cycle
processes, epidermal and skin development; Besides, the late endosome pathway was found to be significantly downregulated. (H) Immune cell
infiltration analysis was conducted to demonstrate a close association between DEGs and various immune cells.

patterns of LYPD3, PPPIR3G, and CREG2 between EGFR-mutant  a potential confounder for gene expression. With this important
and wild-type LUAD patients. We note that this cohort consists of ~ caveat, we observed that these three genes exhibited significant
LUAD patients who received neoadjuvant immunochemotherapy, =~ downregulation in tumor cells from EGFR-mutant patients
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(L858R/Exon19del/Exon20ins)
counterparts (Figures 7A-F), though we cannot rule out that

compared with non-mutant
this expression pattern was influenced by the prior therapy. This
observation appears paradoxical to our cell line model where
these genes were upregulated in acquired resistance. However,
this discrepancy may reflect fundamental differences in resistance
mechanisms and could be explained by several hypothesis: 1. We
speculate that the cell line model simulates acquired resistance
through progressive drug selection, whereas clinical samples in
GSE241934 represent intrinsic resistance or early treatment-naive
mutations. 2. Alternatively, the clinical cohort received neoadjuvant
immunochemotherapy, which may induce immunomodulatory
changes that suppress these genes expression. These findings
collectively suggest that these genes are closely associated with
acquired resistance (as shown in vitro). Their expression patterns
in clinical settings may be influenced by additional layers of
tumor heterogeneity, treatment interventions, and immune system
interactions that require further investigation. To address the
potential confounding effect of neoadjuvant immunochemotherapy
in the single-cell cohort (GSE241934), we investigated the
relationship between our 3-gene signature and treatment response.
We found no significant difference in the signature risk score
between patients who achieved a Major Pathological Response
(MPR) and those who did not (p = 0.46; Reference to supplementary
S2A). This indicates that the signature is not a direct predictor of
response to this regimen. Despite this, the signature retained its
power to stratify patients by overall survival, suggesting it captures
fundamental aspects of tumor biology and intrinsic aggressiveness
that are independent of the response to immunochemotherapy.

3.7 The individualized prediction model
showed robust predictive accuracy

To enhance the practicality of the prognostic prediction model
in clinical settings, a personalized prediction model was developed.
A personalized model for predicting Progression-Free Survival
(PES) was developed, incorporating a set of independent predictive
factors. These included the RiskScore, gender and pathologic
stage. Figure 8A illustrates that the individualized prediction model
can be used to estimate the tumor recurrence probability for
Lung Adenocarcinoma (LUAD) patients at various time points,
including 1-, 3-, 5-, and 10-year post-treatment. The calibration
curve, which compares the nomogram predictions with actual
outcomes, demonstrates a good match in both the training and
validation datasets, as depicted in Figures 8B,C, suggesting high
predictive accuracy. Furthermore, to quantify the precision of the
model’s predictive accuracy, we computed the C-index with a 95%
confidence interval via 1000 bootstrap resamples. The prognostic
performance of the 3-gene signature was consistent across both the
training and external validation cohorts. In the training set, the
model achieved a C-index of 0.643 (95% CI: 0.594-0.687), which
was closely replicated in the independent validation set with a C-
index of 0.612 (95% CI: 0.556-0.671). Similarly, time-dependent
AUC values ranged between 0.62 and 0.67 in both cohorts at
key time points (Figures 8D,E). These results indicate that the
signature provides a modest but stable and generalizable level of
discriminative ability. The C-index of this nomogram model was 0.7,
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which is higher than any other prediction model (Figure 8F). These
findings collectively underscore the potent predictive capability of
our developed model. To evaluate the potential of the RiskScore
as a predictive biomarker, we assessed its association with clinical
response to therapy. In the GSE241934 cohort of patients treated
with neoadjuvant immunochemotherapy, we found no significant
difference in the RiskScore between patients who achieved a Major
Pathological Response (MPR) and those who did not (p = 0.46;
supplementary S2A). This indicates that the RiskScore is not
predictive of response to this treatment regimen. Its validated utility
remains its significant association with overall survival, establishing
it as a prognostic biomarker.

3.8 Validation of the prognostic model in
osimertinib-resistant cell lines

To further validate the reliability of our prognostic model, we
extended our analysis to third-generation EGFR-TKI (osimertinib)-
resistant cell lines. Specifically, we established an osimertinib-
resistant HCC827 cell line (OR-HCC827) by progressively exposing
parental HCC827 cells to increasing concentrations of osimertinib.
Consistent with our observations in erlotinib- and gefitinib-resistant
models, the OR-HCC827 cells exhibited significantly higher IC50
values compared to the parental HCC827 cells (Figure 9A),
confirming the successful development of osimertinib resistance.

Subsequently, RT-PCR analysis revealed that the expression
levels of LYPD3, PPPI1R3G, and CREG2 were markedly upregulated
in OR-HCCB827 cells relative to the parental line (Figures 9B-D).
These findings corroborate the robustness of our prognostic
signature across multiple generations of EGFR-TKIs. The consistent
overexpression of these biomarkers in osimertinib-resistant cells
further supports their potential utility in stratifying high-risk
LUAD patients.

4 Discussion

The discovery of EGFR-activating mutations in a subset of
lung cancer patients led to the use of EGFR tyrosine kinase
inhibitors (EGFR-TKIs) to treat non-small cell lung cancer (NSCLC)
with these specific mutations (Kobayashi et al., 2005; Bean et al.,
2007; Ninomiya et al., 2018). While EGFR-TKIs have significantly
improved outcomes for these patients, resistance to these drugs is
a common issue. Furthermore, lung adenocarcinoma (LUAD) is
characterized by a poor prognosis and a lack of effective screening
techniques, contributing to a low rate of successful clinical treatment
(Lee etal., 2020; Altintas and Tothill, 2013). Consequently, there is a
pressing need to develop innovative biomarkers that can accurately
predict the prognosis of LUAD after EGFR-TKIs treatments.

In the current study, we embarked on a multifaceted approach
to tackle the challenge of acquired resistance to EGFR-TKIs in
LUAD. Initially, we developed EGFR-TKIs resistant cell lines and
this in vitro model provided a valuable platform for identifying genes
that are crucial in the resistance mechanism. The discovery of 494
co-upregulated genes in resistant cells and LUAD patient samples
represents a significant step forward in understanding the molecular
underpinnings of resistance. Through bioinformatics analysis, we
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FIGURE 7
The expression of three model genes in EGFR-TKI resistant LUAD patients revealed by single cell transcriptomics profiling. UMAP visualization of
single-cell RNA-seq data, illustrating the distribution of distinct cellular populations in tumor tissue from LUAD patients with exon19del (A), exon20ins
(C) and L858R (E). Each cluster represents a transcriptionally distinct cell type, with epithelial cells prominently marked. Dot plot displaying the
expression levels of PPP1IR3G, LYPD3, and CREG2 in epithelial cell subsets between wild type and patients with exon19del (B), exon20ins (D) and L858R
(F) mutation. Dot size indicates the proportion of cells expressing each gene, while color intensity reflects the average expression level.

identified pathways related to amino acid biosynthesis and metabolism
as being central to the resistant phenotype. Amino acid metabolism
is intricately linked to drug resistance in cancer cells, where certain
aminoacids, such as glutamine and serine, can fuel metabolic pathways
that neutralize drug effects or promote repair mechanisms, leading
to decreased treatment efficacy. These results have facilitated the
identification of potential resistance-related markers and have led
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to the development of a prognostic model that shows promise in
guiding clinical treatment strategies. Then, the LASSO-COX method
for dimensionality reduction was employed to pinpoint an optimal
set of prognostic indicators. This analysis led to the discovery of a
3-gene signature—comprising PPPIR3G, CREG2, and LYPD3—that
is characteristic of the resistant lung cancer cells. We acknowledge that
the LASSO A.1se criterion, which favors maximum parsimony, did not
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FIGURE 8

Prognostic model validation and personalized prediction of LUAD
patient survival post-EGFR-TKI treatment. (A) The nomogram
accurately predicted the 1-, 3-, 5-, and 10-year overall survival (OS)
times for lung adenocarcinoma (LUAD) patients following treatment
with gefitinib and erlotinib. (B,C) Calibration plots were employed to
assess the concordance between the predicted and actual OS rates at
1-, 2-, and 3-year intervals for both the training and validation
datasets, demonstrating the model's reliability. (D,E) time-dependent
ROC and bootstrap C-index analyses of the 3-gene signature in
TCGA-LUAD and external validation cohort GSE72094 (F) The
predictive efficacy of the personalized prognostic model, along with
the individual risk score and clinical prognostic factors for LUAD
patients’ OS, was evaluated using the concordance index (C-Index).

select any genes, indicating the challenge of deriving a highly stable
signature from this gene set. However, the external validation of our
A.min-derived 3-gene signature confirms its robust prognostic value,
suggesting these genes capture a meaningful biological signal related
to prognosis in lung adenocarcinoma.
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Researchers have identified several genes associated with
cancer progression and treatment resistance. PPP1R3G, encoding a
regulatory subunit of protein phosphatase 1 (PP1), plays a role in
cellular processes like cell division and signal transduction (Shi et al.,
2023; Zhuo et al, 2021). Its dysregulation may contribute to
cancer therapy resistance by helping cancer cells evade drug effects.
CREG2, involved in cellular respiration and energy metabolism,
has potential indirect effects on cancer development. The CREG2
gene is implicated in Lung Adenocarcinoma (LUAD), where its high
expression is linked to poor prognosis and advanced tumor stages.
CREGZ2’s role in cancer is complex, with some studies suggesting
it may have a pro-cancer effect by influencing stromal cells and
proliferation, while other research has identified it as a potential
prognostic biomarker that could help in predicting patient outcomes
and guiding personalized treatment strategies. (Kunita et al., 2002;
Min et al., 2025; Hao et al., 2025). LYPD3, encoding a lysozyme-like
protein, is implicated in immune response and cell differentiation
(Gruet et al,, 2020; Wang et al., 2017). It may modulate immune
cell activity against tumors, with its expression linked to distinct
immune profiles and responses to immunotherapy in different risk
groups (Xin etal,, 2024; Hu et al., 2020). While LYPD3% role in cancer
is becoming more defined, additional studies are needed to confirm
its involvement in cancer development or progression.

Then, a novel RiskScore-based nomogram was constructed to
predict the prognosis and resistance of LUAD following curative
resection. The nomogram, incorporating the RiskScore, patient
age, gender and pathologic stage successfully identify patients
at high risk of acquired resistance. The nomogram serves as a
visual aid for clinicians to estimate the risk of acquired resistance
and tailor treatment strategies accordingly, thereby enhancing the
precision of patient care. Additionally, the successful validation in
OR-HCC827 cells (Figures 9B-D) confirms these genes' potential
role in resistance mechanisms spanning all generations of EGFR-
TKIs. Our study successfully derives and validates a 3-gene
prognostic signature for lung adenocarcinoma, rooted in the
biology of experimentally-defined drug resistance. The model
demonstrated consistent and statistically significant performance
in both the discovery and external validation cohorts, with C-
indices consistently around 0.65. While the discriminative accuracy
is modest, this level of consistency strongly argues against overfitting
and confirms that the signature captures a real and reproducible
biological signal relevant to patient outcomes. It is important to note
that such compact transcriptomic signatures often explain a portion
of the prognostic variance; their clinical utility may ultimately lie
in being integrated with established clinical variables like stage
or performance status to build more powerful composite models.
The independent validation of LYPD3 and PPPIR3G protein
overexpression in LUAD tumors via the CPTAC database provides
crucial support for our findings. It moves our signature beyond a
transcriptomic correlation to a finding with direct implications for
the tumor’s functional proteomic state. The absence of CREG2 data
in this resource highlights a limitation but does not diminish the
collective evidence supporting the signature’s biological plausibility.

Additionally, we also examined the relationship between RiskScore
and both Tumor Immune Microenvironment (TME) characteristics
and EGFR mutation status. Our immune infiltration analyses revealed
that high-RiskScore tumors exhibit an immunosuppressive profile
characterized by elevated regulatory T cells (Tregs) and activated
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CD4" T cells, alongside depletion of mast cells and eosinophils
(Figures 5H, 6H). This specific immune contexture may explain the
observed correlation with poor immunotherapy response, as Tregs are
known to suppress anti-tumor immunity while mast cells/eosinophils
often associate with favorable outcomes. Interestingly, Our single-
cell RNA-seq analysis of clinical samples (GSE241934) revealed an
intriguing paradox: these genes were paradoxically downregulated
in EGFR-mutant tumors compared to the upregulation observed
in resistant cell lines (Figures 7A-F). This divergence likely reflects
fundamental biological differences between in vitro models and
clinical samples. In vitro models capture acquired resistance through
direct drug selection pressure, where these genes may confer survival
advantages. However, clinical samples represent a more complex
ecosystem, as the patients in the GSE241934 dataset underwent
neoadjuvant immunochemotherapy, introducing additional variables
that differentiate them from in vitro models. A key finding from
our single-cell validation was that the prognostic power of our
signature persisted in a cohort uniformly treated with neoadjuvant
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immunochemotherapy. Crucially, a sensitivity analysis revealed that
the signature score was not associated with MPR status. This
dissociation is highly informative: it suggests that the aggressive
biology captured by our drug resistance-derived signature operates
through mechanisms distinct from those determining immediate
response to immunochemotherapy. It may instead reflect a tumor’s
inherent capacity for long-term progression, immune evasion, or
relapse, explaining its stable prognostic value across different clinical
contexts. A limitation of our study is the use of a single-cell
cohort where all patients received neoadjuvant therapy. However,
our analysis showing no link between the signature and MPR status
strengthens our confidence that the prognostic signal is genuine and
not merely a reflection of treatment response. Our study clarifies the
clinical applicability of the 3-gene signature. While the genes were
identified in a model of drug resistance, the integrated RiskScore
functions primarily as a prognostic, not a predictive, biomarker.
This is evidenced by our finding that the score did not predict
pathological response to neoadjuvant immunochemotherapy in a
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clinical cohort. This distinction is critical: our signature identifies a
patient subgroup with aggressive tumor biology and poor survival
outcomes, but it does not appear to determine initial response to this
specific therapy. Consequently, this signature could be used to stratify
high-risk patients who may require more intensive monitoring or
alternative therapeutic strategies, rather than to guide the selection of
initial immunochemotherapy.

5 Conclusion

This research bridges the gap between in vitro EGFR-TKI
resistance and clinical outcomes in LUAD. We established a
RiskScore model using PPP1R3G, CREG2, and LYPD3, validated its
predictive accuracy for survival across multiple EGFR-TKIs, and
linked it to specific immune microenvironmental characteristics.
The identification of distinct immune profiles and the development
of a combined nomogram underscore the model’s potential to guide
personalized therapy selection, including combination strategies.
Despite the need for further experimental confirmation, this work
offers a promising tool for improving risk stratification for LUAD
patients facing the challenge of EGFR-TKI resistance.
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