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Introduction: Primary ciliary dyskinesia (PCD) is a rare hereditary disorder
affecting mucociliary clearance due to ciliary dysfunction. This study aimed to
confirm PCD diagnosis in clinically suspected Egyptian individuals and assess
genotype-phenotype correlations.

Methods: 73 PCD-suspected individuals underwent clinical examination,
radiological evaluation (chest and sinus CT), and Next-Generation Sequencing
(NGS) for a PCD multigene panel. Immunofluorescence (IF) analysis was used to
confirm the pathogenicity of identified variants.

Results: Consanguinity was reported in 91.9% of cases, with delayed diagnoses
spanning 1-18 years. All individuals exhibited a chronic wet cough; 97.3%
experienced nasal congestion, 86.5% chronic sinusitis, 75.7% recurrent otitis
media, 37.8% finger clubbing, and 24.3% situs abnormalities. Bronchiectasis was
demonstrated in 70.3%, and 18.9% had undergone lobectomies. 37 children
carried 26 distinct variants in 16 PCD-related genes (50.7%). Defects were found
in outer dynein arms (32%), central pair (19%), radial spokes (16%), ciliogenesis
(14%), nexin-dynein regulatory complexes (11%), and other ciliary processes (8%).
Moreover, IF analysis revealed the deficiency of corresponding ciliary proteins
confirming the pathogenicity of the variants.

Discussion: Genetic testing confirmed PCD in 50.7% of cases; based on
published TEM-detectable ultrastructural defects, only 40.5% would likely have
been detectable by TEM alone, highlighting the need for advanced diagnostics.
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Introduction

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting
at least 1:8000 live births with higher prevalence in individuals of African ancestry
than in most other populations (Hannah et al, 2022). PCD is common in ethnic
groups with high rates of consanguinity, such as the Volendam population in
the Netherlands, the British Asian population, and the Amish and Mennonite
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communities in the US (Lie et al., 2010; Ferkol et al., 2013;
Onoufriadis et al, 2013). It was first described clinically by
Siewert in 1904 as a triad of chronic sinusitis, bronchiectasis, and
dextrocardia (Pennekamp et al,, 2015). PCD is associated with
chronic upper and lower respiratory tract infections (oto-sino-
pulmonary disease), male infertility, and laterality defects such as
situs inversus totalis in about half of the cases and heterotaxia
in 6% of the cases (Wallmeier et al., 2020; Shapiro et al., 2014).
Respiratory distress in neonates, chronic suppurative lung disease,
chronic otitis media, and chronic rhinosinusitis are the common
respiratory presentations of PCD (Wallmeier et al., 2020).

Diagnosing PCD is challenging and relies on patient features
and diagnostic investigations. A diagnosis of PCD is confirmed by
identifying biallelic pathogenic variants in a reported PCD-related
gene. More than 250 proteins are involved in axonemal structure and
function, and pathogenic variants in genes encoding for any of these
proteins may result in PCD. In genetically heterogeneous diseases
such as PCD, selecting the appropriate gene and technique for
molecular analysis is often difficult. To date, 51 genes are known to
be associated with PCD. Two-thirds of PCD cases can be confirmed
by identifying biallelic pathogenic variants in one of the PCD-related
genes (Wallmeier et al., 2020; Shapiro et al., 2014; Raidt et al., 2024).

There is currently no definitive gold standard test for diagnosing
PCD. The diagnostic guidelines from European and North American
diagnostic guidelines differ in several respects, but both recommend
the use of transmission electron microscopy (TEM) as a diagnostic
tool (Shapiro et al., 2018; Lucas et al,, 2017). However, in up
to 30% of suspected PCD cases, genetic testing and TEM can
be inconclusive. Some pathogenic genetic variants are linked
to specific, pathognomonic ciliary ultrastructural defects that
can be identified by TEM, including abnormalities in the outer
dynein arm (ODA), combined ODA and inner dynein arm (IDA)
defects, and microtubular disorganization paired with IDA defects.
However, pathogenic variants in other genes mainly those with
DNAHII, HYDIN, CCDC164, and CCDC65 pathogenic variants
(Knowles et al., 2012; Olbrich et al., 2012; Horani et al., 2013;
Wirschell et al.,, 2013), in addition to genes involved in radial spoke
(RS), central pair (CP) and ciliogenesis defects typically do not
result in pathognomonic abnormal ciliary ultrastructure (hallmark
defects). For these cases, TEM alone is insufficient to establish a
PCD diagnosis, necessitating additional diagnostic methods such
as high-speed video microscopy analysis (HVMA) or in vitro
ciliogenesis, nasal nitric oxide (nNO) measurements, genetic testing,
and immunofluorescence (IF) analysis which may help to clarify the
diagnosis (Raidt et al., 2022; Kinghorn et al., 2023; Shoemark et al.,
2020). Despite the advanced technologies, diagnosing PCD is best
done at an expert center.

In this study, we aimed to confirm the diagnosis of clinically
suspected PCD cases at the molecular level and to characterize the
most common variants.

Methods
Subjects

This study included 73 individuals from 60 families who
met two or more of the ATS Major clinical criteria for PCD
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diagnosis (Shapiro et al., 2018): 1) Unexplained neonatal respiratory
distress (RDS) at term birth with lobar collapse and/or the need for
respiratory support with CPAP and/or oxygen for more than 24 h;
2) Organ laterality defect: situs inversus totalis, situs ambiguous,
or heterotaxia; 3) Daily, year-round wet cough starting in the first
year of life or bronchiectasis on chest CT; 4) Daily, year-round nasal
congestion starting in the first year of life or pansinusitis on sinus
CT. All cases were enrolled consecutively from children attending
the Pediatric Pulmonology Unit at Mansoura University Children’s
Hospital (MUCH) in Egypt between August 2019 and March 2022.
All patients underwent computed tomography for paranasal sinuses
and lungs, as well as genetic testing. Patients’ demographic data,
including gender, age, consanguinity, family history, and clinical
data, such as the age of onset of symptoms and signs, neonatal
RDS, chronic wet cough, chronic sinusitis/rhinitis, chronic otitis
media, hearing loss, laterality defects, and previous lobectomies,
were recorded. Blood samples were collected from all cases with
3 mL of EDTA blood withdrawn for DNA extraction and analysis
using next-generation sequencing (NGS).

Radiological evaluation

All computed tomography (CT) chest scans were performed
with high resolution (thickness = 0.625 mm). The internal diameter
of a bronchus was measured relative to the diameter of the adjacent
pulmonary artery to define bronchial dilatation, with a broncho-
arterial ratio >0.8 being classified as bronchiectasis. Non-contrast
paranasal sinus CT images were used to precisely define nasal
anatomy, pneumatization, mucosal thickening, polyps, remodeling,
bone thickening and other sinus abnormalities.

Genetic sequencing and variant
assessment

Genomic DNA was extracted from blood samples of probands
and their available family members by standard methodology.
Genomic investigations in 73 PCD-suspected individuals comprised
ciliopathy gene panel sequencing. The panel includes all published
PCD and motile ciliopathy-related genes (see supplementary
methods for details).

The genetic data (DNA variants) was assessed by genetic experts
in accordance with the guidelines from the American College of
Medical Genetics and Genomics and the Association for Molecular
Pathology (ACMG/AMP). The pathogenicity of DNA variants
was evaluated to confirm genetic diagnoses using in silico tools
such as VarSome7 and varSEAK.8. These meta-tools aggregate
data and predictions from multiple databases and programs
(e.g., ClinVar, SIFT, Polyphen, Provean, Mutation Assessor,
CONDEL, MutationTaster, CADD, REVEL, MutPred, FATHMM,
VEST, LRT, GERP, SiPhy, phyloP, and phastCons), providing a
composite classification score. Missense variants were specifically
analyzed using PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/)
Allele
frequencies were derived from the gnomAD database v.4.0.0

and MutationTaster  (http://www.mutationtaster.org/).

(https://gnomad.broadinstitute.org/). The varSEAK database was
utilized to identify possible pathogenic splicing effects. Only
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variants classified as pathogenic (ACMG/AMP class 5) or likely
pathogenic (ACMG/AMP class 4) were considered pathogenic
and included in genotype-phenotype correlation studies. Variants
deemed “likely benign” (class 2) or “benign” (class 1) were excluded
from further analysis. Approved HGNC gene symbols were used
(https://www.genenames.org/).

Variants present in the dbSNP database, the 1000 Genomes
Project polymorphism, and the Genome Aggregation Database
(gnomAD V4.0) with a minor-allele frequency >0.01% were
excluded. Nonsynonymous variants, variants impacting the
consensus splice sites, and insertions/deletions (indels) consistent
with an X-linked or autosomal recessive inheritance pattern were
prioritized for analysis. When necessary, especially in confirming
compound heterozygosity of two different variants, segregation
analyses have been conducted based upon data from available
family members.

Immunofluorescence analysis

Nasal brushings were obtained from all affected individuals.
Immunofluorescence analysis was performed as previously
described (Hjeij et al., 2014). Slides from healthy control individuals
and PCD-suspected individuals were tested simultaneously
with primary antibodies. Monoclonal Mouse anti-DNAH5 and
polyclonal rabbit anti-GAS8 (HPA041311) primary antibodies
were used for double labeling at a 1:500 dilution. Polyclonal
rabbit anti-CCDC151 (HPA054626), polyclonal rabbit anti-RSPH1
(HPA016816) and polyclonal rabbit anti-RSPH9 (HPA031703)
primary antibodies were used at 1:200, 1:400 and 1:300 dilution
respectively. Goat Anti-mouse Alexa Fluor 488 and anti-rabbit
Alexa Fluor 546 secondary antibodies were used as 1:1000 dilution.
To visualize cell nuclei, DNA was stained with Hoechst 33342
(Sigma). Imaging of the stained cells was performed using a Zeiss
Apotome Axiovert 200 microscope. The acquired images were then
processed and analyzed using AxioVision 4.8, ZEN software, and
Adobe Creative Suite 4.

Statistical analysis

Data were entered into a computer and analyzed using IBM SPSS
Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY).
Qualitative data were described using frequencies and percentages.
Quantitative data were described using the median (minimum and
maximum) for non-normally distributed data and the mean and
standard deviation for normally distributed data, after testing for
normality using Kolmogrov-Smirnov test. The significance of the
obtained results was determined at the 0.05 level.

Results

The age at diagnosis of the individuals enrolled in this study
ranged from one to 18 years, with an equal male to female ratio.
Most of the patients were offspring of consanguineous marriages. All
PCD-suspected individuals exhibited daily, year-round wet cough
and recurrent lower respiratory tract infection (LRTI) symptoms,
including fever, cough, expectoration, and dyspnea.
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Genetic findings and variant spectrum

The current study demonstrated that in 37 of 73 PCD suspected
individuals (50.7%), a PCD diagnosis could be ascertained using
genetic testing (Tables 1, 2; Supplementary Tables S1-3; Figure 1). Of
these 37 individuals, 34 (91.9%) hadhomozygous variants, 1 (2.7%) had
hemizygous variants (males with X-linked inheritance), 1 (2.7%) had
autosomal dominant heterozygous variant, 1 (2.7%) had compound
heterozygous variants. Compound heterozygosity was confirmed by
Sanger sequencing in the parents of the affected child (Figure 1). Next-
Generation panel sequencing identified 26 distinct pathogenic variants
across 16 ciliopathy and PCD-related genes. Specifically, defects were
observed in the following structures: outer dynein arms (32%), the
central pair (19%), radial spokes (16%), ciliogenesis (14%), nexin-
dynein regulatory complexes (11%), and various ciliary processes
(8%). The most common variants were found in HYDIN in six
children (16.6%), followed by CCNOin four children (10.8%), DNAHS5,
DNAAF4, DNAAF11, CCDC40, and CCNO, each in three children
(8.1%). These were followed by variantsin CCDC151/ODAD3, RSPH1,
RSPHY, RSPH3 and NEK10, each in two children (5.4%). Less frequent
variants were identified in PIH1D3, DRC1, FOX]J1, CFAP74and MNSI,
each in one child (2.7%) (Table 1; Figure 1).

Validation by immunofluorescence (IF)
microscopy

Consistent with pathogenicity of the identified variants, we
analyzed the localization of DNAHS5 in the respiratory epithelial cells
of individuals carrying variants in DNAH5, DNAAF4, DNAAFI11 and
CCDC151/ODAD3 by IF microscopy. DNAH5 was undetectable in
all individuals carrying variants in DNAH5, DNAAF4, DNAAFI11
(Figure 2) and localized only to the proximal axonemes in individual
carrying variants in CCDC151/ODAD3 (Figure 3). We also analyzed
the localization of CCDC151/ODAD3 in the respiratory epithelial
cells of the latter and we could not detect any signal, confirming
the absence of the protein from the ciliary axonemes (Figure 3).
In addition, we examined the localization of GAS8/DRC4 in the
respiratory epithelial cells of individuals carrying variants in CCDC40
and detected no signal, confirming the pathogenicity of the identified
variants (Figure 4). Furthermore, we analyzed the localization of
RSPHY9 and RSPHI in individuals with variants in RSPH9, RSPH1
respectively and we could detect no signal for the corresponding
protein, indicating that no functional RSPH9 and RSPH1 protein could
be assembled in these individuals (Figure 5). Interestingly, although
the RSPH1 variant ¢.169-10T>G does not affect an essential splice site,
the absence of RSPHI1 from the respiratory axonemes as observed by IF
score this variant as pathogenic and disease causing. This demonstrates
the significant diagnostic utility of IF in such cases.

In ten children, only heterozygous (monoallelic) variants in
DNAHS5 (four), HYDIN (two), CCDC114/ODADI (one), CCDC40
(one), CCNO (one) and STK36 (one) were detected. Those
heterozygous variants probably only indicate carrier status. Nasal
brushings were available from four of the ten individuals and
IF analyses was normal consistent with carrier status in those
individuals (Table 2). OP-4149 II1 and OP-4152I12 both carried
two different heterozygous variants in DNAH5 (c.5503C>T, p.
GIn1835"+ duplication ex 1-50). Unfortunately, no DNA from
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TABLE 1 Genetic variants identified in the cohort.

10.3389/fmolb.2025.1641739

cDNA nomenclature Protein nomenclature N = 47
HYDIN hom c.9685C>T p- (Arg3229Ter) 2 14.8 Olbrich et al. (2012)
het c.14910G>A p- (Gly1637Glu) 1
¢.10077del p- (Leu3360CysfsTer39) 2
c.14176G>T p. (Glu4726Ter) 1
c.10077delG p- (Leu3360CysfsTer39) 1
c.11472-2A>G
DNAHS5 hom c.8540del p. (Leu2847Ter) 1 19.1 Olbrich et al. (2002)
het ¢.8993dup p. (Leu2998PhefsTer20) 1
¢.10049G>A p- (Trp3350Ter) 2
¢.5503C>T p- (GIn1835Ter) 2
c.1715T>G p. (Leu527Trp) 1
duplication ex 1-50 2
DNAAF4 hom c.808C>T p. (Arg270Ter) 3 6.4 Tarkar et al. (2013)
RSPHI hom c.169-10T>G 2 4.3 Knowles et al. (2014)
CCNO hom c.349delC p. (His117ThrfsTer12) 1 10.6 Wallmeier et al. (2014)
het. €.258-262dup p. (GIn88ArgfsTer8) 2
€.248_252dup p. (Gly85CysfsTer11) 1
c.349delC p. (His117ThrfsTer12) 1
RSPH9 hom c.856_858del p- (Glu286del) 2 43 Castleman et al. (2009)
CCDC151 hom c.1541del p. (Leu514ProfsTer22) 2 4.3 Hjeij et al. (2014)
PIHID3 hem complete deletion 1 2.1 Paff et al. (2017)
STK36 het c.1915 + 1G>A p-(® 1 2.1 Edelbusch et al. (2017)
CCDC40 hom c.2647C>T p. (GIn883Ter) 1 8.5 Becker-Heck et al. (2011)
¢.3252-3259del p- (Phe1085ProfsTer98) 1
¢.1258C>T p. (GIn420Ter) 1
€.3252-3259del p. (Phe1085ProfsTer98) 1
LRRC6 hom c.91C>T p. (Gln31Ter) 2 6.4 Kott et al. (2012)
Cpd het c.166-168del p- (Ile56del) 1
c.975-1G>A
MNSI hom c.724C>T p. (Arg242Ter) 1 2.1 Ta-Shma et al. (2018)
NEK10 hom €.943-946del p. (Leu315TyrfsTer60) 2 43 Chivukula et al. (2020)
DRCI hom ¢.109dup p. (GIn37ProfsTer30) 1 2.1 Wirschell et al. (2013)
FOX]J1 AD het ¢.258-262dup p. (GIn88ArgfsTer8) 1 2.1 Fassad et al. (2020b)
De novo
CFAP74 hom c.1123-1124del p. (Lys375GlufsTer26) 1 2.1 Biebach et al. (2022)
RSPH3 hom ¢.1084C>T p. (Arg362Ter) 2 4.3 Jeanson et al. (2015)

Hom, homozygous; het, heterozygous; hem, hemizygous; AD, autosomal dominant; Ref, reference.

parents were available to analyze the compound heterozygosity. By
IF, DNAHS5 localized normally to the ciliary axonemes indicating
that both variants are probably present on the same allele. On the
other hand, two children with no variants identified in any of the
genes of the PCD panel, showed abnormal staining by repetitive
IF analyses. Respiratory epithelial cells from OP-4155 II1 showed
absent DNAHS5 from the ciliary axonemes indicating an ODA defect
and respiratory epithelial cells from OP-4141 II1 showed absent
RSPHI from the ciliary axonemes indicating a RS defect.

Frontiers in Molecular Biosciences 04

Clinical, surgical and radiological features
in genetically diagnosed individuals

Among the 37 individuals with confirmed genetic diagnosis, a
history of year-round nasal congestion was reported in 97.3% of
the individuals. Additionally, 75.7% had history of recurrent otitis
media, presenting with hearing loss, otorrhea, aural fullness and
otalgia. Subjective hearing loss, characterized by defective listening,
communication, and conversation, was reported by 13.5% of the
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TABLE 2 Children with heterozygous variants.

10.3389/fmolb.2025.1641739

Patient code Panel sequencing results ’ IF results
OP-4149 111 DNAHS5: ¢.5503C>T, p. (GIn1835Ter) + duplication ex 1-50 (thus both variants are probably present on the same allele) DNAHS5 normal
OP-4152 111 DNAHS5: ¢.5503C>T, p. (GIn1835Ter) + duplication ex 1-50 (thus both variants are probably present on the same allele) DNAHS5 normal
OP-4335 111 DNAHS5: ¢.10049G>A, p. (Trp3350Ter) no slides
OP-4853 111 DNAHS5: ¢.1715T>G, p. (Leu572Trp) DNAHS5 normal
OP-4839 111 CCDC114: ¢.1471-2A>C, p. (?) CCDC114 normal
OP-4333 111 STK36: ¢.1915 + 1G>A, p. (?) no slides
OP-4338 111 CCNO: ¢.349dIC, p. (His117ThrfsTer12) no slides
OP-4476 CCDC40: ¢.3252_3259del, p. (Phe1085ProfsTer98) no slides
OP-4478 HYDIN: ¢.10077delG; p. (Leu3360CysfsTer39) no slides
OP-4852 111 HYDIN: c.11472-2A>G, p. (?) no slides

cases. A history of neonatal intensive care unit (NICU) admission
due to unexplained neonatal RDS requiring oxygen therapy for more
than 24 h was noted in 62.2% of the individuals. Situs anomalies
were present in 24.3%, with most cases being situs inversus totalis,
and only one case with left isomerism. Finger clubbing was observed
in 37.8%. Weight and height percentiles were average for all
individuals (Table 3).

This study showed that 18.9% (7/37) of patients had undergone
lobectomy prior to inclusion, with the most commonly resected lobe
being the middle lobe in six individuals (16.2%), followed by the
right lower lobe in two individuals (5.4%). Most individuals (73%)
had frequent hospital admissions due to pneumonia, with a median
of three hospital admissions per life (Table 3).

Furthermore, paranasal sinus CT scans revealed that 86.5% of
the cases had chronic sinusitis. The most affected sinuses were
the maxillary sinuses (83.8%), followed by the sphenoidal (73%)
and ethmoidal (67.6%) sinuses. The least affected were the frontal
paranasal sinuses (35.1%) (Table 4; Figure 1). In addition, high-
resolution chest CT (HRCT) scans showed that 59.5% of the
individuals had segmental atelectasis, with 40.5% in the middle
lobe and 16.2% in the right lower lobe. Bronchiectasis was present
in 70.3% with 62.1% having diffuse bronchiectasis. The common
distribution was in the right lower lobe (59.5%), left lower lobe
(54.1%), middle lobe (54.1%), and left upper lobe (13.5%) (all
confined to the lingula) (Table 4; Figure 1).

Discussion

PCD is a highly heterogeneous disease, making its diagnosis
challenging. The age of onset is difficult to ascertain partly
due to its atypical clinical manifestations and limited physician
awareness, particularly in basic hospitals in Egypt and globally.
PCD overlaps with other disorders and presents across various
medical subspecialties based on dominant symptoms. In this study,
73 individuals with clinically suspected PCD were diagnosed based
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on ATS clinical criteria (Shapiro et al., 2018), confirming 37 cases
through panel sequencing and IF microscopy. The nearly equal
male-to-female ratio reflects its autosomal inheritance. Symptoms
typically appeared before 1 year of age, yet genetic diagnosis was
delayed, averaging 9.5 years, underscoring the need for improved
diagnostic awareness, especially in resource-limited settings.

Clinical manifestations and comparison
with other cohorts

All the analyzed cases in this study exhibited chronic wet
cough and recurrent lower respiratory tract infection symptoms
(fever, discolored expectorations, and respiratory distress).
Impaired mucociliary function leads to mucus retention, bacterial
colonization and recurrent infections.

97.3% of the individuals suffered from nasal congestion due to
chronic rhinitis and sinusitis, significantly affecting their quality of
life, compared to 68% reported by Vallet et al. (2013), 86.4% by
Boaretto et al. (2016), and 100% by Davis et al. (2015).

Otitis media with effusion, affecting 75.7% of children aligns
with the findings of Goutaki et al. (2016) and Vallet et al. (2013).

Situs inversus was present in 24.3% of cases, higher than the
16% reported by Vallet et al. (2013) but lower than 50% reported by
Noone et al. (2004). This variability in situs prevalence likely reflects
the randomness of laterality defects only in a subset of distinct
PCD variants and the higher frequency (32%) of genetic defects
among our affected individuals affecting, e.g., the central apparatus
and radial spokes typical associated with normal or near normal
ultrastructure. Interestingly, lower prevalences of laterality defects
were also reported in Turkey (28%) (Raidt et al., 2024).

Neonatal RDS occurred in 62.2% of cases, a rate between those
reported by Vallet et al. (2013) with 40% and Noone et al. (2004)
with 87%. Finger clubbing was present in 37.8% of individuals, a
higher prevalence than Noone et al. (2004) with 0% with finger
clubbing and Boon et al. (2014), with only 18.5%, potentially
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FIGURE 1

Molecular and radiological findings in Egyptian PCD-affected individuals. (A) Distribution of the 37 individuals with identified pathogenic variants with
PCD multigene panel according to the type of caused axonemal defects (Pie Chart) and according to mutated genes (Histogram). (B) Segregation
analysis in family OP-4846 confirms the compound heterozygosity of the identified variants in DNAAF11. (C) Left. Non contrast axial and coronal CT
scan of the Paranasal Sinuses (PNS) shows diffuse mucosal thickening involving both maxillary sinuses with obliteration of both osteomeatal complexes
(OMC) due to related mucosal thickening. Diffuse mucosal thickening is involving both ethmoidal and sphenoidal sinuses. The frontal air sinuses
remain well aerated. A deviation of the nasal septum towards the left. right. High-Resolution CT of the Chest shows cystic bronchiectatic changes,
primarily in the lingula, left lower lobe, and middle lobe of the lungs, most prominent in the left lower lung lobe.

indicating more severe PCD or delayed diagnosis in this cohort.
Thus, the high incidence of finger clubbing might reflect a more
severe clinical course.

Hospitalization due to respiratory distress was required in 73%
of cases, with a median of three admissions. Sinus computed
tomography (CT) scans revealed mucosal thickening and sinus
opacification in 86.5% of cases, consistent with Vallet et al. (2013)
and Bequignon et al. (2019), but higher than the 65% reported by
Noone et al. (2004). The most affected sinuses were the maxillary
sinuses, followed by ethmoid and sphenoid sinuses (83.8%, 73%,
67.6%, respectively). The least affected were the frontal sinuses, with
approximately 35.1% involvement consistent with data indicating
absence of frontal sinuses in ~20% of PCD cases (Schramm et al.,
2023). These results are also consistent with Bequignon et al. (2019)
showing ethmoid sinusitis in 100% of individuals, maxillary sinusitis
in 85.4%, sphenoid sinusitis in 72% and frontal sinusitis in 60%.

Bronchiectasis resulted from retained secretions, mucus
plugging and recurrent bacterial infections, with a prevalence
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of 70.3%, aligning with Kennedy et al. (2007) with 84.4% but
higher than Goutaki et al. (2017) with 56%. 62.1% of our cases
had diffuse bronchiectasis, primarily affecting the right lower
lobe, left lower lobe and middle lobe (59.5%, 54.1% and 54.1%
respectively), comparable to Kennedy et al. (2007) with 66.7%
diffuse bronchiectasis and affected lobes (72%, 60% and 52%).
In contrast, Vallet et al. (2013) found that while 66.7% of their
cohort individuals had bronchiectasis, only 30% had diffuse
bronchiectasis. Lobectomies were performed in 18.9% of cases
similar to Noone et al. (2004) and Yiallouros et al. (2015) with
10% and 16.7%, respectively. The more severe pulmonary clinical
course might be associated with less frequent antibiotic treatment
of the patients due to limited healthcare resources.

All  affected
consistent with Goutaki et al. (2017).

children had normal growth parameters,

Fertility was not assessed, as all individuals were under 18 years.

Consanguinity was common, consistent with global PCD studies
with rates of 46% in Europe, 22% in South Asia, and 86% in Arab
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FIGURE 2
DNAHS is undetectable in respiratory epithelial cells of individuals with

pathogenic variants in DNAH5, DNAAF4 and DNAAF11. Respiratory
epithelial cells from control and affected individuals OP-4341lI1,
OP-4843l11, and OP-4850II1 carrying bi-allelic DNAH5 variants;
OP-4145I11 carrying a complete hemizygote deletion in DNAAF6,
OP-4146I11 carrying bi-allelic DNAAF4 variants, OP-4845II1,
OP-4848l11 and 112 carrying bi-allelic DNAAF11 variants are
double-labeled with antibodies directed against DNAH5 (green), and
GAS8 (red). Nuclei are stained with Hoechst 33342 (blue). In
unaffected controls, DNAHS5 localizes to the entire axonemal length
However, in affected individuals, DNAHS5 is undetectable, consistent
with the pathogenic DNAHS5 and DNAAF variants. Scale bars, 10 pm
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countries (
confirmation and enabled genetic counseling. The variant detection

). Genetic testing provided diagnostic

rate (64.4%) matched previous reports from Egypt (
) with 70% and global cohorts (
surpassing rates in Italy (

) with 73%,
) with 43%.

Genotype-phenotype correlations

26 different biallelic pathogenic variants in 16 PCD-related
genes were identified in 37 individuals, and 6 different monoallelic
pathogenic variant in 6 PCD-related genes were identified in
eight individuals, reflecting high genetic heterogeneity. Our study
enhances the understanding of the mutation spectrum and
genotype—phenotype correlations in Egyptian children with PCD.

Pathogenic variants in HYDIN were present in six children
(16.2%), all with classical PCD phenotypes: diffuse bronchiectasis
and chronic sinusitis mainly affecting maxillary and sphenoid
sinuses, two had neonatal RDS, and none had situs abnormalities,
aligning with previous findings ( ). Recently, only
one individual (3%) out of 33 unrelated Egyptian PCD-affected
individuals was reported with HYDIN variants ( ).

Four children (10.8%) carried pathogenic variants
CCNO, all with no situs abnormalities and neonatal RDS,
two had with
none having undergone lobectomy. The c¢.258_262dup variant
has been previously reported in 16 individuals
1,236 genotyped PCD
( ). Only one Egyptian individual (3%) with

in

three had bronchiectasis, chronic sinusitis,
from a

recent study involving individuals
bronchiectasis and normal situs carrying CCNO variants was
previously reported ( ).

FOX]J1 de novo variants, implicated in rare PCD forms, were
detected in only one case, diagnosed at the age of 1 year due to
heterotaxy and left isomerism (dextrocardia, anatomically reversed
right and left lungs, right-sided stomach, midline liver with biliary
atresia, and polysplenia). He had a history of neonatal RDS,
persistent nasal congestion and wet cough since birth, experiencing
recurrent hospital admissions due to bronchopneumonia, but with
no radiological evidence of chronic sinusitis or bronchiectasis or
hydrocephalus. He had a normal head circumference for his age
and underwent a Kasai operation at 2 months old. Wallmeier
etal. reported six individuals with pathogenic FOXJI variants
who exhibited hydrocephalus internus and recurrent upper and
lower respiratory infections, diagnosed at wide age range from
birth to 54 years (
heterotaxy comprising left isomerism and biliary atresia in our
FOXJI mutant individual expands the clinical phenotype for FOX]1
pathogenic variants, but is consistent with laterality defects reported

). The presence of

previously ( ).

DNAH5 variants, identified in three children (8.1%) were
associated with LRTI, chronic rhinitis, chronic sinusitis, and
chronic wet cough. One child had neonatal RDS, one had
bronchiectasis, and two had situs inversus. Similar findings
were reported with DNAHS5 variants in 12% of Egyptian PCD-
affected individuals ( ). DNAAF4 and DNAAF11
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FIGURE 3
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CCDC151/ODAD3 is undetectable and DNAH5 is proximal in respiratory epithelial cells of individuals with pathogenic variants in CCDC151/ODAD3
Respiratory epithelial cells from control and affected individuals OP-3796lI1 and 112 carrying bi-allelic CCDC151/ODAD3 variants are double-labeled
with antibodies directed against acetylated a tubulin (green), and CCDC151 (red) (A)] and DNAHS5 (green), and GASS8 (red) (B). Nuclei are stained with
Hoechst 33342 (blue). (A) In unaffected controls, CCDC151 localizes to the entire axonemal length. However, in affected individuals, CCDC151 is
undetectable, consistent with the pathogenic DNAAF variants. (B) In unaffected controls, DNAH5 localizes to the entire axonemal length. However, in

affected individuals, DNAH5 localizes only to the proximal axonemes. Scale bars, 10 pm
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FIGURE 4
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GAS8 is undetectable in respiratory epithelial cells of individuals with pathogenic variants in CCDC40. Respiratory epithelial cells from control and
affected individuals OP-4138I11, OP-4861Il1, and OP-4862II1 carrying bi-allelic CCDC40 variants are double-labeled with antibodies directed against
DNAHS5 (green), and GAS8 (red). Nuclei are stained with Hoechst 33342 (blue). In unaffected controls, GAS8 localizes to the entire axonemal length
However, in affected individuals, GAS8 is undetectable, consistent with the pathogenic CCDC40 variants. Scale bars, 10 ym

variants in three individuals each (8.1%) resulted in LRTI,
chronic wet cough, RDS and situs inversus. The DNAAF4 variant
¢.808C>T has been previously reported in three individuals in
the study by . One case exhibited PIHID3
variants, presenting with neonatal RDS, pan-sinusitis, diffuse
bronchiectasis, and had undergone a middle lobectomy, matching
prior descriptions of X-linked pattern of inheritance (

). The pathogenicity of the identified variants in DNAHS5,
DNAAF4, DNAAF6 (PIH1D3) and DNAAFI1 was further confirmed
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by the absence of DNAHS5 from the respiratory axonemes by IF
( ).

Three children (8.1%) carried pathogenic variants in CCDC40,
all with neonatal RDS and chronic rhinitis; one child had
situs inversus totalis, two had chronic pan-sinusitis, two had
bronchiectasis, and one had undergone middle lobectomy,
consistent with recent genotype-phenotype correlations observed by

. The pathogenicity of the identified variants was
confirmed by the absence of GAS8 from the respiratory axonemes by
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FIGURE 5
RSPH9 and RSPH1 are undetectable in respiratory epithelial cells of individuals with pathogenic variants in RSPH9 and RSPH1 respectively. Respiratory

epithelial cells from control and affected individuals OP-3797II1 and 112 carrying bi-allelic RSPH9 variants, and OP-3795I11 and 112 carrying bi-allelic
RSPH1 variants are double-labeled with antibodies directed against acetylated a tubulin (green), and RSPH9 (A), red or RSPH1 (B), red. Nuclei are
stained with Hoechst 33342 (blue). In unaffected controls, RSPH9 as well as RSPH1 localize to the entire axonemal length. However, in affected
individuals, RSPH9 [A] and RSPH1 [B] are undetectable, consistent with pathogenic RSPH9 and RSPH1 variants. Scale bars, 10 ym
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TABLE 3 Demographic and clinical findings.

Demographic and clinical findings

10.3389/fmolb.2025.1641739

Age/years (mean + SD (range)) 9.52 +4.45 (1-18)

Sex: Male 19 51
Female 18 49
Consanguinity 34 91.9
Affected siblings 11 29.7
Total number of siblings among those families 86 43
Number of probands 37

Chronic wet cough all over the year 37 100.0
Recurrent LRTI 37 100.0
Nasal congestion all over the year 36 97.3
Recurrent otitis media 28 75.7
Hearing loss (subjective) 5 13.5
Neonatal RDS 23 62.2
Situs abnormalities 9 243
Finger Clubbing 14 37.8
Weight/length percentiles at diagnosis Median (min-max) 25 (5-75)

Surgery 30 81.1
No lobectomy lobectomy 7 18.9
» Middle and right lower lobectomy 1 2.7
« Middle lobectomy 5 13.5
« Right lower lobectomy 1 2.7
Hospital admission 27 73
Hospital admission number (Median (min-max)) 3(1-11)

IF (Figure 4). CCDC40 was the most prevalent mutated gene (21.2%)
in another study of Egyptian PCD-affected individuals (Fassad et al.,
2020b). A similar phenomenon was observed in Raidt et al. study
(9%) and a study of 58 Tunisian individuals with PCD, where
CCDC40 variants were common (Mani et al., 2020). Conversely,
these variants were rarely seen in Chinese PCD individuals, with
only one case involving CCDC40 dysfunction (Zhao et al., 2021).
Additionally, the Arabic founder variant p.Glu286del in RSPHY,
first discovered in a Bedouin Arabic family (Reish et al., 2010),
was identified in two children (5.4%). Consistent with previous
studies, both had no situs abnormalities but classical PCD
phenotype, characterized by neonatal RDS, chronic sinusitis,
and bronchiectasis; one underwent a middle lobectomy. The
pathogenicity of this variant was confirmed by the absence of
RSPHY from the respiratory axonemes by IF (Figure 5). In this
study, we also identified two children with variants in RSPHI.
Both children presented a milder form of PCD, diagnosed around
the age of 10 years, with a history of neonatal RDS but no
sinus defect, bronchiectasis, or prior surgeries. One of them had
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been hospitalized twice for bronchopneumonia. This finding aligns
with previous studies (Knowles et al, 2014), which observed
that individuals with variants in RSPHI generally exhibited mild
PCD phenotypes. However, Kott etal. did not find significantly
milder phenotypes in individuals with RSPH]I variants (Kott et al.,
2013), a discrepancy that might be due to differences in clinical
ascertainment and the small number of cases enrolled in those
studies. Although it does not affect an essential splice site,
the pathogenicity of the variant ¢.169-10T>G was confirmed
by the absence of RSPHI from the respiratory axonemes as
observed by IF (Figure5). This demonstrates the significant
diagnostic utility of IF in such cases. The absence of RSPH1 protein
in the ciliary axonemes, as revealed by IF, indicates a disruption in
the radial spoke head protein complex, which is essential for proper
ciliary function. Therefore, in case of facultative splice site variants,
IF analysis can provide functional evidence supporting the diagnosis
of PCD and elucidating the molecular basis of the disorder. The use
of IF in this context highlights its value in the diagnostic workflow
for PCD, particularly when genetic results are inconclusive or when
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TABLE 4 Radiological findings.

Radiological findings N=37 %

Chronic Sinusitis 32 86.5
Affected sinus

Maxillary 31 83.8
Sphenoid 27 73
Ethmoid 25 67.6
Frontal 13 35.1
CT chest atelectasis (segmental) 22 59.5
Middle lobe 15 40.5
Lingula 2 5.4
Right lower lobe 6 16.2
Left lower lobe 4 10.8
CT chest bronchiectasis 26 70.3
One lobe bronchiectasis 3 8.1
Diffuse bronchiectasis 23 62.1
Number of lobes affected with bronchiectasis by CT 2(0-4)

Median (range)

Right upper lobe 0 0
Left upper lobe 5 13.5
Middle lobe 20 54.1
Right lower 22 59.5
Left lower 20 54.1

variants of uncertain significance are identified. By visualizing the
specific protein deficiencies directly within the cilia, IF complements
genetic testing and enhances our ability to diagnose and understand
the molecular mechanisms underlying PCD.

Among the genetic heterogeneity revealed in this Egyptian
cohort, we did not identify any homozygous or compound
heterozygous variations in DNAHII, DNAII, RSPH4A, and
DNAAF3, reported to be commonly mutated among PCD
individuals in previous studies (Zariwala et al., 2006). Despite the
genetic heterogeneity underlying PCD, the patient phenotypes
reported are largely similar, with few examples of gene- or
mutation-specific differences.

Study limitations

This study has several limitations. First, nasal NO and HSVA
were not performed due to limited availability of standardized
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equipment and local expertise in Mansoura (Egypt) at the time of
data collection. Samples of nasal brushing obtained from suspected
patients were prepared and shipped to Miinster (Germany);
however, due to a transfer period of several days, the samples were
no longer viable for HSV microscopy.

To evaluate the proportion of genetically PCD diagnosed
individuals who could have been successfully diagnosed using TEM,
according to associated hallmark TEM defects (Shoemark et al.,
2020), we could consider only 15 individuals out of 37 (40.5%)
carrying pathogenic variants in genes causing ultrastructural
defects such as ODAD3 (CCDC151), DNAH5, DNAAF4 (DYXICI),
DNAAF6 (PIHID3), DNAAFII (LRRC6), and CCDC40. TEM
when performed would not have detected hallmark abnormalities
in 22 out of 37 children (59.5%) with variants in RSPHI,
RSPH3, RSPHY, HYDIN, DRCI1, CFAP74, CCNO, NEK10, MNSI
and FOXJ1. This underscores the limitations of TEM as a
standalone diagnostic tool for PCD, highlighting the need for
complementary diagnostic techniques such as genetic testing.
However, it remains possible that some of the genetically unresolved
cases might have ultrastructural abnormalities detectable by
TEM but not captured by the targeted gene panel used in
this study.

Our findings highlight the necessity for pediatricians to
maintain a high index of suspicion for PCD and thoroughly
consider patient medical histories, especially in those without
laterality defects, to avoid missed diagnoses. These findings
underscore the variability in variant prevalence across different
populations and emphasize the need for tailored diagnostic
and therapeutic approaches based on regional genetic profiles.
This highlights the impact of ancestry on the genetics of
PCD and the importance of including patients from various
ancestries to elucidate the full genetic landscape of PCD and
to develop effective, region-specific diagnostic and therapeutic
strategies.

Author summary

Here in this study, we closely examined a group of Egyptian
children who were showing symptoms of a rare genetic disease
called primary ciliary dyskinesia (PCD). It is an illness that affects
the tiny hair-like structures in the airway which are responsible
for brushing mucus out of the lungs and sinuses. When these
structures do not work properly, children have a persistent wet
cough, frequent sinus and ear infections, and progressive lung
damage such as bronchiectasis. We evaluated 73 children by
analyzing their symptoms, taking good pictures of their lungs
and sinuses, and doing advanced genetic testing. We found that
over half of them had alterations in genes that are known to
cause PCD. Most of these children were from families where the
parents were closely related, which accounts for the high number
of genetic results. Our results show just how important genetic
testing is in the diagnosis of PCD—especially in countries where
the traditional tests are not always conclusive. We hope that our
results will spur doctors in similar countries to diagnose the
condition earlier and be able to treat these affected children more
effectively.
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