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Acute kidney injury (AKI) and chronic kidney disease (CKD) are closely
interrelated renal disorders, where AKI frequently progresses to CKD, resulting
in irreversible loss of renal function. In recent years, the roles of the
NLRP3 inflammasome and mitophagy in the AKI-to-CKD transition have
attracted significant attention. As a crucial component of the innate immune
system, the NLRP3 inflammasome promotes AKI-to-CKD progression by
mediating inflammatory responses and cellular pyroptosis during renal injury.
Conversely, mitophagy exerts renoprotective effects through the selective
removal of damaged mitochondria, maintenance of cellular homeostasis, and
alleviation of inflammation and oxidative stress. Studies demonstrate that
NLRP3 activation is closely associated with mitochondrial dysfunction, while
mitophagy can suppress NLRP3 activation by clearing damaged mitochondria,
establishing a negative feedback regulatory mechanism. During the AKI phase,
mitochondrial damage and excessive NLRP3 activation exacerbate renal tubular
epithelial cellinjury and inflammatory responses. Concurrently, persistent NLRP3
activation and impaired mitophagy lead to chronic inflammation and fibrosis,
accelerating the transition from AKl to CKD. Therefore, targeting the NLRP3
inflammasome and modulating mitophagy may emerge as novel therapeutic
strategies for AKI-to-CKD transition. This review focuses on elucidating the
molecular mechanisms between mitophagy and the NLRP3 inflammasome,
along with related targeted therapies, to provide new insights for preventing AKI
progression to CKD.
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1 Introduction

Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden
decline or loss of kidney function (Turgut et al, 2023). Its global average mortality
rate reaches 23% (Kellum et al, 2021), while ICU patients face an even higher
hospital mortality rate of 43.18% (Havaldar et al, 2024). Epidemiological surveys
indicate that approximately 850 million people worldwide suffer from various
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kidney diseases (Francis et al., 2024). According to the Global
Burden of Disease Study, chronic kidney disease (CKD) related
mortality rose from 15.95 to 18.35 per 100,000 people between
1990 and 2019 (Shahbazi et al, 2024), reflecting a growing
disease burden.

Both AKI and CKD are pathophysiologically interconnected
syndromes, often leading to complications such as cardiovascular
disease, end-stage renal disease, reduced quality of life, and disability
(Chawla et al., 2014). Recent studies indicate that CKD develops in
AKI patients at a rate of 25.8 cases per 100 person-years (James et al.,
2019). Notably, 24.6% of AKI patients progress to CKD within
3 years, demonstrating that incomplete AKI recovery significantly
impacts long-term prognosis (Horne et al., 2017). The AKI-to-CKD
transition involves multiple pathological mechanisms, including
sustained inflammation, chronic hypoxia, and maladaptive tubular
repair processes (Yeh et al, 2024). Consequently, developing
targeted interventions to disrupt this progression, based on
underlying molecular pathways, has emerged as a critical focus in
nephrology research.

Inflammatory responses and mitochondrial dysfunction
represent key mechanisms driving the AKI-to-CKD transition
(Chang et al., 2024; Yeh et al., 2024). Mitochondrial dysfunction
promotes oxidative stress, cellular apoptosis, and inflammatory
cascade amplification, while persistent inflammation accelerates
renal fibrosis, establishing a pathological “injury-inflammation-
fibrosis” cycle (Chang et al., 2024). Recent studies in renal toxicity
and ischemia-reperfusion rat models have elucidated the protective
role of mitophagy (Fontecha-Barriuso et al., 2022). As a crucial
quality control mechanism, mitophagy reduces reactive oxygen
species (ROS) production by eliminating damaged organelles
and significantly suppresses NLRP3 (NOD-like receptor family
pyrin domain containing 3) inflammasome activation (Fontecha-
Barriuso et al, 2022). The activated NLRP3 inflammasome
conversely worsens mitochondrial dysfunction and stimulates
additional ROS generation, thereby creating a self-perpetuating
“mitochondrial damage-inflammation activation” loop (Lin et al,
2021). This mechanism suggests that targeted regulation of the
mitophagy-NLRP3 inflammasome axis could represent a novel
therapeutic strategy to disrupt the pathological cycle. Such an
approach may provide new directions for preventing and treating
the AKI-to CKD-transition.

This review systematically examines the molecular mechanisms
underlying the mitochondrial-inflammatory circuit in the AKI-to-
CKD transition. By evaluating its translational medical value as a
therapeutic target, we aim to establish a theoretical foundation for
developing innovative renal protection strategies.

2 The pathophysiology of AKI-to-CKD
transition

(IRI)
(Le Clef et al., 2016), nephrotoxic drug exposure (Katagiri et al.,

Animal models of ischemia-reperfusion injury
2016), and contrast agent induction (Tsogbadrakh et al., 2025)
effectively mimic the pathological progression from AKI to CKD.
Post-AKI renal repair outcomes depend on two critical factors:
the severity of initial injury and the adaptability of subsequent

repair mechanisms. Mild injury typically activates adaptive repair
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mechanisms, enabling full renal functional recovery. However,
severe injury often leads to maladaptive repair. This process involves
interconnected pathological cascades, including tubular epithelial
cell (TECs) damage and dysfunction, microvascular injury, and
endothelial dysfunction, which constitute the core pathological
basis for AKI-to-CKD transition (Kurzhagen et al., 2020).

2.1 TEC injury and dysfunction

Proximal tubule S3 segment TECs are particularly sensitive to
ischemic and nephrotoxic injury due to their high metabolic rate
and oxygen demand (Funk and Schnellmann, 2012). These cells are
key drivers of the AKI-to-CKD transition (Liu et al., 2018). Injured
TECs release damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs). These molecules
activate the NF-kB pathway via Toll-like receptors (TLRs), thereby
inducing NLRP3 inflammasome activation. This leads to the
secretion of large amounts of pro-inflammatory factors (such as
IL-1B, IL-18, TNF-a) and chemokines (such as CCL2, CCLS5)
(Liu et al., 2018), initiating an inflammatory cascade, and recruiting
and activating immune cells such as neutrophils, macrophages, and
dendritic cells (Kim et al.,, 2019; Lee et al., 2024). These immune
cells, particularly activated macrophages, further release pro-
inflammatory and pro-fibrotic factors (such as TGF-p, IL-6). These
factors exacerbate tissue damage and promote the fibrotic process
(Lee et al., 2017; Komada and Muruve, 2019; Meng et al., 2025).

Injured TECs undergo dedifferentiation, manifested by the loss
of epithelial markers and the acquisition of mesenchymal markers
(such as a-SMA). These cells exhibit partial epithelial-mesenchymal
transition (EMT) features (Chang-Panesso and Humphreys,
2017). They acquire migratory and pro-fibrotic capabilities,
promoting excessive deposition of the extracellular matrix (ECM)
(Kurzhagen et al., 2020; Xu et al,, 2025). Persistent inflammation
and EMT collectively contribute to progressive tubular atrophy and
interstitial fibrosis (Ferenbach and Bonventre, 2015).

2.2 Microvascular injury and endothelial
dysfunction

Renal injury leads to microcirculatory dysfunction, causing
capillary rarefaction, endothelial cell damage, and pericyte
detachment (Jiang et al.,, 2020). Renal capillary endothelial cells
may undergo Endothelial-to-Mesenchymal Transition (EndMT),
further compromising vascular integrity and exacerbating tissue
hypoxia and tubular injury (Lovisa et al, 2020). The resulting
chronic hypoxic state persistently stimulates pro-fibrotic signaling
pathways, serving as a key microenvironmental factor in CKD
progression. The inflammatory response initiated by injured
TECs persists and amplifies, while infiltrating immune cells
(particularly macrophages) polarize into pro-inflammatory/pro-
fibrotic phenotypes within the injured microenvironment, driving
excessive ECM deposition (Lee et al., 2017; Lee et al, 2024).
These processes ultimately converge into progressive renal
interstitial fibrosis.

Although fibrosis may exert a protective effect by encapsulating

irreversibly damaged areas and confining injury spread
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2013; Guzzi
persistent fibrosis disrupts normal renal parenchymal architecture.

(Kaissling et al, et al, 2019), extensive and
This disruption leads to nephron loss and glomerulosclerosis,
constituting the hallmark pathological alteration of CKD
(Chawla et al., 2014; Kurzhagen et al., 2020).

Recent studies emphasize that a vicious
(e.g.,
damaged mitochondria and excessive ROS production) and
hyperactivated NLRP3 inflammasomes in injured TECs
(Yang et al., 2024; Wu M. et al., 2025). This cycle serves as a key

molecular mechanism driving maladaptive repair and the AKI-to-

cycle exists

between  mitochondrial  dysfunction accumulated

CKD transition. Maintaining the balance between mitochondrial

homeostasis (such as clearing damaged mitochondria via
efficient mitophagy) and suppression of NLRP3 inflammasome
overactivation is crucial for promoting adaptive repair and blocking

progression to CKD.

3 Mitophagy and the NLRP3
inflammasome in the kidney

Mitophagy and the NLRP3 inflammasome play crucial roles
in maintaining renal homeostasis and responding to renal injury.
Mitophagy eliminates damaged mitochondria and reduces ROS
production, thereby inhibiting NLRP3 inflammasome activation.
This process decreases inflammatory cytokine release and
suppresses pyroptosis, ultimately alleviating renal injury and fibrosis
(Lietal, 2019; Tian et al., 2023) (Figure 1). The interaction between
these two pathways is essential in renal disease pathogenesis. Further
investigation of their molecular mechanisms may facilitate the
development of novel therapeutic strategies.

3.1 The role of mitochondria in renal
function

Mitochondria are indispensable organelles in renal cells, critical
for physiological kidney functions such as active solute transport
and fluid balance regulation (Wang et al, 2024). Furthermore,
the kidneys exhibit high energy demands, particularly because
the proximal tubules reabsorb the majority of filtered fluid. This
process requires substantial oxygen consumption, consequently
leading to high mitochondrial density in these regions (Bhargava
and Schnellmann, 2017).

Mitochondrial dysfunction is a key factor in the development
of AKI (Piret and Mallipattu, 2023), primarily exacerbating renal
damage by disrupting energy metabolism and inducing oxidative
stress. Mitochondria play a central role in adenosine triphosphate
(ATP) synthesis and energy regulation, but dysfunction leads to
reduced intracellular ATP production, increased ROS generation,
and cellular apoptosis (Aparicio-Trejo et al., 2018). During AKI,
the energy demand of renal tubular epithelial cells surges,
triggering a metabolic shift from fatty acid oxidation to glycolysis.
This shift further impairs mitochondrial function (Chang et al,
2024). Such dysfunction stems from various etiologies (e.g.,
ischemia or toxin exposure), causing intracellular calcium overload.
Calcium overload subsequently activates detrimental enzymes
(e.g., phosphatases), compromises cell membrane integrity, and
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ultimately leads to tubular damage and tissue necrosis (Szydlowska
and Tymianski, 2010). Lan et al. (2016) demonstrated that renal IRI
induces tubular atrophy accompanied by significant mitochondrial
alterations and substantial protein loss. Furthermore, studies
confirm that tubular atrophy is closely associated with the metabolic
shift from oxidative phosphorylation to glycolysis in renal tubular
epithelial cells.

Mitochondrial structural abnormalities play a significant role
in the pathological progression of AKI. Healthy mitochondria
in the kidneys exhibit high plasticity (McBride et al, 2006),
but ATP
Specifically, in AKI models, impaired mitochondrial membrane

structural disorders impair synthesis efficiency.
potential causes matrix swelling and cristae structure disruption.
Persistent dysregulation of structural dynamics (e.g., imbalance
in mitochondrial fusion/fission) increases ROS generation, which
induces renal microvascular loss, oxidative stress, and elevated
cell death, ultimately leading to renal failure (Zhang et al., 2021).
These structural defects also promote aberrant interactions with
other organelles (such as the endoplasmic reticulum), further
exacerbating mitochondrial stress and triggering chronic fibrosis
during AKI recovery (Zhang et al., 2021).

Mitophagy functions as a selective autophagic process
that maintains cellular homeostasis by eliminating damaged
mitochondria and exerts a protective role in AKI pathology.
Its regulatory mechanisms are intricate and closely linked to
disease progression. This process is primarily executed through
the PINKI-Parkin pathway and receptor-mediated routes such
as BNIP3/NIX. Upon loss of mitochondrial membrane potential,
PINK1 accumulates and recruits Parkin to catalyze ubiquitin
tagging, followed by LC3 binding to facilitate autophagosome
formation (Zhu Q. et al, 2023). During AKI, upregulation
of autophagy alleviates oxidative stress and renal fibrosis, as
exemplified by a-Klotho, which safeguards renal cells and
delays the AKI-to-CKD transition by enhancing autophagic flux.
Nevertheless, impaired autophagy after ischemic AKI elevates
the risk of post-AKI CKD owing to the ineffective clearance of
aberrant mitochondria, resulting in cumulative cellular damage and
progressive renal fibrosis (Jiang et al., 2020).

3.2 NLRP3 inflammasome

The NLRP3 inflammasome is

composed of NLRP3, apoptosis-associated speck-like protein

a multiprotein complex

(ASC), and pro-caspase-1, and can be activated by the innate
immune system to trigger widespread inflammatory responses
(Ding et al, 2021). Under physiological conditions, the NLRP3
inflammasome remains inactive. Its stability is maintained through
molecular chaperones including heat shock protein 70 and caspase
recruitment domain-containing protein 8. This homeostatic
regulation prevents excessive inflammation while preserving normal
renal function (Kim et al., 2024).

The first priming signal occurs when innate immune cells
rapidly detect PAMPs (such as lipopolysaccharide, single-stranded
RNA, and bacterial DNA) or DAMPs (including histones, DNA
fragments, and heat-shock proteins) via pattern-recognition
receptors (primarily Toll-like receptors). This detection activates
the NF-xB signaling pathway (Anders and Schaefer, 2014; Li
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The interplay between mitophagy and NLRP3 inflammasome in kidney diseases. Classic NLRP3 inflammasome activation is a two-step process. During
the priming phase, TLR can recognize DAMPs and PAMPs produced by continuous exposure to kidney disease and activate the NF-kB pathway to
upregulate the expression of NLRP3, pro-IL-1p and pro-IL-18. During the activation phase, multiple stimulis trigger the assembly of inflammasomes to
activate Caspase-1 by inducing K* efflux, Ca?* influx, mitochondrial dysfunction, ROS and mtDNA release. Activated Caspase-1 cleaves pro-IL-1p and
pro-IL-18 into activated forms and cracks GSDMD, whose N-terminal fragments form pores in the cell membrane and initiate pyroptosis. Moderate
mitophagy can help inhibit excessive inflammation and maintain renal tubular epithelial cell homeostasis. This process mainly relies on the
PINK1-Parkin pathway, receptor-mediated pathways (such as BNIP3, NIX, and FUNDC1) and the dual regulation of mTOR. Moderate mitochondrial

ECM?

dynamics and mitochondrial biogenesis can also inhibits the activation of the NLRP3 inflammasome by modulating mitophagy. The activation of
mitophagy inhibits the NLRP3 inflammasome and reduces pyroptosis, which decreases the profibrotic signal (a-SMA, Coll-1, FN1, TGFB-1) and delaying
the progression of renal fibrosis (By Figdraw). TEC, Tublular epithelial cell; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated
molecular patterns; TLR, Toll-like receptor; NF-kB, Nuclear factor-kappaB; ROS, Reactive oxygen species; NLRP3, Nucleotide-binding oligomerization
domain-like receptor protein 3; IL, Interleukin; GSDMD, Gasdermin D; N-GSDMD, N-terminal Gasdermin D; PINK, PTEN-induced putative kinase 1; p62,
protein p62; BNIP3, Bcl-2 interacting Protein 3; FUNDCL1, FUN 14 domain containing 1; mTOR, Mammalian target of rapamycin; NIX, NIP3-like protein
X; HIF-1a, Hypoxia inducible factor-1a; PGC-1a, Peroxisome prolilerators-activated receptor-y coactivator-a; Mfn, Mitofusin; DRP1, Dynamin-related

protein 1; OPAL, Optic atrophy 1; ECM, Extracellular matrix; TGF-B, Transforming growth factor-f; a-SMA, a-smooth muscle actin.

and Wu, 2021; Meng et al, 2025), leading to the upregulation
of NLRP3, caspase-1, and pro-IL-13 expression. Concurrently,
post-translational modifications such as ubiquitination and
phosphorylation maintain NLRP3 in a signaling-competent state
(Swanson et al., 2019). Studies indicate that LPS-induced p21-
activated kinase 1 phosphorylates caspase-1 at Ser376, leading
to downstream NLRP3 activation (Henedak et al., 2024). The
second activation signal originates from specific NLRP3 agonists,
which trigger NLRP3 inflammasome assembly and downstream
activation. This process converts pro-caspase-1 into active caspase-
1, which subsequently cleaves pro-IL-1p and pro-IL-18 to generate
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mature inflammatory cytokines. Notably, activated caspase-1 also
cleaves gasdermin D (GSDMD). The N-terminal fragment of
GSDMD forms pores in the cell membrane, inducing pyroptosis
(He et al,, 2015; Gupta et al., 2025).

This cascade of reactions not only enhances host defense
by releasing intracellular pathogens and inflammatory mediators
(such as IL-1p and DAMPs), but also participates in renal tissue
surveillance of DAMPs and PAMPs under normal physiological
conditions. It facilitates the clearance of damaged cells and
pathogens while promoting tissue repair (Kelley et al., 2019). Under
pathological conditions, however, chronic exposure to DAMPs and
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PAMPs predisposes the NLRP3 inflammasome to activation. This
exacerbates inflammatory responses and drives fibrotic progression
in kidney disease (Kim et al., 2019).

3.3 Interplay between the NLRP3
inflammasome and mitophagy

The NLRP3 inflammasome can regulate mitophagy to balance
necessary host-defensive inflammatory responses and prevent
excessive detrimental inflammation. Mitochondrial damage can
activate the NLRP3 inflammasome via mtROS. Specifically,
mitochondrial antiviral signaling protein (MAVS) or mitofusin
2 (Mfn2) have been shown to recruit NLRP3 to mitochondria
during viral infection or NLRP3 stimulation. These MAVS
aggregates may facilitate NLRP3 oligomerization to assemble
the inflammasome complex (Yu and Lee, 2016). Although ROS
generation—particularly mtROS—represents the most well-defined
mechanism for NLRP3 inflammasome activation, regulation
of the NLRP3 inflammasome by mitophagy extends beyond
controlling mtROS production to include modulation of calcium
signaling, mtDNA release, and subcellular localization changes
(Figure 2).

Mitochondrial damage regulates NLRP3 activity through
inhibition of the voltage-dependent anion channel (VDAC)
(Zhou et al.,, 2011). Additionally, autophagy limits inflammasome
assembly by degrading NLRP3 and ASC inflammasome components
(Cao et al, 2019). Mitochondrial Ca®*" uptake is a critical
step for NLRP3 activation. Mitochondrial calcium overload
induces mitochondrial damage, thereby promoting NLRP3
inflammasome assembly and activation. Concurrently, damaged
mitochondria release mtDNA, which can directly bind to and
activate the NLRP3 inflammasome. mtDNA release is closely
linked to mitophagy deficiency, indicating that mitophagy
suppresses NLRP3 activation by clearing damaged mitochondria
containing mtDNA (Lawlor and Vince, 2014). Triantafilou et al.
(2013) that attack
complex-induced NLRP3 inflammasome activation requires the

demonstrated complement membrane
mitochondrial calcium uniporter (MCU). MCU is essential
for mitochondrial Ca®* uptake, and its excessive activation
leads to mitochondrial dysfunction. Recent studies reveal
that STAT3 protein plays a key role in NLRP3 translocation
STAT3 deficiency inhibits mitochondrial

localization of NLRP3, consequently attenuating inflammasome

to mitochondria.

activation. This mechanism underscores the importance of
mitochondria as a physical platform for NLRP3 activation
(Luo et al.,, 2024).

During activation, NLRP3 undergoes dynamic subcellular
relocalization: it is first recruited to mitochondria, subsequently
dissociates, and translocates to the Golgi apparatus. This process
likely involves regulation by mitochondrially derived signaling
molecules (e.g., cardiolipin) (Zhao and Zhao, 2020; Luo et al., 2024).

The (TGN) upon
stimulation, forming dispersed structures (dispersed TGN, dTGN).
Subsequently, NLRP3 is recruited to the dTGN and forms speckle
structures through binding of its conserved basic amino acid-rich

trans-Golgi  network disassembles

region to negatively charged phosphatidylinositol-4-phosphate. This
process induces ASC oligomerization, ultimately leading to NLRP3
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inflammasome activation (Chen and Chen, 2018). Concurrently, the
Golgi apparatus recruits mitochondria-associated ER membranes
toward itself via PKD signaling, establishing connectivity among
the “Golgi-MAM-mitochondria” triad, thereby promoting NLRP3
inflammasome activation (Zhang et al., 2017).

Mitophagy deficiency induces cellular metabolic disturbances
which
NLRP3 by altering cellular metabolic states including the
ATP/ADP ratio (Leishman et al., 2024).

Furthermore,

such as lipid accumulation, indirectly activates

upon stimulation, mitochondria

toward the endoplasmic reticulum through the microtubule

migrate

network. This process induces Ca** overload and decreased

mitochondrial  stability, =~ consequently  increasing  the
production of mtROS (Li et al., 2022).
Separate research demonstrates that upon NLRP3

inflammasome activation, mitochondria-associated endoplasmic
reticulum membranes become positioned adjacent to Golgi
membranes (Zhang et al., 2017). Furthermore, in the resting state,
NLRP3 localizes to endoplasmic reticulum structures, whereas upon
activation it redistributes—along with the adaptor protein ASC—to
perinuclear regions where it co-localizes with clustered endoplasmic
reticulum and mitochondria. Mitochondrial dysfunction triggers
endoplasmic reticulum stress, thereby exacerbating NLRP3
activation (Elliott and Sutterwala, 2015).

4 The Mitophagy-NLRP3
inflammasome axis in AKI-CKD
transition

4.1 Research advances on the
mitophagy-NLRP3 inflammasome axis in
diverse AKI-CKD models

In kidney diseases, the mitophagy-NLRP3 inflammasome axis
participates in tissue injury, inflammation, and fibrosis processes.
Rational modulation of this axis can ameliorate and delay the
progression from various AKI models to CKD. Using AKI models
induced by IRI, cisplatin, and sepsis-associated (SA) injury as
examples, the following section elucidates the role of the mitophagy-
NLRP3 axis in renal pathology.

4.1.1 Renal IRl model

The ischemic AKI model is a common system for studying
the AKI-to-CKD transition. In this model, ischemia triggers
mitochondrial respiratory suppression, causing a sharp decline
in ATP production. Concurrently, Na*-K*-ATPase inactivation
induces cellular edema (sodium accumulation reaching 3-4
times normal levels) and structural damage (e.g., brush border
loss and podocyte detachment). The S3 segment of proximal
tubules is highly susceptible to ischemic necrosis due to limited
blood supply (Szeto, 2017). Although reperfusion restores blood
flow, activation of the mitochondrial permeability transition
pore permits massive Ca’*" influx. This initiates oxidative stress
(characterized by excessive reactive oxygen species generation)
and activates the NLRP3 inflammasome, exacerbating cellular
injury (Szeto, 2017; Lv et al,, 2021), thereby promoting AKI-CKD
progression. Research by Balkker et al. (2014) demonstrates that
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FIGURE 2
Interaction mechanisms between mitochondria and the NLRP3 inflammasome. (1) Upon mitochondrial damage, factors including VDAC and MCU

induce mitochondrial calcium overload, triggering excessive mtDNA release and overproduction of mtROS. These excess mtDNA and mtROS
collectively activate the NLRP3 inflammasome. (2) Mitochondria serve as physical platforms for NLRP3 activation, where MAVS, cardiolipin, and Mfn2
bind inactive NLRP3 and recruit it to mitochondria. Damaged mitochondria translocate to the endoplasmic reticulum via microtubules, causing Ca
overload and decreased mitochondrial stability, which further enhances mtROS production. (3) NLRP3 translocates to mitochondria before dissociating
and trafficking to the Golgi apparatus. The trans-Golgi network (TGN) disassembles into dispersed structures (dTGN) upon stimulation. NLRP3 is
recruited to dTGN by binding phosphatidylinositol-4-phosphate to form speckles, thereby inducing ASC oligomerization and NLRP3 inflammasome
activation. Concurrently, the Golgi recruits mitochondria-associated ER membranes (MAMs) through PKD signaling, also promoting NLRP3
inflammasome activation (By Figdraw). VDAC Voltage-dependent anion channel; MCU, mitochondrial calcium uniporter; mtROS, Mitochondrial
reactive oxygen species; mtDNA, Mitochondrial DNA; MAVS, Mitochondrial antiviral signaling protein; Mfn2, mitofusin-2; ASC, Apoptosis-associated
speck-like protein; dTGN, dispered trans-Golgi network; PKD, Protein Kinase D.

mitigating progressive renal injury and fibrosis (Perry et al,
2018). Both in vivo and in vitro studies demonstrate that NLRP3
2014; ZhengZ. et al,

post-renal IRI, necrotic tissues release endogenous DAMPs such as
HMGB1 or mtDNA, which activate the NLRP3 inflammasome

in immune cells to mediate renal tubular epithelial cell inflammasome knockout (Bakker et al,

2021) and mitochondrial protection strategies (Szeto et al,

apoptosis.
Autophagy induced during renal ischemia-reperfusion  2017) effectively prevent tubular sclerosis and interstitial fibrosis
contributes to protective homeostatic mechanisms under  progression post-ischemic injury.

ischemic/hypoxic stress and clears oxidatively damaged proteins
and organelles during reperfusion (Ramesh et al., 2019). Following
ischemic renal injury, an imbalance in mitochondrial dynamics
occurs. Specifically, dynamin-related protein 1 (Drpl)-mediated

4.1.2 SA-AKI model

Multiple sepsis-associated animal models demonstrate that the
mitophagy-NLRP3 inflammasome axis is closely associated with

mitochondrial fission becomes hyperactive, promoting apoptosis
and inflammation. Conversely, dysfunction of fusion proteins
(Mfn1/2, OPA1) impairs mitophagy and suppresses mitochondrial
Ca** uptake, thereby exacerbating tubulointerstitial inflammation
and fibrotic progression (Bhatia et al., 2020). In contrast, Drpl
knockout in renal tubular epithelial cells enhances epithelial
repair. 'This mitochondrial genetic modification concurrently
activates the renoprotective -hydroxybutyrate signaling pathway,
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renal inflammation, tubular injury, and dysfunction. Mitochondria
constitute the primary source of ROS during sepsis. Both mtROS
and mtDNA released upon mitochondrial damage promote
NLRP3 inflammasome activation, thereby triggering pyroptosis
and exacerbating AKI (WuW. et al, 2025). In LPS-induced
sepsis-associated AKI (SA-AKI) models, DRP1 overexpression
causes excessive mitochondrial fission, which releases mtDNA to
activate the NLRP3-caspase-1 signaling pathway and ultimately
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induces pyroptosis-mediated AKI (Liu et al., 2020). Consequently,
modulating the mitochondrial quality control system to reduce
mtROS and mtDNA release, thus inhibiting NLRP3 activation, may
represent an effective therapeutic strategy for preventing SA-AKI
progression.

Xu et al. (2024) discovered that tubular-specific TIMP2
knockout mice exhibit more severe renal injury than wild-type
mice during the early stage of SA-AKI, accompanied by elevated
levels of pyroptotic markers NLRP3, Caspase-1, and GSDMD.
Exogenous TIMP2 increases intracellular cyclic AMP (cAMP),
promoting ubiquitination of NLRP3 and its autophagy-dependent
degradation, thereby attenuating renal tubular pyroptosis and
alleviating kidney injury. Notably, oxidative stress—particularly
excessive ROS production—plays a critical role in SA-AKI
development (Ow et al., 2021).

4.1.3 Cisplatin-induced AKI and unilateral
ureteral obstruction (UUO) models

Cisplatin causes dose-dependent nephrotoxicity, and this
agent is primarily used to model toxin-induced AKI and its
transition to CKD. Cisplatin directly damages renal tubular
mitochondria, leading to defective fatty acid oxidation and
bioenergetic failure (Chang et al., 2024). In cisplatin-induced mouse
models (Li et al., 2019; Ma et al., 2024), proximal tubular cells
exhibit ferroptosis, which is closely associated with mitochondrial
dysfunction. These mitochondrial abnormalities manifest as
reduced size and outer membrane rupture, thereby triggering
NLRP3 inflammasome activation and ultimately exacerbating renal
fibrosis. In this model, blocking NLRP3 inflammasome activation
reduces cisplatin-induced oxidative stress and inflammatory
responses,  consequently interstitial ~ fibrosis
(Li et al., 2019).

Studies reveal that under UUO model conditions and in

attenuating

vitro oxidative stress, mitochondrial damage becomes aggravated
(manifested as swelling, cristae fragmentation, and vacuolization).
These DAMPs activate the NLRP3 inflammasome (Li et al., 2023).
Concurrently, shortening of the 3'UTR region in NLRP3 mRNA
increases NLRP3 protein expression, thereby promoting renal
injury progression and AKI-CKD transition (ZhengT. et al,
2021). Conditional deletion of autophagy-related proteins 5
and 7 in proximal tubules accelerates renal fibrosis progression
in the UUO model, whereas administration of the autophagy
inducer rapamycin retards its induced renal fibrotic process
(Ramesh et al., 2019).

4.2 Mitochondrial autophagy-NLRP3
inflammasome axis-related pathways

The interplay between mitophagy and NLRP3 inflammasome in
AKI-to-CKD transition involves both classical pathways (PINK1-
Parkin and BNIP3/NIX) and regulatory factors, including Hypoxia-
Inducible Factor 1-alpha (HIF-1a) (He et al., 2017), Peroxisome
Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-
la) (Lynch et al, 2018), and Mechanistic Target of Rapamycin
(mTOR) (Wang et al, 2020). These modulators regulate the
mitophagy-NLRP3 axis, influencing renal injury progression
or repair (Figure 1).
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4.2.1 PINK1/PGC-1a
PINK1 is a mitochondrial kinase that identifies damaged
mitochondria and initiates mitophagy. This process is impaired
when NLRP3 activation promotes caspase-mediated Parkin cleavage
(Liu et al, 2019). In renal proximal tubule cells, Pinkl/Parkin
knockout causes mitochondrial dysfunction and cellular damage.
Conversely, Pinkl/Parkin overexpression protects against sepsis-
induced mitochondrial and cellular injury (Wang et al., 2021).
Both
PINK1/Parkin-mediated mitophagy decreases

demonstrate that
mtROS
subsequent NLRP3 inflammasome activation (Lin et al, 2019;

in vitro and in vivo studies

and

Zhu D. et al, 2023). This mechanism attenuates apoptosis and
tissue damage in cisplatin-induced and ischemia-reperfusion
injury models. Parkin silencing or pharmacological inhibition of
mitophagy can abolish drug-induced NLRP3 suppression. Such
interventions exacerbate NLRP3/caspase-1-dependent pyroptosis
(Cheng et al., 2024). Interestingly, PINK1 deficiency may protect
against cisplatin nephrotoxicity by preventing excessive mitophagy
and caspase-3-mediated apoptosis (Zhou et al, 2019). These
divergent effects highlight the context-dependent nature of
PINK1/Parkin signaling.

During AKI recovery, damaged mitochondrial clearance and
new mitochondrial generation (biogenesis) are essential for renal
repair, a process chiefly regulated by PGC-1a. In ischemic and
septic AKI recovery, PGC-la expression gradually normalizes,
indicating its protective role in preventing AKI-to-CKD transition
(Emma et al, 2016). Through the ERRa-SIRT3 pathway, PGC-
la indirectly stimulates the PINKI-Parkin pathway, enhancing
damaged mitochondrial degradation (Chen et al., 2022). PGC-1a
maintains mitochondrial quality control by activating mitophagy
while suppressing NLRP3 inflammasome activation to attenuate
inflammation. In unilateral ureteral obstruction models, PGC-
la overexpression ameliorates TGF-Pl-induced mitochondrial
dysfunction in renal tubular cells. This improvement is evidenced
by restored mitochondrial membrane potential, enhanced oxygen
consumption rate, and reduced mtDNA release, collectively
inhibiting NLRP3 inflammasome activation and alleviating
renal fibrosis (Nam et al., 2022).

4.2.2 BNIP3/HIF-1a

BNIP3 has recently emerged as a novel regulator of mitophagy,
though its specific role in renal mitophagy remains poorly
understood. Both BNIP3 and FUN14 Domain Containing 1 interact
with BCL2 to promote mitophagy. These proteins function by
disrupting the Beclin 1-BCL2 interaction, thereby enhancing
autophagic activity (Tang et al, 2019). In vivo experiments
demonstrated that Acyl-CoA Synthetase Family Member 2
(ACSF2) knockout significantly enhanced ischemia-reperfusion
(IR)-induced mitophagy, leading to improved renal function
in IR-injured mice (Shi et al, 2023). However, when BNIP3
was simultaneously deficient in ACSF2 knockout mice, the IR-
triggered mitophagy was suppressed. This dual deficiency ultimately
exacerbated renal damage.

In unilateral ureteral obstruction models and hypoxic
conditions (Li et al, 2023), BNIP3 gene deletion exacerbates
mitochondrial damage, activates the NLRP3 inflammasome, and
significantly elevates renal fibrosis markers (a-SMA and TGF-
B1). BNIP3 deficiency is strongly linked to programmed cell death
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pathways. Under non-ischemic conditions, BNIP3 knockout mice
showed relatively lower serum creatinine levels compared to sham-
operated controls. However, following renal ischemia (Tang et al.,
2019), these knockout mice demonstrated significantly higher
creatinine levels. They also exhibited increased TUNEL-positive
tubular cells and elevated inflammatory factors compared to
wild-type mice subjected to ischemia alone.

HIF-1a serves as an upstream regulator of BNIP3, controlling
cellular and systemic homeostasis in response to oxygen availability.
During hypoxia, HIF-1a expression is upregulated, enabling this
transcription factor to bind the hypoxia response element in the
BNIP3 promoter region and activate BNIP3 transcription (Liu et al.,
2023). HIF-1a overexpression demonstrates complex mechanisms
during AKI-to-CKD progression, with model-dependent effects due
to variations in hypoxia duration. While some studies report HIF-1a
downregulation with elevated IL-1p levels, NLRP3 inflammasome
inhibition appears to enhance HIF-1a expression. Current evidence
suggests that NLRP3 inflammasome suppression may protect
against contrast-induced AKI through upregulation of both HIF-1a
and BNIP3-mediated mitophagy (Lin et al., 2021).

In severe AKI models, persistent HIF-1a activation strongly
correlates with renal fibrotic lesion development. The C-terminal
transactivation domain (C-TAD) of HIF-la activates KLF5
transcription, a key regulator of cell proliferation, differentiation and
fibrotic processes, thus driving AKI-to-CKD progression. During
severe IRI, FIH-1 overexpression suppresses HIF-1a C-TAD activity.
This inhibition effectively blocks AKI-to-CKD transition (Li Z.-
L. etal, 2021). The potential for therapeutic HIF-1a modulation to
achieve renal protection requires further investigation.

4.2.3 mTOR

mTOR is a key regulatory molecule in autophagy induction,
exerting dual modulation on autophagic activity, with complex
mechanisms in kidney diseases (Ramesh et al., 2019). TGF-p1
can both induce collagen synthesis and promote autophagy with
subsequent collagen degradation. Studies demonstrate that CI-
activated TGF-P1 causes excessive autophagy in renal tubular
epithelial cells, thereby exacerbating renal injury (Zhou et al,
2018). Furthermore, TGF-f protein triggers mTOR signaling via
the PI3K/Akt pathway, enabling mTOR to bidirectionally regulate
autophagy (Ramesh et al., 2019).

a-Klotho autophagy by
the AKT/mTOR pathway, subsequently suppressing NLRP3

protein  enhances inhibiting
inflammasome-mediated pyroptosis and protecting renal tubular
epithelial cells (Zhu et al, 2021). Dexmedetomidine augments
autophagy through the AMPK/mTOR pathway, inhibiting
NLRP3 inflammasome activation and alleviating sepsis-associated
kidney injury (Yang et al, 2020). 6-Paradol suppresses renal
NF-kB mRNA expression and NLRP3 inflammasome pathway
activity, while enhancing renal autophagy by upregulating
LC3B, AMPK, and SIRT-1 levels, alongside inhibiting mTOR,
p-AKT mRNA expression, and phosphorylated p62 levels (El-
Maadawy et al., 2022).

Nuclear factor of activated T-cells (NFAT) activation depends
on calcineurin (CaN), and calcium signaling dysregulation is a key
trigger for NLRP3 activation (Minami, 2014). In cardiovascular
diseases, NFAT regulates cardiomyocyte function via the
PI3K/Akt/eNOS/NO pathway, which intersects with mitochondrial
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homeostasis and inflammasome activation (Walther et al., 2014).
Following T11TS treatment in glioma-associated endothelial cells,
CaN-NFAT pathway activation may initiate the downstream PI3K-
AKT pathway, enhancing T-cell survival and anti-glioma defense
(Chaudhuri et al., 2015; Chaudhuri et al., 2018).

In IRI models, deficiency of mitochondrial protein FAM3A
disrupts PI3K/AKT/NRF2 signaling, impairs mtROS clearance,
and induces NLRP3 inflammasome activation leading to tubular
pyroptosis (Li et al., 2024). Enhanced mTOR complex 1 (mTORCI)
and rapamycin can block renal fibrosis progression (Ramesh et al.,
2019). Given the close association between PI3K/Akt and mTOR
pathways, their complex regulatory mechanisms raise a pivotal
question: Does NFAT modulate kidney diseases through the
PI3K/Akt pathway?

In summary, the mitophagy-NLRP3 inflammasome axis
interacts during AKI-CKD transition, co-regulating renal injury
progression and repair. Pathways including PINK1/PGC-laq,
BNIP3/HIF-1a, and mTOR participate in this process with
intricate mechanisms. Calcium signaling dysregulation closely
associates with the mitochondrial-NLRP3 axis, prompting a
critical inquiry: Does CaN-NFAT regulate kidney diseases via the
PI3K/Akt pathway?

5 Targeted drugs related to AKI-CKD

Based on the analysis of mitophagy and NLRP3 inflammasome
regulation during AKI-to-CKD transition in this review, this section
summarizes recent advances in pharmaceutical research targeting
these two pathways. It encompasses clinical studies targeting both
mitochondria and NLRP3 (Table 1), along with a compilation of
relevant models (Table 2).

5.1 Mitochondria-targeted drugs for kidney
diseases

Phosphatidylserine is a phospholipid located in the inner
mitochondrial membrane that shows high susceptibility to oxidative
damage. When oxidized, it disrupts the phosphatidylserine
microdomain on the IMM, resulting in loss of cristae curvature
and impaired ETC function (Szeto, 2017). SS-31 (Elamipretide)
is a mitochondria-targeted tetrapeptide that enhances ETC
efficiency and restores cellular bioenergetics. It specifically binds
to phosphatidylserine, preventing its peroxidation and cytochrome
c release while preserving cristae structural integrity (Saad et al,
2017). This dual action reduces ROS production while improving
electron transport efficiency. In rat models of renal IRI, the
mitochondria-targeting peptide SS-31 exerts significant protective
effects during early reperfusion. This agent effectively reduces
tubular cell apoptosis and necrosis, thereby preventing tubular
dysfunction (Szeto et al., 2011). Clinical studies in atherosclerotic
renal artery stenosis patients show elamipretide’s therapeutic
potential. Compared to placebo, it significantly minimizes ischemic
injury, increases estimated glomerular filtration rate (eGFR),
reduces renal hypoxia, and improves overall renal function
(Saad et al., 2017).
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TABLE 2 Application of drugs targeting mitochondria and the NLRP3 inflammasome in disease models.

Inhibitor Models

Mechanism of action

10.3389/fmolb.2025.1643829

References

1 Elamipretide (SS-31) IRI

S§S-31 improves mitochondrial structure
and respiratory function, thereby
accelerating ATP recovery

Szeto et al. (2011)

2 ASP1128 IRI

ASP1128 increases the expression of
genes associated with mitochondrial
function

Bracken et al. (2017)

3 Nicotinamide cisplatin-induced AKI and IRI

Nicotinamide stimulates de novo NAD +
synthesis by inhibiting ACMSD, thereby
improving mitochondrial function

Faivre et al. (2021)

4 MCC950 series Diabetic Nephropathy. IRI

MCC950 ameliorates renal fibrosis by
inhibiting the NLRP3/caspase-1/IL-1p
pathway

Zhang et al. (2019), Su et al. (2021)

5 Hederasaponin C Septic AKI

Hederasaponin C inhibits the expression
of TLR4, as well as the activation of the
NF-kB and PIP2 signaling pathways, and
also suppresses the activation of the
NLRP3 inflammasome

Han et al. (2023)

6 Hydroxychloroquine IRI

Hydroxychloroquine alleviates renal IRI
by inhibiting cathepsin-mediated NLRP3
inflammasome activation

Tang et al. (2018a)

7 Dapansutrile (OLT1177) Folic Acid-Induced AKI-CKD Transition

Dapansutrile targets the NLRP3
inflammasome/caspase-1/IL-1p axis,
reduces macrophage infiltration, and

modulates autophagy

Elsayed et al. (2021)

8 MitoQ DN. IRI. cisplatin-induced AKI

MitoQ inhibits the generation of
mitochondrial reactive oxygen species
(mtROS) and reduces the expression of

NLRP3, IL-1B, and TGF-B

Mukhopadhyay et al. (2012), Dare et al.
(2015), Huang et al. (2023a)

9 Andrographolide DN

Andrographolide stabilizes mitochondrial
membrane potential, suppresses Fis1,
upregulates Mfn2 expression

Liu et al. (2021)

10 Resveratrol IRI

Resveratrol activates the SIRT1/PGC-1a
axis, enhances mitophagy, and suppresses
the NLRP3 inflammasome

Chang et al. (2015)

11 Verapamil IRI

Verapamil enhances mitophagy, reduces
intracellular Ca?*, inhibits the NLRP3
inflammasome

Song et al. (2021)

IRI, Ischemia-Reperfusion Injury; NLRP3, NACHT, LRR, and PYD, domains-containing protein 3; ACMSD, a-amino-p-carboxymuconate-e-semialdehyde decarboxylase; NAD*, nicotinamide
adenine dinucleotide; ATP, adenosine triphosphate; IL-1p, Interleukin-1, beta; LPS, lipopolysaccharide; AKI, acute kidney injury; TLR4, Toll-like receptor 4; NF-kB, Nuclear Factor
kappa-light-chain-enhancer of activated B cells; PIP2, Phosphatidylinositol 4,5-bisphosphate; AKI-CKD, acute kidney injury to chronic kidney disease; DN, diabetic nephropathy; mtROS,

mitochondrial reactive oxygen species; SIRT1, Sirtuin 1; PGC-1a, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha.

PGC-1a is an important physiological transcriptional regulator
of mitochondrial biogenesis. PPARS regulation has been shown
to increase mitochondrial-related gene expression by enhancing
fatty acid oxidation, as well as reducing inflammation and fibrosis
(Kleiner et al., 2009). ASP1128 is an effective selective PPARS
modulator. Non-clinical pharmacology data generated by ASP1128
indicate (Bracken et al,, 2017; LiY. et al., 2021) that selective
PPARS modulation following ischemic AKI events in rats can
restore renal tubular function, increase the expression of PPARS
target genes (including mitochondrial function-related genes) in

Frontiers in Molecular Biosciences

blood and kidney tissues, and improve renal tissue pathology.
However, in a trial involving patients at risk of AKI following
cardiac surgery (van Till etal., 2023), although the incidence of atrial
fibrillation was lower in the ASP1128 group, the incidence of adverse
renal events in the ASP1128 group was 13%, which was higher than
the 11% incidence in the placebo group. This study demonstrated
that ASP1128 is safe and well-tolerated in patients; however, further
investigation is needed regarding renal adverse events.
Nicotinamide adenine dinucleotide (NAD") is a mitochondrial
coenzyme that participates in electron transport and serves as
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a substrate for deacetylases and poly (ADP-ribose) polymerases
(PARPs). It plays essential roles in regulating mitochondrial
biogenesis, metabolism, and energy production (Faivre et al., 2021).
NAD phosphate (NADP™) is vital for maintaining detoxification
and antioxidant systems. To fulfill these functions, cells maintain
NADP" primarily in its reduced form (Fontecha-Barriuso et al,
2021). Alterations in NAD* synthesis serve as biomarkers for both
AKI and CKD models, with particularly low levels observed in
renal tissue. While nicotinamide demonstrates protective effects
in cisplatin and IRI-induced AKI by mitigating mitochondrial
damage, it fails to ameliorate UUO-induced CKD progression
(Faivre et al,, 2021). This limitation may stem from irreversible
mitochondrial damage and renal tubular atrophy in CKD models.
Nicotinamide supplementation shows therapeutic potential for
ischemic AKI, and its application in preventing AKI-to-CKD
transition warrants further investigation. Clinical studies have
explored NAD" supplementation for preventing AKI following
aortic aneurysm repair surgery (Hariri and Legrand, 2025),
highlighting its translational relevance.

Levosimendan is a non-selective ATP-sensitive potassium
channel agonist (Pickkers et al, 2022). Experimental studies
demonstrate that it attenuates AKI development following
cardiac injury in rat models. This protective effect is mediated
of
mitochondrial respiratory enzyme activity and improvement of

through multiple mechanisms, including enhancement
mitochondrial energy metabolism. Furthermore, levosimendan
regulates mitochondrial dynamics by modulating key protein
expression. It decreases Drpl expression while increasing Opal
expression (Zhao et al, 2021), thereby promoting mitochondrial
stability. A clinical trial (NCT01720030) is currently investigating
the potential renal protective effects of dexmedetomidine
(Zeximend), although results are pending.

5.2 NLRP3 inflammasome-targeted
therapeutic strategies and inhibitors in
kidney disease

Most NLRP3 inflammasome inhibitors remain in preclinical
development. The following section evaluates their therapeutic
potential for kidney diseases based on in vitro and in vivo
experimental data. MCC950, a selective NLRP3 inflammasome
inhibitor, demonstrates beneficial effects in early-stage diabetic
nephropathy (DN) models. It reduces albumin-to-creatinine ratio
(ACR) and urinary neutrophil gelatinase-associated lipocalin levels
in diabetic mice, while improving renal function and attenuating
podocyte injury and fibrosis (Zhang et al, 2019). However,
MCC950 shows contrasting effects in established DN models. In
these cases, it may aggravate renal inflammation and damage,
evidenced by mesangial expansion and worsened glomerulosclerosis
(Dstergaard et al., 2022). These findings indicate the need for further
investigation into its mechanism of action. Additional studies reveal
that MCC950 treatment protects against ischemia-reperfusion (I/R)
induced renal injury. In renal I/R mouse models, it significantly
reduces cytokine release and cellular apoptosis (Su et al., 2021).

Hederasaponin C (HSC) is a natural compound with
demonstrated anti-inflammatory and antioxidant properties. In
renal injury pathogenesis, TLR4 activation serves as a critical
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initiating event, subsequently inducing NLRP3 inflammasome
assembly through downstream signaling cascades (Han et al,
2023). The NLRP3 inflammasome functions as a central effector
in the innate immune system’s renal inflammatory network.
Its activation mechanism involves phospholipase C gamma 2 -
mediated phosphatidylinositol 4,5-bisphosphate hydrolysis. This
process generates second messengers inositol trisphosphate and
diacylglycerol, which promote Ca®" release from endoplasmic
reticulum stores, ultimately triggering NLRP3 inflammasome
activation (Yuan et al,, 2022). Research demonstrates that HSC
specifically binds to TLR4’s extracellular domain. Through
competitive inhibition of TLR4 activation, HSC significantly
suppresses NLRP3 inflammasome activity (Han et al., 2023).
Hydroxychloroquine (HCQ), a commonly used antimalarial
drug, exhibits potent anti-inflammatory properties. It ameliorates
renal IRI by suppressing cathepsin-mediated NLRP3 inflammasome
activation (Tang T. T. etal.,, 2018). As a well-characterized autophagy
inhibitor, HCQ administration post-reperfusion or reoxygenation
causes abnormal accumulation of microtubule-associated protein
1 light chain 3-II (LC3-II) and sequestosome-1 (p62). This
disrupts autophagosome-lysosome fusion, leading to intracellular
accumulation of autophagic vesicles and impaired autophagy flux
(Tang T. T. et al., 2018). Numerous studies have demonstrated the
renal protective effects of autophagy (Jiang et al., 2012; Zhao et al.,
2018). However, the therapeutic potential of HCQ in kidney diseases
requires further investigation, as its effects may vary depending on
ischemic severity, I/R injury stage, and other undefined factors.
Dapansutrile (DAPA) represents the first NLRP3 inflammasome
inhibitor to reach Phase II clinical trials (Kliick et al., 2020). Its
mechanism of action involves inhibiting ATPase activity, thereby
interfering with inflammasome component oligomerization.
In folate-induced nephropathy models, increased microtubule-
associated proteinl LC3-II expression suggests compensatory
autophagy activation caspase-1/IL-1B/IL-18
inflammasome pathway stimulation. DAPA treatment significantly

in response to
reduces LC3-1I accumulation (Elsayed et al., 2021), demonstrating
its potential to modulate autophagic processes through NLRP3
inflammasome inhibition.

5.3 Therapeutic strategies targeting the
Mitophagy-NLRP3 inflammasome axis

Mitoquinone (MitoQ) is a targeted antioxidant that specifically
accumulates in mitochondria due to its positively charged property.
Within the mitochondrial matrix, MitoQ is reduced to its
active ubiquinol form by the electron transport chain, effectively
preventing oxidative damage through continuous ubiquinone-
ubiquinol redox cycling (Chen et al, 2024). Thioredoxin-
interacting protein (TXNIP) serves as a key activator of the NLRP3
inflammasome pathway. MitoQ inhibits activation of the mtROS-
TXNIP/NLRP3/IL-1p axis, thereby alleviating tubular injury in DN
(Han et al., 2018; Huang G. et al., 2023). Studies demonstrate that
MitoQ pretreatment significantly mitigates mitochondrial structural
and functional damage in renal tubules of mice. This protective
effect was observed in both ischemia-reperfusion (Dare et al,
2015) and cisplatin-induced (Mukhopadhyay et al., 2012) kidney
injury models, reducing oxidative stress and local inflammation
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while suppressing NLRP3 inflammasome activation. In a clinical
trial involving stage 3-4 CKD patients (Kirkman et al, 2023),
MitoQ administration improved macrovasculature endothelial
function and arterial hemodynamics. The observed enhancement in
microvascular function was partially mediated by reduced NADPH
oxidase activity.

Andrographolide is a natural compound extracted from
Andrographis paniculata, exhibiting anti-inflammatory and anti-
diabetic activities. In both in vivo and in vitro models of DN,
this agent ameliorates mitochondrial dysfunction, stabilizes
mitochondrial membrane potential, and eliminates high glucose-
induced mitochondrial dynamics abnormalities in HK-2 cells.
Specifically, it suppresses expression of mitochondrial fission
protein Fisl while enhancing expression of fusion protein Mfn2.
Furthermore, andrographolide reduces ECM accumulation,
thereby inhibiting mtROS-mediated NLRP3
activation (Liu et al., 2021).

inflammasome

Resveratrol is a natural polyphenolic compound that activates
SIRT1 to stimulate PGC-1a activity and mitochondrial biogenesis.
This activation enhances mitochondrial fatty acid oxidation capacity
in renal cells (Huang J. et al., 2023), while alleviating toxin-induced
mitochondrial fission and promoting fusion processes (Zhang et al.,
2020). Chang et al. (2015) reported that resveratrol enhances
mitophagy through the p38 mitogen-activated protein kinase
signaling pathway, promoting clearance of damaged mitochondria
and inhibiting NLRP3 inflammasome activation. These effects are
reversible by autophagy inhibitors. However, clinical trial data
(NCT02433925) (Saldanha et al., 2016) demonstrated no significant
improvement in inflammatory or oxidative stress markers in CKD
patients receiving resveratrol treatment. Optimization of dosing
regimens and treatment duration is required to comprehensively
evaluate resveratrol’s therapeutic potential in CKD management.

Mitochondrial calcium overload is a critical factor for
NLRP3
cholesterol-dependent

inflammasome activation. Ultraviolet radiation and
cytolysin-induced ~ NLRP3
require intracellular Ca?* influx (Elliott and Sutterwala, 2015).

activation

The calcium channel blocker verapamil reduces intracellular
Ca** levels to enhance autophagic flux and suppresses TXNIP
expression, thereby inhibiting NLRP3 inflammasome activation.
This effect prevents apoptosis in proximal tubular epithelial
cells and ultimately ameliorates interstitial fibrosis (Song et al.,
2021). In the multicenter, double-blind, randomized Bergamo
Nephrologic Diabetes Complications Trial (BENEDICT), patients
receiving verapamil combined with trandolapril exhibited nearly
20% lower risk of microalbuminuria compared to trandolapril
monotherapy (Ruggenenti et al., 2004).

6 Therapeutic potential and
challenges

Recent years have witnessed substantial advances in renal
disease research, particularly regarding molecular mechanisms
and clinical translation. A deeper understanding has emerged of
mitophagy and the NLRP3 inflammasome pathway. However, the
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intricate bidirectional regulatory networks and dynamic equilibrium
mechanisms governing these processes remain largely elusive.
From a translational perspective, the dual nature of mitophagy -
exhibiting both protective and detrimental effects - poses significant
challenges. Current NLRP3 inhibitors face limitations due to their
inadequate target specificity, creating a substantial translational gap
between preclinical findings and clinical applications. Furthermore,
existing animal models fail to fully recapitulate the disease
heterogeneity and microenvironmental complexity observed in
human nephropathies, which impedes comprehensive mechanistic
investigations.

Mitophagy is generally regarded as a cytoprotective mechanism
(Suman et al., 2024). However, its dual role in regulating cell death
hasled to conflicting research findings. In a mouse model of bilateral
renal ischemia (30 min) followed by 48-h reperfusion, researchers
observed increased mitochondrial and autophagic vacuoles in
renal tubules, confirming autophagic activation (Tang C. et al,
2018). Conversely, Zeng et al. (2014) demonstrated that autophagy
inhibitors ameliorate aristolochic acid-induced cell death during
late-stage AKI. These studies indicate that mitophagy’s role in
AKI is context-dependent. Its impact on cell survival or death is
modulated by multiple factors, including stress severity, cell-type
specificity, and expression profiles of autophagy-related molecules.
In TRI models, the consequences of autophagy modulation may
depend on ischemic duration—prolonged ischemia can trigger
autophagy-dependent cell death or cause autophagic impairment
associated with post-reperfusion autophagosome accumulation
(Ramesh et al., 2019).

Research on NLRP3
translational challenges. Although the activation mechanisms of

inflammasomes also faces similar

NLRP3 inflammasomes and their role in diseases are relatively
well-defined, the development of related inhibitors still faces
significant challenges. Animal studies have demonstrated that
NLRP3 inhibitors, such as MCC950, exhibit significant therapeutic
effects in models of chronic renal failure (Sabra et al., 2023) and
diabetic nephropathy (Zhang et al., 2019). However, there is a severe
lack of clinical data on their efficacy in human kidney diseases,
and these inhibitors have not yet been approved by the U.S. Food
and Drug Administration (FDA) or other regulatory agencies
(Das et al., 2021). Additionally, NLRP3 inhibitors are prohibitively
expensive, which complicates large-scale production and would
impose a substantial financial burden on patients in clinical
settings (Das et al., 2021). Furthermore, their therapeutic efficacy
is highly time-sensitive, creating significant obstacles for clinical
application. While the inflammatory response following AKI has
been extensively studied, the precise mechanisms by which soluble
inflammatory mediators and immune cells drive the progression
from AKI to CKD remain unclear (Kurzhagen et al., 2020).
Current animal models for studying the AKI-to-CKD transition
have significant limitations. Studies have shown that UUO and
bilateral IRI models can effectively induce chronic pathological
changes, such as renal fibrosis, but these studies typically assess
outcomes only within 6 weeks, lacking long-term follow-up data
(Burne-Taney et al., 2005). In contrast, the unilateral IRI model can
mimic certain pathological features of AKI-CKD progression, but
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technical challenges hinder continuous monitoring of dynamic renal
function changes (Liang and Liu, 2023; Koh and Chung, 2024).

These limitations hinder our in-depth understanding of
the molecular mechanisms driving AKI-to-CKD progression.
Additionally, significant variations in experimental conditions
between studies, including differences in ischemia duration and
temperature control, make direct comparison of research findings
challenging. More critically, existing animal models predominantly
use healthy young subjects, while clinical AKI patients are
typically elderly individuals with multiple comorbidities, such
as hypertension and diabetes mellitus (Sanchez Horrillo et al,
2022). This substantial disparity between experimental models
and clinical reality may compromise the translational relevance of
mechanistic studies.

7 Conclusion

This study elucidates the bidirectional regulatory mechanisms
between mitophagy and the NLRP3 inflammasome during the
progression from AKI to CKD, it also assesses their therapeutic
potential. Importantly, clarifying the molecular threshold at which
autophagy transitions from a protective to a detrimental effect is
crucial for renal repair. Current research predominantly focuses
on the regulation of inflammation by mitophagy, while the
feedback effects of inflammation on mitochondrial function remain
understudied. Further investigation into this interaction mechanism
is warranted.
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