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Introduction: The Lotus genus, part of the legume family, comprises over 180
species distributed across diverse ecosystems worldwide. Its broad genetic
diversity enables adaptation to various environmental conditions and represents
a valuable resource for breeding programs targeting key agronomic traits. One
of the most attractive features of Lotus species is the presence of condensed
tannins in the forage, which, in ruminants, help prevent bloat, exhibit antiparasitic
properties, enhance the absorption of non-ammonia nitrogen compounds, and
reduce greenhouse gas emissions.

Aims and methods: This study aimed to develop a UHPLC-HRMS method
for classifying ten Lotus cultivars produced in Uruguay using a non-
targeted metabolomic fingerprinting approach. Five cultivars belong to Lotus
corniculatus, three to Lotus uliginosus, and two are interspecific hybrids.
The analysis focused on phenolic compound-rich fingerprints. Principal
component analysis (PCA) and partial least squares-discriminant analysis (PLS-
DA) were used for data exploration and classification, and to identify key
phenolic compounds with high discriminant potential. Finally, cultivar-specific
polyphenolic compounds were tentatively identified based on chromatographic
and high-resolution mass spectrometry (HRMS/MS) data obtained from all
cultivars.

Results: When defining four classes (L. uliginosus, L. corniculatus, and
the two hybrids), the optimal PLS-DA model required six latent variables
and achieved 100% classification accuracy, with both sensitivity and
specificity reaching 100%. Additional PLS-DA models were developed to
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intra-species discrimination among the 3 L. uliginosus and 5L.

corniculatus cultivars, with varying degrees of separation observed. In each PLS-
DA model, VIP loadings scores allowed the selection of the most discriminant
phenolic compounds for each class under study. A total of 105 compounds,
including phenolic acids, flavonols, flavan-3-ols, proanthocyanidins, and
organic acids, were tentatively identified by analyzing all cultivars.

KEYWORDS

Lotus cultivars, classification, identification of phenolic compounds, UHPLC-HRMS/MS,
non-targeted metabolomics, chemometrics

1 Introduction

The Lotus genus belongs to the legume family and comprises
more than 180 species. The main regions of the world where Lotus
species are cultivated are South America, North America, and
Europe. In Uruguay, five Lotus species have been domesticated and
improved through selection and breeding: Lotus corniculatus L.,
Lotus uliginosus Schkuhr., Lotus tenuis Waldst. & Kit. ex Willd., Lotus
angustissimus Ledeb., and Lotus subbiflorus Lag. These species are
mainly used either in mixtures with forage grasses or introduced
into natural grasslands (Ayala and Cardmbula, 2009). Considered
bioactive forages due to their secondary metabolites, they can adapt
to diverse soil types, tolerate acidity, and grow under low phosphorus
conditions (Escaray et al., 2012).

Phenolic compounds are the most abundant and widely
distributed secondary metabolites in plants. Structurally, phenolics
consists of one or more hydroxyl groups attached to a six-carbon
aromatic ring. These compounds range from simple phenolic
acids to complex polymeric structures such as tannins. Over
8,000 phenolic structures have been identified to date, and they
are commonly grouped into classes, including phenolic acids,
flavonoids, xanthones, stilbenes, lignans, and coumarins, based
on the number of phenolic rings and the linkages between them
(Zhang et al, 2022). Phenolic acids contain a carboxylic acid
functional group and are present in both free and bound forms.
They are mainly classified into hydroxybenzoic acids (C6-Cl)
and hydroxycinnamic acids (C6-C3). Hydroxybenzoic acids are
components of complex structures such as hydrolysable tannins
(e.g., gallotannins and ellagitannins). Flavonoids constitute the
largest and most structurally diverse class of phenolic compounds,
consisting of a C6-C3-C6 carbon framework with specific
hydroxylation patterns. They occur as free aglycones or, more
frequently as O- and C-glycosides. Based on the oxidation state
and saturation of the central heterocyclic ring, flavonoids are
divided into subclasses, including flavones, isoflavones, flavanones,
flavonols, dihydroflavonols, flavan-3-ols, flavan-4-ols, flavan-
3,4-diols, anthocyanidins, and chalcones. Among these, flavan-
3-ols can polymerize to form condensed tannins, also known
as proanthocyanidins (PAs). PAs are classified as homo- or
heteropolymers based on whether their constituent monomers are
identical or different. They are further subclassified into types A and
B, according to the nature of the carbon-carbon linkages between
monomers. Compounds containing (epi)catechin are referred to
as procyanidins, while those composed of (epi)gallocatechin or
(epi)afzelechin are known as prodelphinidins or propelargonidins,
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respectively. Flavonols are among the most abundant monomeric
flavonoids in plants, with quercetin, kaempferol and myricetin being
the representative compounds. Supplementary Figure S1 in the
Supplementary Material shows the structure of various phenolic
compounds (Manach et al., 2004; Al Mamari, 2021).

Phenolic compounds play crucial roles in plant physiology,
affecting responses to both biotic and abiotic stresses, and
modulating interactions with the environment, including soil
microbiota and pollinators. Beyond their functions in plants, these
compounds' biological activities have garnered significant interest
due to their potential applications in agriculture, animal nutrition,
and human health. In farm animals, phenolic compounds exhibit
antioxidant, anti-inflammatory, and anthelmintic properties, while
also enhancing cell-mediated immunity and modulating ruminal
and intestinal microbiota (Bhuyan and Basu, 2017; Mahfuz et al.,
2021; Rahman et al., 2021; Serra et al., 2021; Pratyusha, 2022; Sun
and Shahrajabian, 2023; Waqas et al., 2023).

In Lotus species, condensed tannins are particularly relevant,
as they enhance protein utilization in ruminants, reduce
methane and ammonia emissions, help prevent pasture bloat,
exhibit antihelmintic activity, and improve animal productivity
(Blumenthal et al., 1993; Molan et al., 2000; Mueller-Harvey, 2006;

Jaghorn, 2008; Jonker and Yu, 2017; Mueller-Harvey et al., 2019;
Verma etal., 2022; Brutti et al., 2023). In addition, other polyphenols
(such as flavonoids and phenolic acids) are highly effective, exerting
strong positive effects on animal health and the quality of livestock
products. They improve both the quantity and quality of meat and
milk, reduce the need for synthetic antioxidants and antibiotics,
and have a beneficial impact on the immune system (Luzardo et al.,
2019; Serra et al., 2021; Formato et al., 2022; Waqas et al., 2023).

However, establishing direct correlations between phenolic
structures and their biological functions remains a major challenge
due to their chemical complexity and the limited understanding of
their mechanisms of action. This challenge is further compounded
by the potential interactions among the various compounds present
in the cultivar, which may result in synergistic or antagonistic effects.
Despite the agronomic and functional importance of Lotus species
in sustainable grazing systems and soil improvement, the phenolic
composition of many cultivars remains poorly characterized, since
previous works have only been able to determine total phenolics,
total tannins, or total flavonoids (Montossi, 1996; Reyno et al., 2022).

The main objectives of this study were to develop and apply
a non-targeted ultra-high-performance liquid chromatography
coupled to high-resolution mass spectrometry (UHPLC-HRMS)
method, using a linear ion trap (LTQ)-Orbitrap analyzer, to classify
and characterize ten Lotus cultivars produced in Uruguay, including
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TABLE 1 Plant material origin for each species.

Species Commercial/experim
name

Lotus corniculatus European INTA Rigel

Lotus corniculatus European INIA Draco

Lotus corniculatus European San Gabriel

Lotus corniculatus Rhizomatous | LE304-ClI Bulkl4

Lotus corniculatus Rhizomatous | LE304

Lotus uliginosus Tetraploid INIA Gemma

Lotus uliginosus Tetraploid Grasslands Maku

Lotus uliginosus Diploid INIA E-Tanin

L. uliginosus x L. corniculatus | Hybrid GI1 Bulk 15

L. corniculatus x L. uliginosus | Hybrid G5 Bulk 15

four experimental lines. Chemical fingerprints were generated
based on feature intensity across mass-to-charge (m/z) ratios and
chromatographic retention times. These datasets were analyzed
using principal component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA) to assess cultivar classification and
identify key phenolic markers with high discriminative potential.
Finally, a tentative identification of characteristic polyphenolic
compounds for each cultivar was performed using chromatography
data, MS/MS fragmentation patterns, exact mass, and isotopic
profiles, aiming to highlight cultivars with valuable phytochemical
traits for use in forage improvement, ecological restoration, or
potential nutraceutical development.

2 Materials and methods
2.1 Plant material and sample treatment

All Lotus cultivars were produced and/or maintained by the
National Institute of Agricultural Research (INIA), located in
Tacuarembd, Uruguay. Five of these cultivars belong to the L.
corniculatus: cultivars San Gabriel, INIA Rigel, and INIA Draco, and
experimental lines from rhizomatous L. corniculatus types, LE304-
C1 Bulk 14, and LE304; three to L. uliginosus: cultivars INIA E-
Tanin, INTA Gemma, and Grasslands Maku; and the remaining two
are hybrids resulting from reciprocal crosses between L. corniculatus
and L. uliginosus: experimental lines G5 Bulk 15, and G1 Bulk 15
(Table 1). Ten independent samples were processed for each of the 10
cultivars. The forage samples were collected from cuttings of forage
trials planted in different years (2016-2018) and collected in three
seasons (fall, spring and summer). In summary, 100 forage samples
were analyzed (Supplementary Table S1).

Fresh plant material was dried in an air-forced oven at 40 °C for
48 h and ground. For each sample, 15 g was placed in a glass beaker
with 150 mL of acetone-water solution (70:30, v/v) and suspended
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in an ultrasonic water bath (Branson 3210) for 20 min at room
temperature. The extract was obtained from the filtered material
and the acetone was removed at a temperature below 35 °C using a
rotavapor system (Buchi R-215). The aqueous solution was washed
four times with 150 mL dichloromethane to remove chlorophyll and
lipids. Finally, the phenolic-rich extract was lyophilized (Labconco
free zone 2.5®) and kept refrigerated at 4 °C in air-tight containers
until its use.

The extracts (20 mg) were dissolved in 1mL of water:
acetonitrile (50:50 v/v) with 0.1% formic acid, filtered using 0.45 um
syringe membrane filters (FILTER-LAB, Barcelona, Spain), and
stored in 2 mL amber chromatographic injection vials at 4 °C until
LC-HRMS analysis. A quality control (QC) sample was prepared
by mixing 50 uL of each one of the re-constituted phenolic-rich
extracts. This QC was employed to assess the reproducibility of
the proposed UHPLC-HRMS fingerprinting methodology and to
ensure the robustness of the chemometric results.

2.2 Reagents and general instrumentation

and  dichloromethane  of

(Darmstadt,
chromatographic separation, the following solvents were used:
formic acid (295%, Sigma-Aldrich, St Louis, USA) and acetonitrile
(99.9%, UHPLC Supergradient, Panreac, Barcelona, Spain).

Acetone analytical  grade

were purchased from Merck Germany). For

Distilled water was purified with a Milli-Q water purification
system (Millipore, Bedford, MS, USA). Chromatography was
performed on a Dionex Ultimate 3000 Rapid Separation Liquid
Chromatography (RSLC) system (Thermo Scientific, San José,
CA, USA), equipped with a vacuum degasser, binary high-
pressure pump and autosampler coupled to a linear ion trap mass
spectrometer LTQ Orbitrap Velos HRMS from Thermo Scientific
(San José, CA, USA) with an ESI interface. Instrument control and
data collection were done using Xcalibur software (v3.0.63).

2.3 UHPLC-HRMS method

The methodology used was an untargeted metabolomics
approach based on ultra-high-performance liquid chromatography
(UHPLC) coupled to high-resolution mass spectrometry (HRMS)
fingerprinting.

The chromatographic separation was performed in reversed-
phase mode with a Kinetex® C18 (100 mm length x 4.6 mm LD,
2.6 um partially porous particle size) column from Phenomenex
(Torrance, CA, USA). The mobile phase consisted of a gradient
of water (solvent A) and acetonitrile (solvent B), both with 0.1%
formic acid. The gradient elution program was as follows: from 0 to
3 min, the composition was maintained at 3% B; from 3 to 18 min,
a linear gradient was applied to reach 30% B; from 18 to 23 min,
the gradient continued to 65% B; from 23 to 25 min, it was further
adjusted to 90% B; and from 25 to 26 min, the system returned
to the initial conditions at 3% B. The column was conditioned for
7 min under these initial conditions before the next injection. The
flow rate was 0.7 mL/min, the column temperature 35 °C, and the
injection volume 5 pL. The sample injection order was randomized,
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with QC solution and solvent blanks injected every 10 samples to
prevent any signal drift associated with the sample analysis sequence.

For acquisition, ESI source operated in negative ionization
mode. Sheath, sweep and auxiliary gases were nitrogen, with a purity
higher than 99,98%, at flow rates of 60, 0 and 10 a.u. (arbitrary units),
respectively. The capillary and ESI ionization source temperatures
were 350 °C and 25 °C, respectively, and an S-Lens RF level of 50 V
was employed. The mass spectrometer operated in data-dependent
scan mode, with each cycle including a full MS scan from m/z
100 to 1500, followed by MS/MS scans of the most abundant ions
(with full scan signal higher than 1 x 10°). HRMS acquisition
was performed at 60,000 full width at half-maximum (FWHM,
at m/z 200) resolution. An automatic gain control (AGC) of 1
x10°, and a maximum injection time (IT) of 200 ms were also
employed. A commercially available calibration solution (Thermo
Fisher Scientific) was employed for the tuning and calibration of the
linear ion-trap (LTQ)-Orbitrap Velos HRMS instrument.

2.4 Data analysis

UHPLC-HRMS raw chromatographic data were then processed
using the MZmine-2.53 free software to obtain a matrix (sample
by variables) of ion signal intensity values, where variables
corresponded to each ion feature, characterized by m/z and
chromatographic retention time.

First, mass detection was performed to generate mass lists for
each MS scan, applying a noise level threshold of 2 x 10*. These lists
were then refined using the FTMS shoulder peak filter to eliminate
spurious signals, employing a Gaussian peak shape model and a
resolution setting of 70,000. The chromatogram builder module was
then applied to link signals detected in consecutive scans, using a
m/z tolerance of 5 ppm, a retention time range of 5-20 min, and a
minimum intensity of 2 x 10*. To isolate individual chromatographic
peaks, chromatogram deconvolution was performed. Alignment
across samples was carried out using the Join Aligner function, with
parameters set at 5 ppm for mass tolerance, 500 for weight for m/z,
1 min for retention time tolerance, and 10 for weight for retention
time. The final aligned feature table was exported in CSV format.

Following this, LC-HRMS fingerprints were filtered to remove
spurious features that appeared sporadically in a few samples and
did not follow a general pattern; only those detected in, at least, five
samples were retained in the data matrix. The resulting matrix was
used for the chemometric study and had dimensions (samples + QCs
x variables) of 110 x 1929.

Principal component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA) were performed using SOLO 8.6
chemometrics software (Eigenvector Research, Manson, WA, USA).
Unsupervised PCA was used to explore the distribution of the
analyzed Lotus cultivars and to assess the behavior of the injected
QCs. Thereafter, PLS-DA was applied for classification purposes,
defining three sample sets: (1) interspecies comparison between L.
uliginosus, L. corniculatus, and the two hybrids, forming four groups
or classes; (2) intraspecies comparison among the three cultivars
of L. uliginosus (three groups or classes); and (3) intraspecies
comparison among the five cultivars of L. corniculatus (five groups
or classes).
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The X-data matrix used for PCA consisted of the nontargeted
LC-HRMS metabolomic fingerprints obtained from all analyzed
Lotus samples and QCs. For PLS-DA, the same X-data matrix,
excluding the QCs, was used, but sample sets were analyzed
separately. The Y-data matrix defined the sample classes according
to the evaluated case (sets 1-3). The number of latent variables
(LVs) used in PLS-DA was determined based on the first relevant
minimum of the cross-validation (CV) error using a Venetian
blinds approach.

Variable importance in projection (VIP) values obtained from
the PLS-DA models for each sample set were used to select
the variables with the greatest influence on the distribution
of the samples, using a cut-off value of 1.5. Based on these
selected variables, metabolite identification was carried out using
chromatographic data, HRMS/MS spectra, exact mass, and isotopic
pattern data. Then, a heatmap was generated using the pheatmap
package in R (R Core Team, 2023), based on the previously
identified metabolites. Hierarchical clustering was performed using
Pearson correlation.

In addition, chemical characterization of the phenolic-rich
extracts from the ten studied cultivars was performed. The same
strategy was used for this purpose, relying on chromatographic and
high-resolution mass spectrometry (HRMS/MS) data.

3 Results
3.1 LC-HRMS fingerprints

The whole analytical strategy was focused on obtaining a
fingerprint strongly related to phenolic compounds: extracts
enriched in phenolic compounds, chromatographic separation
based on a C18 column and water and acetonitrile (both acidified
with 0.1% of formic acid) as the mobile phase components, and spray
ionization (ESI) in negative mode. Figure 1 shows the fingerprints
of four selected Lotus samples as an example. The total ion
chromatograms (TICs) include one from a sample of L. uliginosus,
another from L. corniculatus, and the other two from different
Lotus hybrids, respectively. Notably, significant differences in both
the number of detected peaks and their intensities are observed
among the different Lotus cultivars. Most of these peaks correspond
to phenolic compounds and could be tentatively identified, as will
be discussed later. However, in this study, we aimed to apply a
fingerprinting approach, using total ion chromatograms as chemical
descriptors to facilitate the classification of the samples.

3.2 Principal component analysis (PCA) and
partial least squares discriminant analysis
(PLS-DA)

The matrix obtained from MZmine software includes the non-
targeted UHPLC-HRMS metabolomics fingerprints of 100 analyzed
Lotus samples and the QCs. This data matrix was then submitted to
PCA. QCs were well clustered, revealing the good performance of
the proposed UHPLC-HRMS methodology as well as the feasibility
of the obtained chemometric results. The samples tend to be
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FIGURE 1
LC-HRMS fingerprints (Total ion chromatograms) for four selected
Lotus samples.

grouped into 4 groups: L. uliginosus species, G1 Bulk 15 (hybrid),
L. corniculatus species, and G5 Bulk 15 (hybrid).

The UHPLC-HRMS fingerprints were also submitted to PLS-
DA to perform a supervised sample classification in each of the
three defined cases (sample sets 1-3). The X-data matrix was
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changed according to the set of samples to be studied and without
including QCs. When we analyze sample set 1 which corresponds to
the interspecies comparison between L. uliginosus, L. corniculatus,
and the two hybrids, a total of six latent variables (LVs) were
required for the optimal PLS-DA model. This model achieved 100%
classification accuracy, with sensitivity and specificity values both
reaching 100% (Figure 2).

Additional PLS-DA models were developed to assess whether
the 3 L. uliginosus cultivars (sample set 2) and the 5 L. corniculatus
cultivars (sample set 3) could be distinguished from each other,
respectively. The best PLS-DA classification score plots obtained
for sets 2 and 3 are shown in Figures 3, 4. For sample set 2,
the discrimination among the 3 cultivars of L. uliginosus is clear.
Cross-validated multiclass predictions yielded 100% sensitivity and
specificity, with complete (100%) classification accuracy. In contrast,
for the classification of L. corniculatus cultivars, the proposed
approach produced moderately acceptable results, with varying
levels of discrimination, as summarized in Figure 4. Among the L.
corniculatus cultivars, San Gabriel, LE304-C1 Bulk 14, and INTA
Draco achieved 100% sensitivity and specificity values equal to or
above 90%, with classification errors equal to or below 5.0%. On
the other hand, discrimination was less successful for the other
two cultivars (INIA Rigel and LE304) with INIA Rigel showing the
poorest performance, reaching sensitivity and specificity values of
80% and 53%, respectively, and a classification error of 34%.

3.3 Heatmaps analysis

The main metabolites distinguishing the Lotus species in
sample set 1 were twenty-three phenolic compounds obtained
from PLS-DA VIP analysis, all with VIP values greater than or
equal to 1.5. These included phenolic acids, flavonol glycosides,
and proanthocyanidins (PAs). Figure 5 presents the hierarchical
clustering and heatmap, highlighting differences in the abundance
of these phenolic compounds across the Lotus samples. The
dendrogram on the y-axis reflects the similarity-based clustering
of the differential metabolites. Two major metabolite groups can be
broadly distinguished. The first group includes ten compounds
that are more abundant in the 3 L. uliginosus cultivars and the
Lotus hybrid G1 Bulk 15. These consist of two flavonol glycosides:
a kaempferol glycoside derivative (m/z 809.2133, tr 16.08 min)
and a quercetin dihexosyl-deoxyhexoside (m/z 771.1986, tr
13.49 min); four phenolic acids: caffeoylhexoside (m/z 341.0873, tr
12.13 min), a coumaric acid derivative (m/z 337.0920, tr 20.79 min),
galloylhexoside (m/z 331.0669, tr 7.97 min), and feruloylquinic
acid (m/z 367.1028, tr 21.37 min); and four proanthocyanidins.
Of these, three are heterogeneous, composed of catechin or
epicatechin and gallocatechin or epigallocatechin units: Cat-
Gall (m/z 593.1287, tr 9.63 min), Cat-Gall-Cat (m/z 881.1935, tr
11.80 min), and Cat-Gall-Gall (m/z 897.1866, tr 11.08 min). The
fourth is a homogeneous prodelphinidin composed exclusively of
gallocatechin or epigallocatechin units: Gall-Gall (m/z 609.1250,
tr 7.44 min). The second group also consists of ten metabolites
but is characterized by lower abundance in L. uliginosus and G1
Bulk 15. This set is composed exclusively of flavonol glycosides
and phenolic acids. The flavonol aglycones are quercetin and
kaempferol, each conjugated with various monosaccharide residues.
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FIGURE 3

PLS-DA score plots (LV1 vs. LV2 and LV1 vs. LV2 vs. LV3) of a classification model using 4 LVs. Sensitivity, specificity and classification error values
obtained when studying the classifications of the analyzed Lotus uliginosus.
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FIGURE 4

PLS-DA score plots (LV1 vs. LV2 and LV1 vs. LV2 vs. LV3) of a classification model using 6 LVs. Sensitivity, specificity and classification error values
obtained when studying the classifications of the analyzed Lotus corniculatus.

The identified glycosides include: a kaempferol glycoside derivative
(m/z 695.1456, tr 15.86 min), a quercetin glycoside derivative
(m/z 865.1962, tr 12.99 min), quercetin hexosyl-deoxyhexoside
(m/z 609.1466, tr 15.22 min), kaempferol deoxyhexosyl-hexosyl-
deoxyhexoside (m/z 739.2071, tr 14.49 min), and quercetin
deoxyhexosyl-deoxyhexoside (m/z 593.1516, tr 16.20 min). The
phenolic acids in this group include a caffeic acid derivative (m/z
239.0558, tr 12.90 min), coumaric acid (m/z 163.0398, tr 17.09 min),
and three additional coumaric acid derivatives: m/z 559.1075 (tr
17.22 min), m/z 293.0417 (tr 21.47 min), and m/z 279.0510 (¢r
17.10 min). In addition, three compounds were found to be uniquely
less abundant in L. uliginosus, while the hybrid G1 Bulk 15 did
not share this pattern. These were identified as procyanidin Cat-
Cat (m/z 577.1328, tr 12.00 min), a protocatechuic acid derivative
(m/z 285.0614, tr 11.12min), and kaempferol deoxyhexosyl-
deoxyhexoside (m/z 577.1550, tr 17.38 min). Finally, the x-axis
dendrogram groups the Lotus samples based on their metabolite
profiles. The heatmap clearly distinguishes two major clusters: one
comprising the 3 L. uliginosus cultivars and the hybrid G1 Bulk 15,
and another including the 5 L. corniculatus cultivars and the hybrid
G5 Bulk 15. Within these clusters, sub-groupings are observed
among the different cultivars of both species.

Variable Importance in Projection (VIP) values were also
obtained from the PLS-DA models for sample sets 2 and 3. In
the comparison between L. uliginosus cultivars (sample set 2)
and L. corniculatus cultivars (sample set 3), sixteen and seven
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metabolites with VIP values greater than 1.5 were identified,
respectively. These metabolites were also phenolic compounds,
including flavonol glycosides and phenolic acids. In both cases,
proanthocyanidins (PAs) were not significant contributors to
the differentiation between the cultivars of each of the species.
Figures 6, 7 show the hierarchical clustering and corresponding
heatmaps, highlighting differences in the abundance of these
phenolic compounds across L. uliginosus and L. corniculatus,
respectively.

INIA Gemma and Grasslands Maku, both L. uliginosus cultivars,
are clustered together in the heatmaps of sample sets 1 and 2,
despite being based on different sets of metabolites, except for
three compounds that are common to both. Similarly, INIA Rigel
and LE304 C1 Bulk 14, both L. corniculatus cultivars, are grouped
together in the heatmaps of sets 1 and 3.

3.4 Chemical characterization of phenolic
rich-extracts of 10 Lotus cultivars from
Uruguay

An additional objective of this study was to characterize a
broader range of phenolic compounds in these cultivars, thereby
contributing to a more comprehensive understanding of the
phenolic composition in Lotus species since they define various
properties.
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FIGURE 5

Heatmap showing the most relevant metabolites differentiating L. uliginosus, L. corniculatus, and the hybrids G5 Bulk 15 and G1 Bulk 15. The x-axis
displays the clustering of all Lotus samples, while the y-axis shows the clustering of the metabolites. Each Lotus cultivars on the x-axis represents the
average of 10 independent samples analyzed. LUL: L. uliginosus INIA E-Tanin; LU2: L. uliginosus INIA Gemma; LU3: L. uliginosus Maku; H1: Hybrid G1
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FIGURE 6
Heatmap showing the most relevant metabolites differentiating Lotus uliginosus cultivars. The x-axis displays the clustering of all Lotus cultivars, while

the y-axis shows the clustering of the metabolites. Each cultivar on the x-axis represents the average of 10 independent samples analyzed.

The compounds contained in cultivar extracts were adequately
separated by chromatography on a C-18 reverse-phase UHPLC
column using a mobile phase gradient of acetonitrile in water
at acidic conditions. Figure I provides an overview of the total
ion chromatograms obtained from selected extracts, highlighting
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their complex chemical profiles. The mass spectrometer was
operated to monitor, select and fragment the most abundant ions
within the m/z 100-1500 range. Metabolite identification was
based on chromatography data, HRMS/MS spectra, exact mass
measurements (maximum error of mass 5ppm), and isotopic

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1646758
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Olivaro et al.

Kaempferol-deoxyhexosyl-hexosyl-pentoside_mz725.1910_tr15.03
Kaempferol glycoside derivative_mz695.1456_tr15.86

Coumaric acid derivative_mz337.0920_tr18.79

Feruloylquinic acid_mz367.1088_tr18.95

10.3389/fmolb.2025.1646758

I 1
038

Kaempferolhexoside_mz447.0930_18.68 0.6
Quercetin-pentosyl-deoxyhexoside_mz579.1341_tr15.72
Kaempferol-pentosyl-deoxyhexoside_mz563.1399_tr16.43 0.4
X
Q@é‘? oy ‘b@‘o&
F &
TP VP
o PO D 0.2
05
N
0

FIGURE 7

Heatmap showing the most relevant metabolites differentiating Lotus corniculatus cultivars. The x-axis displays the clustering of all Lotus cultivars,
while the y-axis shows the clustering of the metabolites. Each cultivar on the x-axis represents the average of 10 independent samples analyzed.

pattern data. Additionally, the NIST 20 Tandem Library (hr_msms_
nist and nist_msms) was consulted using the MS/MS Identity Search
function of the NIST MS Search Program (v.2.4).

Under this approach,
identified,
proanthocyanidins, and other organic acids. The assigned

105 compounds were tentatively
including phenolic acids, flavonols, flavan-3-ols,
compounds, along with their chromatographic and mass spectral
data, are listed in Supplementary Table S2. When a phenolic
compound is labelled in the table as not detected [marked in yellow
(-)], it means that it was not detected in all ten analyzed samples
within the same Lotus cultivar. In contrast, when a compound is
labelled as detected [marked in green (+)], it was, on average, present
in most of the ten analyzed samples in that cultivar, although it was
not present in some individual samples.

3.4.1 ldentification of organic acids and their
derivatives

A total of thirty-seven organic acids were tentatively identified,
the majority of which were phenolic acids (thirty-two), including
hydroxybenzoic and hydroxycinnamic acids. The hydroxybenzoic
acids identified included protocatechuic acid (in free, glycosylated,
and derivative forms), gallic acid (in its free form and as a hexoside),
hydroxybenzoylhexoside, vanilloylhexoside, and syringoylhexoside.
All these compounds were detected across the ten Lotus cultivars
analyzed, except for syringoylhexoside, which was not found in any
of the independent samples of the INIA Rigel cultivar. A total of
twenty-three hydroxycinnamic acids were identified, some of which
appeared in two or three isomeric forms. Others were glycosylated,
and some were derivatives for which a specific molecular structure
could not be proposed. For example, compounds 10 and 11 in
Supplementary Table S2 were identified as isomers of coumaric acid.
In addition, the hexoside of coumaric acid and seven coumaric
acid derivatives were also identified. All coumaric acid derivatives
exhibited, in their HRMS/MS spectra, the characteristic ions of
coumaric acid and its decarboxylated product, at m/z 163.0398
and 119.0502, respectively. Chlorogenic acid isomers were identified
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at retention times of 10.76, 13.30, and 14.03 min, each displaying
a [M-H] ion at m/z 353.0874 with a mass error of 0.397 ppm.
These compounds are formed by the esterification of caffeic acid
with quinic acid and differ based on the position of the ester
linkage: 3-O-caffeoylquinic acid (3-CQA), 4-O-caffeoylquinic acid
(also known as cryptochlorogenic acid or 4-CQA), and 5-O-
caffeoylquinic acid (neochlorogenic acid or 5-CQA) (Aguiar et al.,
2016). Other organic acids identified included quinic acid, malic
acid, isomers of isopropyl malic acid, and a derivative of isopropyl
malic acid. The identification of malic acid and its derivatives is
consistent with previously reported data for compounds in the
Lotus genus (Sanchez et al., 2008).

3.4.2 Identification of flavan-3-oles
identified:
gallocatechin, and their corresponding isomers, epicatechin

Four flavan-3-ol compounds were catechin,
and epigallocatechin. In some Lotus cultivars, catechin or
epicatechin was also detected in glycosylated form, specifically as a
hexoside, with a retention time of 10.38 min and a [M-H]  ion at

m/z 451.1238.

3.4.3 Identification of flavonols

Several flavonol glycosides were identified, with quercetin,
kaempferol, myricetin, and isorhamnetin as their aglycones.
The most abundant aglycones were kaempferol and quercetin.
Thirteen glycosides of kaempferol were detected, containing up
to three monosaccharide residues, while fourteen glycosides of
quercetin were identified, with up to four monosaccharide residues.
Depending on the glycoside, characteristic neutral losses of the
sugar moieties were observed in the HRMS/MS spectra: pentose
(Am/z = 132), deoxyhexose (Am/z = 146), hexose (Am/z = 162),
and glucuronide (Am/z = 176). In some compounds (54, 62, 64,
and 65), the monosaccharide residues were acetylated, as evidenced
by the neutral loss corresponding to the acetate group (Am/z = 42)
in the HRMS/MS spectra. Additionally, nine kaempferol glycoside
derivatives and six quercetin glycoside derivatives were identified.
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3.4.4 Identification of proanthocyanidins

Homogeneous proanthocyanidins or condensed tannins formed
exclusively by (epi) catechin monomers (procyanidins) and by (epi)
gallocatechin monomers (prodelphinidins) were identified, as well
as heterogeneous formed by (epi) catechin and (epi) gallocatechin
units. The chromatographic separation was highly effective, allowing
the resolution of several isomeric compounds sharing the same
molecular ion (m/z 577.1341; 593.1287; 609.1250; 897.1866, and
913.1818).

4 Discussion

Lotus corniculatus and L. uliginosus are species with not only
very different agronomic features in terms of habit of growth,
environmental niche, botanical traits, and productivity, but also
in terms of condensed tannin content (Ayala and Carambula,
2009). The chemical profiles arising from this technique show very
distinguishable differences in the compounds between these species
(Figure 1). Lotus corniculatus and L. uliginosus have high agronomic
value in Uruguay. Persistence is generally one of the breeding goals
in L. corniculatus (Rebuffo and Altier, 1997; Altier et al., 2000), while
seed production is the main problem in L. uliginosus (Sanders and
Rowarth, 1995). Inter-specific hybridization opens an opportunity
to combine positive attributes from both species, with the objective
of widening the genetic basis for breeding and achieving a superior
agronomic cultivar. Reciprocal crosses between L. uliginosus “INIA
Gemma” and L. corniculatus “INIA Draco” were performed to obtain
hybrids, through embryo rescue (Castillo et al., 2012). From the
early beginning, the hybrids showed a strong maternal effect in
terms of the phenotype of the plants. After obtaining the first hybrid
individuals, an extra cycle of selection was performed selecting by
agronomic traits but keeping the two groups depending on the origin
of the hybrids, where the hybrid population G1Bulk 15 represents
hybrid plants originating from the cross L. uliginosus (as the mother)
x L. corniculatus (as the pollen donor), and hybrid population G5
Bulk 15 is the result of the reciprocal cross (L. corniculatus x L.
uliginosus). Analyzing chemical results from the hybrids (Figure 1),
it looks clear that G1 hybrid not only looks like L. uliginosus in its
phenotype but also in its chemical profile, while a similar pattern is
observed for hybrid G5 and L. corniculatus.

This methodology was successful to discriminate the main
two species, L. corniculatus and L. uliginosus, and the two hybrid
populations. The five cultivars of L. corniculatus, were grouped
together based on their chemical profile with 0% error rate. Similar
results were observed for the 3 L. uliginosus cultivars and the
two hybrids (Figure 2).

In the case of L. uliginosus, the 10 samples from each cultivar
were classified as the cultivars that belonged with a 0% error
rate, showing the high precision of this approach (Figure 3). Lotus
corniculatus classification (Figure 4) displays higher error rates. This
may be related to the similar genetic origin of some of the cultivars.
For instance, INTA Rigel is a reselection of INIA Draco, while LE304-
C1 Bulk 14 derives from LE304 and, therefore, genetically related.

Condensed tannins, a class of secondary metabolites
characteristic of the Lotus genus, played a critical role in interspecies
discrimination. These compounds are known to have beneficial
effects on animal production, as they enhance intestinal protein
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absorption, improve animal health, and may contribute to the
reduction of methane emissions (Verma et al., 2022; Brutti et al,,
2023). Their prominent role in distinguishing species may reflect
underlying ecological or adaptive divergence. However, their
influence on intraspecies separation was null, suggesting that other
components of the phenolic profile are responsible for cultivar-level
differentiation. Therefore, while condensed tannins are informative
at the species level, comprehensive metabolomic analyses are
essential to fully understand the metabolic landscape and potential
functional implications of the different Lotus cultivars.

Of the 105 phenolic compounds tentatively identified through
chromatographic and high-resolution MS/MS data, several were
annotated as putative derivatives of known compounds, for which
no definitive molecular formula could be assigned. This was
particularly the case for compounds related to coumaric acid, which
appeared to contribute significantly to interspecies separation.
Given their apparent relevance, structural elucidation of these
compounds using complementary techniques, such as nuclear
magnetic resonance (NMR) spectroscopy, would be highly valuable.

This in-depth
phenolic compounds in Lotus cultivars used in Uruguay, in

study provides an characterization of
contrast to many previous works that rely on non-specific
determinations of total phenolics, total tannins, or total flavonoids
(Montossi, 1996; Reyno et al., 2022). By applying high-resolution
LC-MS/MS and integrating metabolomic data with chemometric
tools, we highlight the complexity and diversity of phenolic profiles
in this genus. These findings open new avenues for investigating
the biological functions and potential applications of specific
metabolites in forage quality, plant resilience, and beyond.

5 Conclusion

In the present study, a non-targeted LC-HRMS metabolomic
fingerprinting approach proved the effectiveness for characterizing
and classifying ten Lotus cultivars and experimental lines, developed
in Uruguay, through the application of multivariate chemometric
methods. Overall, the PLS-DA models showed satisfactory
classification performance across the different Lotus sample sets.
For each model, the VIP scores enabled the identification of the
most discriminant phenolic compounds.

The proposed methodology demonstrated high potential for the
tentative identification of polyphenolic compounds, thanks to the
accurate mass detection provided by HRMS and the comprehensive
chemical information captured by the fingerprinting approach.

These findings underscore the applicability of metabolomic
fingerprinting as a powerful and accessible tool in plant breeding
programs, particularly for selecting Lotus cultivars with favorable
phytochemical profiles related to forage quality, nutritional value, or
environmental adaptability.
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