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Selective antimicrobial dry cow therapy (DCT) is implemented as part of mastitis

control programs, particularly in dairy cows with recent clinical episodes or

elevated somatic cell counts. In this study, we investigated the effects of the use

of antimicrobials at drying-off on the milk microbiota and resistome by

comparing treated (T, n=18) and untreated (NT, n=13) cows. Milk samples from

all animals were analyzed using short-read Illumina shotgun sequencing and a

subset of 10 samples were also subjected to long-read Oxford Nanopore

Technologies (ONT) sequencing. No significant differences in microbial

composition or diversity were observed between treated and untreated groups

with either technique, indicating that antimicrobial DCT may not induce long-

term shifts in the milk microbiota. However, cows receiving antibiotic treatment

showed a higher diversity and abundance of genetic determinants of resistance

(GDRs) in their milk resistome. Findings from the two sequencing platforms

revealed limited concordance in antimicrobial resistance gene content,

highlighting that sequencing platform and bioinformatic pipeline choices

substantially influence resistome profiling outcomes. Furthermore, the high

proportion of host DNA limited sequencing depth and sensitivity, underscoring

the need for improved host DNA depletion or targeted enrichment strategies.

This study provides insights into the biological and methodological challenges of

milk resistome characterization, particularly in low-biomass, host-DNA-rich

samples and demonstrates the lack of standardized analytical approaches in

resistome studies. Overall, our findings support the prudent use of antibiotics and

highlight the need for further longitudinal studies to clarify the temporal

dynamics of antimicrobial DCT effects on the milk resistome and microbiota.
KEYWORDS
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1 Introduction

Mastitis is one of the most prevalent and economically

significant diseases in dairy farming, adversely affecting both milk

production and animal welfare. The dry period, a non-lactating

interval typically lasting around 60 days before calving, is

particularly vulnerable to new intramammary infections (Bradley

and Green, 2004) but also represents a strategic window to clear

existing infections and to allow the udder to recover for the next

lactation cycle (Bradley and Green, 2004). To mitigate mastitis risk

during this period, dry cow therapy (DCT) traditionally involved

routine prophylactic antibiotic administration to all cows at drying-

off. Although this practice has been effective in reducing new

infections, it has also raised major concerns regarding the

emergence and spread of antimicrobial resistance (AMR),

particularly since the antibiotics commonly used in DCT (often

involving b-lactams and macrolides), are also critical for human

medicine (World Health Organization, 2024). In response, the

European Union (Regulation UE 2019/6) has restricted

antimicrobial use in livestock, banning prophylactic treatment

unless the risk of infection is very high and the outcomes

potentially severe. This has shifted industry practice towards

selective DCT, where antibiotics are only administered to cows

with mastitis or at high risk of developing the disease.

The impact of antimicrobial DCT on the milk microbiota is still

not fully understood. Some studies have reported increased

microbial diversity and changes in taxonomic profiles and

antimicrobial resistance genes (ARG) abundance following DCT

(Patangia et al., 2023; Vasco et al., 2023), while others found no

significant differences in overall composition or diversity indices

between treated and untreated cows (Biscarini et al., 2020; Bonsaglia

et al., 2017; Pollock et al., 2021; Vasquez et al., 2022). These

inconsistencies could be attributed to the timing of sampling, the

specificity of the antimicrobials used (which may eliminate

pathogens while sparing commensals) or to the inherent stability

and resilience of the mammary gland microbiome (Biscarini et al.,

2020; Ganda et al., 2016). Such discrepancies may also arise from

differences in the experimental design and the methodology used

for microbiota characterization such as sequencing technology,

sequencing depth or bioinformatic tools employed for the

analysis. Beyond taxonomic profiling, special attention should

also be given to the milk resistome, which encompasses the full

collection of genetic determinants of resistance (GDRs), such as

resistance genes and single nucleotide point mutations (SNPs) that

confer resistance to antimicrobials, metals, and disinfectants.

Antimicrobial use during DCT can also exert selective pressure

on the milk microbiota, potentially promoting the emergence of

resistant populations and maintenance of ARGs, which may

ultimately enter the food chain. Therefore, milk resistome studies

(Perry et al., 2014) are essential to understand how DCT influences

the dynamics of antimicrobial resistance in milk.

Shotgun metagenomic sequencing enables a comprehensive

taxonomic and functional profiling of the microbiota by

sequencing all the DNA present in a sample, including ARGs. In

this study, we applied shotgun metagenomic sequencing to
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investigate the impact of antimicrobial DCT on the microbial

taxonomic composition and resistome of bovine milk using

Illumina short-read sequencing. Additionally, we sequenced a

subset of samples using Oxford Nanopore Technologies (ONT)

and examined how its results aligned with those from Illumina

short-read sequencing using a unified bioinformatic pipeline. By

integrating taxonomic and resistome profiling across two widely

used sequencing platforms, we aim to better understand how

antibiotic use during the dry period influences the microbial

ecosystem of dairy cattle milk, gain insight about biological and

methodological challenges and to explore how sequencing and

bioinformatic analysis choices can shape resistome profiling

outcomes of complex, low-biomass samples such as milk.
2 Materials and methods

2.1 Study farm and sample collection

The study was carried out in a single Holstein-Friesian cattle

farm, with around 650 animals in lactation, located in Navarra

(Spain). Animals were housed in open lots with a roofed area. The

bedding in the covered free-stall area is made up of straw, which is

tilled with a rototiller to aerate the top layer (15-25cm). The open

recreational zone has a concrete floor where manure accumulates,

which is removed periodically.

Lactating cows are milked twice a day and dried off

approximately 94 days before the expected calving date. At

drying-off, a non-antibiotic teat sealant is applied to all the

animals. Intramammary antibiotic ointment was selectively

applied only to cows with a history of clinical mastitis or with

somatic cell counts (SCC) above 200,000 cells/mL in any of the last

five monthly controls. The product was applied on the last day of

milking, prior to drying.

Milk samples were collected in November 2023 from 31

multiparous, clinically healthy cows. Cows were categorized as

either treated with antibiotics (T; n = 18) or non-treated (NT;

n=13) at drying-off. In this study, cows receiving antimicrobial DCT

were treated with one of the following intramammary products:

Virbactan 150mg (Cefquinome 150 mg - Virbac, n=13), Cefquitan

75 mg (Cefquinome 75mg - Fatro, n=1), or Mamyzin Secado

(Penetamate iohydrate 100 mg, Banzylpenicillin benetamine 280

mg, and Framycetin sulfate 100 mg - Boehringer Ingelheim, n=4).

NT cows had not received any intramammary antimicrobial

treatment during the ongoing lactation or the immediately

preceding one. Each animal was sampled once. NT animals were

sampled at an average of 109 days in lactation (DIL), and T animals

at an average of 159 DIL (Supplementary Table S1), approximately

260 days after the antibiotic treatment for the T group. From each

animal, a composite sample (30 mL) was manually collected by

aseptically drawing approximately equal volumes from all four

udder quarters, following a protocol based on National Mastitis

Council (NMC) guidelines (teat disinfection, discarding of foremilk,

and aseptic collection). The samples were then homogenized,

refrigerated at 4°C, and processed within 24 hours of collection.
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2.2 DNA extraction and shotgun
sequencing

Upon arrival at the laboratory, samples were first subjected to a

skimming pretreatment involving centrifugation at 4,500 × g for 30

min at 4°C to remove the supernatant containing the fat layer. The

resulting pellet was washed with sterile phosphate-buffered saline

(1× PBS) and centrifuged again at 10,000 × g for 10 min at 4°C. The

final pellet was then resuspended in DNA/RNA Shield (Zymo

Research Corp.). The DNA of all samples was extracted using the

ZymoBIOMICS DNA 96 MagBead Kit (Zymo Research Corp.) on

the Kingfisher Flex robot (Thermo Scientific), following the

manufacturer’s instructions. Extracted DNA was concentrated

using a SpeedVac (Thermo Scientific) to reach the required

concentration for sequencing (≥10ng/µL). DNA concentration

and purity were determined using a NanoDrop 1000

Spectrophotometer (Thermo Scientific) and in a Qubit 2.0

fluorimeter (Invitrogen), using Qubit double-stranded DNA

(dsDNA) high-sensitivity (HS) assay Kit. Additionally, DNA

integrity was assessed by electrophoresis on a 0.8% agarose gel.

Extracted DNA was stored at -80°C until sequencing.

Shotgun metagenomic sequencing of the 31 DNA samples was

performed on an external commercial facility on an Illumina

NovaSeq X Plus Series platform (Novogene), generating 2 × 150

bp paired-end reads. In addition, 10 of these samples (5 NT and 5

T) were sequenced in-house using the Rapid Barcoding Kit 24 V14

(SQK-RBK114.24) on a MinIONMk1C device with a FLO-MIN114

(R10.4.1) flow cell (Oxford Nanopore Technologies, ONT)

(Supplementary Table S1). Samples were selected for ONT

sequencing based on availability of sufficient DNA yield and

concentration to meet the input requirements for library

preparation (200 ng in 10 µL). Library preparation and

sequencing parameter settings were carried out according to the

manufacturer’s instructions.
2.3 Bioinformatic analysis

Illumina raw reads were assessed for quality using FastQC

(v.0.12.1) (Andrews, 2010). Downstream processing was

conducted using the SqueezeMeta pipeline (Tamames and

Puente-Sánchez, 2019) with default settings, which include

assembly and taxonomic classification. In brief, reads were

assembled with MEGAHIT and taxonomic classification was

carried out using DIAMOND for fast sequence alignment against

the GenBank non-redundant (nr) database. For resistome

characterization, Illumina reads were processed using the AMR++

bioinformatics pipeline (v3.0.6) in conjunction with the MEGARes

database (v3.0) (Bonin et al., 2023; Lakin et al., 2017). AMR++ is

optimized for use with raw data from high throughput sequencing

and metagenomic analysis and provides estimations of the

abundance of resistance genes. MEGARes was selected over other

databases (e.g., CARD) due to its compatibility with the AMR++

workflow, its streamlined and hierarchical annotation structure,

and the inclusion of genes associated with resistance to
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antimicrobials, metals, and biocides. The pipeline was executed

under default parameters, with the optional SNPs verification flag

(-snp -Y) enabled. Only GDRs with coverage higher than 80% of the

reference nucleotide sequence were retained for further analysis.

The ONT-generated sequences were base-called on high

accuracy mode (HAC), and barcodes and adapters were trimmed

using Dorado (v7.6.7). Read quality was evaluated using both

FastQC and NanoPlot (v1.44.1). Reads were mapped against the

Bos taurus 8 reference genome using Bowtie2 (v2.5.3) on Galaxy

(https://usegalaxy.eu/) to remove host DNA. For taxonomic

classification, cleaned reads were processed through SqueezeMeta

pipeline using the sqm_longreads.pl utility, run with default

parameters. The assembly-based taxonomic profiling approach

using SqueezeMeta was chosen to increase classification specificity

and reduce false positives while ensuring consistent processing

across both short- and long-read datasets.

Concordance in ARG detection between Illumina and ONT

sequencing platforms was assessed based on the 10 bovine milk

samples sequenced with both methods. For this comparison, ARG

identification was conducted using the ABRicate pipeline with the

MEGARes database (minimum coverage of 80% and identity

threshold of 90%), to ensure consistency in the database used in

both analyses. The comparison was restricted to ARGs classified

under the “Drug” category that did not require SNP confirmation.

Contigs (Illumina) and reads (ONT) carrying ARGs were extracted

and subjected to nucleotide alignment using NCBI’s BLASTn. The

best hit was retained when the sequence alignment met thresholds

of ≥60% query coverage and ≥90% identity.
2.4 Statistical analysis

The SQMtools package was used to import and integrate

SqueezeMeta output in R (v4.3.2) for taxonomic and diversity

analysis. Eukaryotic taxa (in both Illumina and ONT datasets)

and taxa with fewer than 10 read counts or present in only a

single sample (Illumina dataset) were filtered out. Rarefaction

curves were constructed with the ranacapa (v0.1.0) package

(Kandlikar et al., 2018) to assess sequencing depth.

Microbial community structure was assessed using both alpha

and beta diversity metrics. For alpha diversity, species richness and

evenness were quantified using the Chao1 and Shannon indices

with phyloseq (v1.46.0) package (McMurdie and Holmes, 2013).

Differences among treatment groups were statistically tested using

the non-parametric Wilcoxon rank-sum test. To account for

variations in sequencing depth, data were normalized using total

sum scaling (TSS). To visualize alpha diversity metrics across

treatment groups, both boxplots and violin plots were generated

with ggplot2 (v3.5.1) and ggstatsplot (v0.12.5) (Patil, 2021;

Wickham, 2016). Beta diversity was calculated using Bray–Curtis

dissimilarity distances with phyloseq, and differences in community

composition between T and NT groups were evaluated through

permutational multivariate analysis of variance (PERMANOVA).

Principal Coordinates Analysis (PCoA) was conducted with

phyloseq and ordination plots were generated using ggplot2 and
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ggrepel (v0.9.5) (Slowikowski, 2016). To assess the homogeneity of

multivariate dispersions, Bray–Curtis distances based on relative

abundances were analyzed with the betadisper function from the

vegan package (v2.6-4) (Oksanen et al., 2022), followed by a

permutation test.

Taxonomic composition was examined at all ranks (from

phylum to genus) using the phyloseq and microbiome (v1.24.0)

packages (Lahti and Shetty, 2017). For each taxonomic rank, the ten

most abundant taxa were visualized using ggplot2, with the

remaining taxa grouped under the category “Other”. Additionally,

genus-level differential abundance analysis was performed using the

ANCOM-BC2 method implemented in the ANCOMBC (v2.4.0)

package (Lin and Peddada, 2020), with treatment group specified as

a fixed effect, and Holm correction applied. Genera with FDR-

adjusted q-value < 0.05 and an absolute log-fold change (|lfc|) > 1

were considered differentially abundant and were visualized using

customized bar plots created with ggplot2. Core genera, defined as

those with a minimum prevalence of 80% across samples and

relative abundance of at least 1%, were identified using the

microbiomeutilities package (v1.00.17) (Shetty and Lahti, 2024).

Resistome count data (AMR++ output) were normalized using

the count-per-million (CPM) method. Logistic regression was used

to assess the association between treatment group and the presence/

absence of GDRs. Zero-inflated negative binomial (ZINB)

regression model was used to compare the normalized GDRs

abundance between T and NT, accounting for the high frequency

of zero values and overdispersion on the Illumina data. Agreement

in ARG detection between Illumina and ONT sequencing platforms

were evaluated using Cohen’s kappa coefficient based on binary

presence/absence of ARGs using psych package (v2.5.3)

(Revelle, 2024).
3 Results

3.1 Sequencing output and taxonomic
profiling with Illumina

Illumina shotgun sequencing of 31 samples yielded a total of

799.2 million paired-end reads (median= 24.8 M per sample; IQR =

23.3-27.4 M), with an average quality score of 38.1 per sample

(range = 37.5 - 38.6). After removing eukaryotic taxa and filtering

out low-abundance taxa, 190,289,730 reads remained (median of

6,122,638 reads/sample).

Rarefaction curves reached plateau at ~2 million reads,

indicating sufficient depth to capture most microbial diversity

(Supplementary Figure S1A). A total of 660 genera were

identified, corresponding to 343 families, 169 orders, 78 classes,

39 phyla and 3 kingdoms (Archaea, Bacteria, and Viruses).

Unclassified phyla accounted for an average of 50.4% of the

sequences per sample and the phyla Firmicutes, Proteobacteria,

and Actinobacteria exhibited relative abundance ≥ 1%, specifically

34.2%, 14.2%, and 1.0%, respectively. Six classified genera were

present at an average relative abundance ≥1% (Supplementary

Table S2; Figure 1).
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Alpha diversity metrics (Chao1 and Shannon indices) did not

differ significantly between T and NT animals (Figure 2A).

Similarly, beta diversity analysis revealed no significant differences

in overall community composition between treatment groups

(PERMANOVA, F = 0.205, p = 0.962; Figure 2B). Homogeneity

of group dispersions was also similar, with no differences between

groups (F = 0.355, p = 0.575).

Differential abundance analysis using ANCOM-BC2 identified

only one genus (Turicibacter) as significantly more abundant in T

animals compared to NT ones (lfc > 1, q < 0.05). The core

microbiota (≥80% prevalence, ≥1% relative abundance) of both

treatment groups was composed by the same four genera, which

were present in all samples and corresponded to the most prevalent

genera as listed in Supplementary Table S2.
3.2 Milk resistome profiling with Illumina

A total of 29 GDRs, including 17 ARGs and 12 SNPs, coding for

resistance to 10 antimicrobial classes, were detected among the 31

animals (Figure 3A). Genetic resistance to macrolide-lincosamide-

streptogramin (MLS), aminoglycosides, b-lactams, and

tetracyclines were the most prevalent. Seven of the 13 NT animals

(53.8%) carried at least one GDR, while 11 of the 18 T animals

(61.1%) carried GDRs. Overall, NT animals harbored nine distinct

ARGs and four SNPs, associated with resistance to three

antimicrobial classes: aminoglycosides, b-lactams, and MLS. T

animals carried 16 different ARGs and 11 SNPs, encompassing 10

resistance classes (Figure 3A). Eight ARGs and 3 SNPs were

common between samples f rom NT and T animals

(Supplementary Figure S2). Antimicrobial treatment at drying-off

was significantly associated with a higher likelihood of detecting

GDRs in milk (logistic regression; OR = 1.61 (1.07 – 2.40), p =

0.021) and higher abundance of GDRs compared to untreated cows

(ZINB; IRR = 2.43 (1.34 – 4.39), p = 0.003).

Genes conferring resistance to heavy metals (n = 18), biocides

(n = 2), and both (n = 3) were also identified, corresponding to five

different classes of metals (arsenic resistance, copper resistance,

mercury resistance, tellurium resistance, and multi-metal

resistance) and two classes of biocides (peroxide and multi-

biocide resistance). One NT animal carried 1 gene and four T

animals carried 1, 2, 6, and 23 genes, respectively (Supplementary

Table S3). Notably, cow T_14 presented an unusually high number

of GDRs (n = 44), including SNPs, AMR, metal, and biocide

resistance genes, with 25 of them being unique to this sample.
3.3 Sequencing output and taxonomic
profiling with ONT sequencing

A subset of ten milk samples was also subjected to metagenomic

sequencing using ONT, yielding an average of 1.5 Gb/sample

(N50reads = 6,500 bp; average Q = 30.6). Following host DNA

removal, non-host DNA accounted for an average of 11.9% of the

total reads, which corresponded to a median of 3,522 reads/sample).
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Prokaryotic sequences were taxonomically assigned to 339 genera,

belonging to 145 families, 72 orders, 30 classes, 16 phyla and 3

kingdoms (Archaea, Bacteria, and Viruses), with unclassified phyla

accounting for 25.1% of the sequences per sample. Rarefaction

curves did not reach plateau, indicating that the sequencing depth

was insufficient to capture the full microbial diversity present in the

samples (Supplementary Figure S1B). Alpha diversity (Chao1 and

Shannon indices) differed significantly (p = 0.02) between T and NT

cows, with higher diversity observed in T cows. In contrast, beta

diversity did not differ between groups (PERMANOVA, F = 3.30,

p = 0.067), and no significant differences in dispersion were

observed (F = 5.44, p = 0.065). Differential abundance analysis at

the genus level using ANCOM-BC2 did not identify any

significantly different taxa between T and NT animals.
3.4 Comparison between Illumina and ONT
platforms in ARG detection

For the 10 samples sequenced by both technologies, ARG

detection was compared using ABRicate with MEGARes database

to enable direct comparison between sequencing platforms. ARGs

were exclusively detected in treated animals with both techniques

(Figure 3B). However, ONT detected a total of 10 ARGs (ANT3-

DPRIME, APH3-DPRIME, CTX, APH6, LNUA, LNUG, LSA,

LSAE, SULI, TEM) associated to resistance to four antimicrobial

classes, whereas Illumina identified only three ARGs (ANT3-
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DPRIME, APH3-DPRIME, and CTX) encoding resistance for two

classes. Of 100 gene-sample combinations (10 samples, 10 ARGs),

three showed agreement in ARG presence detection, 85 were

concordantly negative by both techniques, and 12 ARG detections

were unique to ONT (Supplementary Table S4). Overall agreement

between platforms in resistome profiling was low (Cohen’s kappa =

0.3; 95% CI: 0.03–0.56).

Microbial host assignment for ARGs-carrying contigs/reads

using the defined thresholds (best-matching bacterial species,

coverage >60% and identity >96%) was possible for three ONT

reads (Supplementary Table S5) but not for any of the

Illumina contigs.
4 Discussion

4.1 Milk resistome profiles differed
between T and NT cows, whereas no
differences in microbiota taxonomic
composition were observed

By integrating taxonomic and resistome profiling, this study

explored the potential impact of antimicrobial use during the dry

period on the milk microbial ecosystem, while also providing

complementary insights and methodological considerations

associated with the use of different sequencing technologies in

this challenging, host-DNA-rich matrix.
FIGURE 1

Stacked bar plot showing the relative abundance of bacterial genera in individual milk samples, grouped by dry cow therapy (DCT) treatment. The
ten most abundant genera are color-coded as indicated in the legend, while less abundant taxa are grouped under “Other”. Genera that could not
be taxonomically classified at genus level are grouped and labelled as “NA”.
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The dominant phyla identified in milk samples —

Firmicutes (recently renamed as Bacillota), Proteobacteria

(renamed as Pseudomonadota), and Actinobacteria (renamed as

Actinomycetota)— were consistent with those reported by other

authors in bovine milk (Bonsaglia et al., 2017; Urrutia-Angulo et al.,

2024; Vasquez et al., 2022). However, it is worth noting the high

proportion of unclassified phyla found (50.4%), which underscores

the challenge of characterizing the full diversity. This high

proportion is likely attributable to the sequencing technology

(short vs. long reads) (van Dijk et al., 2018) and approach

(metabarcoding vs. shotgun metagenomics) (Ciuffreda et al.,

2021) used, as well as to the stringency of the bioinformatic

pipeline employed. Specifically, SqueezeMeta applies stringent

criteria for taxonomic classification (≥80% of the best hit’s bit-

score and within 10% identity difference), assigning a contig to a

genus only when the evidence is robust (identity threshold ≥60%)

(Tamames and Puente-Sánchez, 2019). This conservative approach,

while potentially underestimating diversity at finer taxonomic

levels, enhances confidence in the taxonomic calls made.

Antimicrobial DCT was not associated with significant changes

in microbial taxonomic diversity or community composition and

both treatment groups shared a core-genera composition which

likely represent stable members of the milk microbiota regardless of

the treatment status. These findings agree with previous studies in

animals treated with antimicrobials of the same class (b-lactams)

(Basbas et al., 2022; Biscarini et al., 2020; Bonsaglia et al., 2017;

Filippone Pavesi et al., 2023; Vasquez et al., 2022). However, they

contrast with other studies reporting significant taxonomic

differences between T and NT animals, even when b-lactams

were used (Derakhshani et al., 2018; Dong et al., 2021; Patangia

et al., 2023). Although the intramammary antimicrobial used in this

study is designed to remain active for an extended period post-dry-
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off (with a withdrawal time of 36–37 days), an average interval of

260 days elapsed between dry-off antimicrobial treatment and

sampling. In this period, it is likely that the milk microbiota had

sufficient time to recover, thereby potentially masking any “short-

term” antimicrobial effects. The timing of sample collection

represents a limitation, as taking serial samples before and shortly

after dry-off would have offered a baseline and a more specific view

of the microbial shifts associated with DCT.

Interestingly, Anaplasma appeared among the most abundant

bacterial genera detected in all milk samples. Although this finding

is unexpected, previous studies have also reported the presence of

Anaplasma DNA in milk from apparently healthy animals (Dela

Cruz et al., 2019; Guo et al., 2023; Li et al., 2024; Zhang et al., 2016).

This could, in part, be explained by the excretion of the pathogen

through somatic cells in milk, particularly leukocytes such as

neutrophils and other white blood cell lineages, which are known

targets of Anaplasma spp (Dela Cruz et al., 2019; WOAH, 2024). In

our study, no clinical signs of active infection were recorded in the

animals, suggesting that they may be subclinical or persistent

carr iers o f Anaplasma , and more spec ifica l ly o f A.

phagocytophilum, the most frequently detected species in our

samples. However, the potential influence of external

contamination during sampling or processing, as well as

bioinformatic artifacts, cannot be excluded.

In contrast to the relatively stable taxonomic composition,

resistome analysis showed that cows treated with antimicrobials

at dry-off exhibited a greater diversity and abundance of detected

GDRs. These findings reinforce the association between

antimicrobial exposure and resistome enrichment in treated cows,

even though an average of ~260 days had passed since DCT. A

significantly higher relative abundance of ARGs has been reported

in milk from treated cows —particularly those receiving
FIGURE 2

Genus-level milk microbiota diversity in milk collected from dairy cows treated (T) or not treated (NT) with antimicrobials at dry-off. (A) Violin plots
showing alpha diversity indices at the genus level: richness (Chao1) and evenness (Shannon). Each violin represents the kernel density estimation of
alpha diversity measures of individual samples. Overlaid boxplots represent the interquartile range (IQR; Q1 to Q3), with the horizontal line indicating
the median. Whiskers extend to values within 1.5×IQR, and dots represent individual samples; values outside this range are plotted as outliers.
Statistical comparisons between treatment groups were performed using non-parametric Wilcoxon rank sum test. Pairwise comparisons were
adjusted for multiple testing using the false discovery rate (FDR) method. (B) Principal Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarity
matrix illustrating differences in the genus-level microbial composition of milk samples between T and NT groups. Each point represents an
individual sample; colors indicate treatment groups. Ellipses correspond to 95% confidence intervals based on the multivariate t-distribution around
the group centroids. Group differences were assessed using PERMANOVA.
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1672438
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Urrutia-Angulo et al. 10.3389/frmbi.2025.1672438
cefquinome— with a notable enrichment in genes conferring

resistance to cephalosporins, aminoglycosides, and penams-type

b-lactam antimicrobials (Patangia et al., 2023). Moreover, the use of

antimicrobials such as ceftiofur and cefquinome has been shown to

significantly increase the proportion of blaTEM genes in milk at the

time of withdrawal, highlighting how antimicrobial exposure can

modulate the resistome over time, particularly during the early days

(3 days) post-treatment (Dong et al., 2021). In our study, blaTEM
was detected exclusively through ONT sequencing, whereas

Illumina sequencing identified only blaCTX, and at low

abundance. However, no clear differences in the abundance or

diversity of b-lactam resistance genes were observed between

treated and untreated cows in our dataset, suggesting that the

presence of these genes may not be a persistent consequence of

DCT or may fall below detection thresholds at sampling

time points.
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Certain GDRs were also found in NT cows, indicating that

factors beyond direct antimicrobial exposure at drying-off may

influence resistome composition. This aligns with previous

findings showing that AMR genes can be detected even in healthy

animals without prior antimicrobial treatment (Hoque et al., 2020),

suggesting that these genes may persist naturally or be acquired

through mechanisms such as horizontal gene transfer or co-

selection (Vasquez et al., 2022). Here, as no pre-treatment data

were available, we cannot exclude the effect of antimicrobial

treatments administered before the lactation period monitored.

Still, these results reinforce the notion that the milk microbiota

may serve as a reservoir for ARGs, posing a risk of dissemination

both within the farm and potentially into the food chain.

The low overall abundance of ARGs is somewhat reassuring, yet

the presence of metal and biocide resistance genes, especially in

certain high-carrier cows like T_14, underscores the complexity of

co-selection pressures in the dairy environment. Such findings need
FIGURE 3

Distribution of genetic determinants of resistance (GDRs) in milk samples from dairy cows. (A) Normalized abundance (counts per million, CPM) of
GDRs detected by Illumina sequencing using the AMR++ pipeline across milk samples are represented. GDRs are grouped and color-coded by
antimicrobial class according to the legend. (B) Presence/absence matrix of antimicrobial resistance genes (ARGs) detected in a subset of 10 shared
samples using Oxford Nanopore Technologies (ONT) and Illumina sequencing using ABRicate. ARGs identified by both platforms are highlighted with
a box. GDRs are grouped and color-coded by antimicrobial class. DIL, Days in lactation; N/A, Not applicable. ¹Active ingredients: Virbactan
(cefquinome), Primox (oxytetracycline), Mamyzin (penetamate iodide, benzylpenicillin benethamine, framycetin sulfate), Cefquitan (cefquinome).
²Not classified as antimicrobial classes according to standard criteria. SNP-associated GDRs are marked with an asterisk (*).
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further investigation into individual animal factors (e.g., treatment

history, housing conditions) that might explain outlier profiles.
4.2 Limited agreement between ONT and
Illumina in ARG detection highlights trade-
offs in sequencing strategy and pipeline
choice

Direct comparison of Illumina short-read and ONT long-read

sequencing for milk resistome profiling on the same set of samples

revealed significant discrepancies; ONT detected more ARGs than

Illumina but overall agreement was low. This discrepancy likely

reflects inherent strengths and limitations of each technology.

Illumina assemblies produced relatively short contigs (N50 = 850

bp). Such small contigs limit the ability to detect full-length ARGs,

particularly those larger than the average contig size, under the

applied thresholds (≥90% identity and ≥80% coverage). In contrast,

ONT sequencing generated longer reads (N50 = 6,500 bp),

increasing the chance of recovering complete ARG sequences,

which may enhance detection sensitivity in alignment-based

pipelines such as ABRicate. However, longer ONT reads did not

translate into reliable detection of SNPs; Illumina’s higher per-base

accuracy remains essential for confidently identifying AMR-

associated SNPs (Yorki et al., 2023). This was evident in our

results, where SNP confirmation was feasible only for Illumina

data analyzed with the AMR++ pipeline. A further theoretical

advantage of long reads is their ability to resolve the genomic

neighborhood of ARGs and link them to their microbial hosts. In

our study, host attribution was not reached for any of the Illumina

contigs but was also limited for ONT reads, probably due to

insufficient sequencing depth. Thus, only three ONT reads met

the criteria for confident host assignment, highlighting the

challenge of linking ARGs to taxa in low-microbial-load samples.

Although outside the scope of this study, several strategies have

been shown to improve microbial host assignment of ARGs, such as

hybrid assembly and a genomic-centric analysis (Gounot et al.,

2022) or the use of ONT-determined DNA methylation patterns to

associate them to a potential host (Bloemen et al., 2025). This

illustrates the inherent trade-offs between sequencing platforms and

emphasizes that no single sequencing approach is universally

optimal for resistome characterization (Petrillo et al., 2022).

Beyond the sequencing technologies themselves, our findings

also highlight the importance of the bioinformatic approach in the

ARGs detection sensitivity. Tools based solely on sequence

alignment against reference databases, such as ABRicate, may fail

to detect ARGs, particularly in fragmented short-read assemblies,

and do not account for the presence of resistance-conferring SNPs

(Seemann, 2016). In contrast, pipelines such as AMR++ combine

raw read mapping and SNPs verification, and quantify ARG

abundances, which is useful for comparative resistome studies

(Bonin et al., 2023). However, AMR++ does not support host

attribution of ARGs, an advantage that longer ONT reads could

theoretically provide. These differences illustrate that the choice of

bioinformatic pipeline can strongly shape resistome results and that
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pairing an appropriate tool with each sequencing technology is

c ruc i a l t o ba l ance de t e c t i on sens i t i v i t y , a c cu racy ,

and interpretability.

Despite these technical constraints, ARGs were exclusively

(ONT) or mostly (Illumina) detected in samples from

antimicrobial-treated cows, supporting the hypothesis that

antimicrobial DCT exerts a measurable impact on the milk

resistome. While overall ARG abundance remained low

(consistent with previous studies (Vasquez et al., 2022)), our

results highlight the ongoing analytical challenge of profiling the

resistome in a complex, host-DNA-rich and low-biomass matrices

like milk and emphasize the need for continued optimization of

sequencing and bioinformatic approaches. The low microbial

biomass in milk, coupled with the presence of host (bovine) cells

and non-cellular components such as proteins and fats, makes it

challenging for robust resistome studies. One of the methodological

challenges encountered for both short-read and long-read

sequencing technologies was the high proportion of host DNA

sequenced, which is a common limitation in studies involving low-

biomass matrices (Duarte et al., 2024; Ganda et al., 2021; Yap et al.,

2020). Various strategies have been proposed to mitigate this issue.

Host DNA can be depleted before sequencing using enzymatic

treatments or commercial kits (Bloomfield et al., 2023; Duarte et al.,

2024). Additionally, enrichment-based strategies such as ARG-

targeted capture or ONT adaptative sampling to selectively

sequence ARGs can be used (Duarte et al., 2024; Ganda et al.,

2021; Rubiola et al., 2020; Warder et al., 2021). After sequencing,

bioinformatic tools such as Trimmomatic or Bowtie2 can align and

remove host-derived reads (Bolger et al., 2014; Langmead and

Salzberg, 2012).

Despite these strategies, the remaining microbial fraction in

milk samples typically accounts for only a small percentage of total

reads (often less than 10% in healthy or culture-negative samples,

and up to around 30% in culture-positive mastitic milk), whereas

host DNA still constitutes the majority of the Illumina and ONT

sequencing data (Ahmadi et al., 2023; Collis et al., 2024;

Santamarina-Garcıá et al., 2024). In our study, we did not

perform any host depletion before sequencing, as preliminary

tests using commercial depletion kits (MolYsisBasic5, Molzym

and NEBNext Microbiome DNA enrichment, New England

Biolabs) resulted in total DNA concentrations far below the input

requirements for sequencing (data not shown). In fact, given that a

certain degree of non-specific depletion of prokaryotic DNA cannot

be avoided, these methods are not recommended for samples with a

low microbe-to-host DNA ratio, such as milk. Moreover, depletion

kits can have different specificity for different bacterial taxa (Bhute

et al., 2025; Kim et al., 2024). We acknowledge that this decision

likely impacted the sequencing depth of the bacterial target and

therefore the sensitivity of both taxonomic and resistome profiling.

Instead, host DNA was removed bioinformatically after sequencing.

Consistent with previous reports, 88.1% of the ONT sequences

obtained per sample aligned to the bovine genome after filtering

with Bowtie2, leaving only 11.9% of the reads for microbiome and

resistome analyses. This excess of bovine DNA significantly reduces

the sequencing depth obtained for microbial genomes, ultimately
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affect ing the accuracy of res is tome and microbiome

characterization (Gweon et al., 2019; Pereira-Marques et al., 2019;

Zaheer et al., 2018). Rarefaction analysis of ONT data further

confirmed this limitation, as sequencing curves did not reach

plateau, confirming that sequencing depth was insufficient to fully

capture the underlying microbial diversity. Nevertheless, ONT still

enabled the detection of a broader variety of ARGs than Illumina,

along with a higher proportion of taxonomically classified reads.

Another important consideration is the normalization

approach used in our resistome analysis. To facilitate between-

sample comparisons, ARG abundances were normalized using

CPM. This method allowed comparison of resistome profiles

between T and NT cows but cannot be used for absolute

quantification to report accurate resistance levels. Alternative

pipelines such as ARGs-OAP, which normalizes ARG abundances

based on microbial load (e.g.,16S rRNA gene copy number or

estimated cell counts), may offer more realistic or biologically

meaningful values and comparability across studies (Yin et al.,

2023b, 2023a). Lastly, the relatively small sample size further limited

the robustness of the findings, warranting caution when

interpreting taxonomic profiles and resistome richness based on

these data. The insights generated from this exploratory study may

provide a valuable foundation for future research in this field.

Studies with a larger sample size, pre-treatment baseline data,

deeper microbial sequencing, and optimized methodological

approaches will be needed to confirm and expand our findings.
5 Conclusion

This study adds new insights into the impact of antibiotic DCT

on the milk microbiome and resistome. While we found no

detectable differences in the overall taxonomic composition of the

milk microbiota, antimicrobial DCT was associated with increased

prevalence, diversity, and abundance of GDRs in treated cows.

While our study was not intended as a formal methodological

benchmarking analysis, our integration of Illumina short-read and

ONT long-read results underscore that both sequencing technology

and bioinformatic pipeline choices critically affect resistome

profiling. The high presence of host DNA and low microbial

biomass are common challenges in milk metagenomics,

independent of the sequencing platform. Although rarefaction

curves indicated that our ONT sequencing depth was insufficient

to fully capture microbial diversity, the longer reads of the ONT

platform provided greater sensitivity for detecting a wider variety of

GDRs, an advantage that compensates its lower sequencing depth.

This emphasizes the need for optimized host DNA depletion and

potential targeted enrichment strategies to improve sequencing

performance across both short- and long-read platforms. Taken

together, our findings reinforce the importance of combining robust

sequencing approaches with adapted analytical workflows to

advance accurate resistome surveillance in dairy production. As

AMR poses a significant global challenge, these findings advocate

the need for cautious antimicrobial use and continued exploration

of alternative strategies for mastitis control.
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(2024). Unravelling the complexity of bovine milk microbiome: insights into mastitis
through enterotyping using full-length 16S-metabarcoding. Anim. Microbiome 6, 58.
doi: 10.1186/s42523-024-00345-0

van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., and Thermes, C. (2018). The third
revolution in sequencing technology. Trends Genet. 34, 666–681. doi: 10.1016/
j.tig.2018.05.008

Vasco, K. A., Carbonell, S., Sloup, R. E., Bowcutt, B., Colwell, R. R., Graubics, K., et al.
(2023). Persistent effects of intramammary ceftiofur treatment on the gut microbiome
and antibiotic resistance in dairy cattle. Anim. Microbiome 5, 56. doi: 10.1186/s42523-
023-00274-4

Vasquez, A., Nydam, D., Foditsch, C., Warnick, L., Wolfe, C., Doster, E., et al. (2022).
Characterization and comparison of the microbiomes and resistomes of colostrum from
selectively treated dry cows. J. Dairy Sci. 105, 637–653. doi: 10.3168/jds.2021-20675

Warder, L. M. C., Doster, E., Parker, J. K., Morley, P. S., McClure, J. T., Heider, L. C.,
et al. (2021). Characterization of the microbiota and resistome of bulk tank milk
samples from Prince Edward Island dairy farms. J. Dairy Sci. 104, 11082–11090.
doi: 10.3168/jds.2020-19995

Wickham, H. (2016). ggplot2 : elegant graphics for data analysis, Springer-Verlag
(NY: Springer New York). doi: 10.1007/978-0-387-98141-3

WOAH (2024). “Bovine anaplasmosis,” in WOAH terrestrial manual 2024 (World
Organisation for Animal Health). Paris, France: WOAH. p. 1–15.

World Health Organization (2024). WHO’s List of Medically Important
Antimicrobials: a risk management tool for mitigating antimicrobial resistance due to
non-human use. Geneva, Switzerland: World Health Organization.

Yap, M., Feehily, C., Walsh, C. J., Fenelon, M., Murphy, E. F., McAuliffe, F. M., et al.
(2020). Evaluation of methods for the reduction of contaminating host reads when
performing shotgun metagenomic sequencing of the milk microbiome. Sci. Rep. 10,
21665. doi: 10.1038/s41598-020-78773-6

Yin, X., Chen, X., Jiang, X., Yang, Y., Li, B., Shum, M. H.-H., et al. (2023a). Toward a
universal unit for quantification of antibiotic resistance genes in environmental
samples. Environ. Sci. Technol. 57, 9713–9721. doi: 10.1021/acs.est.3c00159

Yin, X., Zheng, X., Li, L., Zhang, A.-N., Jiang, X.-T., and Zhang, T. (2023b). ARGs-
OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline
optimization. Engineering 27, 234–241. doi: 10.1016/j.eng.2022.10.011

Yorki, S., Shea, T., Cuomo, C. A., Walker, B. J., LaRocque, R. C., Manson, A. L., et al.
(2023). Comparison of long- and short-read metagenomic assembly for low-abundance
species and resistance genes. Brief Bioinform. 24, bbad050. doi: 10.1093/bib/bbad050

Zaheer, R., Noyes, N., Ortega Polo, R., Cook, S. R., Marinier, E., Van Domselaar, G.,
et al. (2018). Impact of sequencing depth on the characterization of the microbiome
and resistome. Sci. Rep. 8, 5890. doi: 10.1038/s41598-018-24280-8

Zhang, Y., Lv, Y., Cui, Y., Wang, J., Cao, S., Jian, F., et al. (2016). First molecular
evidence for the presence of Anaplasma DNA in milk from sheep and goats in China.
Parasitol. Res. 115, 2789–2795. doi: 10.1007/s00436-016-5028-z
frontiersin.org

https://doi.org/10.18129/B9.bioc.microbiome
https://doi.org/10.18129/B9.bioc.microbiome
https://doi.org/10.1093/nar/gkw1009
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.3390/genes15081081
https://doi.org/10.3390/genes15081081
https://doi.org/10.1038/s41467-020-17041-7
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.3390/antibiotics12081315
https://doi.org/10.3390/antibiotics12081315
https://doi.org/10.21105/joss.03167
https://doi.org/10.3389/fmicb.2019.01277
https://doi.org/10.1016/j.mib.2014.09.002
https://doi.org/10.12688/f1000research.39214.2
https://doi.org/10.12688/f1000research.39214.2
https://doi.org/10.1186/s42523-021-00144-x
https://doi.org/https://CRAN.R-project.org/package=psych
https://doi.org/https://CRAN.R-project.org/package=psych
https://doi.org/10.3389/fmicb.2020.01983
https://doi.org/10.1186/s40168-024-01980-0
https://doi.org/https://github.com/tseemann/abricate
https://doi.org/https://github.com/microsud/microbiomeutilities
https://doi.org/https://github.com/microsud/microbiomeutilities
https://doi.org/10.32614/CRAN.package.ggrepel
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.1186/s42523-024-00345-0
https://doi.org/10.1016/j.tig.2018.05.008
https://doi.org/10.1016/j.tig.2018.05.008
https://doi.org/10.1186/s42523-023-00274-4
https://doi.org/10.1186/s42523-023-00274-4
https://doi.org/10.3168/jds.2021-20675
https://doi.org/10.3168/jds.2020-19995
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1038/s41598-020-78773-6
https://doi.org/10.1021/acs.est.3c00159
https://doi.org/10.1016/j.eng.2022.10.011
https://doi.org/10.1093/bib/bbad050
https://doi.org/10.1038/s41598-018-24280-8
https://doi.org/10.1007/s00436-016-5028-z
https://doi.org/10.3389/frmbi.2025.1672438
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

	Resistome and microbiome profiling of bovine milk following antimicrobial dry cow therapy: insights from short- and long-read metagenomic sequencing
	1 Introduction
	2 Materials and methods
	2.1 Study farm and sample collection
	2.2 DNA extraction and shotgun sequencing
	2.3 Bioinformatic analysis
	2.4 Statistical analysis

	3 Results
	3.1 Sequencing output and taxonomic profiling with Illumina
	3.2 Milk resistome profiling with Illumina
	3.3 Sequencing output and taxonomic profiling with ONT sequencing
	3.4 Comparison between Illumina and ONT platforms in ARG detection

	4 Discussion
	4.1 Milk resistome profiles differed between T and NT cows, whereas no differences in microbiota taxonomic composition were observed
	4.2 Limited agreement between ONT and Illumina in ARG detection highlights trade-offs in sequencing strategy and pipeline choice

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


