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Objective: Neddylation is a crucial posttranscriptional modification involved
in tumor progression. This study aimed to explore neddylation-associated
biomarkers and the underlying mechanism in laryngeal squamous cell
carcinoma (LSCC).

Methods: This study evaluated the expression of neddylation-related genes
(NRGs) retrieved from the Reactome and TCGA databases to conduct a series of
analyses and constructed an LSCC prognostic risk model followed by functional
enrichment and mechanism prediction. Moreover, the key genes involved in this
signature were also confirmed in an in vitro cell model.

Results: A total of 79 NRGs were differentially expressed in LSCC (P.adj
<0.05). A prognostic gene signature was constructed, and COMMD?2, WSB2
and CUL9 were determined to be prognostic genes. The nomogram indicated
that this gene signature performed well in forecasting the 1-, 3-, and 5-year
overall survival of LSCC patients. The CUL9 and WSB2 genes were enriched in
RIBOSOME, and silencing WSB2 significantly inhibited the malignant behaviors
of LSCC cells. In this gene signature, patients could be markedly distinguished
into high- and low-risk groups characterized by differentimmune infiltration and
drug sensitivity between them. WSB2 and COMMD?2 jointly predicted that hsa-
miR-185-5p, hsa-miR-4644 and hsa-miR-4306 were the common microRNAs
(miRNAs) and regulatory networks.

Conclusion: This study successfully established a neddylation-associated
prognostic risk model for LSCC and revealed that COMMD2, WSB2, and CUL9
could act as new therapeutic targets, which might provide valuable information
for the research and treatment of LSCC.

laryngeal squamous cell carcinoma, neddylation, biomarkers, LSCC risk model, WSB2

Introduction

Laryngeal squamous cell carcinoma (LSCC), mostly arising from the laryngeal mucosal
epithelium is the 2nd most frequent cancer in affecting the head and neck. The clinical
manifestations of LSCC typically include dyspnea and dysphagia. Factors such as human
papillomavirus infection and alcohol abuse contribute to the rapid progression of LSCC,
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resulting in persistently high morbidity and mortality rates
(Xiang et al., 20215 Li et al,, 2022). In 2018, there were 177,422
newly reported cases of LSCC, with 154,977 cases in males and
22,445 in females. The total number of deaths that year was
94,771, with 68,841 more males than females. Even worse, there
were 180,000 new cases and nearly 100,000 deaths from LSCC
worldwide by 2020 (Li et al., 2022; Siegel et al., 2019; Bradford et al.,
20205 Bray et al,, 2018). Current treatment modalities for LSCC
include chemotherapy, radiotherapy, and conservative surgical
interventions. Recent advancements have introduced enhanced
immunotherapies and targeted therapies, including platinum-based
chemotherapeutic agents, which are commonly used in LSCC
management (Almadori et al., 2005; Ahn et al., 2022; Manevich et al.,
2022; Cramer et al, 2019). However, despite these therapeutic
developments, early diagnosis, survival rates, and patient prognoses
for LSCC remain suboptimal. These persistent challenges can
be attributed to several factors, such as local invasion, high
metastatic potential, chemotherapy resistance, and the lack of
effective biomarkers that elucidate the molecular mechanisms of
LSCC (Gao et al,, 2020; Xue et al,, 2019). Consequently, there is an
urgent need for significant improvements in both the treatment and
prognosis of LSCC.
Neddylation,
posttranslational modification, involves a three-step enzyme-
mediated reaction that covalently attaches the ubiquitin-
NEDDS8
developmentally downregulated protein 8) to its substrates,

a novel biological process of protein

like molecule (neuronal precursor cell-expressed
primarily members of the cullin protein family (Enchev et al,
2015; Mao et al, 2023; ZhangS. et al, 2024). Neddylation
overactivation has been shown to lead to the degradation of
tumor suppressor factors, which can induce apoptosis and
contribute to carcinogenesis. This mechanism is critical for
regulating various biological functions, particularly within the
tumor microenvironment (Gonzalez-Rellan et al.,, 2023; He et al,,
2023; He et al., 2022; Zhou et al., 2019). MLN4924 (pevonedistat),
a neddylation inhibitor, suppresses the progression of head
and neck squamous cell carcinoma (HNSC) and sensitizes the
carcinoma cells to ionizing radiation (Vanderdys et al., 2018).
Combination of MLN4924 further enhances the chemotherapeutic
efficacy of (S)-10-hydroxycamptothecin (10-HCPT) in HNSC via
activating NFKB1 pathway (Gu et al., 2023). Neural precursor cell
expressed developmentally downregulated protein 9 (NEDDS)
is an ubiquitin-like protein to mediate covalently conjugation
to a lysine residue of substrate proteins during neddylation. It
is reported that MLN4924 inhibits the progression of HNSC
via NEDD8/CUL4/TSC2 axis mediating inactivation of mTOR
signaling pathway (Jiang et al, 2024). Targeting inhibition of
CUL4A synergizes of carcinoma to cisplatin via DDB2-dependent
pathway, thereby promoting the long-term prognosis (Jones et al.,
2022). These evidences suggested that targeting neddylation
represents a promising strategy for HNSC treatment. However,
the role of neddylation-related biomarkers in LSCC was still
uncertain.

In the current study, we employed bioinformatics approaches,
including transcriptome sequencing data, to identify biomarkers
associated with neddylation in LSCC, followed by exploration of
potential regulatory pathways and mechanisms. In addition, the
bifunctional role of key biomarkers was validated via in vitro assays.
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These analyses provide insights into the diagnosis, treatment, and
prognosis of LSCC.

Materials and methods
Data sources

Pathway enrichment analysis was performed using the
Reactome database (https://reactome.org/). The ‘Pathway Browser’
for Homo sapiens was queried with the keyword “neddylation,”
and results were filtered by selecting the “Molecules” category to
retrieve neddylation-related pathways and molecules. All pathways
and reactions identified through this search underwent manual
review and screening to ensure direct relevance to the neddylation
process. A total of 246 neddylation process associated genes
were downloaded from the Reactome database on 5 July 2024.
These carefully curated genes were designated as neddylation-
related genes (NRGs). A total of 115 LSCC patients contained
in the HNSC dataset of The Cancer Genome Atlas (TCGA)
were screened in this study. Then, the RNA-Seq data along with
the patient information of them were downloaded in FPKM
format from the official GDC Data Portal using TCGAbiolinks
and named TCGA-LSCC, including the transcriptional data,
somatic mutation data, clinical characteristics and survival
information.

Differential expression gene analysis

In the TCGA-LSCC dataset, differential analysis between the
LSCC tumor (n = 12) and normal samples (n = 115) was performed
using the “DESeq2” (v 1.46.0) (Love et al, 2014) package in R
software (v 4.2.2). The differentially expressed genes (DEGs) were
selected with the thresholds of |log,fold change (FC)| >0.5 and P.adj
(Benjamini-Hochberg method) <0.05. Moreover, DEGs and the top
10 most significantly upregulated and downregulated genes were
visualized by a volcano plot and heatmap using “ggplot2” in R,
respectively.

DEG enrichment and protein-protein
interaction (PPI) network analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses on the DEGs were
conducted using clusterProfiler (Yu et al., 2012) packages in R to
identify the common functions and related pathways of the DEGs.
The R package “ggplot2” was used to draw bar charts of the top
10 biological processes (BP), molecular functions (MF), cellular
components (CC), and KEGG pathways significantly enriched
by DEGs with a threshold of P.adj <0.05 (Benjamini-Hochberg
method). The “ggvenn” (v 0.1.10) package in R was employed to
screen and draw the gene intersection diagram. Finally, Cytoscape
(v 3.9.1) (Shannon et al., 2003) was utilized to visualized the PPI
network diagram (Interaction score >0.4).
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Construction of the risk score model

Based on the calculated risk scores, LSCC associated risk model
was established via univariate Cox and least absolute shrinkage
and selection operator (LASSO) regression analyses. The survival
(v 0.5.0) tool was used for univariate analysis, and the “glmnet” (v
4.1.8) tool was applied for LASSO regression analysis. The parameter
family was set as Cox (HR # 1, p > 0.05) to implement LASSO logistic
regression. The graphs of gene coefficients and the error graph of 10-
fold cross-validation were obtained by selecting strongly correlated
features. When the model error was minimized, the optimal model
and the corresponding lambda () value were determined.

Evaluation and validation of the prognostic
risk signature

To evaluate and verify the prognostic risk signature, we first
computed the risk score via the following equation:

Risk score = Z Coef(i) x expr(i)
(i=1)

where Coef denotes the risk coefficient associated with each
gene, while expr signifies the expression level of each gene. The
“ggplot2” (Gustavsson et al., 2022) in R was employed to depict the
survival curves and survival status of patients with high- and low-
risk. The “survminer” package was used to depict survival curves
for overall survival (OS) between the high- and low-risk groups (p
<0.05).

Risk signature evaluation

Based on the risk signatures obtained from aforementioned,
the “survivalROC” package (v 1.0.3.1) was used to draw receiver
operating characteristic (ROC) curves of 1-, 3- and 5-year survival
time point. The ROC curve plots two parameters: the true positive
rate and the false positive rate. The area under the curve is called
the area under the curve (AUC), which is used to represent the
prediction accuracy and sensitivity. The higher the AUC value
is, that is, the larger the area under the curve is, the higher the
prediction accuracy. According to the results of the prognostic
genes, the R package “rms” (v 7.0.0) (https://github.com/harrelfe/
rm) was utilized to build a nomogram for the 1-, 3-, and 5-
year survival rates of LSCC patients. In addition, the “timeROC”
package (v 0.4) (Blanche et al, 2013) was utilized to draw the
corresponding ROC curves to assess the prognostic ability. The
“ggDCA” R package (v 1.2) was used for decision curve analysis
(DCA) to evaluate the clinical benefit of this model.

Gene set enrichment analysis (GSEA)

The gene-gene interaction network (GGI) of the prognostic
established via the GeneMANIA website. The
“c2.cp.kegg.v2023.1.Hs.symbols.gmt” gene set downloaded from the

genes  was

MSigDB database was used as the background gene set. Spearman
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correlation analysis was performed between each prognostic gene
and all the other genes to obtain correlation coefficients (p < 0.05).
These coefficients were then sorted from small to large. On the basis
of the sorting results, the top 5 genes were selected for display, and
GSEA was performed on the prognostic genes.

Immune microenvironment analysis

“GSVA” (Hinzelmann et al, 2013) package (v 2.0.1) in R
was used to compute the infiltration condition of immune cells
in LSCC patients in the training set on the basis of the single-
sample GSEA (ssGSEA) algorithm. A heatmap was drawn to observe
the distribution proportions of 28 types of immune cells between
different groups. ssGSEA was used to estimate the samples in
the training set. With the immune-related genes provided in the
article by Charoentong et al. (2017) as the background gene set,
enrichment scores of immune cells were obtained, and the Wilcoxon
rank-sum test was performed (p < 0.05). Spearman correlation
analysis was carried out, and the results with a correlation of |R| >
0.3 and p < 0.05 were considered to have a significant correlation.

Drug sensitivity exploration

To further evaluate the associations between the high-
and low-risk groups and the response to chemotherapy drugs,
in the TCGA-LSCC training set patients, the R package
“pRRophetic” (v 0.5) (Geeleher et al., 2014) was used to calculate
the IC50 values of 138 common chemotherapies and molecularly
targeted drugs for all patients. IC50 is the half-maximal inhibitory
concentration. Generally, the IC50 is used to measure the
cytotoxicity of a drug or the degree of drug tolerance of the cell.
The lower the IC50 is, the stronger the performance of the drug (p
<0.05).

Molecular regulatory network analysis

the
genes,

To microRNAs (miRNAs) that regulate
the prognostic the database  (https://
mirtarbase.cuhk.edu.cn/) were applied to jointly forecast the

explore
miRTarBase

common miRNAs of the prognostic genes. Then, the targeted
miRNA-mRNA regulatory network was visualized by Cytoscape.
WSB2 specific associated miRNAs expression was validated using
the ENCORI database in HNSC (https://rnasysu.com/encori/
panMirDiffExp.php) on 10 September 2025. The expression of
downregulated miRNAs in HNSC was verified in LSCC cells lines
with HaCaT as control.

Cell culture and transfection

The human LSCC cell line TU-138 and immortalized
epidermal HaCaT cell line were acquired from Xiamen Immocell
Biotechnology Co., Ltd. (Xiamen, Fujian, China), and the LSCC cell
line TR-LCC-1 was obtained from Wuhan Pricella Biotechnology
Co., Ltd. (Wuhan, Hubei, China). Specifically, HaCaT cells were
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maintained in DMEM, and TU-138 and TR-LCC-1 cells were
maintained in RPMI 1640 (Cat. No. IMC-202-2; Xiamen Immocell
Biotechnology Co., Ltd.) at 37 °C with 5% CO, in the atmosphere.
All media were supplemented with 10% fetal bovine serum (FBS;
Cat. No. S615]JY; Shanghai Basal Media, Shanghai, China) and
1% penicillin-streptomycin. For the gene silencing experiments,
siRNAs were designed using DSIR (http://biodev.extra.cea.fr/
DSIR/DSIR html). The mimic and negative control (NC) were
designed according to the sequence provided in miRDB (https://
mirdb.org/cgi-bin/target_detail.cgi?targetlD=3460921). The details
of sequences were summarized in Supplementary Table S1, and
produced by GenePharma (Shanghai, China) and transfected
into LSCC cell lines via Lipofectamine 3000 (Cat. No. L3000015;
Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s protocol. Transfection for 48h, the cells were
collected for the experiment analysis.

Luciferase reporter assay

The wildtype (WT) and mutant (MUT) WSB2 3’ UTR sequences
were synthesized and cloned downstream of the luciferase reporter
gene by Beijing Tsingke Biotech Co., Ltd. (Beijing, China). Then,
these reporter plasmids were co-transfected with either hsa-miR-
6507 mimic or NC in TU138 and TR-LCC-1 cells, respectively. After
48 h, the luciferase activity was measured using the Dual Luciferase
Assay Kit (Cat. No. E2920; Promega, United States) following the
manufacturer’s protocol.

Cell viability

Cell viability was estimated via the CCK-8 assay. In detail, cells
were transfected with siRNA and inoculated into 96-well plates with
5.0 x 10° per well density. After culturing, 10 uL of CCK-8 solution
(Cat. No. RM02823; Abclonal, Wuhan, Hubei, China) was appended
to each well at 24, 48, and 72 h and hatched at 37 °C for 1 h. Then, the
optimal density of each well was detected at 450 nm via a microplate
reader (Thermo Fisher Scientific, United States).

Colony formation assay

The proliferation of the cells was determined via colony
formation analysis. Briefly, cells were seeded into 6-well plates after
transfection at a density of 500 per well. The cells were subsequently
cultured at 37 °C for 14 days, after which the medium was removed
every 2 days. After culture, the medium was carefully removed, and
the cells were immobilized with 4% paraformaldehyde (PFA; Cat.
No. G1101-500ML; Servicebio, Wuhan, Hubei, China) and stained
with 0.5% crystal violet (Cat. No. G1014-50ML; Servicebio). Finally,
the staining results were imaged and calculated for further analysis.

Wound healing assay
The migration of cells was assessed via a wound healing assay.

Briefly, cells were seeded into a 6-well plate and maintained at 37 °C

Frontiers in Molecular Biosciences

10.3389/fmolb.2025.1654064

overnight. When the confluency reached more than 80%, a scratch
was made on the cell monolayer via a 200 pL pipette. After washing
with PBS to remove the suspended cells, a fresh medium was added
and cultured for 48 h. During culture, the cells were pictured at 0
and 48 h to record the wound distance.

Transwell assay

After transfection, cells were inoculated into the upper part
of a transwell plate coated with 10% Matrigel in RPMI 1640
medium. Moreover, 600 uL of RPMI supplemented with 20% FBS
was added to the lower chamber. After 48 h of coculture, the
transwell membrane was immobilized with 4% PFA and stained
with 0.5% crystal violet (Servicebio). The staining results were then
imaged under an inverted microscope (Leica), and five random
fields of view were counted for statistical analysis.

Quantitative real-time PCR (QRT-PCR)

After transfection, total RNA was isolated from the cells with
RNAiso Easy (Cat. No. TCH022; Takara, Dalian, China). After
quantification with a Nanodrop 2000 (Thermo, United States), 2 pg
of total RNA was subjected to cDNA synthesis via the PrimeScript
RT reagent Kit (Cat. No. RR047Q; Takara). Then, amplification
of WSB2 and GAPDH was performed via SYBR Green (Cat. No.
RK21203; Abclonal), and the relative expression of WSB2 was
computed via the 274" method. The primers were designed and
summarized in Supplementary Table S2.

Western blotting

Proteins in cell samples were extracted using the RIPA lysis
buffer (Cat. No. P0013B, Beyotime, Shanghai, China) supplemented
with protease inhibitor cocktail (Cat. No. RM02916, Abclonal). After
quantified using the BCA method (Cat. No. P0009, Beyotime), 25 pg
of each sample was subjected for 10% SDS-PAGE and transferred
onto polyvinylidene fluoride membrane (Cat. No. HVHP01300,
Millipore, MA, United States). Following this, membrane was
blocked with 5% skim milk for 30 minat room temperature,
and then incubated with anti-WSB2 (Cat. No. D123580, Sangon,
Shanghai, China) or anti-GAPDH (Cat. No. A19056, Abclonal)
antibody at room temperature for 1h. Then, membrane was
incubated with anti-rabbit antibody (Cat. No. AS014, Abclonal)
at room temperature for 1 h and visualized using a high sensitive
ECL luminescence reagent (Cat. No. C500044, Sangon). Finally, the
detected protein bands were quantified using ImageJ (v 1.54i, NIH,
Bethesda, MD, United States), and compared between groups.

Statistical analysis

Statistical analyses were performed via R Studio. The Wilcoxon
test was used to assess group variance, whereas Spearman
correlation analysis was applied to explore the relationships between
biomarkers and immune cells. The experiment data was analyzed

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1654064
http://biodev.extra.cea.fr/DSIR/DSIR.html
http://biodev.extra.cea.fr/DSIR/DSIR.html
https://mirdb.org/cgi-bin/target_detail.cgi?targetID=3460921
https://mirdb.org/cgi-bin/target_detail.cgi?targetID=3460921
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Wang et al.

using the GraphPad Prism (v 9.5.0, GraphPad Software Inc., Boston,
MA, United States). All the experiments were performed in triplicate
independently, and presented with mean + standard deviation. P <
0.05 was considered statistically significant.

Results

Identification of NRG-related DEGs
between LSCC and normal tissues

Comparison analyses revealed a total of 7,089 DEGs between
LSCC and normal tissues, comprising 4,377 upregulated genes and
2,712 downregulated genes (Figure 1A). Hierarchical clustering
of the 20 most significant DEGs revealed distinct intergroup
patterns in the expression profiles (Figure 1B). Additionally,
systematic annotation of these DEGs through GO and KEGG
pathway analyses revealed significant functional associations.
A graphical representation of the top 10 enriched terms across
biological processes (866 terms), cellular components (131 terms),
and molecular functions (80 terms) is provided (Figure 1C;
Supplementary Table S1), with primary enrichment observed
in extracellular matrix organization, structural constituents of
extracellular matrices, and collagen-associated compartments
(P.adj <0.05). Concomitant KEGG pathway analysis revealed
that 33 signaling cascades, particularly those governing muscular
cytoskeletal dynamics, calcium-mediated signal transduction, and
extracellular matrix-receptor crosstalk, were statistically significant
(P.adj <0.05) (Figure 1C). To obtain LSCC associated neddylation
genes, a systematic overlap analysis was performed between 246
neddylation-related genes (NRGs) derived from the Reactome
database and 7,089 DEGs associated with LSCC, identifying
79 NRG-associated DEGs with potential regulatory significance
(Figure 1D). A PPI network was subsequently constructed via the
STRING database (interaction score >0.4) to investigate potential
functional interactions among the 79 candidate genes, identifying
732 significant interactions among the 79 protein nodes (Figure 1E).

Identification of a neddylation-related
prognostic signature in LSCC patients

Firstly, we randomly divided the 115 disease samples in the
TCGA-LSCC dataset into a training set and a validation set in a
7:3 ratio. Specifically, 7 represents the training set with 81 samples,
which were used for the construction of the prognostic model,
while 3 represents the validation set with 34 samples, which were
used for the validation of the prognostic model. Next, our study
integrated 79 candidate gene expression profiles with OS data to
construct a neddylation-related prognostic signature in the training
cohort (n = 81). Initially, univariate Cox regression identified three
survival-associated genes (P < 0.05) from among the 79 candidate
neddylation-related DEGs, with COMMD2 and WSB2 exhibiting
hazard ratios (HRs) >1 (prognostic risk factors) and CUL9 showing
an HR < 1 (prognostic protective factor) (Figure 2A). To ensure
the robustness of the identified prognostic genes and minimize
false positives, proportional hazards (PH) assumption testing
was conducted. All three genes demonstrated stable associations
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with survival (P > 0.05; Figure 2B), supporting their validity.
Subsequently, LASSO regression analysis at log (\.min) = —5.548
yielded a three-gene prognostic signature comprising COMMD2,
WSB2, and CUL9 (Figures 2C,D).

According to this three-gene signature, the prognostic risk score
of each LSCC patient in the training set was calculated, and the
optimal cutoff value (risk score = 0.8155) was determined via ROC
analysis. With this cutoff value, patients were stratified into high-risk
(n =49) and low-risk (n = 32) groups. The survival curve and status
analyses suggested that the risk scores distinguished the low- and
high-risk groups in the training set (Supplementary Figure S1A),
validation set (Supplementary Figure SIB), and overall set
(Supplementary Figure S1C). K-M analysis revealed that LSCC
patients in the high-risk group had significantly poor OS than
0.00036; Figure 2E), a finding that
was consistently validated in the validation cohort (P = 0.0095;

the low-risk group (P =
Figure 2G). Additionally, ROC analysis was performed to evaulate
the predictive ability of the prognostic signature, yielding AUC
values of 0.728 (3-year) and 0.726 (5-year) in the training set
(Figure 2F) and 0.767 (3-year) and 0.848 (5-year) in the validation
set, confirming the model’s good performance (Figure 2H). Finally,
the three-NRG prognostic signature was validated in the overall
cohort, which revealed significantly worse OS in high-risk group
than in low-risk group (P < 0.05; Figure 2I). The AUC values
for the 3-year and 5-year ROC curves were 0.743 and 0.777,
respectively (Figure 2]). These findings demonstrated that the three-
NRG prognostic signature effectively stratified LSCC patients into
distinct risk groups and could be used for 3- and 5-year prognosis
prediction, highlighting its potential clinical utility.

Association between the risk score and
clinical features of LSCC

To explore risk score could be an independent prognostic factor,
we integrated it with clinical characteristics (age, race, sex, PT, PM,
PN, and tumor stage) in the training set. The expression heatmaps
of CUL9, COMMD2, and WSB2 in the training set and validation
of the neddylation-associated prognostic signature are presented in
Figures 3A,B. Univariate Cox regression and the PH assumption
test were subsequently used to screen for independent prognostic
factors. After excluding missing and uncertain data, we included
115 samples for analysis. The univariate Cox regression results
demonstrated that age, sex, and the risk score were significant (P
< 0.05; Figure 3C). The pH test confirmed that age, sex, and the
risk score met the assumptions (P > 0.05; Figure 3D). Multivariate
regression analysis further confirmed that the risk score was an
independent prognostic factor for LSCC (P < 0.05; Figure 3E).

Moreover, to obtain reliable and convenient data for patient
assessment, a nomogram model was constructed on the basis of the
prognostic gene results to analyze the possible 1-, 3-, and 5-year
survival rates of patients. The slopes of the calibration curves of the
nomogram for 1-, 3-, and 5-year survival were close to 1, indicating
that the constructed nomogram model has a certain degree of
accuracy (Figure 3F). In addition, the prediction efficiency analyses
suggested that all the AUC values were more than 0.6, indicating that
the risk score of this signature performed well in predicting the 1-,
3-, and 5-year OS of LSCC patients (Figure 3G). Moreover, both the
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FIGURE 1
Identification of LSCC-associated NRGs followed by functional enrichment and protein interaction analyses. (A) Volcano plot of LSCC-associated

DEGs. (B) Expression heatmap (B) of the top 20 DEGs between the LSCC and normal groups. (C) The top 10 BP, MF and CC terms of the GO and KEGG
pathways enriched with DEGs. (D) The genes intersecting the DEGs and NRGs. (E) PPI network of NRG-associated DEGs. LSCC, laryngeal squamous
cell carcinoma; DEGs, differentially expressed genes; NRGs, neddylation-related genes; GO, Gene Ontology; BP, biological process; MF, molecular
function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 2

A neddylation-associated prognostic signature could be used for 3- and 5-year overall survival prediction in patients with LSCC. (A) Univariate Cox
regression analysis. (B) Proportional hazards assumption test. (C,D) LASSO regression analysis was used to obtain the risk signature. (E) Kaplan-Meier
(K=M) survival curve of the training set. (F) ROC curve in the training set. (G) K-M survival curve of the validation set. (H) ROC curve in the validation set.
(I) K-M survival curve of the whole sample. (J) ROC curve of the whole sample.

prognostic genes and the nomogram were above the All and None
lines, indicating good clinical benefits (Figure 3H).

GSEA of prognosis-associated gene
signatures in LSCC

The GGI of the prognostic genes was constructed on
the GeneMANIA website. The top 20 correlations of these 3
prognostic genes and the top 7 significantly enriched pathways
were subsequently selected for display (Figure 4A). As shown
in the figure, genes such as CUL9, COMMD?2, and WSB2 were
related to the prognostic genes. Pathways such as the ubiquitin
ligase complex, negative regulation of DNA-binding transcription
factor activity, and the cullin-RING ubiquitin ligase complex were
related to the prognostic genes (Figure 4A). After performing
GSEA on the prognostic genes, both the CUL9 and WSB2 genes
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were enriched in pathways such as the KEGG RIBOSOME
(Figure 4B).

Immune microenvironment analysis

To further understand the differences in immune cells
infiltration in LSCC, ssGSEA was used to analyze the samples in
the training set. The enrichment scores of 28 types of immune cells
were obtained (Figure 5A). We also detected markedly differences
in the immune infiltration percentages of 21 types of immune
cells, including activated B cells, activated CD8 T cells, monocytes,
and type 2 T helper cells, between the high- and low-risk groups
(Figure 5B). Moreover, Spearman correlation analysis was carried
out to further explore the correlations between the differential
immune cells and the prognostic genes. As shown in Figure 5C,

the differential immune cells with the highest correlations were
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GSEA of the prognosis-associated gene signature. (A) GGI network of prognostic genes. (B) GSEA of key genes in the prognosis-associated gene
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Immune microenvironment analysis. (A) Immune infiltration map. (B) Box plot of immune cell infiltration. (C) Correlations among prognostic genes,
differential immune cells and differential immune cells.

activated B cells and activated CD8 T cells (R = 0.69, P < 0.05).  databases. The targeted miRNA-mRNA regulatory network diagram
WSB2 had the strongest negative correlation with activated CD8 T revealed a total of 9 nodes and 8 edges.
cells (R = —0.29, P < 0.05), and CUL9 had the strongest positive To obtain LSCC associated DE-miRNAs, the expression of
association with activated B cells (R = 0.39, P < 0.05). WSB2 specific associated miRNAs was further confirmed using
the HNSC data in ENCORI database. A total of 15 differentially
DE-miRNAs were screened out, and only 3 of them: hsa-miR-
Drug sensitivity a na[ysis and construction 6507-5p, hsa-miR-6744-3p, and hsa-miR-4740-5p were significantly
of a molecular regu[atory network downregulated in HNSC, indicating 3 of them might be the
upstream of WSB2 (Figure 7A). However, only qRT-PCR analysis
Drug sensitivity analysis revealed that among the high- and low- showed that only hsa-miR-6507-5p was significantly downregulated
risk groups, the IC50 values of 16 drugs were significantly greater in ~ in LSCC cell lines (Figure 7B), and the expression of has-miR-6744-
the high-risk group than low-risk group (Figure 6A), and the IC50 ~ 3p and has-miR-4740-5p was hardly to detected due to their low
values of 9 drugs were significantly lower in the high-risk group than ~ expression. Hence, mimics of hsa-miR-6507-5p was transfected into
low-risk group (P < 0.05; Figure 6B). TU138 and LR-TCC-1 and found that overexpression of hsa-miR-
The miRWALK and miRDB databases jointly predicted the  6507-5p mimics could significantly inhibit the expression of WSB2
common miRNAs of the prognostic genes (Figure 6C). Among  (Figures 7C,D). Further luciferase activity reporter assay suggested
them, WSB2 was predicted to have 8 miRNAs in common in the  that overexpression of hsa-miR-6507-5p mimics could markedly
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FIGURE 7

Hsa-miR-6507-5p might be upstream of WSB2. (A) Expression of miRNAs target WSB2 in HNSC in ENCORI database. (B) Expression of miR-6507-5p in
LSCC cell lines. (C) Overexpression of has-miR-6507-5p in LSCC cell lines. (D) Expression of WSB2 in LSCC cell lines after overexpression of
has-miR-6507-5p. (E) The binding sites between WT-WSB2/MUT-WSB2 and hsa-miR-6507-5p. (F) The regulatory relationship between
hsa-miR-6507-5p and WSB2 confirmed using luciferase activity reporter assay. WT, wild type; MUT, mutant; ***P < 0.001.

suppress the luciferase activity of WT-WSB2, but had no effect on
the activity of MUT-WSB2 (Figures 7E,F). Taken together, these
findings suggested that hsa-miR-6507-5p might be the upstream of
WSB2 in LSCC.

Silencing the key gene WSB2 in the gene
signature inhibited the malignant behaviors
of LSCC

According to the aforementioned analyses, COMMD2 and
WSB2 were two prognostic risk factors in the gene signature, and
COMMD?2 had been previously reported in HNSCs (Tai et al,
2023). Thus, the role of WSB2 was explored in the present study.
In comparison with HaCaT cells, expression of WSB2 was markedly
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increased in the TU138 and LR-TCC-1 (Figures 8A,B). Accordingly,
WSB2 was silenced in the TU138 and LR-TCC-1 cell lines via
siRNA. Compared with siNC, siRNA2 and siRNA3 also significantly
decreased the expression of WSB2 in both TU138 and LR-TCC-
1 cells, and siRNA2 had the greatest effect on the inhibition of
WSB2 (Figures 8B,C). Hence, siRNA2 was recorded as si-WSB2
and used for the following cell behavior experiments. The results
of the CCK-8 assay suggested that, compared with siNC, si-WSB
markedly decreased the proliferation ability of TU138 and LR-TCC-
1 cells (Figure 8E). Like proliferation, si-WSB2 markedly inhibited
the growth of TU138 and LR-TCC-1 cells compared with that
in the siNC group (Figures 8F,G). Furthermore, wound healing
and transwell analyses demonstrated that, compared with siNC, si-
WSB2 obviously suppressed the migration and invasion capacity
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of TU138 and LR-TCC-1 cells (Figures 8H-K). These evidences
suggested that silencing WSB2 expression markedly decreases the
malignant behavior of LSCC cells, indicating that WSB2 could act as
an underlying target in LSCC therapy.

Discussion

In this study, 7,089 DEGs were identified through bioinformatics
analysis, and 79 candidate genes were screened by taking the
intersection with NRGs, which in turn led to the construction of a
risk model identifying COMMD2, WSB2 and CUL9 as prognostic
genes. The nomogram of this signature suggested greater accuracy
in forecasting 1-, 3-, and 5-year OS. Hence, it is important to apply
this gene signature in the clinical risk stratification of patients with
LSCC, which might be beneficial for high-risk patients receiving
neddylation-associated inhibitor treatment.

COMMD?2, WSB2 and CUL9 contribute significantly to many
cancers or tumors. Increasing evidence suggests that all COMMD
family members play important roles in tumorigenesis and are
expressed at higher levels in hepatocellular carcinoma (HCC) tissues
thaninnormal tissues. The transcriptlevel of COMMD2 was negatively
correlated with OS. High COMMD?2 expression is associated with
tumor-induced activation of the immune response and immune
infiltration in HCC (Wang et al., 2021). In addition, inhibition of
COMMD2 suppressed the proliferation and migration of BLCA and
uterine corpus endometrial cancer (UCEC) cells (Tai et al., 2023).
WSB2 is an E3 ubiquitin ligase and also crucial in cellular cancers. A
pan-cancer analysis has demonstrated that WSB2 is highly expressed
in various cancers, and overexpression of WSB2 markedly promotes
the proliferation and migration of breast cancer cells, which might
depend on p53 signaling pathway (Deng et al, 2025). In HCC,
elevated WSB2 expression degrades p53 and activates the IGFBP3-
AKT-mTOR-dependent pathway, driving tumor development and
metastasis. Inaddition, WSB2 also mediates the degradation of KLF15,
result in a transcriptional repression of PDLIM2 and activation of NF-
kB signaling pathway to promote development of HCC (Chen et al,
2025). In the present study, we also revealed that WSB2 was a
prognostic risk factor in LSCC and that inhibiting WSB2 expression
could significantly reduce the malignancy of LSCC cells. Moreover,
WSB2 is a novel p53 destabilizer that promotes the polyubiquitination
of K48-conjugated p53 at the Lys291 and Lys292 sites in HCC cells,
leading to p53 proteasomal degradation (Li et al., 2024). In breast
cancer, miR-28-5p inhibited breast cancer cell migration through the
regulation of WSB2 (Ma et al., 2020), whereas in colorectal cancer
(CRC), reduced expression of CUL9 has been reported to inhibit CRC
cell growth (Zhang L. et al., 2024). CUL9, a potential p53-activated
E3 ligase, promotes p53-dependent apoptosis (Pei et al., 2011) and
is involved in immune response modulation in HNSCs (Xu et al.,
2023). In addition, CUL9-mediated ubiquitination and degradation of
Cytc constitute a strategy to alleviate apoptosis under mitochondrial
stress in neurons and cancer cells (Gama et al., 2014). CUL9 also
binds p53 to ubiquitinate heterogenous nuclear ribonucleoprotein C to
inhibiting erastin-induced ferroptosisin CRC (Yangetal.,2022). Yes1 is
considered as a key regulator of CUL9 phosphorylation at Y1505, while
mutation of Yesl or helicobacter-induced CUL9-Y1505 might switch
CULY9 from a tumor-suppressor to an oncogene (Wu et al., 2023).
While COMMD2, WSB2, and CUL9 have been implicated in various
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cancers, their roles in LSCC remain underexplored. Future research
should focus on further verification and in-depth investigation of these
genes in the context of LSCC.

GSEA revealed that the CUL9 and WSB2 genes were enriched in
pathways such as KEGG RIBOSOME, highlighting their potential
role in the regulation of protein synthesis. As a key site of protein
synthesis, the proper function of ribosomes is crucial for cell growth,
proliferation, differentiation and other processes, which are often
abnormal during tumor development. The CUL9 and WSB2 genes
may affect ribosome-related functions in various ways, which in
turn are involved in the development of LSCC. Some genes can
regulate ribosome assembly and function by affecting processes such
as transcription and posttranslational modification of ribosomal
proteins (Woolford and Baserga, 2013). Both CUL9 and WSB2
may regulate ribosomal activity, contributing to the development of
LSCC through alterations in protein synthesis balance (Ruggero and
Pandolfi, 2003).

Furthermore, we identified significant heterogeneity in the
immune microenvironment of LSCC patients across different risk
groups. Notably, significant differences were also identified in the
immune cells infiltration, such as activated B cells and activated
CD8* T cells, were observed. These immune cells play important
roles in tumor progression, with activated CD8" T cells being the
main effector cells of antitumor immunity. Greater infiltration of
activated CD8 T cells is typically correlated with a better prognosis in
various cancers, as they recognize and kill tumor cells (Rosenberg and
Restifo, 2015). In contrast, dysfunctional or low-infiltrating CD8" T
cells may allow tumor cells to evade immune surveillance and promote
metastasis. On the other hand, the role of activated B cells in tumor
immunity is complex. While they can participate in humoral immunity
by producing antibodies, they may also regulate immune responses by
secreting cytokines or interacting with other immune cells (Shalapour
and Karin, 2015). In this study, WSB2 was negatively associated with
activated CD8 T cells, whereas CUL9 was positively associated with
activated B cells, suggesting that these prognostic genes may influence
LSCC prognosis by modulating immune cell function.

WSB2 was negatively associated with activated CD8 T cells,
and CUL9 was positively associated with activated B cells. These
correlations revealed that prognostic genes may affect the prognosis
of LSCC patients via modulating immune cell function. Certain
genes can influence CD8 T-cell function by regulating the expression
of immune checkpoint molecules or cytokines (Pardoll, 2012). In
melanoma, aberrant expression of a gene leads to the upregulation
of immune checkpoint molecules, which inhibits the activation and
killing function of CD8" T cells and promotes the immune escape
of tumor cells (Sade-Feldman et al., 2017). Owing to the positive
interaction between CUL9 and activated B cells, CUL9 may enhance
the humoral immune response by promoting processes such as
activation, proliferation, or antibody secretion of activated B cells,
which may affect tumor progression. However, relatively few studies
have investigated the regulation of B-cell function by CUL9, and the
specific molecular mechanisms involved need to be further explored.

Additionally, we identified specific miRNAs that may regulate
WSB2 and COMMD?2, including hsa-miR-185-5p, hsa-miR-4644,
and hsa-miR-4306. These miRNAs are involved in the regulation of
multiple cancers and may play crucial roles in the pathogenesis of
LSCC by interacting with these genes. For example, hsa-miR-185-5p
is a tumor suppressor in endometrial cancer (Oropeza-de Lara et al.,
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FIGURE 8

Silencing WSB2 inhibited the malignancy of LSCC. (A) Expression variation of WSB2 in LSCC. (B) Protein expression and quantification result of WSB2 in
LSCC cell lines. (C) Confirmation of si-WSB2 via quantitative real-time PCR. (D) Confirmation of si-WSB2 via western blotting. (E) Proliferation of LSCC
cells was detected via a CCK-8 assay. (F) Quantification of colony formation. (G) Colony formation ability of LSCC cells. (H) Migration of LSCC cells
determined via wound healing. (I) Quantification of the wound healing assay results. (3) Invasion ability of LSCC cells determined via a transwell assay.
(K) Quantification of the transwell assay results. *P < 0.05, **P < 0.01, and ***P < 0.001.
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2024) and colon cancer, where it promotes migration and invasion by
regulating IGF2 (Zhuang et al., 2020). In breast cancer, miR-185-5p
inhibited cell proliferation by inducing apoptosis (Degerli et al., 2020).
Similarly, miR-4644 has potential as a biomarker for pancreaticobiliary
cancer (Machida et al., 2016) and bladder cancer treatment (Yan et al.,
2020), whereas miR-4306 inhibits the proliferation of esophageal
squamous cell carcinoma cells (Yang et al, 2021). These findings
suggest that these miRNAs may influence LSCC progression by
regulating tumor cell metabolism or immune microenvironment
interactions. In this study, we had identified that hsa-miR-6705-5p
might be served as a tumor suppressor in LSCC via downregulating
WSB. A previous study suggested that lower expression of hsa-miR-
6705-5p was markedly correlated with the poor prognosis of cervical
cancer, which could inhibit the progression of cervical cancer via
targeting CDK1 (Mei et al., 2020). Besides, hsa-miR-6507-5p was
significantly downregulated in chronic sinusitis with nasal polyps,
and might serve as a protective factor in the development nasal
polyps via targeting NCAPG2 and PRC1 (Sun et al,, 2022). These
findings suggested that it is of significance to further clarify the role of
hsa-miR-6507-5p/WSB2 in LSCC.

This study inevitably suffered some limitations. First, most of the
results in this study were generated based on bioinformatic analysis
but lack of validations due to different reasons, this might weak the
reliability of conclusion. Second, although we had identified validate
the role of WSB2 in LSCC, the role of WSB2 in neddylation of
LSCC remains not further confirmed. Thus, a protein modification
omics analysis will be performed to explore the downstream targets
and underlying mechanisms of WSB2 in LSCC in our following
investigation. Despite of these limitations, this study also provided
us some direct evidences on the role of neddylation in LSCC.

Conclusion

In this study, we successfully established an LSCC risk model
based on COMMD?2, WSB2, and CUL9. This model demonstrated
good predictive efficacy in the training set, validation set and
whole sample. Moreover, the risk score and sex were identified as
independent prognostic factors, and the constructed nomogram
had relatively high accuracy and favorable clinical benefits.
Moreover, at the biological level, the enrichment characteristics
of the DEGs were deeply dissected, the differences in immune
cell infiltration between the high- and low-risk groups in the
immune microenvironment and their correlations with prognostic
genes were clarified, the differences in drug sensitivity were
revealed, a molecular regulatory network was established, and
diseases with relatively strong associations with key genes were
identified. These findings may expand our understanding of the
research and treatment of LSCC patients and provide new targets
for LSCC.
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