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Selective antimicrobial dry cow therapy (DCT) is implemented as part of mastitis
control programs, particularly in dairy cows with recent clinical episodes or
elevated somatic cell counts. In this study, we investigated the effects of the use
of antimicrobials at drying-off on the milk microbiota and resistome by
comparing treated (T, n=18) and untreated (NT, n=13) cows. Milk samples from
all animals were analyzed using short-read Illumina shotgun sequencing and a
subset of 10 samples were also subjected to long-read Oxford Nanopore
Technologies (ONT) sequencing. No significant differences in microbial
composition or diversity were observed between treated and untreated groups
with either technique, indicating that antimicrobial DCT may not induce long-
term shifts in the milk microbiota. However, cows receiving antibiotic treatment
showed a higher diversity and abundance of genetic determinants of resistance
(GDRs) in their milk resistome. Findings from the two sequencing platforms
revealed limited concordance in antimicrobial resistance gene content,
highlighting that sequencing platform and bioinformatic pipeline choices
substantially influence resistome profiling outcomes. Furthermore, the high
proportion of host DNA limited sequencing depth and sensitivity, underscoring
the need for improved host DNA depletion or targeted enrichment strategies.
This study provides insights into the biological and methodological challenges of
milk resistome characterization, particularly in low-biomass, host-DNA-rich
samples and demonstrates the lack of standardized analytical approaches in
resistome studies. Overall, our findings support the prudent use of antibiotics and
highlight the need for further longitudinal studies to clarify the temporal
dynamics of antimicrobial DCT effects on the milk resistome and microbiota.
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1 Introduction

Mastitis is one of the most prevalent and economically
significant diseases in dairy farming, adversely affecting both milk
production and animal welfare. The dry period, a non-lactating
interval typically lasting around 60 days before calving, is
particularly vulnerable to new intramammary infections (Bradley
and Green, 2004) but also represents a strategic window to clear
existing infections and to allow the udder to recover for the next
lactation cycle (Bradley and Green, 2004). To mitigate mastitis risk
during this period, dry cow therapy (DCT) traditionally involved
routine prophylactic antibiotic administration to all cows at drying-
off. Although this practice has been effective in reducing new
infections, it has also raised major concerns regarding the
emergence and spread of antimicrobial resistance (AMR),
particularly since the antibiotics commonly used in DCT (often
involving B-lactams and macrolides), are also critical for human
medicine (World Health Organization, 2024). In response, the
European Union (Regulation UE 2019/6) has restricted
antimicrobial use in livestock, banning prophylactic treatment
unless the risk of infection is very high and the outcomes
potentially severe. This has shifted industry practice towards
selective DCT, where antibiotics are only administered to cows
with mastitis or at high risk of developing the disease.

The impact of antimicrobial DCT on the milk microbiota is still
not fully understood. Some studies have reported increased
microbial diversity and changes in taxonomic profiles and
antimicrobial resistance genes (ARG) abundance following DCT
(Patangia et al., 2023; Vasco et al., 2023), while others found no
significant differences in overall composition or diversity indices
between treated and untreated cows (Biscarini et al., 2020; Bonsaglia
et al, 2017; Pollock et al., 2021; Vasquez et al., 2022). These
inconsistencies could be attributed to the timing of sampling, the
specificity of the antimicrobials used (which may eliminate
pathogens while sparing commensals) or to the inherent stability
and resilience of the mammary gland microbiome (Biscarini et al.,
2020; Ganda et al., 2016). Such discrepancies may also arise from
differences in the experimental design and the methodology used
for microbiota characterization such as sequencing technology,
sequencing depth or bioinformatic tools employed for the
analysis. Beyond taxonomic profiling, special attention should
also be given to the milk resistome, which encompasses the full
collection of genetic determinants of resistance (GDRs), such as
resistance genes and single nucleotide point mutations (SNPs) that
confer resistance to antimicrobials, metals, and disinfectants.
Antimicrobial use during DCT can also exert selective pressure
on the milk microbiota, potentially promoting the emergence of
resistant populations and maintenance of ARGs, which may
ultimately enter the food chain. Therefore, milk resistome studies
(Perry et al,, 2014) are essential to understand how DCT influences
the dynamics of antimicrobial resistance in milk.

Shotgun metagenomic sequencing enables a comprehensive
taxonomic and functional profiling of the microbiota by
sequencing all the DNA present in a sample, including ARGs. In
this study, we applied shotgun metagenomic sequencing to
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investigate the impact of antimicrobial DCT on the microbial
taxonomic composition and resistome of bovine milk using
Mlumina short-read sequencing. Additionally, we sequenced a
subset of samples using Oxford Nanopore Technologies (ONT)
and examined how its results aligned with those from Illumina
short-read sequencing using a unified bioinformatic pipeline. By
integrating taxonomic and resistome profiling across two widely
used sequencing platforms, we aim to better understand how
antibiotic use during the dry period influences the microbial
ecosystem of dairy cattle milk, gain insight about biological and
methodological challenges and to explore how sequencing and
bioinformatic analysis choices can shape resistome profiling
outcomes of complex, low-biomass samples such as milk.

2 Materials and methods
2.1 Study farm and sample collection

The study was carried out in a single Holstein-Friesian cattle
farm, with around 650 animals in lactation, located in Navarra
(Spain). Animals were housed in open lots with a roofed area. The
bedding in the covered free-stall area is made up of straw, which is
tilled with a rototiller to aerate the top layer (15-25cm). The open
recreational zone has a concrete floor where manure accumulates,
which is removed periodically.

Lactating cows are milked twice a day and dried off
approximately 94 days before the expected calving date. At
drying-off, a non-antibiotic teat sealant is applied to all the
animals. Intramammary antibiotic ointment was selectively
applied only to cows with a history of clinical mastitis or with
somatic cell counts (SCC) above 200,000 cells/mL in any of the last
five monthly controls. The product was applied on the last day of
milking, prior to drying.

Milk samples were collected in November 2023 from 31
multiparous, clinically healthy cows. Cows were categorized as
either treated with antibiotics (T; n = 18) or non-treated (NT;
n=13) at drying-off. In this study, cows receiving antimicrobial DCT
were treated with one of the following intramammary products:
Virbactan 150mg (Cefquinome 150 mg - Virbac, n=13), Cefquitan
75 mg (Cefquinome 75mg - Fatro, n=1), or Mamyzin Secado
(Penetamate iohydrate 100 mg, Banzylpenicillin benetamine 280
mg, and Framycetin sulfate 100 mg - Boehringer Ingelheim, n=4).
NT cows had not received any intramammary antimicrobial
treatment during the ongoing lactation or the immediately
preceding one. Each animal was sampled once. NT animals were
sampled at an average of 109 days in lactation (DIL), and T animals
at an average of 159 DIL (Supplementary Table S1), approximately
260 days after the antibiotic treatment for the T group. From each
animal, a composite sample (30 mL) was manually collected by
aseptically drawing approximately equal volumes from all four
udder quarters, following a protocol based on National Mastitis
Council (NMC) guidelines (teat disinfection, discarding of foremilk,
and aseptic collection). The samples were then homogenized,
refrigerated at 4°C, and processed within 24 hours of collection.
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2.2 DNA extraction and shotgun
sequencing

Upon arrival at the laboratory, samples were first subjected to a
skimming pretreatment involving centrifugation at 4,500 x g for 30
min at 4°C to remove the supernatant containing the fat layer. The
resulting pellet was washed with sterile phosphate-buffered saline
(Ix PBS) and centrifuged again at 10,000 x g for 10 min at 4°C. The
final pellet was then resuspended in DNA/RNA Shield (Zymo
Research Corp.). The DNA of all samples was extracted using the
ZymoBIOMICS DNA 96 MagBead Kit (Zymo Research Corp.) on
the Kingfisher Flex robot (Thermo Scientific), following the
manufacturer’s instructions. Extracted DNA was concentrated
using a SpeedVac (Thermo Scientific) to reach the required
concentration for sequencing (>10ng/uL). DNA concentration
and purity were determined using a NanoDrop 1000
Spectrophotometer (Thermo Scientific) and in a Qubit 2.0
fluorimeter (Invitrogen), using Qubit double-stranded DNA
(dsDNA) high-sensitivity (HS) assay Kit. Additionally, DNA
integrity was assessed by electrophoresis on a 0.8% agarose gel.
Extracted DNA was stored at -80°C until sequencing.

Shotgun metagenomic sequencing of the 31 DNA samples was
performed on an external commercial facility on an Illumina
NovaSeq X Plus Series platform (Novogene), generating 2 x 150
bp paired-end reads. In addition, 10 of these samples (5 NT and 5
T) were sequenced in-house using the Rapid Barcoding Kit 24 V14
(SQK-RBK114.24) on a MinION Mk1C device with a FLO-MIN114
(R10.4.1) flow cell (Oxford Nanopore Technologies, ONT)
(Supplementary Table S1). Samples were selected for ONT
sequencing based on availability of sufficient DNA yield and
concentration to meet the input requirements for library
preparation (200 ng in 10 pL). Library preparation and
sequencing parameter settings were carried out according to the
manufacturer’s instructions.

2.3 Bioinformatic analysis

Ilumina raw reads were assessed for quality using FastQC
(v.0.12.1) (Andrews, 2010). Downstream processing was
conducted using the SqueezeMeta pipeline (Tamames and
Puente-Sanchez, 2019) with default settings, which include
assembly and taxonomic classification. In brief, reads were
assembled with MEGAHIT and taxonomic classification was
carried out using DIAMOND for fast sequence alignment against
the GenBank non-redundant (nr) database. For resistome
characterization, Illumina reads were processed using the AMR++
bioinformatics pipeline (v3.0.6) in conjunction with the MEGARes
database (v3.0) (Bonin et al., 2023; Lakin et al., 2017). AMR++ is
optimized for use with raw data from high throughput sequencing
and metagenomic analysis and provides estimations of the
abundance of resistance genes. MEGARes was selected over other
databases (e.g., CARD) due to its compatibility with the AMR++
workflow, its streamlined and hierarchical annotation structure,
and the inclusion of genes associated with resistance to
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antimicrobials, metals, and biocides. The pipeline was executed
under default parameters, with the optional SNPs verification flag
(-snp -Y) enabled. Only GDRs with coverage higher than 80% of the
reference nucleotide sequence were retained for further analysis.

The ONT-generated sequences were base-called on high
accuracy mode (HAC), and barcodes and adapters were trimmed
using Dorado (v7.6.7). Read quality was evaluated using both
FastQC and NanoPlot (v1.44.1). Reads were mapped against the
Bos taurus 8 reference genome using Bowtie2 (v2.5.3) on Galaxy
(https://usegalaxy.eu/) to remove host DNA. For taxonomic
classification, cleaned reads were processed through SqueezeMeta
pipeline using the sqm_longreads.pl utility, run with default
parameters. The assembly-based taxonomic profiling approach
using SqueezeMeta was chosen to increase classification specificity
and reduce false positives while ensuring consistent processing
across both short- and long-read datasets.

Concordance in ARG detection between Illumina and ONT
sequencing platforms was assessed based on the 10 bovine milk
samples sequenced with both methods. For this comparison, ARG
identification was conducted using the ABRicate pipeline with the
MEGARes database (minimum coverage of 80% and identity
threshold of 90%), to ensure consistency in the database used in
both analyses. The comparison was restricted to ARGs classified
under the “Drug” category that did not require SNP confirmation.
Contigs (Illumina) and reads (ONT) carrying ARGs were extracted
and subjected to nucleotide alignment using NCBI’s BLASTn. The
best hit was retained when the sequence alignment met thresholds
of 260% query coverage and >90% identity.

2.4 Statistical analysis

The SQMtools package was used to import and integrate
SqueezeMeta output in R (v4.3.2) for taxonomic and diversity
analysis. Eukaryotic taxa (in both Illumina and ONT datasets)
and taxa with fewer than 10 read counts or present in only a
single sample (Illumina dataset) were filtered out. Rarefaction
curves were constructed with the ranacapa (v0.1.0) package
(Kandlikar et al., 2018) to assess sequencing depth.

Microbial community structure was assessed using both alpha
and beta diversity metrics. For alpha diversity, species richness and
evenness were quantified using the Chaol and Shannon indices
with phyloseq (v1.46.0) package (McMurdie and Holmes, 2013).
Differences among treatment groups were statistically tested using
the non-parametric Wilcoxon rank-sum test. To account for
variations in sequencing depth, data were normalized using total
sum scaling (TSS). To visualize alpha diversity metrics across
treatment groups, both boxplots and violin plots were generated
with ggplot2 (v3.5.1) and ggstatsplot (v0.12.5) (Patil, 2021;
Wickham, 2016). Beta diversity was calculated using Bray—Curtis
dissimilarity distances with phyloseq, and differences in community
composition between T and NT groups were evaluated through
permutational multivariate analysis of variance (PERMANOVA).
Principal Coordinates Analysis (PCoA) was conducted with
phyloseq and ordination plots were generated using ggplot2 and
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ggrepel (v0.9.5) (Slowikowski, 2016). To assess the homogeneity of
multivariate dispersions, Bray-Curtis distances based on relative
abundances were analyzed with the betadisper function from the
vegan package (v2.6-4) (Oksanen et al, 2022), followed by a
permutation test.

Taxonomic composition was examined at all ranks (from
phylum to genus) using the phyloseq and microbiome (v1.24.0)
packages (Lahti and Shetty, 2017). For each taxonomic rank, the ten
most abundant taxa were visualized using ggplot2, with the
remaining taxa grouped under the category “Other”. Additionally,
genus-level differential abundance analysis was performed using the
ANCOM-BC2 method implemented in the ANCOMBC (v2.4.0)
package (Lin and Peddada, 2020), with treatment group specified as
a fixed effect, and Holm correction applied. Genera with FDR-
adjusted g-value < 0.05 and an absolute log-fold change (|lfc|) > 1
were considered differentially abundant and were visualized using
customized bar plots created with ggplot2. Core genera, defined as
those with a minimum prevalence of 80% across samples and
relative abundance of at least 1%, were identified using the
microbiomeutilities package (v1.00.17) (Shetty and Lahti, 2024).

Resistome count data (AMR++ output) were normalized using
the count-per-million (CPM) method. Logistic regression was used
to assess the association between treatment group and the presence/
absence of GDRs. Zero-inflated negative binomial (ZINB)
regression model was used to compare the normalized GDRs
abundance between T and NT, accounting for the high frequency
of zero values and overdispersion on the Illumina data. Agreement
in ARG detection between Illumina and ONT sequencing platforms
were evaluated using Cohen’s kappa coefficient based on binary
presence/absence of ARGs using psych package (v2.5.3)
(Revelle, 2024).

3 Results

3.1 Sequencing output and taxonomic
profiling with Illumina

Mlumina shotgun sequencing of 31 samples yielded a total of
799.2 million paired-end reads (median= 24.8 M per sample; IQR =
23.3-27.4 M), with an average quality score of 38.1 per sample
(range = 37.5 - 38.6). After removing eukaryotic taxa and filtering
out low-abundance taxa, 190,289,730 reads remained (median of
6,122,638 reads/sample).

Rarefaction curves reached plateau at ~2 million reads,
indicating sufficient depth to capture most microbial diversity
(Supplementary Figure SIA). A total of 660 genera were
identified, corresponding to 343 families, 169 orders, 78 classes,
39 phyla and 3 kingdoms (Archaea, Bacteria, and Viruses).
Unclassified phyla accounted for an average of 50.4% of the
sequences per sample and the phyla Firmicutes, Proteobacteria,
and Actinobacteria exhibited relative abundance > 1%, specifically
34.2%, 14.2%, and 1.0%, respectively. Six classified genera were
present at an average relative abundance >1% (Supplementary
Table S2; Figure 1).
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Alpha diversity metrics (Chaol and Shannon indices) did not
differ significantly between T and NT animals (Figure 2A).
Similarly, beta diversity analysis revealed no significant differences
in overall community composition between treatment groups
(PERMANOVA, F = 0.205, p = 0.962; Figure 2B). Homogeneity
of group dispersions was also similar, with no differences between
groups (F = 0.355, p = 0.575).

Differential abundance analysis using ANCOM-BC?2 identified
only one genus (Turicibacter) as significantly more abundant in T
animals compared to NT ones (Ifc > 1, q < 0.05). The core
microbiota (=80% prevalence, >1% relative abundance) of both
treatment groups was composed by the same four genera, which
were present in all samples and corresponded to the most prevalent
genera as listed in Supplementary Table S2.

3.2 Milk resistome profiling with Illumina

A total of 29 GDRs, including 17 ARGs and 12 SNPs, coding for
resistance to 10 antimicrobial classes, were detected among the 31
animals (Figure 3A). Genetic resistance to macrolide-lincosamide-
streptogramin (MLS), aminoglycosides, B-lactams, and
tetracyclines were the most prevalent. Seven of the 13 NT animals
(53.8%) carried at least one GDR, while 11 of the 18 T animals
(61.1%) carried GDRs. Overall, NT animals harbored nine distinct
ARGs and four SNPs, associated with resistance to three
antimicrobial classes: aminoglycosides, -lactams, and MLS. T
animals carried 16 different ARGs and 11 SNPs, encompassing 10
resistance classes (Figure 3A). Eight ARGs and 3 SNPs were
common between samples from NT and T animals
(Supplementary Figure S2). Antimicrobial treatment at drying-off
was significantly associated with a higher likelihood of detecting
GDRs in milk (logistic regression; OR = 1.61 (1.07 - 2.40), p =
0.021) and higher abundance of GDRs compared to untreated cows
(ZINB; IRR = 2.43 (1.34 - 4.39), p = 0.003).

Genes conferring resistance to heavy metals (n = 18), biocides
(n =2), and both (n = 3) were also identified, corresponding to five
different classes of metals (arsenic resistance, copper resistance,
mercury resistance, tellurium resistance, and multi-metal
resistance) and two classes of biocides (peroxide and multi-
biocide resistance). One NT animal carried 1 gene and four T
animals carried 1, 2, 6, and 23 genes, respectively (Supplementary
Table S3). Notably, cow T_14 presented an unusually high number
of GDRs (n = 44), including SNPs, AMR, metal, and biocide
resistance genes, with 25 of them being unique to this sample.

3.3 Sequencing output and taxonomic
profiling with ONT sequencing

A subset of ten milk samples was also subjected to metagenomic
sequencing using ONT, yielding an average of 1.5 Gb/sample
(N50,eads = 6,500 bp; average Q = 30.6). Following host DNA
removal, non-host DNA accounted for an average of 11.9% of the
total reads, which corresponded to a median of 3,522 reads/sample).
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Prokaryotic sequences were taxonomically assigned to 339 genera,
belonging to 145 families, 72 orders, 30 classes, 16 phyla and 3
kingdoms (Archaea, Bacteria, and Viruses), with unclassified phyla
accounting for 25.1% of the sequences per sample. Rarefaction
curves did not reach plateau, indicating that the sequencing depth
was insufficient to capture the full microbial diversity present in the
samples (Supplementary Figure S1B). Alpha diversity (Chaol and
Shannon indices) differed significantly (p = 0.02) between T and NT
cows, with higher diversity observed in T cows. In contrast, beta
diversity did not differ between groups (PERMANOVA, F = 3.30,
p = 0.067), and no significant differences in dispersion were
observed (F = 5.44, p = 0.065). Differential abundance analysis at
the genus level using ANCOM-BC2 did not identify any
significantly different taxa between T and NT animals.

3.4 Comparison between Illumina and ONT
platforms in ARG detection

For the 10 samples sequenced by both technologies, ARG
detection was compared using ABRicate with MEGARes database
to enable direct comparison between sequencing platforms. ARGs
were exclusively detected in treated animals with both techniques
(Figure 3B). However, ONT detected a total of 10 ARGs (ANT3-
DPRIME, APH3-DPRIME, CTX, APH6, LNUA, LNUG, LSA,
LSAE, SULI, TEM) associated to resistance to four antimicrobial
classes, whereas Illumina identified only three ARGs (ANT3-
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DPRIME, APH3-DPRIME, and CTX) encoding resistance for two
classes. Of 100 gene-sample combinations (10 samples, 10 ARGs),
three showed agreement in ARG presence detection, 85 were
concordantly negative by both techniques, and 12 ARG detections
were unique to ONT (Supplementary Table 54). Overall agreement
between platforms in resistome profiling was low (Cohen’s kappa =
0.3; 95% CI: 0.03-0.56).

Microbial host assignment for ARGs-carrying contigs/reads
using the defined thresholds (best-matching bacterial species,
coverage >60% and identity >96%) was possible for three ONT
reads (Supplementary Table S5) but not for any of the
Mumina contigs.

4 Discussion

4.1 Milk resistome profiles differed
between T and NT cows, whereas no
differences in microbiota taxonomic
composition were observed

By integrating taxonomic and resistome profiling, this study
explored the potential impact of antimicrobial use during the dry
period on the milk microbial ecosystem, while also providing
complementary insights and methodological considerations
associated with the use of different sequencing technologies in
this challenging, host-DNA-rich matrix.
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Genus-level milk microbiota diversity in milk collected from dairy cows treated (T) or not treated (NT) with antimicrobials at dry-off. (A) Violin plots
showing alpha diversity indices at the genus level: richness (Chaol) and evenness (Shannon). Each violin represents the kernel density estimation of
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the median. Whiskers extend to values within 1.5XIQR, and dots represent individual samples; values outside this range are plotted as outliers.
Statistical comparisons between treatment groups were performed using non-parametric Wilcoxon rank sum test. Pairwise comparisons were
adjusted for multiple testing using the false discovery rate (FDR) method. (B) Principal Coordinates Analysis (PCoA) based on Bray—Curtis dissimilarity
matrix illustrating differences in the genus-level microbial composition of milk samples between T and NT groups. Each point represents an
individual sample; colors indicate treatment groups. Ellipses correspond to 95% confidence intervals based on the multivariate t-distribution around

the group centroids. Group differences were assessed using PERMANOVA.

The dominant phyla identified in milk samples —
Firmicutes (recently renamed as Bacillota), Proteobacteria
(renamed as Pseudomonadota), and Actinobacteria (renamed as
Actinomycetota)— were consistent with those reported by other
authors in bovine milk (Bonsaglia et al., 2017; Urrutia-Angulo et al.,
2024; Vasquez et al., 2022). However, it is worth noting the high
proportion of unclassified phyla found (50.4%), which underscores
the challenge of characterizing the full diversity. This high
proportion is likely attributable to the sequencing technology
(short vs. long reads) (van Dijk et al., 2018) and approach
(metabarcoding vs. shotgun metagenomics) (Ciuffreda et al,
2021) used, as well as to the stringency of the bioinformatic
pipeline employed. Specifically, SqueezeMeta applies stringent
criteria for taxonomic classification (=80% of the best hit’s bit-
score and within 10% identity difference), assigning a contig to a
genus only when the evidence is robust (identity threshold >60%)
(Tamames and Puente-Sanchez, 2019). This conservative approach,
while potentially underestimating diversity at finer taxonomic
levels, enhances confidence in the taxonomic calls made.

Antimicrobial DCT was not associated with significant changes
in microbial taxonomic diversity or community composition and
both treatment groups shared a core-genera composition which
likely represent stable members of the milk microbiota regardless of
the treatment status. These findings agree with previous studies in
animals treated with antimicrobials of the same class (B-lactams)
(Basbas et al., 2022; Biscarini et al., 2020; Bonsaglia et al., 2017;
Filippone Pavesi et al.,, 2023; Vasquez et al., 2022). However, they
contrast with other studies reporting significant taxonomic
differences between T and NT animals, even when [-lactams
were used (Derakhshani et al,, 2018; Dong et al., 2021; Patangia
etal., 2023). Although the intramammary antimicrobial used in this
study is designed to remain active for an extended period post-dry-
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off (with a withdrawal time of 36-37 days), an average interval of
260 days elapsed between dry-off antimicrobial treatment and
sampling. In this period, it is likely that the milk microbiota had
sufficient time to recover, thereby potentially masking any “short-
term” antimicrobial effects. The timing of sample collection
represents a limitation, as taking serial samples before and shortly
after dry-off would have offered a baseline and a more specific view
of the microbial shifts associated with DCT.

Interestingly, Anaplasma appeared among the most abundant
bacterial genera detected in all milk samples. Although this finding
is unexpected, previous studies have also reported the presence of
Anaplasma DNA in milk from apparently healthy animals (Dela
Cruz et al,, 2019; Guo et al., 2023; Li et al., 2024; Zhang et al., 2016).
This could, in part, be explained by the excretion of the pathogen
through somatic cells in milk, particularly leukocytes such as
neutrophils and other white blood cell lineages, which are known
targets of Anaplasma spp (Dela Cruz et al,, 2019; WOAH, 2024). In
our study, no clinical signs of active infection were recorded in the
animals, suggesting that they may be subclinical or persistent
carriers of Anaplasma, and more specifically of A.
phagocytophilum, the most frequently detected species in our
samples. However, the potential influence of external
contamination during sampling or processing, as well as
bioinformatic artifacts, cannot be excluded.

In contrast to the relatively stable taxonomic composition,
resistome analysis showed that cows treated with antimicrobials
at dry-oft exhibited a greater diversity and abundance of detected
GDRs. These findings reinforce the association between
antimicrobial exposure and resistome enrichment in treated cows,
even though an average of ~260 days had passed since DCT. A
significantly higher relative abundance of ARGs has been reported
in milk from treated cows —particularly those receiving
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Distribution of genetic determinants of resistance (GDRs) in milk samples from dairy cows. (A) Normalized abundance (counts per million, CPM) of
GDRs detected by Illumina sequencing using the AMR++ pipeline across milk samples are represented. GDRs are grouped and color-coded by
antimicrobial class according to the legend. (B) Presence/absence matrix of antimicrobial resistance genes (ARGs) detected in a subset of 10 shared
samples using Oxford Nanopore Technologies (ONT) and Illumina sequencing using ABRicate. ARGs identified by both platforms are highlighted with
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cefquinome— with a notable enrichment in genes conferring
resistance to cephalosporins, aminoglycosides, and penams-type
B-lactam antimicrobials (Patangia et al., 2023). Moreover, the use of
antimicrobials such as ceftiofur and cefquinome has been shown to
significantly increase the proportion of blatgy; genes in milk at the
time of withdrawal, highlighting how antimicrobial exposure can
modulate the resistome over time, particularly during the early days
(3 days) post-treatment (Dong et al., 2021). In our study, blargm
was detected exclusively through ONT sequencing, whereas
Illumina sequencing identified only blacrx, and at low
abundance. However, no clear differences in the abundance or
diversity of B-lactam resistance genes were observed between
treated and untreated cows in our dataset, suggesting that the
presence of these genes may not be a persistent consequence of
DCT or may fall below detection thresholds at sampling
time points.
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Certain GDRs were also found in NT cows, indicating that
factors beyond direct antimicrobial exposure at drying-off may
influence resistome composition. This aligns with previous
findings showing that AMR genes can be detected even in healthy
animals without prior antimicrobial treatment (Hoque et al., 2020),
suggesting that these genes may persist naturally or be acquired
through mechanisms such as horizontal gene transfer or co-
selection (Vasquez et al, 2022). Here, as no pre-treatment data
were available, we cannot exclude the effect of antimicrobial
treatments administered before the lactation period monitored.
Still, these results reinforce the notion that the milk microbiota
may serve as a reservoir for ARGs, posing a risk of dissemination
both within the farm and potentially into the food chain.

The low overall abundance of ARGs is somewhat reassuring, yet
the presence of metal and biocide resistance genes, especially in
certain high-carrier cows like T_14, underscores the complexity of
co-selection pressures in the dairy environment. Such findings need
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further investigation into individual animal factors (e.g., treatment
history, housing conditions) that might explain outlier profiles.

4.2 Limited agreement between ONT and
Ilumina in ARG detection highlights trade-
offs in sequencing strategy and pipeline
choice

Direct comparison of Illumina short-read and ONT long-read
sequencing for milk resistome profiling on the same set of samples
revealed significant discrepancies; ONT detected more ARGs than
Mumina but overall agreement was low. This discrepancy likely
reflects inherent strengths and limitations of each technology.
Mumina assemblies produced relatively short contigs (N50 = 850
bp). Such small contigs limit the ability to detect full-length ARGs,
particularly those larger than the average contig size, under the
applied thresholds (=90% identity and >80% coverage). In contrast,
ONT sequencing generated longer reads (N50 = 6,500 bp),
increasing the chance of recovering complete ARG sequences,
which may enhance detection sensitivity in alignment-based
pipelines such as ABRicate. However, longer ONT reads did not
translate into reliable detection of SNPs; Illumina’s higher per-base
accuracy remains essential for confidently identifying AMR-
associated SNPs (Yorki et al, 2023). This was evident in our
results, where SNP confirmation was feasible only for Illumina
data analyzed with the AMR++ pipeline. A further theoretical
advantage of long reads is their ability to resolve the genomic
neighborhood of ARGs and link them to their microbial hosts. In
our study, host attribution was not reached for any of the Illumina
contigs but was also limited for ONT reads, probably due to
insufficient sequencing depth. Thus, only three ONT reads met
the criteria for confident host assignment, highlighting the
challenge of linking ARGs to taxa in low-microbial-load samples.
Although outside the scope of this study, several strategies have
been shown to improve microbial host assignment of ARGs, such as
hybrid assembly and a genomic-centric analysis (Gounot et al,
2022) or the use of ONT-determined DNA methylation patterns to
associate them to a potential host (Bloemen et al., 2025). This
illustrates the inherent trade-offs between sequencing platforms and
emphasizes that no single sequencing approach is universally
optimal for resistome characterization (Petrillo et al., 2022).

Beyond the sequencing technologies themselves, our findings
also highlight the importance of the bioinformatic approach in the
ARGs detection sensitivity. Tools based solely on sequence
alignment against reference databases, such as ABRicate, may fail
to detect ARGs, particularly in fragmented short-read assemblies,
and do not account for the presence of resistance-conferring SNPs
(Seemann, 2016). In contrast, pipelines such as AMR++ combine
raw read mapping and SNPs verification, and quantify ARG
abundances, which is useful for comparative resistome studies
(Bonin et al., 2023). However, AMR++ does not support host
attribution of ARGs, an advantage that longer ONT reads could
theoretically provide. These differences illustrate that the choice of
bioinformatic pipeline can strongly shape resistome results and that
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pairing an appropriate tool with each sequencing technology is
crucial to balance detection sensitivity, accuracy,
and interpretability.

Despite these technical constraints, ARGs were exclusively
(ONT) or mostly (Illumina) detected in samples from
antimicrobial-treated cows, supporting the hypothesis that
antimicrobial DCT exerts a measurable impact on the milk
resistome. While overall ARG abundance remained low
(consistent with previous studies (Vasquez et al., 2022)), our
results highlight the ongoing analytical challenge of profiling the
resistome in a complex, host-DNA-rich and low-biomass matrices
like milk and emphasize the need for continued optimization of
sequencing and bioinformatic approaches. The low microbial
biomass in milk, coupled with the presence of host (bovine) cells
and non-cellular components such as proteins and fats, makes it
challenging for robust resistome studies. One of the methodological
challenges encountered for both short-read and long-read
sequencing technologies was the high proportion of host DNA
sequenced, which is a common limitation in studies involving low-
biomass matrices (Duarte et al., 2024; Ganda et al., 2021; Yap et al.,
2020). Various strategies have been proposed to mitigate this issue.
Host DNA can be depleted before sequencing using enzymatic
treatments or commercial kits (Bloomfield et al., 2023; Duarte et al.,
2024). Additionally, enrichment-based strategies such as ARG-
targeted capture or ONT adaptative sampling to selectively
sequence ARGs can be used (Duarte et al., 2024; Ganda et al,
2021; Rubiola et al., 2020; Warder et al., 2021). After sequencing,
bioinformatic tools such as Trimmomatic or Bowtie2 can align and
remove host-derived reads (Bolger et al., 2014; Langmead and
Salzberg, 2012).

Despite these strategies, the remaining microbial fraction in
milk samples typically accounts for only a small percentage of total
reads (often less than 10% in healthy or culture-negative samples,
and up to around 30% in culture-positive mastitic milk), whereas
host DNA still constitutes the majority of the Illumina and ONT
sequencing data (Ahmadi et al, 2023; Collis et al.,, 2024;
Santamarina-Garcia et al, 2024). In our study, we did not
perform any host depletion before sequencing, as preliminary
tests using commercial depletion kits (MolYsisBasic5, Molzym
and NEBNext Microbiome DNA enrichment, New England
Biolabs) resulted in total DNA concentrations far below the input
requirements for sequencing (data not shown). In fact, given that a
certain degree of non-specific depletion of prokaryotic DNA cannot
be avoided, these methods are not recommended for samples with a
low microbe-to-host DNA ratio, such as milk. Moreover, depletion
kits can have different specificity for different bacterial taxa (Bhute
et al,, 2025; Kim et al,, 2024). We acknowledge that this decision
likely impacted the sequencing depth of the bacterial target and
therefore the sensitivity of both taxonomic and resistome profiling.
Instead, host DNA was removed bioinformatically after sequencing.
Consistent with previous reports, 88.1% of the ONT sequences
obtained per sample aligned to the bovine genome after filtering
with Bowtie2, leaving only 11.9% of the reads for microbiome and
resistome analyses. This excess of bovine DNA significantly reduces
the sequencing depth obtained for microbial genomes, ultimately
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affecting the accuracy of resistome and microbiome
characterization (Gweon et al., 2019; Pereira-Marques et al., 2019;
Zaheer et al., 2018). Rarefaction analysis of ONT data further
confirmed this limitation, as sequencing curves did not reach
plateau, confirming that sequencing depth was insufficient to fully
capture the underlying microbial diversity. Nevertheless, ONT still
enabled the detection of a broader variety of ARGs than Illumina,
along with a higher proportion of taxonomically classified reads.
Another important consideration is the normalization
approach used in our resistome analysis. To facilitate between-
sample comparisons, ARG abundances were normalized using
CPM. This method allowed comparison of resistome profiles
between T and NT cows but cannot be used for absolute
quantification to report accurate resistance levels. Alternative
pipelines such as ARGs-OAP, which normalizes ARG abundances
based on microbial load (e.g.,16S rRNA gene copy number or
estimated cell counts), may offer more realistic or biologically
meaningful values and comparability across studies (Yin et al,
2023b, 2023a). Lastly, the relatively small sample size further limited
the robustness of the findings, warranting caution when
interpreting taxonomic profiles and resistome richness based on
these data. The insights generated from this exploratory study may
provide a valuable foundation for future research in this field.
Studies with a larger sample size, pre-treatment baseline data,
deeper microbial sequencing, and optimized methodological
approaches will be needed to confirm and expand our findings.

5 Conclusion

This study adds new insights into the impact of antibiotic DCT
on the milk microbiome and resistome. While we found no
detectable differences in the overall taxonomic composition of the
milk microbiota, antimicrobial DCT was associated with increased
prevalence, diversity, and abundance of GDRs in treated cows.
While our study was not intended as a formal methodological
benchmarking analysis, our integration of Illumina short-read and
ONT long-read results underscore that both sequencing technology
and bioinformatic pipeline choices critically affect resistome
profiling. The high presence of host DNA and low microbial
biomass are common challenges in milk metagenomics,
independent of the sequencing platform. Although rarefaction
curves indicated that our ONT sequencing depth was insufficient
to fully capture microbial diversity, the longer reads of the ONT
platform provided greater sensitivity for detecting a wider variety of
GDRs, an advantage that compensates its lower sequencing depth.
This emphasizes the need for optimized host DNA depletion and
potential targeted enrichment strategies to improve sequencing
performance across both short- and long-read platforms. Taken
together, our findings reinforce the importance of combining robust
sequencing approaches with adapted analytical workflows to
advance accurate resistome surveillance in dairy production. As
AMR poses a significant global challenge, these findings advocate
the need for cautious antimicrobial use and continued exploration
of alternative strategies for mastitis control.

Frontiers in Microbiomes

10.3389/frmbi.2025.1672438

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://www.ebi.ac.uk/ena. All raw
metagenomic sequencing data generated in this study have been
deposited in the European Nucleotide Archive (ENA) under the
Study Accession number PRJEB93971. Sample Accession numbers
range from ERS25262654 to ERS25262684. Illumina short-read
data are available under Run Accession numbers ERR15299398 to
ERR15299428, and ONT long-read data under ERR15299429 to
ERR15299438 (Supplementary Table S1).

Ethics statement

Ethical approval was not required for the studies involving
animals in accordance with the local legislation and institutional
requirements because sample collection was part of routine farm
veterinary practice performed under Spanish law (Real Decreto 53/
2013). Written informed consent was obtained from the owners for
the participation of their animals in this study.

Author contributions

LU-A: Data curation, Formal analysis, Investigation,
Methodology, Software, Visualization, Writing - original draft,
Writing - review & editing. JL: Formal analysis, Software,
Visualization, Writing — review & editing. BO: Writing — review
& editing, Investigation. GA: Writing — review & editing, Project
administration. AH: Project administration, Writing - review &
editing, Conceptualization, Funding acquisition, Resources,
Supervision. MO: Supervision, Writing - review & editing, Data
curation, Formal analysis, Investigation, Methodology, Software,
Visualization, Writing - original draft.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was funded by
ICIU/AEI/10.13039/501100011033 (project PID2019-106038RR-
100) and by the Basque Government (Department of Food, Rural
Development, Agriculture and Fisheries). LU-A is the recipient of a
predoctoral grant (PRE2020-096275) funded by MICIU/AEI/
10.13039/501100011033 and ESF Investing in your future.

Acknowledgments

We thank the veterinarians of ALBAIKIDE S.A., particularly
Jorge Eseverri, for their assistance with sample collection and
data acquisition, as well as the participating farmers for their
invaluable cooperation.

frontiersin.org


https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena/browser/view/PRJEB93971
https://doi.org/10.3389/frmbi.2025.1672438
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

Urrutia-Angulo et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

References

Ahmadi, A., Khezri, A., Norstebg, H., and Ahmad, R. (2023). A culture-,
amplification-independent, and rapid method for identification of pathogens and
antibiotic resistance profile in bovine mastitis milk. Front. Microbiol. 13.
doi: 10.3389/fmicb.2022.1104701

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Available online at: https://doi.org/http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/ (Accessed July 5, 2024).

Basbas, C., Aly, S., Okello, E., Karle, B. M., Lehenbauer, T., Williams, D., et al. (2022).
Effect of intramammary dry cow antimicrobial treatment on fresh cow’s milk
microbiota in California commercial dairies. Antibiotics 11, 963. doi: 10.3390/
antibiotics11070963

Bhute, S. S., Sanders, J. G., Song, S. J., Lavoie, S., Swafford, A. D., Guccione, C,, et al.
(2025). ChIP Provides 10-fold microbial DNA enrichment from tissue while
minimizing bias. Mol. Biol. Rep. 52, 258. doi: 10.1007/s11033-025-10330-8

Biscarini, F., Cremonesi, P., Castiglioni, B., Stella, A., Bronzo, V., Locatelli, C,, et al.
(2020). A randomized controlled trial of teat-sealant and antibiotic dry-cow treatments
for mastitis prevention shows similar effect on the healthy milk microbiome. Front. Vet.
Sci. 7. doi: 10.3389/fvets.2020.00581

Bloemen, B., Gand, M., Ringenier, M., Bogaerts, B., Vanneste, K., Marchal, K., et al.
(2025). Overcoming challenges in metagenomic AMR surveillance with nanopore
sequencing: a case study on fluoroquinolone resistance. Front. Microbiol. 16.
doi: 10.3389/fmicb.2025.1614301

Bloomfield, S. J., Zomer, A. L., O’Grady, J., Kay, G. L., Wain, J., Janecko, N, et al.
(2023). Determination and quantification of microbial communities and antimicrobial
resistance on food through host DNA-depleted metagenomics. Food Microbiol. 110,
104162. doi: 10.1016/j.fm.2022.104162

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
TIllumina sequence data. Bioinformatics 30, 2114-2120. doi: 10.1093/bioinformatics/
btul70

Bonin, N., Doster, E., Worley, H., Pinnell, L. J., Bravo, J. E., Ferm, P., et al. (2023).
MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial
resistance determinants and an improved software pipeline for classification using
high-throughput sequencing. Nucleic Acids Res. 51, D744-D752. doi: 10.1093/nar/
gkac1047

Bonsaglia, E. C. R., Gomes, M. S., Canisso, I. F.,, Zhou, Z., Lima, S. F., Rall, V. L. M,,
et al. (2017). Milk microbiome and bacterial load following dry cow therapy without
antibiotics in dairy cows with healthy mammary gland. Sci. Rep. 7, 8067. doi: 10.1038/
541598-017-08790-5

Bradley, A. ., and Green, M. J. (2004). The importance of the nonlactating period in
the epidemiology of intramammary infection and strategies for prevention. Vet. Clin.
North Am. Food Anim. Pract. 20, 547-568. doi: 10.1016/j.cvfa.2004.06.010

Ciuffreda, L., Rodriguez-Pérez, H., and Flores, C. (2021). Nanopore sequencing and
its application to the study of microbial communities. Comput. Struct. Biotechnol. J. 19,
1497-1511. doi: 10.1016/j.csbj.2021.02.020

Collis, R. M., Biggs, P. J., Burgess, S. A., Midwinter, A. C., Liu, J., Brightwell, G., et al.
(2024). Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month
surveillance study in New Zealand. Appl. Environ. Microbiol. 90, e01390-24.
doi: 10.1128/aem.01390-24

Frontiers in Microbiomes

10

10.3389/frmbi.2025.1672438

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frmbi.2025.1672438/
full#supplementary-material.

Dela Cruz, A. P., Galay, R. L., Sandalo, K. A. C,, Pilapil-Amante, F. M. I. R,, and
Tanaka, T. (2019). Molecular detection of Anaplasma spp. in blood and milk of dairy
cattle in the Philippines. Turkish J. Vet. Anim. Sci. Nr 43, 540-545. doi: 10.3906/vet-
1903-27

Derakhshani, H., Plaizier, J. C., De Buck, J., Barkema, H. W., and Khafipour, E.
(2018). Composition of the teat canal and intramammary microbiota of dairy cows
subjected to antimicrobial dry cow therapy and internal teat sealant. J. Dairy Sci. 101,
10191-10205. doi: 10.3168/jds.2018-14858

Dong, L., Meng, L., Liu, H,, Wu, H,, Hu, H,, Zheng, N,, et al. (2021). Effect of
therapeutic administration of B-lactam antibiotics on the bacterial community and
antibiotic resistance patterns in milk. J. Dairy Sci. 104, 7018-7025. doi: 10.3168/
jds.2020-20025

Duarte, V., da, S., and Porcellato, D. (2024). Host DNA depletion methods and
genome-centric metagenomics of bovine hindmilk microbiome. mSphere 9, €0047023.
doi: 10.1128/msphere.00470-23

Filippone Pavesi, L., Pollera, C., Sala, G., Cremonesi, P., Monistero, V., Biscarini, F.,
et al. (2023). Effect of the selective dry cow therapy on udder health and milk
microbiota. Antibiotics 12, 1259. doi: 10.3390/antibiotics12081259

Ganda, E., Beck, K. L., Haiminen, N., Silverman, J. D., Kawas, B., Cronk, B. D, et al.
(2021). DNA extraction and host depletion methods significantly impact and
potentially bias bacterial detection in a biological fluid. mSystems 6, €0061921.
doi: 10.1128/mSystems.00619-21

Ganda, E. K., Bisinotto, R. S., Lima, S. F., Kronauer, K., Decter, D. H., Oikonomou,
G., et al. (2016). Longitudinal metagenomic profiling of bovine milk to assess the
impact of intramammary treatment using a third-generation cephalosporin. Sci. Rep. 6,
37565. doi: 10.1038/srep37565

Gounot, J.-S., Chia, M., Bertrand, D., Saw, W.-Y., Ravikrishnan, A., Low, A., et al.
(2022). Genome-centric analysis of short and long read metagenomes reveals
uncharacterized microbiome diversity in Southeast Asians. Nat. Commun. 13, 6044.
doi: 10.1038/s41467-022-33782-z

Guo, R, Ju, N,, Wang, Y., Gou, M,, Li, P., and Luo, Y. (2023). Metagenomic reveals
succession in the bacterial community and predicts changes in raw milk during
refrigeration. J. Food Saf. 43, €13028. doi: 10.1111/jfs.13028

Gweon, H. S., Shaw, L. P., Swann, J., De Maio, N., AbuOun, M., Nichus, R., et al.
(2019). The impact of sequencing depth on the inferred taxonomic composition and
AMR gene content of metagenomic samples. Environ. Microbiome 14, 7. doi: 10.1186/
540793-019-0347-1

Hoque, M. N,, Istiag, A., Clement, R. A., Gibson, K. M., Saha, O, Islam, O. K,, et al.
(2020). Insights into the resistome of bovine clinical mastitis microbiome, a key factor
in disease complication. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.00860

Kandlikar, G. S., Gold, Z. J., Cowen, M. C., Meyer, R. S., Freise, A. C,, Kraft, N. J. B.,
etal. (2018). ranacapa: an R package and Shiny web app to explore environmental DNA
data with exploratory statistics and interactive visualizations. FIO0ORes 7, 1734.
doi: 10.12688/f1000research.16680.1

Kim, M., Parrish, R. C,, Shah, V. S, Ross, M. C., Cormier, J., Baig, A., et al. (2024).
Host DNA depletion on frozen human respiratory samples enables successful
metagenomic sequencing for microbiome studies. Commun. Biol. 7, 1590.
doi: 10.21203/rs.3.r5-3638876/v1

frontiersin.org


https://www.frontiersin.org/articles/10.3389/frmbi.2025.1672438/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1672438/full#supplementary-material
https://doi.org/10.3389/fmicb.2022.1104701
https://doi.org/http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.3390/antibiotics11070963
https://doi.org/10.3390/antibiotics11070963
https://doi.org/10.1007/s11033-025-10330-8
https://doi.org/10.3389/fvets.2020.00581
https://doi.org/10.3389/fmicb.2025.1614301
https://doi.org/10.1016/j.fm.2022.104162
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/nar/gkac1047
https://doi.org/10.1093/nar/gkac1047
https://doi.org/10.1038/s41598-017-08790-5
https://doi.org/10.1038/s41598-017-08790-5
https://doi.org/10.1016/j.cvfa.2004.06.010
https://doi.org/10.1016/j.csbj.2021.02.020
https://doi.org/10.1128/aem.01390-24
https://doi.org/10.3906/vet-1903-27
https://doi.org/10.3906/vet-1903-27
https://doi.org/10.3168/jds.2018-14858
https://doi.org/10.3168/jds.2020-20025
https://doi.org/10.3168/jds.2020-20025
https://doi.org/10.1128/msphere.00470-23
https://doi.org/10.3390/antibiotics12081259
https://doi.org/10.1128/mSystems.00619-21
https://doi.org/10.1038/srep37565
https://doi.org/10.1038/s41467-022-33782-z
https://doi.org/10.1111/jfs.13028
https://doi.org/10.1186/s40793-019-0347-1
https://doi.org/10.1186/s40793-019-0347-1
https://doi.org/10.3389/fmicb.2020.00860
https://doi.org/10.12688/f1000research.16680.1
https://doi.org/10.21203/rs.3.rs-3638876/v1
https://doi.org/10.3389/frmbi.2025.1672438
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

Urrutia-Angulo et al.

Lahti, L., and Shetty, S. (2017). microbiome R package. doi: 10.18129/
B9.bioc.microbiome

Lakin, S. M., Dean, C., Noyes, N. R,, Dettenwanger, A., Ross, A. S., Doster, E., et al.
(2017). MEGARes: an antimicrobial resistance database for high throughput
sequencing. Nucleic Acids Res. 45, D574-D580. doi: 10.1093/nar/gkw1009

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357-359. doi: 10.1038/nmeth.1923

Li, L., Miao, W,, Li, Z., Huang, L., Hau, E., Khan, M. F,, et al. (2024). Meta-genomic
analysis of different bacteria and their genomes found in raw buffalo milk obtained in
various farms using different milking methods. Genes (Basel) 15, 1081. doi: 10.3390/
genes15081081

Lin, H., and Peddada, S. D. (2020). Analysis of compositions of microbiomes with
bias correction. Nat. Commun. 11, 3514. doi: 10.1038/s41467-020-17041-7

McMurdie, P. J., and Holmes, S. (2013). Phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PloS One 8, e61217.
doi: 10.1371/journal.pone.0061217

Oksanen, J., Simpson, G. L., Blanchet, F. G., Roeland, K., Legendre, P., Minchin, P. R,,
et al. (2022). vegan: community ecology package. R package version 2.6-4. Available
online at: https://doi.org/https://cran.r-project.org/web/packages/vegan/index.html
(Accessed July 10, 2024).

Patangia, D. V., Grimaud, G., Linehan, K., Ross, R. P., and Stanton, C. (2023).
Microbiota and resistome analysis of colostrum and milk from dairy cows treated
with and without dry cow therapies. Antibiotics 12, 1315. doi: 10.3390/
antibiotics12081315

Patil, 1. (2021). Visualizations with statistical details: the “ggstatsplot” approach. J.
Open Source Softw 6, 3167. doi: 10.21105/j0ss.03167

Pereira-Marques, J., Hout, A., Ferreira, R. M., Weber, M., Pinto-Ribeiro, I., van
Doorn, L.-J,, et al. (2019). Impact of host DNA and sequencing depth on the taxonomic
resolution of whole metagenome sequencing for microbiome analysis. Front. Microbiol.
10. doi: 10.3389/fmicb.2019.01277

Perry, J. A, Westman, E. L., and Wright, G. D. (2014). The antibiotic resistome:
what’s new? Curr. Opin. Microbiol. 21, 45-50. doi: 10.1016/j.mib.2014.09.002

Petrillo, M., Fabbri, M., Kagkli, D. M., Querci, M., Van den Eede, G., Alm, E,, et al.
(2022). A roadmap for the generation of benchmarking resources for antimicrobial
resistance detection using next generation sequencing. F1000Res 10, 80. doi: 10.12688/
f1000research.39214.2

Pollock, J., Salter, S. J., Nixon, R., and Hutchings, M. R. (2021). Milk microbiome in
dairy cattle and the challenges of low microbial biomass and exogenous contamination.
Anim. Microbiome 3, 80. doi: 10.1186/s42523-021-00144-x

Revelle, W. (2024). psych: procedures for psychological, psychometric, and personality
research. R package version 2.5.6. Available online at: https://doi.org/https://CRAN.R-
project.org/package=psych (Accessed January 14, 2025).

Rubiola, S., Chiesa, F., Dalmasso, A., Di Ciccio, P., and Civera, T. (2020). Detection of
antimicrobial resistance genes in the milk production environment: impact of host
DNA and sequencing depth. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01983

Santamarina-Garcia, G., Yap, M., Crispie, F., Amores, G., Lordan, C., Virto, M., et al.
(2024). Shotgun metagenomic sequencing reveals the influence of artisanal dairy
environments on the microbiomes, quality, and safety of Idiazabal, a raw ewe milk
PDO cheese. Microbiome 12, 262. doi: 10.1186/s40168-024-01980-0

Seemann, T. (2016). ABRicate: mass screening of contigs for antiobiotic resistance
genes. Available online at: https://doi.org/https://github.com/tseemann/abricate
(Accessed April 24, 2024).

Frontiers in Microbiomes

11

10.3389/frmbi.2025.1672438

Shetty, S., and Lahti, L. (2024). Microbiomeutilities: utilities for microbiome analytics.
R package version 1.00.17. Available online at: https://doi.org/https://github.com/
microsud/microbiomeutilities (Accessed May 2, 2025).

Slowikowski, K. (2016). ggrepel: automatically position non-overlapping text labels
with “ggplot2.” (CRAN: Contributed Packages). doi: 10.32614/CRAN.package.ggrepel

Tamames, J., and Puente-Sanchez, F. (2019). SqueezeMeta, a highly portable, fully
automatic metagenomic analysis pipeline. Front. Microbiol. 9. doi: 10.3389/
fmicb.2018.03349

Urrutia-Angulo, L., Ocejo, M., Oporto, B., Aduriz, G., Lavin, J. L., and Hurtado, A.
(2024). Unravelling the complexity of bovine milk microbiome: insights into mastitis
through enterotyping using full-length 16S-metabarcoding. Anim. Microbiome 6, 58.
doi: 10.1186/542523-024-00345-0

van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., and Thermes, C. (2018). The third
revolution in sequencing technology. Trends Genet. 34, 666-681. doi: 10.1016/
j.1ig.2018.05.008

Vasco, K. A., Carbonell, S., Sloup, R. E., Bowcutt, B., Colwell, R. R., Graubics, K., et al.
(2023). Persistent effects of intramammary ceftiofur treatment on the gut microbiome
and antibiotic resistance in dairy cattle. Anim. Microbiome 5, 56. doi: 10.1186/s42523-
023-00274-4

Vasquez, A., Nydam, D., Foditsch, C., Warnick, L., Wolfe, C., Doster, E., et al. (2022).
Characterization and comparison of the microbiomes and resistomes of colostrum from
selectively treated dry cows. J. Dairy Sci. 105, 637-653. doi: 10.3168/jds.2021-20675

Warder, L. M. C, Doster, E., Parker, J. K., Morley, P. S., McClure, J. T., Heider, L. C.,
et al. (2021). Characterization of the microbiota and resistome of bulk tank milk
samples from Prince Edward Island dairy farms. J. Dairy Sci. 104, 11082-11090.
doi: 10.3168/jds.2020-19995

Wickham, H. (2016). ggplot2 : elegant graphics for data analysis, Springer-Verlag
(NY: Springer New York). doi: 10.1007/978-0-387-98141-3

WOAH (2024). “Bovine anaplasmosis,” in WOAH terrestrial manual 2024 (World
Organisation for Animal Health). Paris, France: WOAH. p. 1-15.

World Health Organization (2024). WHO’s List of Medically Important
Antimicrobials: a risk management tool for mitigating antimicrobial resistance due to
non-human use. Geneva, Switzerland: World Health Organization.

Yap, M,, Feehily, C., Walsh, C. J., Fenelon, M., Murphy, E. F., McAuliffe, F. M., et al.
(2020). Evaluation of methods for the reduction of contaminating host reads when
performing shotgun metagenomic sequencing of the milk microbiome. Sci. Rep. 10,
21665. doi: 10.1038/s41598-020-78773-6

Yin, X, Chen, X,, Jiang, X,, Yang, Y., Li, B., Shum, M. H.-H., et al. (2023a). Toward a
universal unit for quantification of antibiotic resistance genes in environmental
samples. Environ. Sci. Technol. 57, 9713-9721. doi: 10.1021/acs.est.3c00159

Yin, X, Zheng, X., Li, L., Zhang, A.-N,, Jiang, X.-T., and Zhang, T. (2023b). ARGs-
OAP v3.0: Antibiotic-resistance gene database curation and analysis pipeline
optimization. Engineering 27, 234-241. doi: 10.1016/j.eng.2022.10.011

Yorki, S., Shea, T., Cuomo, C. A., Walker, B. J., LaRocque, R. C., Manson, A. L., et al.
(2023). Comparison of long- and short-read metagenomic assembly for low-abundance
species and resistance genes. Brief Bioinform. 24, bbad050. doi: 10.1093/bib/bbad050

Zaheer, R., Noyes, N., Ortega Polo, R., Cook, S. R., Marinier, E., Van Domselaar, G.,
et al. (2018). Impact of sequencing depth on the characterization of the microbiome
and resistome. Sci. Rep. 8, 5890. doi: 10.1038/s41598-018-24280-8

Zhang, Y., Lv, Y., Cui, Y., Wang, J., Cao, S, Jian, F., et al. (2016). First molecular
evidence for the presence of Anaplasma DNA in milk from sheep and goats in China.
Parasitol. Res. 115, 2789-2795. doi: 10.1007/s00436-016-5028-z

frontiersin.org


https://doi.org/10.18129/B9.bioc.microbiome
https://doi.org/10.18129/B9.bioc.microbiome
https://doi.org/10.1093/nar/gkw1009
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.3390/genes15081081
https://doi.org/10.3390/genes15081081
https://doi.org/10.1038/s41467-020-17041-7
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.3390/antibiotics12081315
https://doi.org/10.3390/antibiotics12081315
https://doi.org/10.21105/joss.03167
https://doi.org/10.3389/fmicb.2019.01277
https://doi.org/10.1016/j.mib.2014.09.002
https://doi.org/10.12688/f1000research.39214.2
https://doi.org/10.12688/f1000research.39214.2
https://doi.org/10.1186/s42523-021-00144-x
https://doi.org/https://CRAN.R-project.org/package=psych
https://doi.org/https://CRAN.R-project.org/package=psych
https://doi.org/10.3389/fmicb.2020.01983
https://doi.org/10.1186/s40168-024-01980-0
https://doi.org/https://github.com/tseemann/abricate
https://doi.org/https://github.com/microsud/microbiomeutilities
https://doi.org/https://github.com/microsud/microbiomeutilities
https://doi.org/10.32614/CRAN.package.ggrepel
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.3389/fmicb.2018.03349
https://doi.org/10.1186/s42523-024-00345-0
https://doi.org/10.1016/j.tig.2018.05.008
https://doi.org/10.1016/j.tig.2018.05.008
https://doi.org/10.1186/s42523-023-00274-4
https://doi.org/10.1186/s42523-023-00274-4
https://doi.org/10.3168/jds.2021-20675
https://doi.org/10.3168/jds.2020-19995
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1038/s41598-020-78773-6
https://doi.org/10.1021/acs.est.3c00159
https://doi.org/10.1016/j.eng.2022.10.011
https://doi.org/10.1093/bib/bbad050
https://doi.org/10.1038/s41598-018-24280-8
https://doi.org/10.1007/s00436-016-5028-z
https://doi.org/10.3389/frmbi.2025.1672438
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

	Resistome and microbiome profiling of bovine milk following antimicrobial dry cow therapy: insights from short- and long-read metagenomic sequencing
	1 Introduction
	2 Materials and methods
	2.1 Study farm and sample collection
	2.2 DNA extraction and shotgun sequencing
	2.3 Bioinformatic analysis
	2.4 Statistical analysis

	3 Results
	3.1 Sequencing output and taxonomic profiling with Illumina
	3.2 Milk resistome profiling with Illumina
	3.3 Sequencing output and taxonomic profiling with ONT sequencing
	3.4 Comparison between Illumina and ONT platforms in ARG detection

	4 Discussion
	4.1 Milk resistome profiles differed between T and NT cows, whereas no differences in microbiota taxonomic composition were observed
	4.2 Limited agreement between ONT and Illumina in ARG detection highlights trade-offs in sequencing strategy and pipeline choice

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


