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Objective: Neddylation is a crucial posttranscriptional modification involved 
in tumor progression. This study aimed to explore neddylation-associated 
biomarkers and the underlying mechanism in laryngeal squamous cell 
carcinoma (LSCC).
Methods: This study evaluated the expression of neddylation-related genes 
(NRGs) retrieved from the Reactome and TCGA databases to conduct a series of 
analyses and constructed an LSCC prognostic risk model followed by functional 
enrichment and mechanism prediction. Moreover, the key genes involved in this 
signature were also confirmed in an in vitro cell model.
Results: A total of 79 NRGs were differentially expressed in LSCC (P.adj 
<0.05). A prognostic gene signature was constructed, and COMMD2, WSB2
and CUL9 were determined to be prognostic genes. The nomogram indicated 
that this gene signature performed well in forecasting the 1-, 3-, and 5-year 
overall survival of LSCC patients. The CUL9 and WSB2 genes were enriched in 
RIBOSOME, and silencing WSB2 significantly inhibited the malignant behaviors 
of LSCC cells. In this gene signature, patients could be markedly distinguished 
into high- and low-risk groups characterized by different immune infiltration and 
drug sensitivity between them. WSB2 and COMMD2 jointly predicted that hsa-
miR-185-5p, hsa-miR-4644 and hsa-miR-4306 were the common microRNAs 
(miRNAs) and regulatory networks.
Conclusion: This study successfully established a neddylation-associated 
prognostic risk model for LSCC and revealed that COMMD2, WSB2, and CUL9 
could act as new therapeutic targets, which might provide valuable information 
for the research and treatment of LSCC.
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Introduction

Laryngeal squamous cell carcinoma (LSCC), mostly arising from the laryngeal mucosal 
epithelium is the 2nd most frequent cancer in affecting the head and neck. The clinical 
manifestations of LSCC typically include dyspnea and dysphagia. Factors such as human 
papillomavirus infection and alcohol abuse contribute to the rapid progression of LSCC,
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resulting in persistently high morbidity and mortality rates 
(Xiang et al., 2021; Li et al., 2022). In 2018, there were 177,422 
newly reported cases of LSCC, with 154,977 cases in males and 
22,445 in females. The total number of deaths that year was 
94,771, with 68,841 more males than females. Even worse, there 
were 180,000 new cases and nearly 100,000 deaths from LSCC 
worldwide by 2020 (Li et al., 2022; Siegel et al., 2019; Bradford et al., 
2020; Bray et al., 2018). Current treatment modalities for LSCC 
include chemotherapy, radiotherapy, and conservative surgical 
interventions. Recent advancements have introduced enhanced 
immunotherapies and targeted therapies, including platinum-based 
chemotherapeutic agents, which are commonly used in LSCC 
management (Almadori et al., 2005; Ahn et al., 2022; Manevich et al., 
2022; Cramer et al., 2019). However, despite these therapeutic 
developments, early diagnosis, survival rates, and patient prognoses 
for LSCC remain suboptimal. These persistent challenges can 
be attributed to several factors, such as local invasion, high 
metastatic potential, chemotherapy resistance, and the lack of 
effective biomarkers that elucidate the molecular mechanisms of 
LSCC (Gao et al., 2020; Xue et al., 2019). Consequently, there is an 
urgent need for significant improvements in both the treatment and 
prognosis of LSCC.

Neddylation, a novel biological process of protein 
posttranslational modification, involves a three-step enzyme-
mediated reaction that covalently attaches the ubiquitin-
like molecule NEDD8 (neuronal precursor cell-expressed 
developmentally downregulated protein 8) to its substrates, 
primarily members of the cullin protein family (Enchev et al., 
2015; Mao et al., 2023; Zhang S. et al., 2024). Neddylation 
overactivation has been shown to lead to the degradation of 
tumor suppressor factors, which can induce apoptosis and 
contribute to carcinogenesis. This mechanism is critical for 
regulating various biological functions, particularly within the 
tumor microenvironment (Gonzalez-Rellan et al., 2023; He et al., 
2023; He et al., 2022; Zhou et al., 2019). MLN4924 (pevonedistat), 
a neddylation inhibitor, suppresses the progression of head 
and neck squamous cell carcinoma (HNSC) and sensitizes the 
carcinoma cells to ionizing radiation (Vanderdys et al., 2018). 
Combination of MLN4924 further enhances the chemotherapeutic 
efficacy of (S)-10-hydroxycamptothecin (10-HCPT) in HNSC via 
activating NFKB1 pathway (Gu et al., 2023). Neural precursor cell 
expressed developmentally downregulated protein 9 (NEDD8) 
is an ubiquitin-like protein to mediate covalently conjugation 
to a lysine residue of substrate proteins during neddylation. It 
is reported that MLN4924 inhibits the progression of HNSC 
via NEDD8/CUL4/TSC2 axis mediating inactivation of mTOR 
signaling pathway (Jiang et al., 2024). Targeting inhibition of 
CUL4A synergizes of carcinoma to cisplatin via DDB2-dependent 
pathway, thereby promoting the long-term prognosis (Jones et al., 
2022). These evidences suggested that targeting neddylation 
represents a promising strategy for HNSC treatment. However, 
the role of neddylation-related biomarkers in LSCC was still
uncertain.

In the current study, we employed bioinformatics approaches, 
including transcriptome sequencing data, to identify biomarkers 
associated with neddylation in LSCC, followed by exploration of 
potential regulatory pathways and mechanisms. In addition, the 
bifunctional role of key biomarkers was validated via in vitro assays. 

These analyses provide insights into the diagnosis, treatment, and 
prognosis of LSCC.

Materials and methods

Data sources

Pathway enrichment analysis was performed using the 
Reactome database (https://reactome.org/). The ‘Pathway Browser’ 
for Homo sapiens was queried with the keyword “neddylation,” 
and results were filtered by selecting the “Molecules” category to 
retrieve neddylation-related pathways and molecules. All pathways 
and reactions identified through this search underwent manual 
review and screening to ensure direct relevance to the neddylation 
process. A total of 246 neddylation process associated genes 
were downloaded from the Reactome database on 5 July 2024. 
These carefully curated genes were designated as neddylation-
related genes (NRGs). A total of 115 LSCC patients contained 
in the HNSC dataset of The Cancer Genome Atlas (TCGA) 
were screened in this study. Then, the RNA-Seq data along with 
the patient information of them were downloaded in FPKM 
format from the official GDC Data Portal using TCGAbiolinks 
and named TCGA-LSCC, including the transcriptional data, 
somatic mutation data, clinical characteristics and survival
information. 

Differential expression gene analysis

In the TCGA-LSCC dataset, differential analysis between the 
LSCC tumor (n = 12) and normal samples (n = 115) was performed 
using the “DESeq2” (v 1.46.0) (Love et al., 2014) package in R 
software (v 4.2.2). The differentially expressed genes (DEGs) were 
selected with the thresholds of |log2fold change (FC)| >0.5 and P.adj 
(Benjamini–Hochberg method) <0.05. Moreover, DEGs and the top 
10 most significantly upregulated and downregulated genes were 
visualized by a volcano plot and heatmap using “ggplot2” in R, 
respectively. 

DEG enrichment and protein‒protein 
interaction (PPI) network analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses on the DEGs were 
conducted using clusterProfiler (Yu et al., 2012) packages in R to 
identify the common functions and related pathways of the DEGs. 
The R package “ggplot2” was used to draw bar charts of the top 
10 biological processes (BP), molecular functions (MF), cellular 
components (CC), and KEGG pathways significantly enriched 
by DEGs with a threshold of P.adj <0.05 (Benjamini–Hochberg 
method). The “ggvenn” (v 0.1.10) package in R was employed to 
screen and draw the gene intersection diagram. Finally, Cytoscape 
(v 3.9.1) (Shannon et al., 2003) was utilized to visualized the PPI 
network diagram (Interaction score ≥0.4). 
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Construction of the risk score model

Based on the calculated risk scores, LSCC associated risk model 
was established via univariate Cox and least absolute shrinkage 
and selection operator (LASSO) regression analyses. The survival 
(v 0.5.0) tool was used for univariate analysis, and the “glmnet” (v 
4.1.8) tool was applied for LASSO regression analysis. The parameter 
family was set as Cox (HR ≠ 1, p > 0.05) to implement LASSO logistic 
regression. The graphs of gene coefficients and the error graph of 10-
fold cross-validation were obtained by selecting strongly correlated 
features. When the model error was minimized, the optimal model 
and the corresponding lambda (λ) value were determined. 

Evaluation and validation of the prognostic 
risk signature

To evaluate and verify the prognostic risk signature, we first 
computed the risk score via the following equation:

Risk score =
n

∑
(i=1)

Coe f(i) × expr(i)

where Coef  denotes the risk coefficient associated with each 
gene, while expr signifies the expression level of each gene. The 
“ggplot2” (Gustavsson et al., 2022) in R was employed to depict the 
survival curves and survival status of patients with high- and low-
risk. The “survminer” package was used to depict survival curves 
for overall survival (OS) between the high- and low-risk groups (p 
< 0.05). 

Risk signature evaluation

Based on the risk signatures obtained from aforementioned, 
the “survivalROC” package (v 1.0.3.1) was used to draw receiver 
operating characteristic (ROC) curves of 1-, 3- and 5-year survival 
time point. The ROC curve plots two parameters: the true positive 
rate and the false positive rate. The area under the curve is called 
the area under the curve (AUC), which is used to represent the 
prediction accuracy and sensitivity. The higher the AUC value 
is, that is, the larger the area under the curve is, the higher the 
prediction accuracy. According to the results of the prognostic 
genes, the R package “rms” (v 7.0.0) (https://github.com/harrelfe/
rm) was utilized to build a nomogram for the 1-, 3-, and 5-
year survival rates of LSCC patients. In addition, the “timeROC” 
package (v 0.4) (Blanche et al., 2013) was utilized to draw the 
corresponding ROC curves to assess the prognostic ability. The 
“ggDCA” R package (v 1.2) was used for decision curve analysis 
(DCA) to evaluate the clinical benefit of this model. 

Gene set enrichment analysis (GSEA)

The gene‒gene interaction network (GGI) of the prognostic 
genes was established via the GeneMANIA website. The 
“c2.cp.kegg.v2023.1.Hs.symbols.gmt” gene set downloaded from the 
MSigDB database was used as the background gene set. Spearman 

correlation analysis was performed between each prognostic gene 
and all the other genes to obtain correlation coefficients (p < 0.05). 
These coefficients were then sorted from small to large. On the basis 
of the sorting results, the top 5 genes were selected for display, and 
GSEA was performed on the prognostic genes. 

Immune microenvironment analysis

“GSVA” (Hänzelmann et al., 2013) package (v 2.0.1) in R 
was used to compute the infiltration condition of immune cells 
in LSCC patients in the training set on the basis of the single-
sample GSEA (ssGSEA) algorithm. A heatmap was drawn to observe 
the distribution proportions of 28 types of immune cells between 
different groups. ssGSEA was used to estimate the samples in 
the training set. With the immune-related genes provided in the 
article by Charoentong et al. (2017) as the background gene set, 
enrichment scores of immune cells were obtained, and the Wilcoxon 
rank-sum test was performed (p < 0.05). Spearman correlation 
analysis was carried out, and the results with a correlation of |R| > 
0.3 and p < 0.05 were considered to have a significant correlation. 

Drug sensitivity exploration

To further evaluate the associations between the high- 
and low-risk groups and the response to chemotherapy drugs, 
in the TCGA-LSCC training set patients, the R package 
“pRRophetic” (v 0.5) (Geeleher et al., 2014) was used to calculate 
the IC50 values of 138 common chemotherapies and molecularly 
targeted drugs for all patients. IC50 is the half-maximal inhibitory 
concentration. Generally, the IC50 is used to measure the 
cytotoxicity of a drug or the degree of drug tolerance of the cell. 
The lower the IC50 is, the stronger the performance of the drug (p 
< 0.05). 

Molecular regulatory network analysis

To explore the microRNAs (miRNAs) that regulate 
the prognostic genes, the miRTarBase database (https://
mirtarbase.cuhk.edu.cn/) were applied to jointly forecast the 
common miRNAs of the prognostic genes. Then, the targeted 
miRNA‒mRNA regulatory network was visualized by Cytoscape. 
WSB2 specific associated miRNAs expression was validated using 
the ENCORI database in HNSC (https://rnasysu.com/encori/
panMirDiffExp.php) on 10 September 2025. The expression of 
downregulated miRNAs in HNSC was verified in LSCC cells lines 
with HaCaT as control. 

Cell culture and transfection

The human LSCC cell line TU-138 and immortalized 
epidermal HaCaT cell line were acquired from Xiamen Immocell 
Biotechnology Co., Ltd. (Xiamen, Fujian, China), and the LSCC cell 
line TR-LCC-1 was obtained from Wuhan Pricella Biotechnology 
Co., Ltd. (Wuhan, Hubei, China). Specifically, HaCaT cells were 
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maintained in DMEM, and TU-138 and TR-LCC-1 cells were 
maintained in RPMI 1640 (Cat. No. IMC-202-2; Xiamen Immocell 
Biotechnology Co., Ltd.) at 37 °C with 5% CO2 in the atmosphere. 
All media were supplemented with 10% fetal bovine serum (FBS; 
Cat. No. S615JY; Shanghai Basal Media, Shanghai, China) and 
1% penicillin‒streptomycin. For the gene silencing experiments, 
siRNAs were designed using DSIR (http://biodev.extra.cea.fr/
DSIR/DSIR.html). The mimic and negative control (NC) were 
designed according to the sequence provided in miRDB (https://
mirdb.org/cgi-bin/target_detail.cgi?targetID=3460921). The details 
of sequences were summarized in Supplementary Table S1, and 
produced by GenePharma (Shanghai, China) and transfected 
into LSCC cell lines via Lipofectamine 3000 (Cat. No. L3000015; 
Invitrogen, Carlsbad, CA, United States) according to the 
manufacturer’s protocol. Transfection for 48 h, the cells were 
collected for the experiment analysis. 

Luciferase reporter assay

The wildtype (WT) and mutant (MUT) WSB2 3′UTR sequences 
were synthesized and cloned downstream of the luciferase reporter 
gene by Beijing Tsingke Biotech Co., Ltd. (Beijing, China). Then, 
these reporter plasmids were co-transfected with either hsa-miR-
6507 mimic or NC in TU138 and TR-LCC-1 cells, respectively. After 
48 h, the luciferase activity was measured using the Dual Luciferase 
Assay Kit (Cat. No. E2920; Promega, United States) following the 
manufacturer’s protocol. 

Cell viability

Cell viability was estimated via the CCK-8 assay. In detail, cells 
were transfected with siRNA and inoculated into 96-well plates with 
5.0 × 103 per well density. After culturing, 10 μL of CCK-8 solution 
(Cat. No. RM02823; Abclonal, Wuhan, Hubei, China) was appended 
to each well at 24, 48, and 72 h and hatched at 37 °C for 1 h. Then, the 
optimal density of each well was detected at 450 nm via a microplate 
reader (Thermo Fisher Scientific, United States). 

Colony formation assay

The proliferation of the cells was determined via colony 
formation analysis. Briefly, cells were seeded into 6-well plates after 
transfection at a density of 500 per well. The cells were subsequently 
cultured at 37 °C for 14 days, after which the medium was removed 
every 2 days. After culture, the medium was carefully removed, and 
the cells were immobilized with 4% paraformaldehyde (PFA; Cat. 
No. G1101-500ML; Servicebio, Wuhan, Hubei, China) and stained 
with 0.5% crystal violet (Cat. No. G1014-50ML; Servicebio). Finally, 
the staining results were imaged and calculated for further analysis. 

Wound healing assay

The migration of cells was assessed via a wound healing assay. 
Briefly, cells were seeded into a 6-well plate and maintained at 37 °C 

overnight. When the confluency reached more than 80%, a scratch 
was made on the cell monolayer via a 200 μL pipette. After washing 
with PBS to remove the suspended cells, a fresh medium was added 
and cultured for 48 h. During culture, the cells were pictured at 0 
and 48 h to record the wound distance. 

Transwell assay

After transfection, cells were inoculated into the upper part 
of a transwell plate coated with 10% Matrigel in RPMI 1640 
medium. Moreover, 600 μL of RPMI supplemented with 20% FBS 
was added to the lower chamber. After 48 h of coculture, the 
transwell membrane was immobilized with 4% PFA and stained 
with 0.5% crystal violet (Servicebio). The staining results were then 
imaged under an inverted microscope (Leica), and five random 
fields of view were counted for statistical analysis. 

Quantitative real-time PCR (qRT‒PCR)

After transfection, total RNA was isolated from the cells with 
RNAiso Easy (Cat. No. TCH022; Takara, Dalian, China). After 
quantification with a Nanodrop 2000 (Thermo, United States), 2 μg 
of total RNA was subjected to cDNA synthesis via the PrimeScript 
RT reagent Kit (Cat. No. RR047Q; Takara). Then, amplification 
of WSB2 and GAPDH was performed via SYBR Green (Cat. No. 
RK21203; Abclonal), and the relative expression of WSB2 was 
computed via the 2−ΔΔCt method. The primers were designed and 
summarized in Supplementary Table S2. 

Western blotting

Proteins in cell samples were extracted using the RIPA lysis 
buffer (Cat. No. P0013B, Beyotime, Shanghai, China) supplemented 
with protease inhibitor cocktail (Cat. No. RM02916, Abclonal). After 
quantified using the BCA method (Cat. No. P0009, Beyotime), 25 μg 
of each sample was subjected for 10% SDS-PAGE and transferred 
onto polyvinylidene fluoride membrane (Cat. No. HVHP01300, 
Millipore, MA, United States). Following this, membrane was 
blocked with 5% skim milk for 30 min at room temperature, 
and then incubated with anti-WSB2 (Cat. No. D123580, Sangon, 
Shanghai, China) or anti-GAPDH (Cat. No. A19056, Abclonal) 
antibody at room temperature for 1 h. Then, membrane was 
incubated with anti-rabbit antibody (Cat. No. AS014, Abclonal) 
at room temperature for 1 h and visualized using a high sensitive 
ECL luminescence reagent (Cat. No. C500044, Sangon). Finally, the 
detected protein bands were quantified using ImageJ (v 1.54i, NIH, 
Bethesda, MD, United States), and compared between groups. 

Statistical analysis

Statistical analyses were performed via R Studio. The Wilcoxon 
test was used to assess group variance, whereas Spearman 
correlation analysis was applied to explore the relationships between 
biomarkers and immune cells. The experiment data was analyzed 
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using the GraphPad Prism (v 9.5.0, GraphPad Software lnc., Boston, 
MA, United States). All the experiments were performed in triplicate 
independently, and presented with mean ± standard deviation. P < 
0.05 was considered statistically significant.

Results

Identification of NRG-related DEGs 
between LSCC and normal tissues

Comparison analyses revealed a total of 7,089 DEGs between 
LSCC and normal tissues, comprising 4,377 upregulated genes and 
2,712 downregulated genes (Figure 1A). Hierarchical clustering 
of the 20 most significant DEGs revealed distinct intergroup 
patterns in the expression profiles (Figure 1B). Additionally, 
systematic annotation of these DEGs through GO and KEGG 
pathway analyses revealed significant functional associations. 
A graphical representation of the top 10 enriched terms across 
biological processes (866 terms), cellular components (131 terms), 
and molecular functions (80 terms) is provided (Figure 1C; 
Supplementary Table S1), with primary enrichment observed 
in extracellular matrix organization, structural constituents of 
extracellular matrices, and collagen-associated compartments 
(P.adj <0.05). Concomitant KEGG pathway analysis revealed 
that 33 signaling cascades, particularly those governing muscular 
cytoskeletal dynamics, calcium-mediated signal transduction, and 
extracellular matrix-receptor crosstalk, were statistically significant 
(P.adj <0.05) (Figure 1C). To obtain LSCC associated neddylation 
genes, a systematic overlap analysis was performed between 246 
neddylation-related genes (NRGs) derived from the Reactome 
database and 7,089 DEGs associated with LSCC, identifying 
79 NRG-associated DEGs with potential regulatory significance 
(Figure 1D). A PPI network was subsequently constructed via the 
STRING database (interaction score ≥0.4) to investigate potential 
functional interactions among the 79 candidate genes, identifying 
732 significant interactions among the 79 protein nodes (Figure 1E).

Identification of a neddylation-related 
prognostic signature in LSCC patients

Firstly, we randomly divided the 115 disease samples in the 
TCGA-LSCC dataset into a training set and a validation set in a 
7:3 ratio. Specifically, 7 represents the training set with 81 samples, 
which were used for the construction of the prognostic model, 
while 3 represents the validation set with 34 samples, which were 
used for the validation of the prognostic model. Next, our study 
integrated 79 candidate gene expression profiles with OS data to 
construct a neddylation-related prognostic signature in the training 
cohort (n = 81). Initially, univariate Cox regression identified three 
survival-associated genes (P < 0.05) from among the 79 candidate 
neddylation-related DEGs, with COMMD2 and WSB2 exhibiting 
hazard ratios (HRs) >1 (prognostic risk factors) and CUL9 showing 
an HR < 1 (prognostic protective factor) (Figure 2A). To ensure 
the robustness of the identified prognostic genes and minimize 
false positives, proportional hazards (PH) assumption testing 
was conducted. All three genes demonstrated stable associations 

with survival (P > 0.05; Figure 2B), supporting their validity. 
Subsequently, LASSO regression analysis at log (λ.min) = −5.548 
yielded a three-gene prognostic signature comprising COMMD2, 
WSB2, and CUL9 (Figures 2C,D).

According to this three-gene signature, the prognostic risk score 
of each LSCC patient in the training set was calculated, and the 
optimal cutoff value (risk score = 0.8155) was determined via ROC 
analysis. With this cutoff value, patients were stratified into high-risk 
(n = 49) and low-risk (n = 32) groups. The survival curve and status 
analyses suggested that the risk scores distinguished the low- and 
high-risk groups in the training set (Supplementary Figure S1A), 
validation set (Supplementary Figure S1B), and overall set 
(Supplementary Figure S1C). K‒M analysis revealed that LSCC 
patients in the high-risk group had significantly poor OS than 
the low-risk group (P = 0.00036; Figure 2E), a finding that 
was consistently validated in the validation cohort (P = 0.0095; 
Figure 2G). Additionally, ROC analysis was performed to evaulate 
the predictive ability of the prognostic signature, yielding AUC 
values of 0.728 (3-year) and 0.726 (5-year) in the training set 
(Figure 2F) and 0.767 (3-year) and 0.848 (5-year) in the validation 
set, confirming the model’s good performance (Figure 2H). Finally, 
the three-NRG prognostic signature was validated in the overall 
cohort, which revealed significantly worse OS in high-risk group 
than in low-risk group (P < 0.05; Figure 2I). The AUC values 
for the 3-year and 5-year ROC curves were 0.743 and 0.777, 
respectively (Figure 2J). These findings demonstrated that the three-
NRG prognostic signature effectively stratified LSCC patients into 
distinct risk groups and could be used for 3- and 5-year prognosis 
prediction, highlighting its potential clinical utility. 

Association between the risk score and 
clinical features of LSCC

To explore risk score could be an independent prognostic factor, 
we integrated it with clinical characteristics (age, race, sex, PT, PM, 
PN, and tumor stage) in the training set. The expression heatmaps 
of CUL9, COMMD2, and WSB2 in the training set and validation 
of the neddylation-associated prognostic signature are presented in 
Figures 3A,B. Univariate Cox regression and the PH assumption 
test were subsequently used to screen for independent prognostic 
factors. After excluding missing and uncertain data, we included 
115 samples for analysis. The univariate Cox regression results 
demonstrated that age, sex, and the risk score were significant (P
< 0.05; Figure 3C). The pH test confirmed that age, sex, and the 
risk score met the assumptions (P > 0.05; Figure 3D). Multivariate 
regression analysis further confirmed that the risk score was an 
independent prognostic factor for LSCC (P < 0.05; Figure 3E).

Moreover, to obtain reliable and convenient data for patient 
assessment, a nomogram model was constructed on the basis of the 
prognostic gene results to analyze the possible 1-, 3-, and 5-year 
survival rates of patients. The slopes of the calibration curves of the 
nomogram for 1-, 3-, and 5-year survival were close to 1, indicating 
that the constructed nomogram model has a certain degree of 
accuracy (Figure 3F). In addition, the prediction efficiency analyses 
suggested that all the AUC values were more than 0.6, indicating that 
the risk score of this signature performed well in predicting the 1-, 
3-, and 5-year OS of LSCC patients (Figure 3G). Moreover, both the 
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FIGURE 1
Identification of LSCC-associated NRGs followed by functional enrichment and protein interaction analyses. (A) Volcano plot of LSCC-associated 
DEGs. (B) Expression heatmap (B) of the top 20 DEGs between the LSCC and normal groups. (C) The top 10 BP, MF and CC terms of the GO and KEGG 
pathways enriched with DEGs. (D) The genes intersecting the DEGs and NRGs. (E) PPI network of NRG-associated DEGs. LSCC, laryngeal squamous 
cell carcinoma; DEGs, differentially expressed genes; NRGs, neddylation-related genes; GO, Gene Ontology; BP, biological process; MF, molecular 
function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1654064
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wang et al. 10.3389/fmolb.2025.1654064

FIGURE 2
A neddylation-associated prognostic signature could be used for 3- and 5-year overall survival prediction in patients with LSCC. (A) Univariate Cox 
regression analysis. (B) Proportional hazards assumption test. (C,D) LASSO regression analysis was used to obtain the risk signature. (E) Kaplan‒Meier 
(K–M) survival curve of the training set. (F) ROC curve in the training set. (G) K‒M survival curve of the validation set. (H) ROC curve in the validation set.
(I) K‒M survival curve of the whole sample. (J) ROC curve of the whole sample.

prognostic genes and the nomogram were above the All and None 
lines, indicating good clinical benefits (Figure 3H).

GSEA of prognosis-associated gene 
signatures in LSCC

The GGI of the prognostic genes was constructed on 
the GeneMANIA website. The top 20 correlations of these 3 
prognostic genes and the top 7 significantly enriched pathways 
were subsequently selected for display (Figure 4A). As shown 
in the figure, genes such as CUL9, COMMD2, and WSB2 were 
related to the prognostic genes. Pathways such as the ubiquitin 
ligase complex, negative regulation of DNA-binding transcription 
factor activity, and the cullin-RING ubiquitin ligase complex were 
related to the prognostic genes (Figure 4A). After performing 
GSEA on the prognostic genes, both the CUL9 and WSB2 genes 

were enriched in pathways such as the KEGG RIBOSOME
(Figure 4B). 

Immune microenvironment analysis

To further understand the differences in immune cells 
infiltration in LSCC, ssGSEA was used to analyze the samples in 
the training set. The enrichment scores of 28 types of immune cells 
were obtained (Figure 5A). We also detected markedly differences 
in the immune infiltration percentages of 21 types of immune 
cells, including activated B cells, activated CD8 T cells, monocytes, 
and type 2 T helper cells, between the high- and low-risk groups 
(Figure 5B). Moreover, Spearman correlation analysis was carried 
out to further explore the correlations between the differential 
immune cells and the prognostic genes. As shown in Figure 5C, 
the differential immune cells with the highest correlations were 
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FIGURE 3
Association analysis between the risk score and clinical features of LSCC patients. (A) Expression of prognostic genes between groups of training set.
(B) Expression levels of prognostic genes between groups in the validation set. (C) Univariate Cox regression analysis. (D) pH test analysis. (E)
Prognostic factors screened by multivariate Cox analysis. (F) Nomogram of risk score in predicting OS. (G) ROC curves of risk score in predicting OS.
(H) DCA curves of gender, riskscore, nomogram, and combined of them in predicting OS.

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1654064
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wang et al. 10.3389/fmolb.2025.1654064

FIGURE 4
GSEA of the prognosis-associated gene signature. (A) GGI network of prognostic genes. (B) GSEA of key genes in the prognosis-associated gene 
signature.
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FIGURE 5
Immune microenvironment analysis. (A) Immune infiltration map. (B) Box plot of immune cell infiltration. (C) Correlations among prognostic genes, 
differential immune cells and differential immune cells.

activated B cells and activated CD8 T cells (R = 0.69, P < 0.05). 
WSB2 had the strongest negative correlation with activated CD8 T 
cells (R = −0.29, P < 0.05), and CUL9 had the strongest positive 
association with activated B cells (R = 0.39, P < 0.05). 

Drug sensitivity analysis and construction 
of a molecular regulatory network

Drug sensitivity analysis revealed that among the high- and low-
risk groups, the IC50 values of 16 drugs were significantly greater in 
the high-risk group than low-risk group (Figure 6A), and the IC50 
values of 9 drugs were significantly lower in the high-risk group than 
low-risk group (P < 0.05; Figure 6B).

The miRWALK and miRDB databases jointly predicted the 
common miRNAs of the prognostic genes (Figure 6C). Among 
them, WSB2 was predicted to have 8 miRNAs in common in the 

databases. The targeted miRNA‒mRNA regulatory network diagram 
revealed a total of 9 nodes and 8 edges.

To obtain LSCC associated DE-miRNAs, the expression of 
WSB2 specific associated miRNAs was further confirmed using 
the HNSC data in ENCORI database. A total of 15 differentially 
DE-miRNAs were screened out, and only 3 of them: hsa-miR-
6507-5p, hsa-miR-6744-3p, and hsa-miR-4740-5p were significantly 
downregulated in HNSC, indicating 3 of them might be the 
upstream of WSB2 (Figure 7A). However, only qRT-PCR analysis 
showed that only hsa-miR-6507-5p was significantly downregulated 
in LSCC cell lines (Figure 7B), and the expression of has-miR-6744-
3p and has-miR-4740-5p was hardly to detected due to their low 
expression. Hence, mimics of hsa-miR-6507-5p was transfected into 
TU138 and LR-TCC-1 and found that overexpression of hsa-miR-
6507-5p mimics could significantly inhibit the expression of WSB2 
(Figures 7C,D). Further luciferase activity reporter assay suggested 
that overexpression of hsa-miR-6507-5p mimics could markedly 
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FIGURE 6
Immune microenvironment analysis. (A) IC50 sensitivity analysis of chemotherapy drugs among the high-risk groups. (B) IC50 sensitivity analysis of 
chemotherapy drugs among the low-risk groups. (C) miRNA‒mRNA regulatory network.
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FIGURE 7
Hsa-miR-6507-5p might be upstream of WSB2. (A) Expression of miRNAs target WSB2 in HNSC in ENCORI database. (B) Expression of miR-6507-5p in 
LSCC cell lines. (C) Overexpression of has-miR-6507-5p in LSCC cell lines. (D) Expression of WSB2 in LSCC cell lines after overexpression of 
has-miR-6507-5p. (E) The binding sites between WT-WSB2/MUT-WSB2 and hsa-miR-6507-5p. (F) The regulatory relationship between 
hsa-miR-6507-5p and WSB2 confirmed using luciferase activity reporter assay. WT, wild type; MUT, mutant; ∗∗∗P < 0.001.

suppress the luciferase activity of WT-WSB2, but had no effect on 
the activity of MUT-WSB2 (Figures 7E,F). Taken together, these 
findings suggested that hsa-miR-6507-5p might be the upstream of 
WSB2 in LSCC.

Silencing the key gene WSB2 in the gene 
signature inhibited the malignant behaviors 
of LSCC

According to the aforementioned analyses, COMMD2 and 
WSB2 were two prognostic risk factors in the gene signature, and 
COMMD2 had been previously reported in HNSCs (Tai et al., 
2023). Thus, the role of WSB2 was explored in the present study. 
In comparison with HaCaT cells, expression of WSB2 was markedly 

increased in the TU138 and LR-TCC-1 (Figures 8A,B). Accordingly, 
WSB2 was silenced in the TU138 and LR-TCC-1 cell lines via 
siRNA. Compared with siNC, siRNA2 and siRNA3 also significantly 
decreased the expression of WSB2 in both TU138 and LR-TCC-
1 cells, and siRNA2 had the greatest effect on the inhibition of 
WSB2 (Figures 8B,C). Hence, siRNA2 was recorded as si-WSB2 
and used for the following cell behavior experiments. The results 
of the CCK-8 assay suggested that, compared with siNC, si-WSB 
markedly decreased the proliferation ability of TU138 and LR-TCC-
1 cells (Figure 8E). Like proliferation, si-WSB2 markedly inhibited 
the growth of TU138 and LR-TCC-1 cells compared with that 
in the siNC group (Figures 8F,G). Furthermore, wound healing 
and transwell analyses demonstrated that, compared with siNC, si-
WSB2 obviously suppressed the migration and invasion capacity 
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of TU138 and LR-TCC-1 cells (Figures 8H–K). These evidences 
suggested that silencing WSB2 expression markedly decreases the 
malignant behavior of LSCC cells, indicating that WSB2 could act as 
an underlying target in LSCC therapy.

Discussion

In this study, 7,089 DEGs were identified through bioinformatics 
analysis, and 79 candidate genes were screened by taking the 
intersection with NRGs, which in turn led to the construction of a 
risk model identifying COMMD2, WSB2 and CUL9 as prognostic 
genes. The nomogram of this signature suggested greater accuracy 
in forecasting 1-, 3-, and 5-year OS. Hence, it is important to apply 
this gene signature in the clinical risk stratification of patients with 
LSCC, which might be beneficial for high-risk patients receiving 
neddylation-associated inhibitor treatment.

COMMD2, WSB2 and CUL9 contribute significantly to many 
cancers or tumors. Increasing evidence suggests that all COMMD 
family members play important roles in tumorigenesis and are 
expressed at higher levels in hepatocellular carcinoma (HCC) tissues 
than in normal tissues. The transcript level of COMMD2 was negatively 
correlated with OS. High COMMD2 expression is associated with 
tumor-induced activation of the immune response and immune 
infiltration in HCC (Wang et al., 2021). In addition, inhibition of 
COMMD2 suppressed the proliferation and migration of BLCA and 
uterine corpus endometrial cancer (UCEC) cells (Tai et al., 2023). 
WSB2 is an E3 ubiquitin ligase and also crucial in cellular cancers. A 
pan-cancer analysis has demonstrated that WSB2 is highly expressed 
in various cancers, and overexpression of WSB2 markedly promotes 
the proliferation and migration of breast cancer cells, which might 
depend on p53 signaling pathway (Deng et al., 2025). In HCC, 
elevated WSB2 expression degrades p53 and activates the IGFBP3-
AKT-mTOR-dependent pathway, driving tumor development and 
metastasis. In addition, WSB2 also mediates the degradation of KLF15, 
result in a transcriptional repression of PDLIM2 and activation of NF-
κB signaling pathway to promote development of HCC (Chen et al., 
2025). In the present study, we also revealed that WSB2 was a 
prognostic risk factor in LSCC and that inhibiting WSB2 expression 
could significantly reduce the malignancy of LSCC cells. Moreover, 
WSB2 is a novel p53 destabilizer that promotes the polyubiquitination 
of K48-conjugated p53 at the Lys291 and Lys292 sites in HCC cells, 
leading to p53 proteasomal degradation (Li et al., 2024). In breast 
cancer, miR-28-5p inhibited breast cancer cell migration through the 
regulation of WSB2 (Ma et al., 2020), whereas in colorectal cancer 
(CRC), reduced expression of CUL9 has been reported to inhibit CRC 
cell growth (Zhang L. et al., 2024). CUL9, a potential p53-activated 
E3 ligase, promotes p53-dependent apoptosis (Pei et al., 2011) and 
is involved in immune response modulation in HNSCs (Xu et al., 
2023). In addition, CUL9-mediated ubiquitination and degradation of 
Cytc constitute a strategy to alleviate apoptosis under mitochondrial 
stress in neurons and cancer cells (Gama et al., 2014). CUL9 also 
binds p53 to ubiquitinate heterogenous nuclear ribonucleoprotein C to 
inhibiting erastin-induced ferroptosis in CRC (Yang et al., 2022). Yes1 is 
considered as a key regulator of CUL9 phosphorylation at Y1505, while 
mutation of Yes1 or helicobacter-induced CUL9-Y1505 might switch 
CUL9 from a tumor-suppressor to an oncogene (Wu et al., 2023). 
While COMMD2, WSB2, and CUL9 have been implicated in various 

cancers, their roles in LSCC remain underexplored. Future research 
should focus on further verification and in-depth investigation of these 
genes in the context of LSCC. 

GSEA revealed that the CUL9 and WSB2 genes were enriched in 
pathways such as KEGG RIBOSOME, highlighting their potential 
role in the regulation of protein synthesis. As a key site of protein 
synthesis, the proper function of ribosomes is crucial for cell growth, 
proliferation, differentiation and other processes, which are often 
abnormal during tumor development. The CUL9 and WSB2 genes 
may affect ribosome-related functions in various ways, which in 
turn are involved in the development of LSCC. Some genes can 
regulate ribosome assembly and function by affecting processes such 
as transcription and posttranslational modification of ribosomal 
proteins (Woolford and Baserga, 2013). Both CUL9 and WSB2 
may regulate ribosomal activity, contributing to the development of 
LSCC through alterations in protein synthesis balance (Ruggero and 
Pandolfi, 2003).

Furthermore, we identified significant heterogeneity in the 
immune microenvironment of LSCC patients across different risk 
groups. Notably, significant differences were also identified in the 
immune cells’ infiltration, such as activated B cells and activated 
CD8+ T cells, were observed. These immune cells play important 
roles in tumor progression, with activated CD8+ T cells being the 
main effector cells of antitumor immunity. Greater infiltration of 
activated CD8 T cells is typically correlated with a better prognosis in 
various cancers, as they recognize and kill tumor cells (Rosenberg and 
Restifo, 2015). In contrast, dysfunctional or low-infiltrating CD8+ T 
cells may allow tumor cells to evade immune surveillance and promote 
metastasis. On the other hand, the role of activated B cells in tumor 
immunity is complex. While they can participate in humoral immunity 
by producing antibodies, they may also regulate immune responses by 
secreting cytokines or interacting with other immune cells (Shalapour 
and Karin, 2015). In this study, WSB2 was negatively associated with 
activated CD8 T cells, whereas CUL9 was positively associated with 
activated B cells, suggesting that these prognostic genes may influence 
LSCC prognosis by modulating immune cell function. 

WSB2 was negatively associated with activated CD8 T cells, 
and CUL9 was positively associated with activated B cells. These 
correlations revealed that prognostic genes may affect the prognosis 
of LSCC patients via modulating immune cell function. Certain 
genes can influence CD8 T-cell function by regulating the expression 
of immune checkpoint molecules or cytokines (Pardoll, 2012). In 
melanoma, aberrant expression of a gene leads to the upregulation 
of immune checkpoint molecules, which inhibits the activation and 
killing function of CD8+ T cells and promotes the immune escape 
of tumor cells (Sade-Feldman et al., 2017). Owing to the positive 
interaction between CUL9 and activated B cells, CUL9 may enhance 
the humoral immune response by promoting processes such as 
activation, proliferation, or antibody secretion of activated B cells, 
which may affect tumor progression. However, relatively few studies 
have investigated the regulation of B-cell function by CUL9, and the 
specific molecular mechanisms involved need to be further explored. 

Additionally, we identified specific miRNAs that may regulate 
WSB2 and COMMD2, including hsa-miR-185-5p, hsa-miR-4644, 
and hsa-miR-4306. These miRNAs are involved in the regulation of 
multiple cancers and may play crucial roles in the pathogenesis of 
LSCC by interacting with these genes. For example, hsa-miR-185-5p 
is a tumor suppressor in endometrial cancer (Oropeza-de Lara et al., 
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FIGURE 8
Silencing WSB2 inhibited the malignancy of LSCC. (A) Expression variation of WSB2 in LSCC. (B) Protein expression and quantification result of WSB2 in 
LSCC cell lines. (C) Confirmation of si-WSB2 via quantitative real-time PCR. (D) Confirmation of si-WSB2 via western blotting. (E) Proliferation of LSCC 
cells was detected via a CCK-8 assay. (F) Quantification of colony formation. (G) Colony formation ability of LSCC cells. (H) Migration of LSCC cells 
determined via wound healing. (I) Quantification of the wound healing assay results. (J) Invasion ability of LSCC cells determined via a transwell assay.
(K) Quantification of the transwell assay results. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
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2024) and colon cancer, where it promotes migration and invasion by 
regulating IGF2 (Zhuang et al., 2020). In breast cancer, miR-185-5p 
inhibited cell proliferation by inducing apoptosis (Değerli et al., 2020). 
Similarly, miR-4644 has potential as a biomarker for pancreaticobiliary 
cancer (Machida et al., 2016) and bladder cancer treatment (Yan et al., 
2020), whereas miR-4306 inhibits the proliferation of esophageal 
squamous cell carcinoma cells (Yang et al., 2021). These findings 
suggest that these miRNAs may influence LSCC progression by 
regulating tumor cell metabolism or immune microenvironment 
interactions. In this study, we had identified that hsa-miR-6705-5p 
might be served as a tumor suppressor in LSCC via downregulating 
WSB. A previous study suggested that lower expression of hsa-miR-
6705-5p was markedly correlated with the poor prognosis of cervical 
cancer, which could inhibit the progression of cervical cancer via 
targeting CDK1 (Mei et al., 2020). Besides, hsa-miR-6507-5p was 
significantly downregulated in chronic sinusitis with nasal polyps, 
and might serve as a protective factor in the development nasal 
polyps via targeting NCAPG2 and PRC1 (Sun et al., 2022). These 
findings suggested that it is of significance to further clarify the role of 
hsa-miR-6507-5p/WSB2 in LSCC. 

This study inevitably suffered some limitations. First, most of the 
results in this study were generated based on bioinformatic analysis 
but lack of validations due to different reasons, this might weak the 
reliability of conclusion. Second, although we had identified validate 
the role of WSB2 in LSCC, the role of WSB2 in neddylation of 
LSCC remains not further confirmed. Thus, a protein modification 
omics analysis will be performed to explore the downstream targets 
and underlying mechanisms of WSB2 in LSCC in our following 
investigation. Despite of these limitations, this study also provided 
us some direct evidences on the role of neddylation in LSCC.

Conclusion

In this study, we successfully established an LSCC risk model 
based on COMMD2, WSB2, and CUL9. This model demonstrated 
good predictive efficacy in the training set, validation set and 
whole sample. Moreover, the risk score and sex were identified as 
independent prognostic factors, and the constructed nomogram 
had relatively high accuracy and favorable clinical benefits. 
Moreover, at the biological level, the enrichment characteristics 
of the DEGs were deeply dissected, the differences in immune 
cell infiltration between the high- and low-risk groups in the 
immune microenvironment and their correlations with prognostic 
genes were clarified, the differences in drug sensitivity were 
revealed, a molecular regulatory network was established, and 
diseases with relatively strong associations with key genes were 
identified. These findings may expand our understanding of the 
research and treatment of LSCC patients and provide new targets
for LSCC.
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