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Introduction: This study conducts a systematic bibliometric analysis of the 
global research landscape of metabolomics in osteosarcoma, aiming to identify 
research trends, knowledge structures, and emerging directions in the field.
Methods: Publications related to osteosarcoma and metabolomics were 
retrieved from the Web of Science Core Collection. Bibliometric analysis was 
performed using CiteSpace, VOSviewer, and Bibliometrix to examine publication 
trends, geographic and institutional collaborations, author networks, keyword 
co-occurrence, clustering, and co-citation patterns.
Results: A total of 1,188 eligible articles published between 1995 and 2024 
were included. The analysis revealed significant growth in publications and 
citations over the past decade, with China being the leading contributor. High-
frequency keywords such as “biomarkers,” “prognosis,” and “chemoresistance” 
indicated a strong research focus on tumor progression and treatment 
resistance. Clustering and burst detection highlighted emerging topics, 
including extracellular vesicles, microRNAs, and immune metabolism. Co-
citation analysis established a knowledge foundation centered on molecular 
profiling and translational research, with growing interest in spatial and 
single-cell metabolomics reflecting a shift toward high-resolution metabolic 
characterization.
Discussion: This bibliometric study underscores the evolving research priorities 
and methodological advancements within osteosarcoma metabolomics. It 
offers a comprehensive reference for researchers to understand thematic 
evolution, recognize knowledge gaps, and foster the development of more 
precise and integrated metabolic strategies for improving diagnosis and 
treatment.
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Introduction

Osteosarcoma is the most common primary malignant 
bone tumor in adolescents, marked by aggressive growth, early 
metastasis, and limited treatment efficacy in advanced cases 
(Harris and Hawkins, 2022; Yu and Yao, 2024). Although 
multimodal therapy combining surgery and chemotherapy has 
improved outcomes for localized disease, the 5-year survival 
rate for patients with metastatic or recurrent osteosarcoma 
remains below 30% (Gianferante et al., 2017). Increasing 
evidence highlights metabolic reprogramming as a key driver of 
tumor progression, therapy resistance, and immune evasion in 
osteosarcoma (Ren et al., 2025; Tian et al., 2023; Zhang et al., 
2023; Zhang et al., 2025). Tumor cells exhibit enhanced aerobic 
glycolysis and glutamine metabolism to support rapid proliferation 
and survival under stress (Zeng et al., 2023). Excessive lactate 
production alters the tumor microenvironment, promoting 
matrix degradation and immune suppression, which facilitates 
metastasis (Gao et al., 2016; Ren et al., 2020). Functional studies 
confirm that targeting metabolic enzymes such as LDHA and 
GLS suppresses tumor growth and metastasis, indicating their 
therapeutic relevance (Jiang et al., 2021; Mohás et al., 2022). 
Furthermore, chemoresistance has been linked to metabolic 
plasticity, including a shift toward fatty acid oxidation, as well 
as microenvironmental interactions, such as lactate exchange 
with cancer-associated fibroblasts (CAFs) (Almeida et al., 
2023; Griffin et al., 2023; Yang et al., 2023). Recent single-
cell metabolomics data also implicate aspartate metabolism in 
drug-resistant subpopulations (Cheng et al., 2024).

While metabolic targeting has led to promising therapies in 
other cancers - such as IDH inhibitors in mutant acute myeloid 
leukemia - similar progress in osteosarcoma remains limited 
(Amaya and Pollyea, 2018; Liu and Gong, 2019). The disease’s 
metabolic complexity and lack of validated biomarkers hinder 
clinical translation (Gill et al., 2013). Nonetheless, these findings 
underscore the potential of metabolism-focused approaches in 
osteosarcoma. In this context, metabolomics provides a powerful 
platform to uncover metabolic vulnerabilities, guide therapeutic 
strategies, and identify biomarkers.

Metabolomics, as a high-throughput strategy to profile low-
molecular-weight metabolites in biological systems, offers a direct 
readout of cellular biochemical activity and has become an 
essential tool in cancer research (Rinschen et al., 2019; Wishart, 
2016). Metabolomics has been instrumental in characterizing 
tumor-specific metabolic phenotypes, identifying actionable 
vulnerabilities, and discovering predictive biomarkers (Kaushik 
and DeBerardinis, 2018). In breast and prostate cancers, serum 
metabolite panels have been developed to aid in early diagnosis and 
risk stratification (Asiago et al., 2010). For instance, phospholipid 
and amino acid signatures have been shown to distinguish 
molecular subtypes and predict treatment response (Lee and 
Lam, 2025; Lucarelli et al., 2015). In gliomas, the identification 
of 2-hydroxyglutarate as an oncometabolite produced by mutant 
IDH1 not only provided a diagnostic marker but also led 
to the development of FDA-approved IDH-targeted therapies 
(Baek et al., 2024; Xu et al., 2019). These cases exemplify how 
metabolomics can bridge basic metabolic insights with translational 
applications.

Moreover, advances in spatial and single-cell metabolomics 
have further refined our understanding of metabolic 
heterogeneity within tumors, enabling the dissection of treatment-
resistant subpopulations and microenvironmental interactions 
(Chen et al., 2024; Rappez et al., 2021). These technologies are 
particularly relevant to osteosarcoma, a cancer known for its 
intratumoral heterogeneity and variable clinical behavior. Despite 
its clinical importance, osteosarcoma remains underexplored in the 
context of metabolomics compared to more common solid tumors. 
Leveraging metabolomic approaches in osteosarcoma may therefore 
uncover new biomarkers, therapeutic targets, and mechanistic 
insights that have been overlooked by conventional genomic or 
proteomic studies.

Despite growing interest in tumor metabolism, the application 
of metabolomics in osteosarcoma remains relatively limited. Recent 
studies have begun to uncover distinctive metabolic features of 
osteosarcoma cells. Enhanced glycolytic activity and elevated lactate 
production have been linked to increased metastatic potential, 
with lactate acting not only as a metabolic byproduct but also as 
a signaling molecule that reshapes the tumor microenvironment 
and promotes immune evasion (Chen et al., 2023; Payen et al., 
2020; Pereira-Nunes et al., 2020). Additionally, osteosarcoma 
cells demonstrate a strong dependence on glutamine metabolism. 
Upregulation of glutaminase (GLS) has been associated with 
increased resistance to chemotherapeutic agents such as cisplatin 
and methotrexate, and GLS inhibition has shown promise in 
sensitizing tumors to treatment (Chen P. et al., 2021; Wu et al., 
2023). Recent single-cell metabolomics studies have identified 
enriched aspartate metabolism in drug-resistant osteosarcoma 
subpopulations, offering new mechanistic insights into intratumoral 
heterogeneity and resistance (Cheng et al., 2024).

Despite these advances, several limitations hinder the 
development of metabolomics-informed strategies in osteosarcoma. 
Most existing studies are exploratory in nature, based on small, 
single-center cohorts, and lack validation across diverse clinical 
populations. Moreover, findings are often fragmented, focusing on 
isolated metabolic pathways without integrating systemic metabolic 
networks or their interaction with genomic and immunologic 
profiles. There is also a lack of standardized analytical pipelines 
and shared metabolomics datasets, which limits reproducibility 
and cross-study comparison. These gaps collectively impede the 
translation of metabolic findings into robust clinical biomarkers or 
therapeutic targets.

Given the complexity and heterogeneity of osteosarcoma, a 
comprehensive, data-driven understanding of current research 
efforts is urgently needed. Mapping the global research landscape 
can help identify core research clusters, uncover underexplored 
areas, and guide future directions with greater precision. 
In this context, bibliometric analysis provides a valuable 
framework to systematically evaluate research output, track 
thematic evolution, and highlight emerging trends in the field
(Bai et al., 2025).

This study aims to perform a comprehensive bibliometric 
analysis of global literature on metabolomics in osteosarcoma. We 
seek to summarize publication trends, identify major contributors 
and collaborative networks, detect research hotspots and evolving 
methodologies, and highlight underexplored areas. This work 
is intended to provide a data-driven foundation for advancing 
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precision research, fostering interdisciplinary collaboration, and 
accelerating clinical translation in the field of osteosarcoma 
metabolism.

Materials and methods

Data source and retrieval strategy

To ensure the reliability and academic rigor of the bibliometric 
analysis, all publication data in this study were obtained from the 
Web of Science Core Collection (WoSCC), a widely acknowledged 
source for high-quality bibliographic information in scientific 
research. This database was selected for its comprehensive indexing 
of peer-reviewed journals and its compatibility with mainstream 
bibliometric tools. A systematic search was conducted on 12 
December 2024, encompassing publications from the inception 
of the database until the date of retrieval. The search strategy was 
carefully constructed to encompass a broad range of metabolomics-
related studies within the context of osteosarcoma. The search 
formula was defined as follows: (TS = (“metabolomics” OR 
“metabolites” OR “metabolic profiling” OR “biomarkers” OR 
“metabolic pathways” OR “metabolic markers”)) AND TS = 
(“osteosarcoma” OR “bone sarcoma” OR “bone cancer” OR 
“osseous sarcoma” OR “central osteosarcoma” OR “medullary 
osteosarcoma” OR “sclerosing osteosarcoma” OR “subtype 
osteoblastic osteosarcoma” OR “chondroblastic osteosarcoma” OR 
“fibroblastic osteosarcoma”).

The initial search yielded 1,260 publications. To ensure relevance 
and consistency, only articles and review papers written in English 
were retained for further analysis. After eliminating duplicates 
using the built-in deduplication function of CiteSpace (version 6.2. 
R4), a total of 1,188 unique records were finalized for subsequent 
processing. 

Inclusion criteria and data preparation

Publications were included based on the following criteria: (1) 
the study explicitly investigated the application of metabolomics 
or related metabolic analyses in the context of osteosarcoma; 
(2) the document type was limited to original research articles 
or review papers; and (3) the publication language was English. 
Exclusion criteria included conference abstracts, editorial materials, 
corrections, and non-peer-reviewed content.

The downloaded records were saved in plain text format 
and imported into CiteSpace for format conversion and data 
standardization. Metadata fields such as titles, abstracts, keywords, 
author information, institutional affiliations, and cited references 
were extracted to support multilevel bibliometric analysis. 

Data analysis and visualization tools

To explore the intellectual structure and thematic evolution 
of metabolomics research in osteosarcoma, we employed a 
combination of bibliometric software tools, including CiteSpace 
(v6.2. R4), VOSviewer (v1.6.18), and the Bibliometrix R package.

CiteSpace was utilized to generate time-sliced knowledge maps, 
detect reference citation bursts, and visualize the temporal evolution 
of research themes. The parameters applied were: time slicing from 
2000 to 2024 with 1-year intervals; term sources set to titles, 
abstracts, author keywords, and keywords plus; selection criteria of 
Top N = 50 per time slice; and clustering resolution parameter k = 
15. The citation network analysis identified influential references and 
shifting research emphases over time.

VOSviewer was applied to construct visual maps of co-
authorship, institutional collaboration, keyword co-occurrence, 
and journal co-citation networks. Node size was proportional 
to publication or occurrence frequency, while inter-node links 
represented the strength of associations. Thematic clusters were 
color-coded to differentiate major research areas.

Bibliometrix, an R-based open-source framework, was 
employed for complementary statistical analyses and trend 
visualizations. This included annual publication output, most 
productive countries and institutions, highly cited papers, and 
keyword growth dynamics. 

Ethical statement

This study did not involve human or animal subjects and was 
entirely based on secondary data retrieved from a publicly accessible 
database. Therefore, no institutional ethical approval was required.

Results

Publication and citation trends over time

To evaluate the temporal evolution of research activity 
in the field of metabolomics in osteosarcoma, we analyzed 
the annual number of publications and total citations from 
1995 to 2024 (Figure 1). The analysis reveals a clear and sustained 
upward trend in both indicators, highlighting the growing global 
academic interest in this interdisciplinary domain.

During the initial stage (1995–2009), research activity remained 
modest, with fewer than 10 publications per year and minimal 
citation impact. This period reflected the exploratory phase of 
integrating metabolomics into osteosarcoma research. From 2010 
onward, the field entered a phase of accelerated growth, with 
the annual publication count increasing significantly-from 10 in 
2010 to 134 in 2024. The most prolific year was 2021, with 161 
published articles.

Citation frequency demonstrated a parallel upward trajectory, 
particularly from 2015 onwards. The number of citations peaked in 
2022, surpassing 3,600 annual citations. Although citation counts 
slightly declined in the following years (2023–2024), they remained 
at a high level (>3,000 citations annually), indicating the continued 
relevance and influence of previously published work.

Taken together, these data suggest that metabolomics has 
emerged as a key research avenue in osteosarcoma over the 
past decade. The sharp increase in publication volume and 
citation frequency reflects both the expansion of methodological 
applications and the growing recognition of metabolic 
reprogramming as a hallmark of osteosarcoma pathophysiology. 
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FIGURE 1
Trend chart of annual publication volume and citation frequency. (A) Annual trend in publication volume and citation frequency; (B) Timeline of 
countries; (C) Trend of publications by institution over time.

Global distribution and collaboration 
patterns among countries

To explore the global research landscape of metabolomics 
in osteosarcoma, a country-level collaboration network and 
longitudinal productivity analysis were conducted (Figures 2, 3). 
A total of 68 countries have contributed to this field, indicating wide 
international engagement.

As shown in Figure 3 and detailed in Table 1, China emerged 
as the most prolific country, accounting for 599 publications since 
its initial contribution in 2006. This is followed by the United States 
(n = 241, since 2000) and Italy (n = 84, since 2004). Notably, 
China has demonstrated a dramatic increase in output, surpassing 

all other countries by a wide margin after 2018. The United States 
and Japan showed steady productivity throughout the 2 decades, 
whereas European countries such as Germany, the United Kingdom, 
and Italy exhibited moderate but consistent contributions. Countries 
like India and France entered the field later but have shown 
growing momentum.

In terms of network centrality - a proxy for the importance 
of a country in facilitating international research collaboration - 
several countries demonstrated high values despite relatively fewer 
publications. For instance, the Netherlands (centrality = 0.59), the 
United Kingdom (0.50), and Germany (0.24) play key bridging 
roles in the global research network (Table 1). In contrast, China, 
despite its dominant publication volume, shows a centrality score 
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FIGURE 2
(A) Country scientific production; (B) Country collaboration map.

of 0.00, suggesting that its international collaboration density 
remains limited.

The geographical collaboration map (Figure 2) further 
highlights that the United States acts as a major hub of international 
cooperation, particularly with European and Asian countries. 
While China’s connections have expanded, its collaboration 
appears more regional and less diversified. These findings 
imply that strengthening cross-national cooperation, especially 
involving highly central countries, may further enhance knowledge 
integration and accelerate global advancement in osteosarcoma 
metabolomics research. 

Institutional contributions and productivity 
trends

To further elucidate the organizational landscape of research 
on metabolomics in osteosarcoma, we examined the publication 
output and centrality of the top ten most productive institutions 
(Figure 4; Table 2). Chinese research institutions dominated the top 
ranks, with Central South University leading at 35 publications 

since its entry in 2013, followed closely by Sun Yat-sen University 
(29 publications, since 2007) and Shanghai Jiao Tong University 
(28 publications, since 2017). Other notable Chinese institutions 
include Zhengzhou University, Fudan University, Jilin University, 
and Nanchang University, reflecting China’s widespread academic 
investment in this area. Internationally, the University of Texas 
System (27 publications) and the University of California System (18 
publications) emerged as key contributors from the United States, 
along with the National Institutes of Health (NIH). Among these, 
the University of Texas System exhibited the highest centrality score 
(0.18), indicating its stronger role in collaborative networks.

The institutional production timeline (Figure 4) reveals that 
most of the leading Chinese institutions began contributing 
significantly only after 2015, yet quickly accelerated their output. 
In contrast, U.S. institutions like the University of Texas System 
showed earlier and more sustained engagement since the early 
2000s. Central South University exhibited the steepest upward trend 
in the most recent years, surpassing its peers by 2024.

Despite high publication output, many institutions 
displayed low betweenness centrality (<0.05), suggesting 
relatively weak roles in inter-institutional collaboration. 
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FIGURE 3
Country production over time. (A) Network visualization of author collaborations; (B) Network visualization of author collaborations; (C) Statistical 
chart of authors; (D) Network visualization of keyword co-occurrence; (E) Statistical chart of authors countries; (F) Keyword tag cloud.

This observation highlights a current structural limitation: 
while regional productivity is strong - especially in China - 
global integration across institutions remains limited. These 
results emphasize the need to foster more international 
and cross-institutional cooperation to bridge fragmented 
efforts and enhance knowledge exchange in this rapidly 
evolving field. 

Author collaboration networks and core 
contributors

To identify influential researchers and examine collaborative 
structures in the field, an author co-authorship network and 
density visualization were constructed using VOSviewer. A total 
of 791 authors who had published at least two articles were 
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TABLE 1  Statistics of publication frequency by country.

No. Publication volume Centrality Year of publication Country

1 599 0 2006 PEOPLES R CHINA

2 241 0.06 2000 United States

3 84 0.12 2004 ITALY

4 55 0.24 2002 GERMANY

5 47 0 2000 JAPAN

6 40 0.5 2000 ENGLAND

7 33 0.2 2010 INDIA

8 30 0.1 2007 FRANCE

9 27 0.59 2004 NETHERLANDS

10 25 0.17 2005 CANADA

FIGURE 4
Changes in publications by institutions over time. (A) Keyword tree map; (B) Keyword clustering diagram; (C) Keyword frequency change over time;
(D) Keyword clustering diagram.
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TABLE 2  Statistics of publication frequency of the top ten research institutions.

No. Publication volume Centrality Years of publication Agency

1 35 0.01 2013 Central South University

2 29 0.15 2007 Sun Yat Sen University

3 28 0 2017 Shanghai Jiao Tong University

4 27 0.18 2000 University of Texas System

5 24 0 2016 Zhengzhou University

6 23 0.04 2006 Fudan University

7 18 0.03 2018 University of California System

8 18 0.01 2004 National Institutes of Health (NIH) - United States

9 17 0.01 2017 Jilin University

10 15 0.01 2021 Nanchang University

included in the analysis. As shown in Figure 5A, the co-authorship 
network reveals several well-defined collaborative clusters, with 
the node size representing the number of publications and the 
distance between nodes indicating the strength of co-authorship. 
Notably, Duan Zhenfeng, Serra Massimo, Cai Zhengdong, and Shen 
Jingnan emerged as central figures in the field, each anchoring a 
distinct subnetwork of collaboration. The corresponding density 
map (Figure 5B) further highlights their prominence, with brighter 
regions reflecting higher publication density and collaborative 
intensity. According to Table 3, Duan Zhenfeng led the author 
ranking with 12 publications and a total citation count of 436. 
Serra Massimo followed with 10 publications but had the highest 
citation frequency among the top authors (521), suggesting greater 
influence per article. Shen Jingnan and Cai Zhengdong also showed 
strong performance, with 9 and 8 publications respectively and high 
connection strength values (61 and 48), indicating their pivotal 
roles in shaping collaborative research efforts. The collaborative 
landscape is characterized by moderate fragmentation, with regional 
clusters - particularly those led by Chinese and European researchers 
- tending to collaborate more intensively within their respective 
networks. This pattern underscores the importance of enhancing 
interregional collaboration to further diversify perspectives and 
methodologies in the field. Overall, these findings suggest that a 
small number of key researchers have driven much of the scholarly 
output and influence in osteosarcoma metabolomics. Promoting 
broader and more integrated author collaborations may help to 
consolidate expertise and accelerate research innovation across 
institutional and geographic boundaries.

To better understand the geographic origins of influential 
research and the thematic roles of corresponding authors, we 
conducted an in-depth analysis of author-country affiliations and 
their associated research focuses. Figure 6A presents a three-field 
plot linking authors’ countries (AU_CO), individual authors (AU), 
and high-frequency keywords (DE), while Figure 6B visualizes 
the distribution of corresponding authors across countries and 

distinguishes between single-country publications (SCP) and multi-
country publications (MCP). As shown in Figure 6B, China 
dominates the field in terms of corresponding author output, 
contributing over 600 publications, far surpassing the United 
States and Italy. However, most of China’s publications are 
categorized as SCPs, indicating limited international collaboration. 
In contrast, countries such as the United States, Germany, and 
the United Kingdom demonstrated a relatively higher proportion 
of MCPs, reflecting stronger involvement in global partnerships. 
These findings confirm that while Chinese scholars contribute 
substantially to the literature in terms of quantity, international 
scholars - especially those from Europe and North America - 
tend to be more integrated into collaborative and translational 
research efforts. Furthermore, the convergence of Chinese and 
international authors on common keywords underscores the global 
relevance of key challenges such as drug resistance and biomarker
identification. 

Keyword Co-occurrence and research 
focus evolution

To identify research hotspots and thematic directions in the 
field of metabolomics in osteosarcoma, a comprehensive keyword 
analysis was conducted based on co-occurrence frequency, network 
density, and temporal trends. The word cloud visualization in 
Figure 7A provides an intuitive overview of high-frequency terms, 
with larger font sizes indicating more frequent usage. Keywords such 
as “expression” “cancer” “osteosarcoma” “metastasis” “biomarkers” 
“cells” and “proliferation” were the most prominent. These terms 
align closely with core topics in tumor biology, suggesting a 
predominant focus on molecular mechanisms, disease progression, 
and biomarker identification. The keyword co-occurrence network 
in Figure 7B further illustrates the structural connectivity among 
terms. “Osteosarcoma” was the central node (co-occurrence 
frequency: 715; total link strength: 5,267), connecting with a 
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FIGURE 5
Author collaboration network. (A) Timeline visualization of keyword clusters; (B) Citation co-occurrence network; (C) Keyword burst chart arranged by 
time; (D) Arrange the key words in the keyword emergence chart according to their emergence degree; (E) Document density visualization; (F) Cited 
reference burst diagram; (G) Biplot overlay of scientific journals.

dense web of terms related to pathogenesis, treatment strategies, 
and molecular diagnostics. Notably, clusters emerged around 
“apoptosis” “drug resistance” “extracellular vesicles” and “epithelial 
- mesenchymal transition” indicating specialized subfields with 
increasing scholarly attention. Quantitative data in Table 4 
confirm the centrality and frequency of key terms. “Cancer” 
(n = 324, link strength = 2,416), “expression” (n = 319, link 
strength = 2,477), “biomarkers” (n = 180), and “metastasis” (n 
= 179) ranked among the top thematic keywords, reflecting 
continued emphasis on diagnostic and prognostic indicators in 
osteosarcoma.

The treemap diagram (Figure 8A) visualizes keyword categories 
based on frequency and hierarchical structure. Categories such as 
“cancer” “expression” “cells” and “proliferation” occupied the largest 

blocks, reinforcing their central importance. Meanwhile, topics 
like “drug resistance” “microRNAs” and “tumor suppressor genes” 
emerged as smaller but growing areas. Temporal trends in Figure 8B 
show a sharp rise in cumulative usage of terms such as “cancer” 
“osteosarcoma” “expression” and “biomarkers” since 2015. Terms 
like “microRNAs” “exosomes” and “chemotherapy” also showed 
accelerated growth in recent years, suggesting an expanding interest 
in non-coding RNA regulation and treatment-related metabolic 
dynamics. Collectively, these keyword analyses reveal that the 
field is evolving from basic molecular characterization toward 
more integrated themes such as therapeutic response, tumor 
microenvironment, and personalized biomarker development. The 
diversity and convergence of keyword clusters also indicate an 
increasing complexity and maturity in the research landscape. 
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TABLE 3  Frequency of publications by the top ten authors.

No. Publication frequency Citation frequency Connection strength Author’s name

1 12 436 47 duan, zhenfeng

2 10 521 42 serra, massimo

3 9 226 61 shen, jingnan

4 8 336 48 cai, zhengdong

5 8 125 31 min, li

6 8 215 59 xie, xianbiao

7 7 300 47 hua, yingqi

8 7 59 23 li, jitian

9 7 141 36 man, tsz-kwong

10 7 187 36 picci, piero

FIGURE 6
Statistical chart of authors and their countries. (A) Author analysis diagram; (B) Country distribution of authors.

Keyword clustering and thematic evolution

To further clarify the structural composition and developmental 
trajectory of research topics in the field, keyword co-occurrence 
clustering analysis was performed using CiteSpace. A total of 12 
clusters were identified based on the log-likelihood ratio (LLR) 
algorithm, and their quality was assessed using the modularity index 
(Q = 0.765) and silhouette coefficient (S = 0.8924), indicating high 
clustering reliability and structural validity (Figure 9; Table 5). Each 
cluster was assigned a representative label based on its most frequent 
or distinguishing terms. The largest clusters were #0 “1 alpha” (n = 
41, S = 0.937), #1 “immune infiltration” (n = 40, S = 0.889), and 
#2 “bone sarcoma” (n = 34, S = 0.907). Other prominent clusters 
included #3 “chemoresistance”, #4 “differentially expressed genes”, 
#7 “extracellular vesicles”, and #8 “drug resistance”, all of which 
demonstrated strong internal consistency (S > 0.86).

The strategic thematic map (Figure 9A) provides a quadrant-
based classification of research themes according to their centrality 
(relevance) and density (development). Clusters such as “metastasis” 
“proliferation” and “progression” were identified as motor themes, 
characterized by both high centrality and high density, indicating 
well-developed and influential areas. In contrast, topics such as 
“high-grade osteosarcoma” “epithelioid” and “soft tissue sarcoma” 
appeared in the emerging or declining quadrant, suggesting 
either nascent or waning interest. Themes like “expression” and 
“cancer” were positioned as basic themes, fundamental to the 
field but with room for further thematic enrichment. The timeline 
visualization in Figure 10 illustrates the temporal evolution of 
each cluster, showing both onset time and sustained activity. 
Clusters such as #11 “expression profiling” and #0 “1 alpha” 
appeared as early as the mid-1990s, indicating foundational roles 
in the field’s early development. More recent clusters, such as 
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FIGURE 7
(A) Keyword word cloud; (B) Keyword co-occurrence network map.

TABLE 4  Co-occurrence frequency statistics of the top ten keywords.

No. Keywords Frequency Connection strength

1 osteosarcoma 715 5,267

2 cancer 324 2,416

3 expression 319 2,477

4 biomarkers 180 1,464

5 metastasis 179 1,521

6 prognosis 175 1,439

7 proliferation 139 1,182

8 Cells 138 990

9 Biomarkers 124 1,031

10 survival 120 943

11 chemotherapy 107 819

12 progression 99 868

13 apoptosis 90 687

14 Growth 87 674

15 Invasion 84 718

#7 “extracellular vesicles”, #3 “chemoresistance”, and #8 “drug 
resistance”, demonstrated heightened activity in the past decade, 
suggesting they represent frontier research areas. Notably, cluster 

#10 “fracture healing callus” - despite its relatively small size (n = 
22) - showed the highest silhouette coefficient (S = 0.984), indicating 
an exceptionally coherent thematic identity. This may reflect a 
specialized subfield focused on metabolic aspects of bone repair and 
regeneration in the osteosarcoma context.

Overall, the clustering results demonstrate a multidimensional 
and temporally dynamic research landscape. While foundational 
themes such as gene expression and molecular profiling remain 
central, there is a clear shift toward applied and translational 
topics, including immune regulation, extracellular communication, 
and therapeutic resistance. These trends underscore the 
field’s maturation and expanding complexity, as metabolomics 
increasingly intersects with immunology, pharmacogenomics, and 
personalized medicine. 

Burst detection analysis of keywords

To trace the temporal dynamics of research priorities and 
identify emerging topics, a burst detection analysis of keywords 
was performed using CiteSpace. Citation bursts highlight terms 
that experience a sharp increase in frequency over a defined 
period, reflecting heightened attention in the academic community. 
As shown in Figure 11A, from 2007 onwards, a noticeable 
shift occurred toward applied clinical and diagnostic themes. 
Keywords like “identification” (4.68), “chemotherapy” (4.18), 
“microRNAs” (8.5), and “prognostic factors” (5.98) began to 
dominate the landscape. The emergence of “microRNAs” and 
“circulating microRNAs” (4.97) between 2013–2018 and 2013–2017, 
respectively, reflects the growing interest in non-coding RNA 
as metabolic biomarkers and regulators of therapeutic response. 
More recent bursts (2018–2024) point to the field’s increasing 
sophistication and diversification. Noteworthy terms include 
“epithelial mesenchymal transition” (5.22), “ewing sarcoma” (4.58), 
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FIGURE 8
(A) Keyword tree map; (B) Keyword frequency change over time.

FIGURE 9
(A,B) Keyword clustering map.

and “resistance” (4.69), which reflect ongoing concerns with 
tumor aggressiveness, histological subtypes, and chemoresistance 
mechanisms. These keywords are not only timely but also clinically 
relevant, marking a transition from descriptive profiling toward 
mechanistic and translational investigations. Figure 11B reorganizes 
the top 20 keywords by burst intensity and reaffirms “microRNAs” 
(Strength = 8.5) as the most prominent emergent topic, followed by 
“breast cancer” (7.69) and “overexpression” (7.46). The clustering of 
bursts around 2013–2020 suggests that this period was particularly 
active in introducing molecular biology concepts into osteosarcoma 
metabolomics research. 

Co-citation analysis and intellectual 
foundation

To uncover the intellectual structure and foundational 
knowledge base of metabolomics research in osteosarcoma, co-
citation analysis was conducted using VOSviewer and CiteSpace. 

This approach identifies frequently cited references that underpin 
current research and highlights papers that have triggered significant 
academic attention over time. As shown in Figure 12A, the co-
citation network displays several distinct clusters, each representing 
a thematic knowledge domain. The largest and most densely 
connected cluster centers around landmark studies by Ottaviani 
G (2009) and Mirabello L (2009), both of which focus on 
epidemiological and clinical characteristics of osteosarcoma. These 
references serve as cornerstones in understanding disease onset, 
treatment outcomes, and survival statistics. The corresponding 
density visualization in Figure 12B further highlights these central 
nodes as the intellectual hubs of the field. Table 6 lists the top 10
most cited references. The most cited paper was authored by Gill 
J (2021) and published in Nature Reviews Clinical Oncology 
(38 citations), providing a comprehensive update on therapeutic 
advancements in osteosarcoma. Smeland S (2019), with 36 citations, 
offered critical insights from the EURAMOS-1 trial, emphasizing 
patient stratification and long-term prognosis. Other frequently 
cited works include contributions by Isakoff MS (2015) on 
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TABLE 5  Cluster information statistics.

No. Cluster labels Size Silhouette 
coefficient

1 #0 1 alpha 41 0.937

2 #1 Immune Infiltration 40 0.889

3 #2 bone sarcoma 34 0.907

4 #3 chemoresistance 33 0.899

5 #4 differentially 33 0.86

6 #5 identification 33 0.921

7 #6 osteosarcoma 32 0.772

8 #7 Extracellular vesicles 29 0.911

9 #8 drug resistance 27 0.905

10 #9 hypercalcemia 26 0.89

11 #10 fracture healing callus 22 0.984

12 #11 expression profiling 16 0.933

standard treatment protocols and Corre I (2020) on oxidative 
stress and radiosensitivity, both of which have significantly shaped 
contemporary therapeutic perspectives.

In terms of betweenness centrality, which reflects a reference’s 
bridging role in the knowledge network, Gianferante DM (2017) 
and Heymann MF (2019) exhibited relatively high scores (centrality 
= 0.06), indicating their integration across multiple subfields 
such as endocrinology, immunology, and treatment resistance. 
Complementing these findings, Figure 13 presents the top 20 
references with the strongest citation bursts, highlighting literature 
that has attracted surges of attention during specific periods. For 
example, Jones KB (2012) experienced the strongest burst (Strength 
= 11.31, 2014–2017), underscoring its influence during the critical 
transition to molecular classification and gene expression profiling. 
More recent bursts include Yang CF (2020) and Feron O (2020), both 
peaking between 2022 and 2024, reflecting growing interest in tumor 
metabolism and microenvironmental regulation.

Collectively, the co-citation and burst detection analyses 
reveal a research foundation rooted in clinical characterization, 
now progressively shifting toward molecular pathogenesis and 
therapeutic innovation. These findings not only identify the core 
literature shaping the field but also map the trajectory of scholarly 
influence and emerging paradigms. 

Dual-map overlay of journals

To visualize the disciplinary diffusion and citation trajectories 
within the field, a dual-map overlay of journals was generated using 
CiteSpace. This visualization technique maps the citing and cited 
journals across different scientific domains and illustrates their 

interconnections through citation paths. As shown in Figure 14, 
the left side of the map represents the domains of the citing 
journals, while the right side reflects those of the cited journals. 
Colored lines between the two regions indicate the citation 
flows, highlighting the knowledge transfer from the citing fields 
to the intellectual bases. The most prominent citation paths 
originate from journals in Molecular/Biology/Genetics and 
Medicine/Medical/Clinical, pointing toward cited journals located 
within Health/Nursing/Medicine, Molecular/Biology/Immunology, 
and Genetics/Clinical Medicine domains. This pattern underscores 
the interdisciplinary nature of metabolomics research in 
osteosarcoma, where experimental molecular findings are 
frequently cited in translational and clinical medicine contexts. 
In particular, the robust citation trajectory from Molecular 
Biology and Genetics to Health and Medicine reflects the 
central role of omics-based discoveries in informing clinical 
applications such as biomarker validation, treatment stratification, 
and prognostic modeling. Additionally, contributions from 
Environmental/Ecology and Mathematics/Systems domains 
indicate occasional methodological or systemic approaches being 
integrated into biomedical frameworks.

Overall, the dual-map overlay illustrates a clear translational 
flow of knowledge from fundamental biosciences to clinical 
and healthcare applications, validating the field’s evolution from 
descriptive metabolite profiling toward actionable clinical insights. 
The widespread coverage across both life science and medical 
disciplines also reinforces the highly interdisciplinary character of 
this research area.

Discussion

This study provides the first comprehensive bibliometric 
analysis of global research on the application of metabolomics in 
osteosarcoma. Over the past 3 decades, the field has witnessed 
a steady rise in both publication volume and citation frequency, 
particularly after 2010, reflecting growing scientific interest in 
metabolic reprogramming in cancer. High-frequency keywords 
and clustering results indicate research hotspots centered on 
tumor progression, chemoresistance, and biomarker discovery. The 
thematic evolution reveals a clear shift from basic molecular 
profiling to translational topics with clinical relevance. These 
findings offer a panoramic understanding of the research landscape 
and highlight key directions for future investigation.

The keyword analysis and thematic clustering provide 
a multidimensional view of the evolving research focus in 
osteosarcoma metabolomics. High-frequency terms such as 
“biomarkers” “prognosis” “apoptosis” “chemotherapy” and 
“metastasis” (Table 4; Figure 7) collectively underscore the central 
role of tumor aggressiveness and treatment response in this field. 
More notably, burst keyword analysis and cluster timelines reveal 
a pronounced shift toward chemoresistance-related metabolic 
reprogramming, particularly after 2013 (Figures 10, 11). Clusters 
such as #3 “chemoresistance”, #8 “drug resistance” and #7 
“extracellular vesicles” suggest sustained attention to therapy 
resistance as a critical barrier to clinical success.

Mechanistically, osteosarcoma chemoresistance is increasingly 
recognized as a multifactorial process in which metabolomics plays 
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FIGURE 10
Keyword clustering timeline map.

FIGURE 11
Keyword emergence graph (sorted by time and by emergence). (A) Top 20 keywords with the strongest citation bursts; (B) Top 20 keywords with the 
strongest citation bursts.

an integrative explanatory role (Kim et al., 2017; Wang et al., 2023). 
First, tumor cells can exhibit metabolic adaptability, compensating 
for glycolytic inhibition by upregulating fatty acid oxidation (FAO) 
(Chen et al., 2022; Lee et al., 2020). Such plasticity allows 
osteosarcoma cells to maintain ATP production and resist metabolic 
stress induced by chemotherapy. Recent metabolomic profiling has 
shown that cisplatin-resistant osteosarcoma cells display enhanced 

FAO signatures, supporting this adaptive shift (Montopoli et al., 
2011). Second, the tumor microenvironment (TME) contributes 
significantly to resistance (Yang et al., 2024). Cancer-associated 
fibroblasts (CAFs) have been shown to secrete lactate, which not 
only acidifies the extracellular milieu but also fosters immune 
evasion by suppressing cytotoxic T-cell activity and promoting 
regulatory T-cell infiltration (Wangpaichitr et al., 2021). This 
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FIGURE 12
Literature co-citation analysis and density visualization. (A) Analysis of co-citations in literature; (B) Density visualization diagram.

TABLE 6  Statistical frequency table of cited literature.

No. Citations Centrality Cited articles

1 38 0.03 Gill J, 2021, NAT REV CLIN ONCOL, V18, P609, DOI 10.1038/s41571-021–00519-8

2 36 0.01 Smeland S, 2019, EUR J CANCER, V109, P36, DOI 10.1016/j.ejca.2018.11.027

3 33 0.02 Corre I, 2020, CELLS-BASEL, V9, P0, DOI 10.3390/cells9040976

4 33 0.06 Isakoff MS, 2015, J CLIN ONCOL, V33, P3029, DOI 10.1200/JCO.2014.59.4895

5 28 0.05 Gianferante et al. (2017), NAT REV ENDOCRINOL, V13, P480, DOI 10.1038/nrendo.2017.16

6 28 0.04 Harrison DJ, 2018, EXPERT REV ANTICANC, V18, P39, DOI 10.1080/14737140.2018.1413939

7 27 0.06 Heymann MF, 2019, CELL IMMUNOL, V343, P0, DOI 10.1016/j.cellimm.2017.10.011

8 26 0.02 Sayles LC, 2019, CANCER DISCOV, V9, P46, DOI 10.1158/2159-8290.CD-17-1152

9 24 0.01 Yang CF, 2020, INT J MOL SCI, V21, P0, DOI 10.3390/ijms21196985

10 23 0.03 Chen CL, 2021, CANCER LETT, V500, P1, DOI 10.1016/j.canlet.2020.12.024

process, reflected by emerging keywords like “extracellular vesicles” 
and “tumor immunity”, links metabolic exchange in the TME with 
immunomodulatory dynamics that reduce chemotherapy efficacy. 
Third, epigenetic regulation, particularly m6A RNA methylation, 
has gained attention as a modulator of metabolic gene expression. 
Recent studies have revealed that m6A-modified transcripts encode 
enzymes central to amino acid metabolism and the oxidative stress 
response (Chen C. et al., 2021; Han et al., 2024; Hu et al., 2025). 
In osteosarcoma, aberrant m6A patterns are associated with altered 
glutamine metabolism and resistance to DNA-damaging agents 
such as cisplatin. Burst keywords such as “microRNAs” “epithelial 
- mesenchymal transition (EMT)” and “prognostic factors” further 
reinforce the role of epigenetic and transcriptional control in 
metabolic remodeling.

The progression from basic metabolic profiling to these multi-
level mechanistic investigations illustrates the maturation of the 
field. Metabolomics has evolved beyond passive observation 

toward an active tool for uncovering targetable vulnerabilities in 
chemoresistant tumors. These findings emphasize the necessity for 
integrated multi-omics approaches that combine metabolomics 
with transcriptomics, epigenomics, and spatial profiling to 
decode the complex interplay between metabolism and resistance
phenotypes.

While conventional metabolomics has greatly advanced our 
understanding of metabolic alterations in osteosarcoma, the 
emergence of new technologies such as spatial metabolomics 
and single-cell metabolomics offers the potential to resolve 
previously inaccessible layers of metabolic heterogeneity and 
tumor microenvironment (TME) interactions (Allam and Coskun, 
2024). Our keyword evolution and cluster analysis (Figures 9, 10) 
showed increasing attention to topics such as “extracellular 
vesicles,” “immune infiltration,” and “drug resistance,” which 
inherently involve spatial and cellular diversity—areas where bulk 
metabolomics is inherently limited.
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FIGURE 13
Cited articles burst map.

FIGURE 14
Journal double image overlay.

Spatial metabolomics, typically based on mass spectrometry 
imaging (MSI), enables in situ mapping of metabolite distributions 
within tissue sections at sub-millimeter resolution (Najumudeen 
and Vande Voorde, 2025). This approach is particularly relevant 
to osteosarcoma, a tumor characterized by heterogeneous cell 
populations, extensive stromal involvement, and areas of necrosis 
or calcification. Recent studies in soft tissue sarcomas have shown 
that spatial metabolomic signatures can delineate metabolic niches 
associated with hypoxia, osteoid formation, or immune exclusion 

zones. Applying such techniques to osteosarcoma may reveal site-
specific vulnerabilities, such as perivascular FAO enrichment or 
lactate gradients correlating with immunosuppressive regions.

Single-cell metabolomics, although still technically challenging, 
provides another layer of resolution, allowing interrogation of 
cell-to-cell variability in metabolic states (Zenobi, 2013). In 
osteosarcoma, chemoresistant subclones are often embedded 
within phenotypically similar populations, and their identification 
requires beyond-average profiling tools. Emerging single-cell 
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methods, including capillary electrophoresis-mass spectrometry 
(CE-MS) and single-cell isotope tracing, have begun to uncover 
distinct glutamine utilization patterns and ROS-scavenging 
capacities in resistant osteosarcoma cells (DeLaney et al., 2018; 
Steinhauser et al., 2012; Zhang et al., 2020). These methods may aid 
in functionally identifying minimal residual disease (MRD) niches 
or predicting relapse risk after neoadjuvant therapy.

Moreover, integrating spatial and single-cell metabolomics 
with transcriptomic or proteomic layers (i.e., spatial multi-
omics) could help contextualize metabolic signatures within 
immune or angiogenic landscapes. For instance, linking arginine 
depletion to myeloid-derived suppressor cell (MDSC) expansion, 
or lactate accumulation to PD-L1 expression, could inform 
rational combinations of metabolic inhibitors and immunotherapy 
(Fletcher et al., 2015; Wang et al., 2025). However, the translation 
of these techniques into osteosarcoma research remains limited due 
to technical complexity, tissue preparation challenges in calcified 
tumors, and lack of standardized pipelines. Addressing these gaps 
requires cross-disciplinary collaboration and the development of 
osteosarcoma-specific reference atlases that capture the tumor’s 
spatial and clonal metabolic architecture.

In summary, new-generation metabolomic tools hold great 
promise for deciphering intra-tumoral heterogeneity and TME 
dynamics in osteosarcoma. Their application could shift the 
current research paradigm from population-level observations 
toward precision metabolic phenotyping, ultimately improving 
target identification and therapeutic stratification.

To advance the translational impact of metabolomics in 
osteosarcoma, future research should focus on several key 
directions. Elucidating resistance mechanisms through metabolic 
reprogramming - such as shifts toward fatty acid oxidation, 
lactate-mediated immunosuppression, and epigenetic alterations 
like m6A methylation - may reveal novel biomarkers and 
therapeutic vulnerabilities. Integrating multi-omics platforms, 
including transcriptomics, proteomics, and epigenomics, 
will help decode the complex interactions between tumor 
metabolism, microenvironment, and therapeutic response. 
Emerging technologies such as spatial metabolomics and single-
cell metabolic profiling offer new opportunities to dissect intra-
tumoral heterogeneity and identify resistant subclones with 
distinct metabolic phenotypes. In this context, artificial intelligence 
and machine learning can facilitate pattern recognition and 
metabolic subtype stratification, enabling precision therapy 
design. Additionally, targeting the metabolic crosstalk between 
tumor and stromal cells - via exosomes, cytokine signaling, 
and immunometabolites - may offer new combination strategies 
alongside chemotherapy or immunotherapy. Multimodal 
approaches that incorporate metabolic inhibitors with immune 
checkpoint blockade or ferroptosis inducers hold promise for 
enhancing treatment efficacy and overcoming relapse.

This study provides a systematic overview of global research 
trends, hotspots, and knowledge structures in osteosarcoma 
metabolomics, yet certain limitations should be acknowledged. The 
exclusive use of the Web of Science Core Collection may exclude 
non-English or recently indexed studies, potentially overlooking 
novel contributions. The retrospective nature of the data may 
also underrepresent very recent shifts in methodology or clinical 
translation. Moreover, as a bibliometric study, our analysis lacks 

integration with experimental or clinical datasets, limiting biological 
contextualization. Future efforts should aim to incorporate broader 
data sources and link bibliometric findings with molecular, imaging, 
and clinical outcome data. This integrative approach will better 
capture the evolving complexity of osteosarcoma metabolism and 
accelerate the discovery of clinically actionable metabolic targets.

Conclusion

This bibliometric analysis offers a comprehensive overview of 
global research on metabolomics in osteosarcoma, highlighting 
key contributors, evolving research themes, and methodological 
advances. The findings reveal a shift from basic metabolic profiling 
to more refined investigations into chemoresistance, biomarker 
discovery, and tumor microenvironment interactions. By mapping 
the current knowledge structure and identifying research gaps, 
this study provides a valuable reference for future work aiming to 
develop more integrated and clinically relevant metabolic strategies 
for osteosarcoma management.
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