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Identification of kidney renal
clear cell carcinoma prognosis
based on gene expression and
clinical information

Xiong Zou, Xi Chen, Jianjun Yang* and Yanfeng Li*

Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou,
China

Background: Kidney renal clear cell carcinoma (KIRC) prognosis exhibits
substantial heterogeneity even among patientswith identical clinicopathological
staging, reflecting the limitations of current classification systems. Therefore, the
development of reliable prognostic toolsmay improve clinical evaluation of KIRC
outcomes and facilitate personalized therapy optimization.

Methods: The KIRC data of GSE40435 and GSE46699 in the GEO database were
immunologically grouped based on 29 immune gene sets through R language.
At the same time, RNA sequencing data, clinical information and tumormutation
data of KIRC patients in the TCGA database were jointly processed to explore
methods that facilitate clinicians to judge the prognosis of KIRC patients.
Quantitative real-time PCR (qPCR) was performed to validate the expression of
key prognostic related genes (PRGs) in KIRC and paired adjacent normal tissues.

Results: There were significant differences in the immune microenvironment
and genetic composition of different immune subtypes of KIRC. A number
of high-risk genes related to KIRC prognosis were screened out, and these
genes were mainly involved in immune-related functions such as lymphocyte
migration. At the same time, we combined TCGA and GEO to find four genes
(BASP1, CCL8, FCGR1B, FKBP11) for determining the risk stratification of KIRC,
and constructed a model for clinicians to assess KIRC prognosis based on gene
expression and clinical information. qPCR confirmed that BASP1, FCGR1B, and
FKBP11 were significantly upregulated in KIRC compared to adjacent normal
tissues, whereas CCL8 showed no significant differential expression between
KIRC and paracancerous tissues.

Conclusion: Our study has the potential to assist clinicians assess KIRC
prognosis and modify more appropriate personalized treatment for KIRC
patients in a timely manner.
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Introduction

Globally, over 400,000 people are affected by renal cell carcinoma
(RCC) each year (Bray et al., 2018). RCC has various subtypes,
but kidney renal clear cell carcinoma (KIRC) is the most common,
accounting for approximately 70% of all RCC cases (Jonasch et al.,
2021). Although many patients with KIRC can be treated with
radical surgery at an early stage, there are also many patients who
are already locally advanced or metastasized at the time of diagnosis
of KIRC, and these patients do not respond well (Cotta et al.,
2023). In addition, even KIRC patients at the same stage and
grade with the same treatment may have a completely different
prognosis (Wei et al., 2019; Zou and Mo, 2021), suggesting KIRC
is a heterogeneous cancer. Given the prognostic differences among
KIRC patients, proper risk stratification is essential for effectively
identifying which patients require more intensive initial treatment,
closer follow-up, and timely adjustments tomore effective treatment
regimens. Therefore, it is important to find a risk stratification
method with high predictive value to enhance the outcome of KIRC.
With the advancement of various molecular profiling technologies,
such as transcriptome sequencing and novel bioinformatics analysis
tools, researchers are now able to study tumor biology in greater
depth and stratify patients based on characteristics associated with
clinical outcomes.

Changes in the tumor immune microenvironment (TIM)
significantly impact tumor development, progression, and prognosis
(Fridman et al., 2017; Liu et al., 2025). Previous studies have shown
that the proportion of immune cells and immune-related genes
in cancer tissues leads to the difference in prognosis of cancer
patients (Zeng et al., 2019; Zhang et al., 2019). Although there
has been an increase in the number of studies exploring KIRC
prognosis from an immunological perspective in recent years, there
are still few studies that integrate multiple databases to stratify the
immune-related risk of KIRC and accurately predict the prognosis
of KIRC.

In this study, we first integrated the transcriptomic data of
KIRC from GSE404435 and GSE46699 for immune classification
and compared the differences in gene expression and tumor
microenvironment between the two immune subtypes. We
then combined these findings with TCGA’s KIRC data for
risk stratification and verified the expression of the genes
used for risk stratification in KIRC and adjacent normal
tissues by quantitative real-time PCR (qPCR). Finally, we
constructed a model incorporating risk scores and clinical
information to aid clinicians in predicting the prognosis of KIRC
patients.

Methods

Collection and collation of GSE40435 and
GSE46699 data from GEO database

We first obtained the gene expression matrix of GSE40435
and GSE46699 through the “Biobase” and “GEOquery” packages
of R language, and removed the normal samples according to
the clinical information. Finally, the gene expression matrix of

101 cancer samples from GSE40435 and 67 cancer samples from
GSE46699 were obtained. Tumor samples from GSE40435 and
GSE46699 data were scored by single-sample gene set enrichment
analysis (ssGSEA), and were divided into high immune score
group (Immunity_H) and low immune score group (Immunity_L)
according to the Euclidean distance and immune score (Guan et al.,
2020). ssGSEA is a method to comprehensively score immune
characteristics of samples based on 29 immune-related genes or
functions (Wu et al., 2022). Then we used the “estimate” package
of R software to evaluate the tumor microenvironment of the
samples of Immunity_H and Immunity_L groups. Moreover, we
compared the expression of human leukocyte antigen (HLA) related
genes in Immunity_H and Immunity_L groups. The differentially
expressed genes (DEGs) of the Immunity_H and Immunity_L
groups were calculated using the Immunity_L as reference. P
< 0.05 and absolute value of logFC >0.585 were used as the
threshold of DEGs.

Acquisition and processing of KIRC data
from TCGA

Clinical and transcriptomic data information for KIRC was
downloaded from TCGA, and the genetic data matrix containing
only KIRC (excluding normal samples) was obtained through
strawberry perl software and “limma” package in R language.
Then we obtained the matrix of DEGs upregulated in Immunity_
H of GSE40435 and GSE46699 datasets in TCGA. At the same
time, by combining the genetic data matrix and survival data
of KIRC samples from TCGA, the genes that have obvious
influence on KIRC prognosis were obtained. Through analyzing
protein-protein interactions (PPI) of prognostic related genes
(PRGs) and their co-expression with tumor related transcription
factors (TFs), the correlation between these PRGs and the
possible mechanisms affecting KIRC prognosis were further
explored. A correlation coefficient absolute value greater than
0.4 and an FDR less than 0.001 were used as thresholds for
screening co-expression between PRGs and TFs. Absolute value
of correlation coefficient (|cor| >0.4) and an FDR (FDR <0.001)
were used as thresholds for screening co-expression between PRGs
and TFs.

Integration and processing of TCGA and
GEO data

Utilizing survival data and clinical information of 530 KIRC
patients from TCGA, along with PRGs obtained from TCGA and
GEO datasets, we developed a risk stratification using lasso Cox
regression analysis, leveraging the four genes expression profiles
to predict patient outcomes in KIRC. Based on these four genes
expression levels, KIRC samples were stratified into high-risk and
low-risk groups employing the median score, and the survival
prognosis of the two groups was compared. The risk score is
calculated using the following formula: Risk score = Σn

k Expression(k)
✕ coef(k). Expression(k) = expression level of gene “k” in KIRC
samples. coef(k) = regression coefficient of feature gene “k”. These
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FIGURE 1
Immune clustering and stratification of KIRC patients from GEO data. (A,B) The systematic clustering and immune grouping plots of KIRC patients from
GSE40435 (A) and GSE46699 (B) based on ssGSEA analysis. (C,D) The results of tSNE from GSE40435 (C) and GSE46699 (D) further confirmed the
reliability of systematic clustering of KIRC patients.

four genes and their corresponding coefficients are shown in
Supplementary Table S1.

GeneMANIA, TIMER and UALCAN

The functional networks of PRGs were analyzed using
GeneMANIA (Franz et al., 2018). TIMER is a powerful database
that can be used to evaluate immune infiltration in different
aspects of multiple cancers (Li et al., 2017). We assessed the
association between the four prognostic model genes and immune
cell infiltration levels in KIRC using TIMER. UALCAN is a
multifunctional database that can be used to evaluate the expression
of multiple genes in different cancers and their impact on cancer
prognosis (Chandrashekar et al., 2022). We used the “scan by genes”
feature in the UALCAN database to the expression of the four
genes used for risk stratification in KIRC and their impact on the
prognosis of KIRC.

Tumor mutation burden

Tumor mutation burden (TMB), a known predictor of
therapeutic response and survival outcomes (Provencio et al., 2023;
Sung et al., 2022). We assessed TMB differences between high- and
low-risk KIRC groups by “limma” and “ggpubr” packages, and the
effect on the prognosis of KIRC was evaluated by TMB and risk
stratification.

Construction of a prognostic model

Compile the clinical information of KIRC patients and exclude
those with unclear data. For the remaining 526 KIRC patients (with
clearly defined gender, age, stage, grade, and risk stratification),
construct a prognostic model and perform an independent
prognostic analysis of risk stratification using the “survival”,
“survminer”, and “TimeROC” packages.

qPCR

We collected samples from four KIRC patients at the Affiliated
Hospital of Guizhou Medical University and compared the
expression differences of four risk-score-related genes between
KIRC tissues and adjacent normal tissues using qPCR. Isolate
total RNA from tissue using TRIzol. After verifying RNA purity,
we conducted reverse transcription to generate cDNA. Following
polymerase chain reaction (PCR), the relative expression levels of
target genes in tumor tissues compared with adjacent normal tissues
were analyzed using the 2−ΔΔCt method, with each sample assayed
in triplicate. qPCR was conducted using the primer sequences
listed below.

GAPDH:
5′-AATCAAGTGGGGCGATGCTG-3' (Forward), 5′-

GCAAATGAGCCCCAGCCTTC-3′ (Reverse);
BASP1 (Brain Abundant Membrane Attached Signal Protein 1):
5′-AGGGGAACCCAAAAAGACTGA-3' (Forward),
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FIGURE 2
Comparison of the microenvironment across different immune subtypes of KIRC. (A,B) Landscape of microenvironments of different immune subtypes
from the GSE40435 (A) and GSE46699 (B) cohorts. (C,D) StromalScore, ImmuneScore and ESTIMATEScore of different subtypes from the GSE40435
(C) and GSE46699 (D) cohorts. (E,F) HLA gene expression levels from different subtypes of GSE40435 (E) and GSE46699 (F) cohorts.

5′-GGTGTGGAACTAGGCGCTTC-3' (Reverse); CCL8 (C-C
Motif Chemokine Ligand 8):

5′-TGGAGAGCTACACAAGAATCACC-3' (Forward),
5′-TGGTCCAGATGCTTCATGGAA-3' (Reverse); FCGR1B

(Fc Gamma Receptor Ib):
5′-AGTTGATGGGCAAGTGGACAC-3' (Forward), 5′-

TCTCTGGCACCTGTATTCACC-3' (Reverse); FKBP11 (FKBP
Prolyl Isomerase 11):

5′-GAGAAGCGAAGGGCAATCATT-3' (Forward),

5′-GATGGTGGAAATCCCCGTTTT-3' (Reverse).

Statistical analysis

All statistical analyses were performed using R software (version
4.5.1), with categorical variables compared between groups using
the chi-square test (chisq.test), while continuous variables were
analyzed using non-parametric tests, including the Mann-Whitney-
Wilcoxon test (wilcox.test) for two-group comparisons and the

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1630250
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zou et al. 10.3389/fmolb.2025.1630250

FIGURE 3
DEGs of different immune subtypes in KIRC. (A,B) Volcano maps of DEGs from different subtypes of the GSE40435 (A) and GSE46699 (B) cohorts. (C)
Venn diagram of DEGs upregulated from both GSE40435 and GSE46699 cohorts (Immunity_L vs. Immunity_H, Immunity_L as the control group).

Kruskal–Wallis H test (kruskal.test) for multi-group comparisons;
a p-value <0.05 was considered statistically significant.

Results

Immunotyping of tumor samples from
GSE40435 and GSE46699

We performed ssGSEA scoring on tumor samples from
GSE40435 and GSE46699, respectively, and classifying them into
two immune-related subtypes: Immunity_H and Immunity_L
based on the scores, hierarchical clustering and tSNE algorithm.
Hierarchical clustering and tSNE showed similar results, that
was, Immunity_L and Immunity_H could be well distinguished
(Figures 1A–D). The GSE40435 cohort (n = 101) was stratified
into 51 Immunity_L and 50 Immunity_H samples, while
GSE46699 (n = 67) contained 57 Immunity_L and 10 Immunity_
H samples (Supplementary Material S1,S2).

Comparison of the characteristics of two
immunophenotypes

After immunotyping the KIRC samples, we compared the
immune-related characteristics of Immunity_H and Immunity_L
groups in GSE40435 and GSE46699, respectively. In the GSE40435
and GSE46699 data, the Immunity_H group demonstrated
significantly higher scores for immune-related functions compared
to the Immunity_L group (Figures 2A,B). Furthermore, both
the ImmuneScore and the ESTIMATEScore of the Immunity_
H were significantly higher than those of the Immunity_
L (Figures 2C,D). Additionally, HLA-related genes showed
significantly elevated expression in Immunity_H compared to
Immunity_L (Figures 2E,F). These findings demonstrate that KIRC
immunotyping (Immunity_L vs. Immunity_H) captures significant
heterogeneity in tumor immune microenvironments. Comparative
transcriptomic analysis revealed significant upregulation ofmultiple
differentially expressed genes (DEGs) in Immunity_L vs. Immunity_
H across both GSE40435 and GSE46699 datasets (Figures 3A,B). By

taking the intersection of DEGs in GSE40435 and GSE46699 data,
we found 100 co-upregulated DEGs in the Immunity_H group from
the two datasets (Figure 3C).

PRGs and their regulatory networks

The analysis results obtained by integrating multiple datasets
are more reliable, so we further incorporated the TCGA database to
explore KIRC. We integrated expression profiles of 100 consistently
upregulated genes (identified in both GSE40435 and GSE46699)
with TCGA-KIRC clinical data to identify PRGs signatures. Survival
analysis identified 19 high-risk PRGs (Hazard ratio, HR >1, p
< 0.001) significantly associated with poorer outcomes in KIRC
patients (Figure 4A). Co-expression analysis revealed unexpected
universal positive correlations between all screened PRGs and
differentially expressed TFs in Immunity_L vs. Immunity_H
comparisons (Figure 4B, Supplementary Material S3). To further
explore the possible mechanisms by which PRGs affect KIRC, we
explored the protein-protein interaction network of PRGs.Themain
functions of these PRGs included leukocyte migration, leukocyte
chemotaxis, response to chemokine, response to interferon-
gamma, leukocyte cell-cell adhesion, immune receptor activity
and cytokine activity (Figure 4C). These results suggest that the
difference of immune microenvironment is an important reason for
the difference in prognosis of patients with KIRC.

Risk stratification for KIRC patients by
combining data from GEO and TCGA

To further investigate KIRC, we reduced the dimension of PRGs
by lasso regression analysis (Figure 5A), obtained four genes for
assessing KIRC risk, and divided KIRC into high and low risk
groups based on the gene expression and the median risk score
(Figure 5B). Subsequent investigation showed a negative correlation
between the risk score and the KIRC patients’ overall survival
(Figure 5C). Moreover, the survival analysis further confirmed a
significant difference in survival time between the high-risk and low-
risk groups, with the high-risk group having a shorter survival time
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FIGURE 4
Identification of PRGs in KIRC through integration of TCGA and GEO data and regulatory network construction. (A) Forest map of genes significantly
upregulated in the GEO database (GSE40435 and GSE46699) and significantly affecting survival time in TCGA-KIRC patients. (B) Alluvial map of PRGs
and TFs. (C) PPI interaction network diagram between PRGs.
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FIGURE 5
Identification and analysis of risk stratification in KIRC patients. (A) Cross-validation map of gene parameter selection in a lasso model. (B) Risk score
distribution map for KIRC patients based on the selected four genes. (C) Correlation analysis of risk score and OS in KIRC patients. (D) Kaplan-Meier
survival analysis of KIRC in different risk groups. (E) The AUC for 1-year, 3-year, and 5-year survival predictions of ROC analysis based on the lasso
model were 0.698, 0.68, and 0.781, respectively. (F) Calibration plot for constructing KIRC risk signature based on genes selected by the lasso model.
OS: overall survival.

(Figure 5D). We performed ROC analysis based on the predicted
survival time of patients to better determine the superiority of risk
stratification in predicting survival. ROC analysis demonstrated
AUCs of 0.698 (1-year), 0.680 (3-year), and 0.781 (5-year) for
survival prediction (Figure 5E). Calibration plots confirmed strong
agreement between predicted and observed outcomes across all
timepoints (Figure 5F).

Immune infiltration analysis revealed significant associations
between the four genes (BASP1, CCL8, FCGR1B, FKBP11) used
for risk stratification and tumor microenvironment composition in
KIRC (Figures 6A–D). In addition, we also verified that the high
expressions of BASP1, CCL8, FCGR1B and FKBP11 in KIRC were
not conducive to the survival and prognosis of patients through
UALCAN database (Figures 6E–H). These results suggest that the
difference of immune microenvironment is an important factor
affecting the prognosis of KIRC patients.

The expression of risk stratification genes
in KIRC and adjacent normal tissues

Subsequently, we utilized the UALCAN database to investigate
the expression patterns of risk-stratification genes in KIRC
and adjacent normal tissues. The analysis revealed significantly

higher expression levels of BASP1, FCGR1B, and FKBP11
in KIRC compared to normal adjacent tissues, while CCL8
showed no significant differential expression between tumor
and non-tumor tissues (Figures 7A–D). Furthermore, our qPCR
experimental results validated these expression patterns for
all four genes (Figures 7E–H). These results underscore the
importance of comprehensive multi-gene evaluation for risk
stratification in KIRC.

Tumor mutation burden and risk
stratification combined to determine the
KIRC prognosis

After clarifying the significance of risk stratification for KIRC
patients, we also evaluated the tumor mutation burden (TMB) in
high and low risk groups. The TMB in the high-risk group was
prominently higher than in the low-risk group (Figure 8A), and
KIRC patients with a high TMB (H-TMB) had a worse survival
prognosis than those with low TMB (L-TMB) (Figure 8B). We
also assessed the prognosis of KIRC patients in combination with
TMB and risk stratification, and found that KIRC patients in
the L-TMB and low-risk group had the best survival outcomes,
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FIGURE 6
Correlations of gene expression levels for KIRC risk stratification with immune cell infiltration and their effects on KIRC prognosis. (A–D) Association
between the expression levels of BASP1 (A), CCL8 (B), FCGR1B (C) and FKBP11 (D) genes and immune cell infiltration in KIRC. (E–H) Effects of BASP1
(E), CCL8 (F), FCGR1B (G) and FKBP11 (H) gene expression levels on the prognosis of KIRC.
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FIGURE 7
The expression of risk stratification genes in KIRC and adjacent normal tissues. (A–D) The UALCAN database shows the expression of BASP (A), CCL8
(B), FCGR1B (C) and FKBP11 (D) in KIRC and adjacent normal tissues. (E–H) The expressions of BASP (E), CCL8 (F), FCGR1B (G) and FKBP11 (H) in KIRC
and adjacent normal tissues were verified by qPCR.

FIGURE 8
Combined analysis of TMB and risk stratification in KIRC. (A) Comparison of TMB between high-risk and low-risk groups in KIRC. (B) Effect of TMB on
the prognosis of KIRC. (C) Combining TMB and risk stratification to assess KIRC prognosis.

while those in the H-TMB and high-risk group had the worst
survival outcomes (Figure 8C).

Independent prognostic assessment and
construction of prognosis model of KIRC
patients based on risk score and clinical
information

Univariate and multivariate Cox regression analyses were
performed to assess whether the risk score provides independent
prognostic value beyond conventional clinical parameters (stage,
grade, age, and gender) in KIRC patients. Both univariate and
multivariate analyses showed that risk score could be used
as an independent prognostic factor in KIRC patients, and
its HR value was higher than that of stage, grade and age
(Figures 9A,B). To facilitate clinical implementation, we developed
a prognostic nomogram integrating standard clinical parameters

(age, gender, TNM stage, grade) with our molecular risk score for
individualized KIRC outcome prediction. By combining various
clinical characteristics of KIRC patients into a comprehensive score,
linear trend analysis revealed a significant positive association
between composite risk scores andmortality risk, with higher scores
predicting poorer clinical outcomes (Figure 9C). ROC analysis
confirmed the nomogram’s strong predictive accuracy for patient
survival (Figure 9D), while calibration plots demonstrated excellent
agreement between predicted and observed outcomes (Figure 9E).

Discussion

KIRC is a disease that can be effectively treated through surgery
in its early stages (Jonasch et al., 2021). However, up to one-third
of patients progress to advanced KIRC (Jonasch et al., 2014), and
the prognosis varies significantly among patients (Wu et al., 2022).
Therefore, further exploration of KIRC subtypes and progression
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FIGURE 9
Univariate and multivariate analyses on risk stratification and constructing and assessing a nomogram model of KIRC. (A) Univariate cox regression
analysis of risk stratification and other variables in KIRC. (B) Multivariate cox regression analysis of risk stratification and other variables in KIRC. (C)
Construction of a nomogram based on risk stratification and clinical features to aid clinicians in determining KIRC prognosis. (D) ROC analysis for
nomogram accuracy. (E) Calibration diagram for evaluating similarity of nomogram to ideal model.
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is essential for improved follow-up and treatment. This study
undertook a comprehensive analysis of KIRC gene expression data
and tumor immune-related features from the GEO and TCGA
datasets. We investigated and compared the immune profiling of
KIRC, performed risk stratification, and developed a prognostic
model. This model is designed to assist clinicians in predicting the
prognosis of KIRC patients, facilitatingmore effective follow-up and
the creation of personalized treatment plans.

KIRC is a highly immunogenic tumor mediated by immune
cells and their related secretory factors (Chen et al., 2023).
Immune checkpoint inhibitors benefit only a subset of KIRC
patients (Diaz-Montero et al., 2020), likely due to the heterogeneity
of the TIM (Vesely et al., 2022). TIM can influence tumor
progression and prognosis by releasing various cytokines and
products (Varricchi et al., 2017; Liu and Yang, 2021). Given
this biological complexity and the variable therapeutic responses
observed clinically, there is an urgent need for robust, TIM-derived
biomarkers to improve risk stratification. In our study, according
to ssGSEA analysis, KIRC samples from the two cohorts were
stratified into Immunity_H and Immunity_L groups. We found
significant differences in the expression of multiple immune-related
genes and the composition of the immune microenvironment
between the two immune subtypes. These results indicate that it is
necessary and reasonable to divide KIRC into these two immune
subtypes. We performed comparative analysis of differentially
expressed genes (DEGs) between the two immune subtypes and
conducted integrative analysis of GEO and TCGA cohorts to
identifymultiple PRGs significantly associatedwithKIRCoutcomes.
The co-expression of PRGs and TFs, along with gene enrichment
analysis, suggests that these PRGs aremainly involved in lymphocyte
migration, lymphocyte chemotaxis, response to interferon-gamma
and other immune-related functions. Studies have shown that
the migration of lymphocytes is related to the metastasis and
progression of tumors (Shi et al., 2021). Lymphocyte chemotaxis
can influence the tumor microenvironment through paracrine and
autocrine mechanisms, directly affecting tumor cells and playing a
crucial role in tumor progression and invasion (Hart et al., 2020).
Response to interferon-gamma can serve as effective prognostic
indicators for KIRC (Liu et al., 2021). These results indicate that
the PRGs we identified are highly reliable and can influence the
prognosis of KIRC through multiple immune-related functions.
Previous studies primarily screened PRGs using a single database
(Wang et al., 2022; Fu et al., 2022). In contrast, we integrated different
databases and combined various GEO cohorts, which enhances the
superiority of our identified PRGs.

We further classified KIRC patients into high-risk and low-
risk groups based on the expression of some PRGs to determine
the prognostic risk of patients independent of clinical and
pathological data. Patients in the high-risk group had significantly
worse outcomes than those in the low-risk group. Notably, KIRC
patients with identical clinicopathological staging frequently exhibit
marked heterogeneity in clinical outcomes (Wei et al., 2019; Zou
and Mo, 2021; Gui et al., 2023; Rini et al., 2015), so it is
meaningful for us to further stratify the risk based on patient gene
expression.

TIM is a key component in the efficacy of immunotherapy
for cancer patients (Braun et al., 2021). Understanding the
gene composition of the microenvironment in KIRC patients is

essential for precise treatment. The four genes (BASP1, CCL8,
FCGR1B, FKBP11) showed consistent positive correlations with
immune cell infiltration (B cells, macrophages, dendritic cells,
CD8+/CD4+ T cells, neutrophils) in KIRC. Notably, elevated
CD8+ T cell abundance was strongly associated with reduced
disease-free survival and overall survival (OS) (Dai et al., 2021). It
was reported that macrophage infiltration of KIRC was significantly
increased in high-risk group (Jiang et al., 2024). Elevated tumor-
infiltrating CD4+ T cell levels correlated with reduced OS and
progression-free survival in KIRC patients. (Correction et al.,
2020). Dendritic cell infiltration in KIRC is a double-edged
sword, and the infiltration of dendritic cells in the proximal
and distal tumor has diametrically opposite prognosis for PFS
and OS in KIRC (Xu et al., 2023). Increased B-cell infiltration
of CD20+ is closely associated with poor prognosis of KIRC
(Sjoberg et al., 2018). KIRC patients with increased neutrophil
infiltration were less sensitive to immunotherapy (Ding et al., 2023).
High expression of four genes used to construct prognostic models
is associated with poor prognosis for KIRC. Taken together, our
results are similar to previous reports, adding to the reliability of
our results.

Moreover, we developed an integrated prognostic score
combining clinical parameters and molecular signatures, enabling
more accurate and efficient KIRC outcome prediction in clinical
practice. Nomogram can provide personalized prognostic
information for patients (Wu et al., 2020; Zhang et al., 2023), and
our nomogram offers superior performance and a broader range of
predictive scores.

Our study has certain limitations, the number of samples used
for qPCR verification is not enough. Furthermore, the predictive
performance of the nomogram requires additional validation in
prospective cohorts. Meanwhile, the biological functions of the
identified target genes should be further investigated through
complementary in vivo and in vitro experiments. Moving forward,
our prediction model will need continuous refinement and
optimization to enhance its clinical applicability. However, our
study highlights the important influence of tumor immune
microenvironment on the prognosis of KIRC, explores the key genes
that have an important effect onKIRCprognosis, and stratifies KIRC
risk according to the key PRGs.

Conclusion

Using multi-cohort data (GEO and TCGA), we developed
a KIRC risk stratification model and implemented it as a
clinical nomogram integrating molecular risk scores with key
clinicopathological parameters to guide prognosis assessment and
therapeutic management. The immune microenvironment is an
important factor affecting the prognosis of KIRC.
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