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Analysis of microbiome
high-dimensional
experimental design data
using generalized linear models
and ANOVA simultaneous
component analysis
Fentaw Abegaz1,2*, Davar Abedini1, Lemeng Dong1,
Johan A. Westerhuis1, Fred van Eeuwijk2, Harro Bouwmeester1

and Age K. Smilde1

1Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands,
2Biometris, Wageningen University Research, Wageningen, Netherlands
In microbiome studies, addressing the unique characteristics of sequence data—

such as compositionality, zero inflation, overdispersion, high dimensionality, and

non-normality—is crucial for accurate analysis. In addition, integrating

experimental design elements into microbiome data analysis is important for

understanding how factors such as treatment, time, and interactions affect

microbial abundance. To achieve these objectives, we developed a new

method that combines generalized linear models (GLMs) with ANOVA

simultaneous component analysis (ASCA), which we term GLM-ASCA. This

method aims to improve microbiome analysis by providing a more

comprehensive understanding of differential abundance patterns in response

to experimental conditions. GLM-ASCA models the unique characteristics of

microbiome sequence data with GLMs and uses ASCA to effectively separate the

effects of different experimental factors on microbial abundance. We evaluated

GLM-ASCA using simulated data and subsequently applied it to real data to

analyze the effect of nitrogen deficiency on root microbiome recruitment in

tomato. Simulation studies demonstrated the effectiveness of GLM-ASCA in

analyzing microbiome data in complex experimental designs, and the real-data

application revealed valuable insights into the dynamics of microbial

communities under nitrogen starvation, including the identification of

beneficial bacterial species that promote tomato (Solanum lycopersicum)

growth and health through nitrogen fixation.
KEYWORDS

generalized linear models, ANOVA simultaneous component analysis, experimental
design, high dimensional microbiome data, differential abundance analysis,
Tweedie model
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frmbi.2025.1584516&domain=pdf&date_stamp=2025-10-15
mailto:fentawabegaz@gmail.com
https://doi.org/10.3389/frmbi.2025.1584516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://www.frontiersin.org/journals/microbiomes#editorial-board
https://doi.org/10.3389/frmbi.2025.1584516
https://www.frontiersin.org/journals/microbiomes


Abegaz et al. 10.3389/frmbi.2025.1584516
1 Introduction

In microbiome research, high-throughput sequencing

techniques such as amplicon sequencing (e.g., 16S rRNA gene

sequencing) and whole-genome shotgun sequencing have become

standard approaches for generating data from samples obtained

from well-designed experiments aimed at understanding the

mechanisms governing host–microbiome interactions (Zancarini

et al., 2021). The microbiome count data produced through these

sequencing methods typically exhibit distinct characteristics,

including compositionality, zero inflation, overdispersion, high

dimensionality, and non-normality. Various statistical tools have

been developed to analyze microbiome data while addressing one or

more of these characteristics, such as MaAsLin2: Multivariable

Association with Linear Models 2 (Mallick et al., 2021) and

LinDA: Linear Models for Differential Abundance (Zhou et al.,

2022). While these tools implement univariate generalized linear

models (GLMs) and are effective in identifying associations between

individual features and covariates, they are limited in capturing the

multivariate structure of the data or the joint effects of multiple

factors across features.

It is also worthwhile to integrate treatment designs into

statistical models to effectively address relevant research questions

(Smilde et al., 2005). This facilitates precise accounting of the details

of the treatment design, such as intervention time, treatment

variations, and interactions between multiple factors, thereby

allowing for an accurate assessment of how each factor and their

combinations affect microbial abundance. However, in plant

microbiome studies involving hundreds to thousands of

correlated features and a limited number of samples, addressing

experimental design elements such as treatment, time, and

interactions, along with analyzing the specific characteristics of

microbiome data, remains a considerable challenge.

In this context, several developments have incorporated

techniques such as ANOVA-based partitioning of sources of

variation using multivariate methods, with the aim of accounting

for both the inherent data characteristics and the study design. One

prominent method in this regard is ANOVA simultaneous

component analysis (ASCA/ASCA+) (Smilde et al., 2005; Jansen

et al., 2005; Thiel et al., 2017; Bertinetto et al., 2020; Martin and

Govaerts, 2020; Thiel et al., 2023). ASCA/ASCA+ combines

dimension reduction projection techniques with traditional linear

statistical modeling to identify the main sources of variability in the

resulting responses. It also provides visually interpretable

representations of factor effects and their interactions, facilitating

the interpretation of multivariate structures within the statistical

model related to the experimental design (Smilde et al., 2005; Thiel

et al., 2017). Moreover, ASCA/ASCA+ has been modified to cope

with multivariate data in unbalanced multifactorial designs using

weighted-effect ASCA (WE-ASCA) (Ali et al., 2020). ASCA+ has

also been extended to analyze longitudinal data using linear mixed-

effects models (Martin and Govaerts, 2020; Madssen et al., 2021;

Jarmund et al., 2022). Furthermore, variable selection approaches

have been implemented in VASCA (variable-selection ASCA)

(Camacho et al., 2023) using permutation-based testing, and in
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GASCA (group-wise ASCA) (Saccenti et al., 2018) utilizing sparse

group-wise principal component analysis (PCA).

Multivariate methodologies such as ASCA have proven useful

in the analysis of metabolomics data, where linear models and PCA

can be reasonably applied to continuous data. In the case of

microbiome studies, however, the ASCA+ framework needs to be

adapted to account for nonlinear and non-normally distributed

data. In particular, extending the linear modeling approach in

ASCA to GLMs, which assume an exponential family of

probability distributions to accommodate data features such as

counts, zero inflation, and overdispersion, would greatly enhance

its applicability to microbiome data. In this work, we introduce

GLM-ASCA (generalized linear models–ANOVA simultaneous

component analysis), a novel approach for the analysis of

microbiome data. GLM-ASCA incorporates the experimental

design within a multivariate framework, providing a stronger

statistical foundation for addressing the complexities of

microbiome data analysis.

In linear models that employ ordinary least squares, orthogonal

effect decomposition with ASCA/ASCA+ enables the separation

and identification of distinct sources of variation in multivariate

datasets, allowing for more precise and insightful analysis,

particularly for data resulting from balanced experimental

designs. In contrast, in GLMs, the iterative reweighted least

squares (IRLS) algorithm is widely used to find maximum

likelihood estimates rather than the ordinary least squares

algorithm applied in linear models. As a result, parameter

estimation in GLMs heavily relies on observation weights

determined by the specific exponential family model under

consideration. Including observation weights in GLMs

complicates orthogonal effect decomposition, regardless of

whether the treatment design is balanced. For this reason, it is

crucial to appropriately extend ASCA within the framework of

GLMs. In this context, we introduce methods for achieving

orthogonal effect decomposition in GLMs for balanced design

data to effectively utilize ASCA when integrated with GLMs.

Thus, GLM-ASCA provides distinct advantages in well-structured

experimental designs (e.g., full factorial designs, repeated measures)

by decomposing variation attributable to main effects and

interactions while accounting for the underlying multivariate

structure. This integrated approach enables more transparent

interpretation, improves the detection of biologically meaningful

effects that may be missed by univariate methods, and enhances the

identification of key features driving differential responses to

experimental conditions.

To evaluate the performance of GLM-ASCA, we conducted a

simulation study, which revealed that GLM-ASCA performs well,

particularly in small-sample settings, motivating its application to

microbiome experimental data. Subsequently, we applied GLM-

ASCA to real microbiome data from tomato plants subjected to

nitrogen starvation over time. Nitrogen is essential for plant fitness

and productivity; however, non-legume crop plants mainly rely on

chemical fertilizers. The application of these chemicals has severe

environmental consequences, including water pollution from

nutrient runoff, disruption of aquatic ecosystems through
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eutrophication, and the release of greenhouse gases that contribute

to climate change (Savci, 2012). Identifying beneficial

microorganisms capable of fixing atmospheric nitrogen (N2),

reducing denitrification, and releasing inorganic nitrogen through

mineralization—as well as the chemical communication that plants

use to recruit them—can reduce the use of chemical fertilizers and

pave the way toward sustainable agriculture and healthy ecosystems

(Moreau et al., 2019; Mahmud et al., 2020; Abedini et al., 2021).

The paper is organized as follows: Section 2 introduces GLM-

ASCA and demonstrates orthogonal decomposition in GLMs.

Section 3 presents the performance of GLM-ASCA on simulated

microbiome datasets and provides the analysis of plant microbiome

data. Finally, Section 4 concludes the work with a discussion of the

main results and future directions.
2 Methods and materials

2.1 GLM-ASCA

2.1.1 GLM-ASCA decomposition
Consider a model containing F main and interaction effects so

that the design matrix X can be decomposed into F + 1 blocks: X =

(X0,X1,…,XF), where Xf is a matrix depending on the levels of factor

f and X0 is a column vector of ones to estimate the intercept. Let Y =

(y1,…,yp) represent the n × p-dimensional response matrix. In order

to accommodate various types of response data, including

continuous, count, binary, and categorical variables, we extend

the standard ASCA framework to be applied with Generalized

Linear Models. That is, unlike ASCA, which uses ANOVA or

linear regression, GLM-ASCA utilizes appropriate Generalized

Linear Models to each column of the multivariate response

matrix Y. In particular, GLM-ASCA decomposes the working

response matrix rather than the observed response matrix Y

consistent with the standard extension of LMs to GLMs

(Lovison, 2014).

In GLM-ASCA, univariate GLMs are first fitted to each column

of the multivariate response matrix Y = (y1,…,yp) using the same

design matrix X. Consider the j-th response variable yj = (yj1,…,yjn),

representing a vector of n observations with mean µj. A GLM is

specified for yj with linear predictor hj = Xbj, link function g(µj) =

hj, and variance function V (µj) = diag(V (µij)). The maximum

likelihood estimate of the regression coefficients (bj) is given by

(McCullagh, 2019):

b̂ j = (XTŴ jX)
−1XTŴ jẑ j,

where ẑ j = ĥ j + r̂wj is the working response, with ĥ j = Xb̂ j, and

r̂ wj = D̂
−1
j (yj − m̂ j) the working residuals. Here, D̂ j is a diagonal

matrix with entries
∂mij

∂hij

� �
ĥ ij

��� , i = 1,…, n, and Ŵ j is a diagonal

matrix of weights with elements ŵ ij =
∂mij

∂hij
ĥ ij

��� �2
=V(m̂ ij)

�
. Details on

GLMs are given in the Supplementary Material Text S1 and

Supplementary Table S1.

For all p responses in Y, the estimated parameter vectors b̂ j are

collected as columns of the matrix B̂ :
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B̂ =

b̂ 01 b̂ 02 ⋯ b̂ 0p

b̂ 11 b̂ 12 ⋯ b̂ 1p

⋮ ⋮ ⋮

b̂ F1 b̂ F2 ⋯ b̂ Fp

0
BBBBBB@

1
CCCCCCA

: (1)

Equivalently, we may write (Equation 1) as

B̂ =

B̂ 0

B̂ 1

⋮

B̂F

0
BBBBB@

1
CCCCCA,

where the f-th row vector B̂ f contains the estimated parameters

for Xf in the design matrix X = (X0,X1,…,XF) across all p responses.

The working responses can then be written in matrix form as

Ẑ = XB̂ + R̂
w
, (2)

where Ẑ = (ẑ 1,…, ẑ p) is the matrix of working responses, and

R̂
w
= (r̂w1 ,…, r̂wp ) contains the corresponding working residuals as

column vectors.

By decomposing the design matrix according to the main and

interaction effects: X = (X0,X1,…,XF), the working response matrix

in Equation 2 can be rewritten as

Ẑ = X0B̂ 0 + X1B̂ 1 +⋯+XF B̂F + R̂
w

    = M0 + M1 +⋯+MF + R̂
w
,

(3)

where Mf = Xf B̂ f , f = 0, 1,…, F, are the effect matrices for the

different main and interaction terms. To apply the standard ASCA

framework, Section (2.2) demonstrates, under certain conditions,

the orthogonal decomposition of the sum of squares of the working

response matrix into the sum of squares of effect matrices and the

sum of squares of working residuals matrix as follows using

Equation 3:

∥ Ẑ ∥2 = ∥M0 ∥
2 + ∥M1 ∥

2 + ∥M2 ∥
2 +⋯+ ∥MF ∥

2 + ∥ R̂w ∥2, (4)

where ∥·∥ is the Frobenius norm of a matrix. In the GLM-ASCA

decomposition similar to ASCA, Principal Component Analysis is

subsequently applied to the various effect matrices. For the f-th

effect matrix, we obtain

Mf = TfP
T
f , (5)

where Tf are the scores and Pf are the loadings for the effect

matrix Mf. Note that when the first few principal components are

considered sufficient, a residual term is needed to be added on the

right-hand side of Equation 5.

Then, the GLM-ASCA decomposition of all effect matrices is

given by

Ẑ = M0 + T1P
T
1 +⋯+TFP

T
F + R̂

w
:

As a result, each main and interaction effect is evaluated using

score and loading plots. For example, a plot of the first principal

component loadings of effect f, Pf, shows which responses are most
frontiersin.org
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affected by the model effect f. Similarly, the score plots of Tf, show

how the effect levels are located with respect to one another. In

addition, projecting the augmented effect matrix helps to show the

variability between the observations in the projected score plot

(Zwanenburg et al., 2011). Given the augmented matrix,

Ma
f = Mf + R̂

w
,

which is analogous to partial residuals in the univariate GLM

used for effect display (see Supplementary Table S1, Supplementary

Material), the projected scores are then calculated as

Ta
f = Ma

f P
T
f ,     f = 1, 2,…, F : (6)
2.1.2 Percentages of variation
For the multivariate case, the ASCA literature offers a modified

version of the classical ANOVA approach to calculate the

percentage of variance explained by each effect. In ASCA, the

square of the Frobenius norm is used to compute the sums of

squares of the effect matrices (Vis et al., 2007). In the GLM-ASCA

approach, for balanced experimental designs that provide an

orthogonal decomposition, as mentioned above (Equation 4), the

sum of squares of the working response matrix can be decomposed

into the sum of squares of the effect matrices and the sum of squares

of the working residual matrix as follows:

∥ Ẑ ∥2 = ∥M0 ∥
2 + ∥M1 ∥

2 + ∥M2 ∥
2 +⋯+ ∥MF ∥

2 + ∥ R̂w ∥2 :

These sums of squares expressed in Frobenius norms can be

used to quantify the importance of effects.

That is, the importance of a given effect f is determined by the

percentage of the total working response variance explained by the

effect f:

%Varf =
∥Mf ∥2

∥ Ẑ ∥2 − ∥M0 ∥2
� 100,     f = 1, 2,…, F,

where %V arf denotes the percentage of variance explained by

effect f or importance of effect f.

2.1.3 Permutation-based global effect tests
We also explored testing the statistical significance of main and

interaction effects across the response variables to support the

quantified effect importance. It is possible to determine whether

main and interaction effects have a globally significant influence on

all response variables by obtaining p-values using permutation

testing (Zwanenburg et al., 2011). The advantage of permutation-

based tests is that they provide a robust, non-parametric alternative

to traditional parametric methods, avoiding reliance on

assumptions such as normality, which are often violated in high-

dimensional microbiome data. However, this advantage comes at

the cost of increased computational burden, particularly when a

large number of permutations are required for accurate inference

across many features. In the permutation-based global test, we first

generate Np random permutations (Y(k), k = 1,2,…,Np) of the rows

of the response data matrix Y. For each permuted dataset, a GLM is

fitted, the effect matrices are retrieved, PCA is applied to the effect
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matrices, and the score and loading matrices are obtained for both

the observed data Y and all permuted datasets Y(k). The first q

principal components can be used for permutation testing,

visualization, and further analysis. The number of principal

components (q) retained plays a critical role in test sensitivity and

is generally chosen based on criteria such as cumulative explained

variance (e.g., ≥80%) or through visual inspection of scree plots.

Formal statistical tests may also be used to determine q (Camargo,

2022, and references therein). Importantly, q does not need to be the

same for all effect matrices, as each effect may explain a different

proportion of total variance and require separate consideration.

A global statistic is defined based on the square Frobenius norm

of the score matrix of the first q principal components, Tfq . For

testing effect f, the statistic for the observed data is then computed as

SSf = ∥Tfq ∥
2,

and for all permuted datasets under the null distribution as

SS(kÞf = ∥T(kÞ
f q

∥2,     k = 1,…,Np :

Finally, the p-value for effect of f is calculated as

p − valuef =
# SS(k)f ≥ SSf ,           k = 1,…,Np

n o
+ 1

Np + 1
,      f = 1,⋯, F,

and the null hypothesis of no effect is rejected if the resulting

p-value is less than a specified significance level (e.g., 0.05).

2.1.4 Feature selection in GLM-ASCA
When an effect is found to be significant using the permutation-

based global effect test, the next step is to identify features that

contribute to the significant effect. In classical PCA, a rule of thumb

can be used to select features with high absolute loadings satisfying a

specified threshold criterion. Alternatively, sparse PCA can be used

to set the loadings of unimportant features to zero (Saccenti et al.,

2018). In the ASCA context, for example, group-wise ASCA

(GASCA) incorporates sparsity based on group-wise principal

component analysis, where sparsity is defined in terms of groups

of correlated variables identified in the correlation matrices

computed from the effect matrices (Saccenti et al., 2018). In

addition, several permutation-based significance tests have been

implemented in the ASCA framework. For example, tests based on

leverages and squared prediction errors are discussed in ASCA-

genes (Tarazona et al., 2012; Nueda et al., 2007).

In this work, we used scaled leverages that measure the

importance of features in a PCA model, computed as

hf = diag CfC
T
f

� �
,     f = 1, 2,…, F, (7)

where hf is a vector of scaled leverages corresponding to each

feature in the PCAmodel for effect f, diag denotes the diagonal entries

of a matrix, and Cf is a matrix of scaled loadings obtained by

multiplying the loadings Pf of the first q principal components by

the square roots of the variances explained by the respective principal

components. When there are two or more principal components, this

adjustment to the unscaled leverages (diag(Pf P
T
f )) (Tarazona et al.,
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2012; Nueda et al., 2007), takes into account the variance contribution

of each principal component to feature selection.

Based on the permutation procedure described above for global

effect tests and the computed PCA loadings, we assess the

importance of each feature for a given effect. To test the

contribution of feature j to effect f, we compute the scaled

leverage statistic from the observed data, given by the j-th

element of hf in Equation 7 and denoted by hfj.

Under the null distribution, for each permuted dataset k = 1,…,

Np, we compute the permuted scaled leverage statistics:

h(k)f = diag C(k)
f C(k)T

f

� �
,     f = 1, 2,…, F,

where C(k)
f is the matrix of scaled loadings obtained by

multiplying the permutation-based loadings P(k)
f (from the first q

principal components) by the square roots of the variances they

explain. The permuted scaled leverage statistic for feature j is the j-th

element, h(k)fj , of h
(k)
f .

The p-value for testing the contribution of feature j to effect f is

then calculated as:

p − valuefj =
# h(k)fj ≥ hfj
n o

+ 1

Np + 1
, f = 1,…, F,   and  j = 1,…p :

Finally, to account for multiple testing of p features on effect f,

we apply the Benjamini-Hochberg (BH) procedure to control the

false discovery rate (FDR) (Benjamini and Hochberg, 1995).

Features with BH adjusted p-values below a predefined

significance level (e.g., 0.05) are identified as significantly

contributing to the corresponding effect.
2.2 Orthogonal decomposition in GLM

This section presents the technical details of the orthogonal

decomposition in GLMs provided in (4). We demonstrate the

orthogonal decomposition of the sum of squares of the working

response variable by showing that the working residuals are

orthogonal to the fitted values in balanced designs where the

design matrix X is orthogonal with respect to effects. It has been

shown that in Generalized Linear Models, the adjusted working

residuals (rw* = Ŵ
1=2

r̂w), like the linear model ordinary residuals,

provide an exact orthogonal decomposition of the sum of squares of

the adjusted working response (ẑ * = Ŵ
1=2

ẑw) (Lovison, 2014):

ẑ *T ẑ* = ĥ*T ĥ* + r̂w*T r̂w* : (8)

The main challenge in extending ASCA models directly to

GLMs, similar to their use in LMs, is the difficulty in further

orthogonally decomposing the linear predictor (ĥ ∗) in Equation 8

to specific effect sources of variation. That is, in GLM, unless the

observation weights are one or constant, further orthogonal effect

decomposition of ĥ* = Ŵ
1=2ĥ = Ŵ

1=2
Xb̂ according to orthogonal

columns of a design matrix X is not straightforward (Hosmer et al.,

2013). To address this problem, we considered two orthogonal

decomposition issues: decomposing the sum of squares of the
Frontiers in Microbiomes 05
working response and decomposing the sum of squares of the

linear predictor.

Decomposing the sum of squares of the working response: we

establish an exact orthogonal decomposition using the unscaled or

working response ẑ rather than the scaled or adjusted working

response (ẑ *). That is, the sum of squares of the working response

can be decomposed into the sum of squares of the linear predictor

and the sum of squares of the working residuals:

ẑT ẑ = ĥT ĥ + r̂wT r̂w : (9)

This can be demonstrated as follows. Using definitions of the

linear predictor we have

ĥ = Xb̂

 = X(XTŴX)−1XTŴ ẑ

 = Ŵ
−1=2

Ŵ
1=2

X(XTŴX)−1XTŴ
1=2

Ŵ
1=2

ẑ

 = Ŵ
−1=2

ĤŴ
1=2

ẑ ,    where the Hat matrix  Ĥ

 = Ŵ
1=2

X(XTŴX)−1XTŴ
1=2

 = Gẑ ,

(10)

Where

G = Ŵ
−1=2

ĤŴ
1=2

: (11)

Similarly, for the working residuals

r̂w = ẑ − ĥ

      = ẑ − Gẑ

      = (I − G)ẑ :

(12)

In general, the sum of squares of the working response

decomposes as

ẑT ẑ = ĥT ĥ + r̂wT r̂w + 2ĥT r̂w :

So that, orthogonality of ĥ and r̂ w can be achieved if ĥT r̂w = 0.

Using Equations 10, 12 we obtain

ĥT r̂w = (Gẑ )T (I − G)ẑ

= ẑT (GT − GTG)ẑ : (13)

We note that the orthogonality property can be satisfied if the

matrix G is idempotent and symmetric like the Hat matrix, Ĥ .

However, from the properties of Ĥ , it is clear that Ĝ is idempotent

but not symmetric. That is

GG = Ŵ
−1=2

ĤŴ
1=2

Ŵ
−1=2

ĤŴ
1=2

= Ŵ
−1=2

ĤŴ
1=2

= G :

demonstrates that G is idempotent but

GT = (Ŵ
−1=2

ĤŴ
1=2

)T = Ŵ
1=2

ĤŴ
−1=2

,

differs fromG implying thatG is not symmetric under the given

general setting of GLMs with observation weights Ŵ , posing a

challenge to achieving orthogonality. However, here two

approaches are introduced to ensure orthogonality in GLMs. The

first approach utilizes the properties of the Hat matrix derived from
frontiersin.org
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balanced treatment designs and saturated model formulations. The

second approach involves choosing or deriving a link function in

GLMs that provides observation weights equal to one or a

constant value.

2.2.1 Balanced designs and saturated models
First, we consider the properties of the Hat matrix to establish

an orthogonal decomposition of the sum of squares of the working

response as the sum of squares of the working residuals and the

fitted linear predictor values. As shown in Equation 11, given a

special structure of the Hat matrix Ĥ and weight matrix Ŵ that

allow these matrices to be commutative under multiplication, then

G = Ĥ can be established.

With some algebraic simplifications using the full rank property

of the design matrix arising from balanced designs and saturated

models for one replication per experimental unit (see examples in

the Supplementary Material Text S2), the Hat matrix turns out to be

the identity matrix of dimension n × n. That is, using the design

matrix X(1) for one replication per experimental unit:

Ĥ = Ŵ
1=2
n X(1)(X(1)TŴ nX

(1))−1X(1)TŴ
1=2
n

    = Ŵ
1=2
n X(1)(X(1)TŴ nX

(1))−1X(1)TŴ
1=2
n  

� (Ŵ
1=2
n X(1))(Ŵ

1=2
n X(1))−1

    = Ŵ
1=2
n X(1)(X(1)TŴ nX

(1))−1(X(1)TŴ nX
(1))(Ŵ

1=2
n X(1))−1

    = Ŵ
1=2
n X(1)In�n(Ŵ

1=2
n X(1))−1

    = In�n :

(14)

In this case, it follows that the matrix G also equals the identity

matrix,

G = Ŵ
−1=2

ĤŴ
1=2

= Ŵ
−1=2

In�nŴ
1=2

= Ŵ
−1=2

Ŵ
1=2

= In�n :

In general, for R replications included in the experiment, the

design matrix data structure can be expressed by vertically

concatenating the X(1) coding matrices as

X =

B1

B2

⋮

BR

X 1ð Þ

X 1ð Þ

⋮

X 1ð Þ

0
BBBBB@

1
CCCCCA,

where Biis used to indicate a block of n experimental units for

the i-th replication. Similarly, the weights can be expressed as a

block diagonal matrix as

Ŵ =

B1

B2

⋮

BR

Ŵn 0 0 ⋯ 0

0 Ŵn 0 ⋯ 0

⋮ ⋮

0 0 0 ⋯ Ŵ n

0
BBBBB@

1
CCCCCA :

Letting

Q = Ŵ
1=2

X = (Ŵ
1=2
n X(1), Ŵ

1=2
n X(1),⋯, Ŵ

1=2
n X(1))T ,
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the Hat matrix is rewritten as

Ĥ = Q(QTQ)−1QT ,

and using Equation 14 obtained for one replication per

experimental unit, we have the final structure of the Hat matrix

which is a matrix of identical identity block matrices multiplied by

the fraction of replications 1
R (detail derivation is given in the

Supplementary Information, Text S3)

Ĥ =

1
R In�n ⋯ 1

R In�n

⋮ ⋮
1
R In�n ⋯ 1

R In�n

0
BB@

1
CCA :

Similar Hat matrix structures are also described for ANOVA

fixed effect models (Orenti et al., 2012). Examples of Hat matrices in

balanced and saturated designs in GLMs are given in Text S4

(Supplementary Material).

We now finalize the orthogonality property in GLMs. For balanced

designs and saturated models, we carefully exploit the block identity

structure of the Hat matrix derived above and the diagonal form of the

weight matrix to do commutative multiplication of the matrices in G:

G = Ŵ
−1=2

Ĥ Ŵ
1=2

        = ĤŴ
−1=2

Ŵ
1=2

,  since Ĥ  includes block identity or block 

diagonal matrices of ones and Ŵ  is a diagonal 

block matrix

  = Ĥ :

It follows that, for saturated models and balanced designs, G is

idempotent and symmetric. Next, we simplify the orthogonal

condition in Equation 13

ĥT r̂w = ẑTGT (I − G)ẑ

= ẑT (G − G)ẑ , G is symmetric and idempotent

= 0:

Thus, ĥ and rw are orthogonal. As a result, we obtain an exact

orthogonal decomposition of the sum of squares of the working

response:

ẑT ẑ = ĥT ĥ + r̂wT r̂w :

Introducing new link functions with weights equal to one or

a constant

The second approach to ensure orthogonality is to set the

observation weights to 1 or a constant value (Dossou-Gbete and

Tinsson, 2005). Under this constraint, G = Ĥ and orthogonality

follows as described above, or the scaled version of the orthogonal

decomposition in Equation 8 simplifies to the unscaled orthogonal

decomposition in Equation 9. The constraint can be met by

introducing a new link function with observation weights wi = w, i

= 1,…, n where w = 1 or a constant. Using the definition of

observation weights which can be expressed as

w =
1

∂ g(m)
∂m

� �2
V(m)

, (15)
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With weights equal to a constant, a new link function can be

derived (Dossou-Gbété and Tinsson, 2005) by simplifying Equation

15 as

g(m) =
1

w1=2

Z
V(m)−1=2 dm :

In general, we rewrite the resulting orthogonal decomposition

of the squared norm of ẑ as

∥ ẑ ∥2 = ∥ ĥ ∥2 + ∥ r̂w ∥2 : (16)

Decomposing the sum of squares of the linear predictor (ĥ ): we
now address the second issue of orthogonality, which is an

orthogonal effect decomposition of the linear predictor ĥ into

specific effect sources of variation. For a balanced design with a

model containing all F main and interaction effects, and using sum

coding of factor levels, the design matrix X can be decomposed into

F + 1 orthogonal blocks that include the constant term and one for

each model effect: X = (X0 | X1 |… | XF). The design matrix X being

orthogonal leads to further orthogonal decomposition of ĥ =

X0b̂ 0 + X1b̂ 1 +⋯XF b̂ F as

∥ ĥ ∥2 = ∥X0b̂ 0 ∥
2 + ∥X1b̂ 1 ∥

2 + ∥X2b̂ 2 ∥
2 +⋯+ ∥XF b̂ F ∥

2 :

(17)

When the link function corresponds to observation weights

equal to one or a constant, a balanced design alone is a sufficient

condition to ensure this orthogonal decomposition, consistent with

the classical regression partitioning of the sum of squares

(Montgomery et al., 2021; Radhakrishna Rao and Toutenburg,

1999). For completeness of presentation, details of the derivations

under our framework are presented in Text S5 (Supplementary

Material). Consequently, in the context of GLM, a full orthogonal

decomposition of the sum of squares of the working response is

obtained by substituting Equation 17 into Equation 16 as

∥ ẑ ∥2 = ∥X0b̂ 0 ∥
2 + ∥X1b̂ 1 ∥

2 + ∥X2b̂ 2 ∥
2

+⋯+ ∥XF b̂ F ∥
2 + ∥ r̂w ∥2 :

For example, for a two-factor model with main effects A and B

and interaction effect AB the GLM decomposition is

∥ ẑ ∥2 = ∥X0b̂ 0 ∥
2 + ∥XAb̂ A ∥

2 + ∥XBb̂ B ∥
2

+ ∥XABb̂ AB ∥
2 + ∥ r̂w ∥2 :

In this study, we work under the assumption of a balanced

design and a saturated model, which enables orthogonal

decomposition and facilitates interpretable effect estimation

within the GLM-ASCA framework described in Section 2.1.1.

Although this assumption is strong, it is frequently satisfied in

well-controlled experimental settings, particularly in randomized

factorial designs, where balance is intentionally maintained to

ensure equal representation of treatment combinations, minimize

confounding, and support orthogonal design structures that allow

precise and independent estimation of factor effects. We also

observed that incorporating an offset term in the GLM violates

the orthogonal decomposition property. As part of our ongoing
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research, we are developing extensions to the GLM-ASCA

framework to accommodate unbalanced designs and non-

orthogonal decompositions, with the goal of increasing its

applicability to more diverse and complex experimental settings.
2.3 GLM for microbiome data analysis

Analyzing microbiome datasets from high-throughput

sequencing presents challenges due to overdispersion, zero

inflation, non-normality, and compositionality. We addressed

these issues using generalized linear models (GLMs) with a

Tweedie family of distributions—one of the more flexible and

general families for count and positive continuous data analysis.

Compared with negative binomial–based models (Love et al.,

2014b; Robinson et al., 2010), which are sensitive to zero

inflation, and zero-inflated models (Zhang et al., 2016b), which

require separate components for modeling excess zeros and

abundance, the Tweedie GLM offers an integrated approach that

inherently accommodates both zero and nonzero values within a

single framework. This eliminates the need for an additional zero

inflation term or arbitrary data imputations. Furthermore, the

Tweedie model avoids the necessity of adding pseudocounts (Xia,

2023), which is typically required when applying log transformation

in Gaussian-based models.

The Tweedie distribution is parameterized by the mean (µ),

dispersion (f), and power parameter (r), and it yields several well-

known distributions for specific values of r, such as Gaussian (r =

0), Poisson (r = 1), gamma (r = 2), inverse Gaussian (r = 3), and

compound Poisson–gamma (1 < r < 2). In particular, the Tweedie

compound Poisson–gamma distribution has a point mass at zero

and a skewed distribution on the positive real line, making it

suitable for modeling count and positive continuous data with

excess zeros, such as microbiome sequence count data (Mallick

et al., 2022). This distribution has been applied for differential

expression analysis of single-cell RNA sequencing (scRNA-seq)

data (Mallick et al., 2022). The Tweedie compound Poisson–

gamma distribution (Dunn and Smyth, 2005; Lian et al., 2023) is

given by

f (y;m, f, r) = a(y; f, r) exp 
1
f

ym1−r

1 − r
−
m2−r

2 − r

� �	 

,

where the form of a(y,f,r) is found in (Dunn and Smyth, 2005).

We considered GLM with a Tweedie distribution for each

response, Y ∼ Tweedie(µ,f,r), with logarithm link function g(µ) =

log(µ) = h = xTb, then for given f and r, the mean and variance to

be used in the GLM setting are given by Equation 18

E(Y) = m = g−1(h)

Var(Y) = fmr : (18)

Furthermore, the compositional nature of microbiome data—

resulting from differences in total sequence read counts (sequencing

depth or library size) across samples due to the sequencing process

—is addressed through normalization methods. Normalization is
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an important step in microbiome sequencing data analysis used to

remove bias caused by compositional effects or differences in

sequencing depths or library sizes between samples. Several forms

of normalization have been introduced (Xia, 2023) for microbiome

data, including scaling-based normalization, zero-inflation–based

normalization, and compositionally aware normalization. Some

commonly used scaling-based normalization procedures,

originally adopted from RNA sequencing (RNA-seq) data

analysis, include the median-of-ratios method (Love et al., 2014b)

and the trimmed mean of M-values (TMM) (Robinson et al., 2010).

In addition, methods such as the geometric mean of pairwise ratios

(Chen et al., 2018), Wrench normalization (Kumar et al., 2018), and

the geometric mean of positive counts (poscounts) (McMurdie and

Holmes, 2013) have been extended to account for zero inflation.

Scaling-based normalization involves obtaining a scaling factor that

adjusts raw counts to produce normalized counts or normalized

library sizes. Normalized library sizes, for example, are used as

offsets in generalized linear models (GLMs) to remove biases caused

by differences in sequencing depths (Love et al., 2014b; Robinson

et al., 2010; Mallick et al., 2022). On the other hand, compositionally

aware normalization methods commonly used include centered

log-ratio (CLR) transformation (Fernandes et al., 2014) and

additive log-ratio (ALR) transformation (Mandal et al., 2015).

In this work, the raw microbiome count data were normalized

using either the “poscounts” option in the DESeq2 R package (Love

et al., 2014a) or transformed using the modified centered log-ratio

transformation (mCLR) from the SPRING R package (Yoon et al.,

2019). By using normalized or transformed counts that account for

biases caused by compositional effects or variations in library size,

including an offset term is not necessary in the GLM. This approach

maintains the orthogonal decomposition outlined above within the

Tweedie GLM framework.

In general, the Tweedie GLM, which is appropriate for

modeling positive data with many zeros, can effectively address

the key characteristics of microbiome data. The Tweedie compound

Poisson–gamma model (1 < r < 2), implemented in the R packages

tweedieverse (Mallick et al., 2022) for the analysis of overdispersed

and zero-inflated single-cell RNA-seq count data and mcglm (Bonat

and Jørgensen, 2016), was used to estimate the model parameters.
2.4 Plant microbiome data: experimental
setup and microbial DNA extraction

To assess the impact of nitrogen availability on the bacterial

community composition of tomato roots, tomato seeds (Solanum

lycopersicum cv. Moneymaker) were grown in an aeroponic system

following the methodology outlined by Abedini et al. (manuscript

in preparation1). Briefly, the seeds underwent surface sterilization

and were pre-germinated at 25°C for 3 days. The pre-germinated

seeds were then transplanted into small baskets filled with
1 Abedini, D., White, F., Jain, R., Guerrieri, A., Schram, R., Dong, L., et al.

(2025). Multi-omics data analysis revealed a novel beneficial role for

strigolactones in tomato.
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greenhouse soil. These baskets were placed in a large bucket

equipped with an aeroponic system (Supplementary Figure S1).

The aeroponic system utilized one-quarter–strength Hoagland

solution, with a spraying duration of 15 s and a 10 min interval

between sprays. The greenhouse environment was maintained at

22°C with 60% relative humidity and an 8 h dark/16 h light

photoperiod. After 10 days of growth under standard control

conditions, nitrogen starvation was initiated. The plants were

randomly assigned to two groups: the control group, which

received one-quarter–strength Hoagland solution containing 5.6

mM nitrogen, and the nitrogen-starved group, which received one-

quarter–strength Hoagland solution without NH4NO3. Sampling

occurred at 4, 8, 12, and 16 days after the start of nitrogen

starvation, with five replicates for both the control and nitrogen-

starved conditions. Because control and nitrogen-starved plants

were grown and harvested at the same time for each sampling point,

observed differences in the root microbiome between the two

conditions can be attributed to nitrogen deprivation rather than

to variations in growth stage.

Afterward, 45 mL of the collected Hoagland solution was

vacuum filtered through a 0.2 µm membrane filter. The resulting

filter, which retained the microbes, was placed into a PowerSoil kit

bead tube and processed using a bead mill Tissuelyser for 5 min.

Microbial DNA was then extracted following the PowerSoil

protocol. The extracted genomic DNA was amplified for bacterial

16S rDNA targeting the V3 and V4 regions using primers 341F (5′-
C C T A C GGGNGGCWGCAG - 3 ′ ) a n d 8 0 5 R ( 5 ′ -
GACTACHVGGGTATCTAATCC-3 ′ ) . Sequencing was

performed on the Illumina NovaSeq6000 SP platform at Genome

Quebec in Montreal, Quebec. Sample demultiplexing was carried

out at the Genome Quebec facility. The resulting sequences

underwent trimming, quality assessment, merging, and taxonomic

classification using the dadasnake pipeline (Weißbecker et al.,

2020). Taxonomic classification was performed with mothur

using SILVA SSU v138 as the reference database. After

preprocessing, the 16S dataset retained a total of 5300 amplicon

sequence variants (ASVs) across five replicates for each of the four

time points (4, 8, 12, and 16 days) under both control and nitrogen-

starved conditions, resulting in a total of 40 samples.
2.5 Simulation study

We conducted a simulation study to evaluate the effectiveness of

GLM-ASCA in identifying true positive taxa associated with main

and interaction effects. To achieve this, we generated synthetic

microbiome data based on experimental conditions consisting of

four time points, two treatment conditions, and eight levels for the

time-treatment interaction.

Our simulation approach used the R package SparseDOSSA2

(Ma et al., 2021), which operates independently of the distributional

assumptions underlying the Tweedie GLM. SparseDOSSA2 is a

statistical simulation framework that can be adapted to analyze

plant microbiome datasets, effectively capturing plant microbial

dynamics, as demonstrated previously in human microbiome

studies (Ma et al., 2021). SparseDOSSA2 generates realistic
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simulated data by parameterizing real-world template microbial

datasets to reflect key microbiome characteristics such as zero

inflation and overdispersion. For our study, we used the

experimental plant microbiome data described in Section 2.4 as a

template. First, SparseDOSSA2 was used to estimate taxon-specific

parameters with a Bayesian hierarchical model, including the means

and variances of nonzero log abundances, as well as the probabilities

of zeros (~µj,sj2,pj,j = 1,…,p). These estimated parameters were then

used to generate synthetic features from a zero-inflated, truncated

log-normal distribution. Accordingly, we produced null (baseline)

data consisting of 206 features and 20 samples under control

(nitrogen-rich) conditions. Strict filtering criteria were applied to

retain features with at least 10 counts in a minimum of five samples.

Next, to simulate taxa with differential effects, we incorporated

the plant microbiome experimental conditions, which included the

main effects growth condition (control and N-starvation) and time

(4, 8, 12, and 16 days), as well as the interaction effect between

growth condition and time. We then selected 45 of the 206 null taxa

with a relative abundance of at least 20% to be spiked-in as having

“true” differential main and interaction effects with known effect

sizes (log-fold differences). Of the 45 taxa with “true” differential

effects, 20 were assigned growth condition main effects (b1), 15 were
assigned time effects represented by three parameters (b2, b3, b4),
and 10 were assigned growth condition × time interaction effects

represented by three parameters (b5, b6, b7). The effect size

parameter values were varied: half of the spiked features were

assigned posit ive effect s izes (b1 ,b2 ,b3 ,b4 ,b5 ,b6 ,b7) =

(2,3,1.5,1.5,2.8,2.4,1.4), and the other half were assigned negative

effect sizes (−2,−3,−1.5,−1.5,−2.8,−2.4,−1.4). To account for these

effects on the data generation by SparseDOSSA2, the taxon-specific

mean log abundances (~mj) used to generate null features were

modified to mean log abundances ~mij across samples for the

spiked-in features using

~mij|{z}
Mean log abundance

   across samples

= ~mj|{z}
    Taxon specif ic

mean log abundance

+ b1 x1i|ffl{zffl}
Growth conditon ef fect

+ b2 x2i + b3x3i + b4x4i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time ef f ect

+ b5 x5i + b6x6i + b7x7i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interaction ef fect

where x represents values assigned through sum or deviation

coding for the factors: growth condition, time, and their interaction.

The spiked-in taxa are then generated based on zero-inflated

truncated log-normal distribution with (~mij,sj2,pj,i = 1,…,n; j = 1,

…,p).

The sample sizes were varied at 40, 80, and 160, with 5, 10, and

20 replications, respectively. We generated 100 simulated

abundance datasets, each containing 45 spiked-in taxa (“true

positives”) and 161 null taxa with no differential effect (“true

negatives”). Of the 45 spiked taxa, 20, 15, and 10 were true

positives for growth condition, time, and growth condition × time
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interaction effects, respectively. The efficacy of Tweedie GLM-

ASCA in identifying taxa with differential effects in high-

dimensional microbiome data was evaluated using these synthetic

datasets with known (“true”) effect sizes. We compared GLM-

ASCA with two recently developed methods for microbiome data

analysis, MaAsLin2 (Mallick et al., 2021) and LinDA (Zhou et al.,

2022). Both accommodate multiple continuous and categorical

covariates, unlike many differential abundance methods that

consider only a single categorical covariate. MaAsLin2 utilizes

generalized linear models to identify multivariable associations

between microbial features and metadata, whereas LinDA applies

linear models for differential abundance analysis, accounting for

compositional bias and inflated zeros in microbiome data.
3 Results

3.1 Simulation results

To evaluate the performance of GLM-ASCA in microbiome

data analysis, we conducted a simulation study generating 100

simulated microbiome datasets including 206 taxa with varying

total sample sizes (40, 80, and 160), as described in Section 2.5. After

fitting GLM-ASCA, BH-adjusted p-values were used to classify taxa

as true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN). Performance was evaluated based on

sensitivity (statistical power), specificity, FDR, area under the

curve (AUC), F1-score (F-score), and Matthews correlation

coefficient (MCC).

3.1.1 Performance of GLM-ASCA with different
normalization methods

We first evaluated the performance of GLM-ASCA using two

normalization methods: “poscounts” from DESeq2 and mCLR from

SPRING, incorporating permutation-based feature selection with

scaled leverages. Performance was assessed based on FDR control

and statistical power (sensitivity) to detect relationships between

spiked taxa and the effects of growth condition, time, and their

interaction. As shown in Figure 1, GLM-ASCA with DESeq2-based

normalization and scaled-leverage feature selection exhibited

superior statistical power compared with mCLR normalization,

particularly in scenarios with small sample sizes. However, both

normalization methods effectively controlled FDR at the nominal

5% level across all sample size settings. Detailed performance

measures of GLM-ASCA for individual main and interaction

effects are presented in Supplementary Figure S2.

3.1.2 Comparison of GLM-ASCA with alternative
methods

To further assess GLM-ASCA, we compared its performance

with MaAsLin2 and LinDA. In these comparisons, GLM-ASCA was

implemented using “poscounts” normalization, while MaAsLin2 was

applied with its default settings except for normalization, which was

adjusted to CSS (cumulative sum scaling) to address zero inflation in

microbiome data. LinDA was used with all default settings.
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Figure 2 presents the simulation results across multiple

performance measures. In our simulations, all three methods—

GLM-ASCA, MaAsLin2, and LinDA—demonstrated high statistical

power (Figure 2) when the sample size was large (e.g., n = 80 or n =

160), suggesting that each method can reliably detect true effects.

However, in small-sample settings, GLM-ASCA exhibited greater

power than MaAsLin2 and LinDA, indicating improved performance

with limited sample sizes. This improved performance is likely due to
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its multivariate modeling framework, which captures shared patterns

across features and leverages the joint data structure to detect effects

even with few samples. Despite this difference in power, all methods

performed comparably on measures such as specificity, AUC, F1-

score, and MCC. Moreover, all three methods effectively maintained

FDR control at the nominal 5% level.

The low feature–feature correlations observed in the template

plant microbiome data (Supplementary Figure S15), particularly for
FIGURE 1

Performance measures [false discovery rate (FDR) and statistical power (sensitivity)] for GLM–ASCA using DESeq2 (poscounts) and mCLR
normalizations, evaluated on simulated data derived from a template plant microbiome dataset. Boxplots are colored by total sample size. (A) With
both normalizations, GLM-ASCA with scaled-leverage–based permutation feature selection demonstrated mean FDR (green dots) close to the
nominal 5% level. (B) GLM-ASCA with DESeq2 (poscounts) achieved higher power in small-sample scenarios, whereas GLM-ASCA with mCLR
achieved higher power in large-sample scenarios.
FIGURE 2

Performance measures (FDR, statistical power [sensitivity], specificity, AUC, F1-score, and MCC) for GLM–ASCA, MaAsLin2, and LinDA, evaluated on
simulated data derived from a template plant microbiome dataset. Boxplots are colored by total sample size. GLM-ASCA, MaAsLin2, and LinDA
demonstrated mean FDR (green dots) close to the nominal 5% level while maintaining high statistical power, AUC, F1-score, and MCC. GLM–ASCA
achieved higher power in small-sample scenarios.
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large sample sizes, appear to favor MaAsLin2 and LinDA, since

these univariate methods perform optimally when features are

weakly dependent and sufficient data support stable parameter

estimation. Taken together, these findings suggest that while

MaAsLin2 and LinDA are robust choices for univariate analysis

in large-sample contexts, GLM-ASCA offers a notable advantage in

small-sample, structured experimental designs by leveraging

multivariate information.

We extended the simulation study using SparseDOSSA2 by

increasing the number of features from 206 to 1000 with varying

sparsity (proportion of zeros), while retaining the small-sample

scenario (n = 40) and the same data generation procedure. This

reflects common challenges in microbiome research, where datasets

often involve limited samples and many sparse features. As shown

in Figure 3, GLM-ASCA maintained robust performance under

these conditions, effectively controlling FDR at the nominal 5% level

while achieving moderately high statistical power. These findings

highlight the effectiveness of GLM-ASCA in detecting true features

and controlling false discoveries despite high dimensionality and

small sample sizes. In terms of AUC, F1-score, and MCC, all three

methods showed comparable performance in this small-

sample scenario.
3.2 Microbiome data analysis results

The Tweedie-based GLM-ASCA was applied to tomato root

microbiome data to identify microbes whose abundance was

significantly affected by nitrogen starvation over time. The design

matrix included growth condition with two levels (N-starvation:

nitrogen starved; control: nitrogen rich), time with four levels (4, 8,

12, and 16 days), and their interaction (growth condition × days).

The following generalized linear model was used to estimate the
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effect matrices:

log(m) = b0 + bG · GrowthCondition + bD · Days + bGD

· GrowthCondition �  Days, (19)

with a logarithm link function relating mean microbial

abundance to the experimental factors. Normalized counts were

computed using poscounts normalization from the R package

DESeq2. The design matrix was coded using sum coding. Out of

5300 ASVs, 1009 ASVs were retained after filtering for a minimum

of 5 counts in at least 3 of the 5 replicates in each growth condition–

time combination. The design was balanced, comprising 40 samples

with 5 replicates for each condition and time point, and the GLM

model (Equation 19) was saturated, including all main and

interaction effects. Thus, two basic requirements for GLM-ASCA

were satisfied: balanced design and saturated model specification.

For each filtered feature, univariate GLMs were fitted using the

Tweedie distribution with the R packages tweedieverse and mcglm,

which allow estimation of the dispersion (f), power (r), and regression
parameters (b). Estimates of the Tweedie power and dispersion

parameters are shown in Supplementary Figure S3. The regression

parameter estimates (b̂ ) and design matrix were then used to calculate

the effect matrices for the main effects of growth condition and time, as

well as their interaction. PCA was applied to each effect matrix to

obtain the score and loading matrices. Table 1 displays the percentages

of explained variation due to main and interaction effects, calculated

based on the adjusted response. The experimental conditions

accounted for ~88% of the total variation. Table 1 also includes p-

values from global tests of effects, computed using the Frobenius norm

of principal component score matrices (see Section 2.1.3), which

revealed significant main and interaction effects (p < 0.05).

One advantage of ASCA-based approaches is the ability to

visualize effects using score and loading matrices. Results are shown
FIGURE 3

Performance measures (FDR, statistical power [sensitivity], specificity, AUC, F1-score, and MCC) for GLM–ASCA, MaAsLin2, and LinDA, evaluated on
simulated data derived from a template plant microbiome dataset with 40 samples, 1000 features, and varying sparsity. Boxplots are colored by
performance measures. Compared with MaAsLin2 and LinDA, GLM-ASCA demonstrated mean FDR (green dots) close to the nominal 5% level while
maintaining moderately high statistical power.
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in Supplementary Figures S8-S14; Figures 4, 5. In these figures,

points represent principal component scores computed for the two

growth conditions at each time point. Lines connect scores across

successive time points to illustrate temporal dynamics in microbial

relative abundance. Error bars correspond to mean ± 1 standard

deviation of the projected scores (Equation 6).

Because of the significant interaction effect between time and

growth condition, the main effects (Supplementary Figures S8-S14)

should not be interpreted separately. Thus, we combined the main

effect of growth condition with the interaction effect of time

(GrowthCondition + GrowthCondition × Days). This, in

particular, allows for a more direct assessment of how the

microbial abundance in the control and N-starvation groups

changes over time during tomato growth. We applied PCA to the

combined effect matrix (GrowthCondition + GrowthCondition ×

Days). Using the scaled leverage permutation test with 10,000

permutations, 121 ASVs that belong to 44 families were identified
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(Figure 4B, Supplementary Figure S4) to be significantly affected by

nitrogen starvation over time (adjusted p-value < 0.05). The first

two principal components from the combined effect matrix

(Figures 4, 5) accounted for 75.3% of the total variation. On the

first principal component, no significant differences were observed

between the average principal scores of the N-starvation and

control groups at day 4. However, beyond day 4, thedifference

between groups increased over time (Figure 4A), indicating

increasing divergence in microbial abundance between nitrogen-

starved and nitrogen-rich conditions.

From loading plots (Figures 4B, Supplementary Figures S4, S5),

families with positive loadings in the control group showed increasing

microbial abundance over time, whereas in the N-starvation group,

families with negative loadings showed increasing abundance. Families/

genera enriched under nitrogen starvation included Acidobacteriaceae

(Paludibaculum), Bdellovibrionaceae (Bedellovibrio), Burkholderiaceae

(Polynucleobator), Caulobactraceae (Asticcacaulis), Chitinophagaceae

(Terrimonas and Edaphobaculum), Comamonadaceae (Acidovorax,

Aquabacterium and Methylibium), Gallionellacea (Candidatus

Nitrotoga), Hydrogenophilaceae (Thiobacillus), Mycobacteriaceae

(Mycobacterium), Nocardioidaceae (Aeromicrobium and Nocardioides),

Opitutaceae (Opitutus), Pleomorphomonadaceae (Pleomorphomonas),

Pseudomonadaceae (Pseudomonas), Reyranellaceae (Reyranella),

Rhizobiaceae (AllorhizobiumNeorhizobiumPararhizobiumRhizobium,

and Mesorhizobium), Solimonadaceae (Solimonas), and

Sphingomonadaceae (Novosphingobium, Sphingobium and

Sphingomonas) include one or more species that showed significantly

increased abundance under nitrogen starvation, whereas families (genera)

such as: Acetobacteraceae (Acidisoma), Alcaligenaceae (Bordetella),

Burkholderiaceae (Burkholderia-CaballeroniaParaburkholderia, Robbsia
FIGURE 4

First principal component visualizing temporal variation in microbial abundance patterns across taxa under nitrogen starvation and control
conditions. (A) Scores of the first principal component are plotted for nitrogen-starved (green line) and nitrogen-rich (control; red line) conditions
over time (days). The trajectories represent overall trends in microbial abundance under each condition. (B) Loadings of the first principal
component, representing the contribution of individual microbial species, are displayed as bars colored by their bacterial families. Downward-facing
bars correspond to families with higher relative abundance under nitrogen-starved conditions (green trajectory in panel A), whereas upward-facing
bars correspond to families with higher relative abundance under nitrogen-rich (control) conditions (red trajectory in panel A). For microbial families
with multiple contributing species, individual species loadings are indicated by horizontal segments within the same vertical bar.
TABLE 1 Percentage of explained variation in the adjusted abundance
response of the tomato microbiome data, accounted for by experimental
factors, using the Tweedie GLM-ASCA model.

Component
Explained
variation (%)

Permutation
p-values

Growth Condition 21.99 0.0001

Days 34.89 0.0001

Growth Condition x Days 30.87 0.0005

Residuals 12.25

Total 100.00
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and Pandoraea), Clostridiaceae (Clostridium), Comamonadaceae

(Thiomonas), Microbacteriaceae (Leifsonia), Oxalobacteraceae,

Rhodanobacteraceae (Rhodanobacter), and Sphingobacteriaceae

(Mucilaginibacter) include one or more species that showed a

significant increase in abundance under the control or nitrogen

availability condition. When multiple species contributed significantly,

loadings are represented by horizontal bars within each family.

In the second principal component (Figure 5), average scores

followed a nonlinear (parabolic) pattern of microbial abundance over

time. Under N-starvation, average abundance of Gallionellaceae,

Hydrogenophilaceae, and Parachlamydiaceae increased until day 12,

then sharply declined at day 16. Similarly, under control conditions,

Alcaligenaceae, Candidatus Kaiserbacteria, Clostridiaceae,

Microbacteriaceae, and Rhodanobacteraceae exhibited such curved

abundance profiles. The third and fourth principal components,

explaining ~26% of the remaining variation, are shown in

Supplementary Figures S6-S7.

Enrichment of bacterial genera under nitrogen starvation

highlights their potential roles in adapting to and mitigating

nitrogen limitation. Several taxa identified here have previously

been reported in nitrogen-related processes. For instance, species

within Terrimonas (Guo et al., 2024), Thiobacillus (Li et al., 2023),

Mycobacterium (Sellstedt and Richau, 2013), Pseudomonas (Wu

et al., 2023; Sanow et al., 2023), Sphingomonas (Videira et al., 2009),

Novosphingobium (Addison et al., 2007), Mesorhizobium

(Menéndez et al., 2020), and Allorhizobium–Neorhizobium–

Pararhizobium–Rhizobium (You et al., 2021) are known nitrogen

fixers, with nifH genes detected in many studies. Similarly,

Candidatus Nitrotoga (Lucker et al., 2015; Boddicker and Mosier,

2018), Aquabacterium (Zhang et al., 2016a), and Sphingobium

(Boss et al., 2022) are implicated in nitrogen cycling. These taxa
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may enhance nitrogen availability to the plant either by directly

fixing atmospheric nitrogen into plant-available forms such as

ammonium, by contributing to nitrogen mineralization processes

that convert organic nitrogen compounds into inorganic forms like

ammonium and nitrate (Philippot et al., 2013), or by adapting plant

development, such as root architecture (Abedini et al., manuscript

in preparation1).

We also observed an increase in Bdellovibrio (Bratanis et al.,

2020), a potential biocontrol agent. Increased Bdellovibrio

abundance may reflect a regulatory mechanism suppressing

pathogenic or competing bacteria, indirectly supporting beneficial

taxa and plant health.

To validate our findings, for example, Sphingobium was

identified as enriched under nitrogen deficiency. Isolation of a

Sphingobium strain from nitrogen-starved tomato roots, followed

by in vitro assays, confirmed that it can stimulate tomato growth

under nitrogen-deficient conditions (Abedini et al., manuscript in

preparation1). These findings suggest that nitrogen deficiency alters

microbial community structure, and that recruited taxa support plant

adaptation by enhancing nitrogen availability. Overall, the results

highlight the effectiveness of GLM-ASCA in identifying key microbial

taxa under specific experimental conditions, underscoring its

potential as a powerful tool for microbiome data analysis.
4 Discussion

Statistical analysis of high-dimensional, non-normal, and non-

linear data—such as those obtained from microbiome studies—and

incorporating experimental design elements such as treatments,

time, and interactions present challenges because traditional
FIGURE 5

Second principal component visualizing nonlinear temporal patterns in microbial abundance across taxa under nitrogen starvation and control
conditions. (A) Scores of the second principal component reveal a nonlinear pattern characterized by either a peak (for taxa with positive loadings)
or a dip (for taxa with negative loadings) around day 12 in both nitrogen-starved and nitrogen-rich (control) conditions. (B) Loadings of the second
principal component, representing the contribution of individual microbial species to this nonlinear pattern, are displayed as bars colored by their
bacterial families. These trajectories capture temporal fluctuations in microbial abundance not explained by the first principal component,
highlighting complex, taxa-specific responses to nitrogen availability throughout the experimental period.
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statistical methods often assume normality and may not be

appropriate for such datasets. Advanced statistical tools, such as

ANOVA simultaneous component analysis (ASCA/ASCA+), have

emerged as valuable approaches, providing insights into the main

sources of variability and facilitating interpretation. However,

adapting ASCA to count data with excess zeros, such as

microbiome data, necessitates novel approaches. This led us to

develop GLM-ASCA (generalized linear models–ANOVA

simultaneous component analysis), which integrates treatment

design elements and GLMs within a multivariate framework.

The simulation results demonstrated effective control over false

discovery rates, highlighting the potential of GLM-ASCA as a

robust feature selection tool. Application of GLM-ASCA to

microbiome data to assess the effect of nitrogen starvation on

tomato over time identified several bacterial families and genera

that exhibited increased abundance under nitrogen deficiency,

many of which have been implicated in nitrogen metabolism in

previous studies. The observed changes in microbial abundance

during nitrogen starvation suggest that plants modulate root

exudation patterns to selectively recruit beneficial microbial taxa.

These microbes contribute to nitrogen availability and support

plant growth through multiple complementary mechanisms,

including nitrogen cycling and mineralization, symbiotic and

free-living nitrogen fixation, root colonization coupled with plant

growth promotion, stress adaptation and stabilization of the

rhizosphere under nutrient-limited conditions, and microbial

community regulation and niche structuring.

For instance, the increased abundance of genera such as

Sphingobium, Pseudomonas, and Mesorhizobium suggests

potential mechanisms where these microbes enhance nitrogen

availability either through biological nitrogen fixation or

mineralization pathways. To further support and validate these

results, whole-genome sequencing and co-culturing assays were

conducted with Sphingobium sp. RS1, a strain isolated from

nitrogen-starved tomato roots. These analyses revealed several

plant growth–promoting traits, including the production of

phytohormones such as indole-3-acetic acid (IAA) and the ability

to mineralize organic nitrogen into plant-available forms (Abedini

et al., manuscript in preparation1). Although this targeted

validation experiment supported the role of specific taxa such as

Sphingobium, many other microbial taxa identified in the present

study as potentially involved in mitigating nitrogen deficiency

require further validation. Rigorous experimental confirmation is

necessary to determine their functional roles and assess their

effectiveness in tomato, a nonlegume crop, under both controlled

and field conditions. Once thoroughly validated, these results could

enable the development of targeted inoculants or synthetic

microbial consortia designed to improve plant growth and health

in nitrogen-limited environments. Ultimately, such bio-based

strategies have the potential to support sustainable agriculture by

reducing dependence on chemical fertilizers and promoting more

efficient nutrient use in crop production systems.

The results from both simulated and real data underscore the

utility of the GLM-ASCA framework as an effective tool for identifying

key microbial species responding to specific experimental conditions,
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treatments, or interactions. However, a crucial aspect of the current

development of GLM-ASCA is its reliance on data from balanced

experimental designs with model specifications that include all main

and interaction effects. We are currently working on expanding the

framework by incorporating different link functions and extending it to

more general scenarios, including balanced designs without

specification constraints and unbalanced designs.

Finally, with the growing importance of plant microbiome

research in sustainable agriculture and human health, developing

such statistical tools is crucial for identifying biologically important

microbes that play key roles in enhancing agricultural practices and

improving health outcomes. Moreover, the ability of GLM-ASCA to

effectively handle complex experimental designs and accurately

analyze microbial abundance patterns highlights its potential for

broader applications beyond plant microbiome research. GLM-

ASCA can be applied in various fields that require the analysis of

high-dimensional, compositional, and zero-inflated data with

complex experimental designs, including human microbiome

studies, other omics applications involving high-throughput

sequencing, and ecological studies.
Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material. Further inquiries can be directed

to the corresponding author. All data sets generated and analyzed and

the R-code used to analyze the data are available in Figshare public

repository https://figshare.com/s/744f99a21afca4d6c002.
Author contributions

FA: Conceptualization, Data curation, Methodology, Validation,

Writing – original draft, Writing – review & editing. DA: Data

curation, Investigation, Validation, Writing – review & editing. LD:

Data curation, Funding acquisition, Investigation, Project

administration, Resources, Supervision, Validation, Writing – review

& editing. JW: Conceptualization, Funding acquisition, Methodology,

Project administration, Resources, Supervision, Writing – original

draft, Writing – review & editing. FE: Conceptualization, Funding

acquisition, Methodology, Project administration, Resources,

Supervision, Writing – original draft, Writing – review & editing.

HB: Conceptualization, Data curation, Funding acquisition,

Investigation, Project administration, Resources, Validation, Writing

– review & editing. AS: Conceptualization, Funding acquisition,

Methodology, Project administration, Resources, Supervision,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. We acknowledge funding

by the Dutch Research Council (NWO/OCW) for the MiCRop
frontiersin.org

https://figshare.com/s/744f99a21afca4d6c002
https://doi.org/10.3389/frmbi.2025.1584516
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Abegaz et al. 10.3389/frmbi.2025.1584516
Consortium program, Harnessing the second genome of plants

(Grant number 024.004.014; to HB, LD, DA, AKS, JAW, FVE and

FA), and the Dutch Research Council (NWO-TTW grant 16873

Holland Innovative Potato; to HB, LD and DA).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial
Frontiers in Microbiomes 15
intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/frmbi.2025.

1584516/full#supplementary-material
References
Abedini, D., Jaupitre, S., Bouwmeester, H., and Dong, L. (2021). Metabolic
interactions in beneficial microbe recruitment by plants. Curr. Opin. Biotechnol. 70,
241–247. doi: 10.1016/j.copbio.2021.06.015

Addison, S. L., Foote, S. M., Reid, N. M., and Lloyd-Jones, G. (2007).
Novosphingobium nitrogenifigen ssp. nov., a polyhydroxyalkanoate-accumulating
diazotroph isolated from a New Zealand pulp and paper wastewater. Int. J. System
Evolution Microbiol. 57, 2467–2471. doi: 10.1099/ijs.0.64627-0

Ali, N., Jansen, J., van den Doel, A., Tinnevelt, G. H., and Bocklitz, T. (2020). WE-
ASCA: the weighted-effect ASCA for analyzing unbalanced multifactorial designs—a
Raman spectra-based example. Molecules 26, 66. doi: 10.3390/molecules26010066

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc Ser. B (Statistical
Method. 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Bertinetto, C., Engel, J., and Jansen, J. (2020). ANOVA simultaneous component
analysis: A tutorial review. Analyt Chim Acta: X 6, 100061. doi: 10.1016/
j.acax.2020.100061

Boddicker, A. M., and Mosier, A. C. (2018). Genomic profiling of four cultivated
Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental
distribution. ISME J. 12, 2864–2882. doi: 10.1038/s41396-018-0240-8

Bonat, W. H., and Jørgensen, B. (2016). Multivariate covariance generalized linear
models. J. R. Stat. Soc Ser. C (Applied Statistics) 65, 649–675. doi: 10.1111/rssc.12145

Boss, B. L., Wanees, A. E., Zaslow, S. J., Normile, T. G., and Izquierdo, J. A. (2022).
Comparative genomics of the plant-growth promoting bacterium Sphingobium sp.
strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata.
BMC Genomics 23, 508. doi: 10.1186/s12864-022-08738-8

Bratanis, E., Andersson, T., Lood, R., and Bukowska-Faniband, E. (2020).
Biotechnological potential of Bdellovibrio and like organisms and their secreted
enzymes. Front. Microbiol. 11, 662. doi: 10.3389/fmicb.2020.00662

Camacho, J., Vitale, R., Morales-Jimenez, D., and Gomez-Llorente, C. (2023).
Variable-selection ANOVA simultaneous component analysis (VASCA).
Bioinformatics 39, btac795. doi: 10.1093/bioinformatics/btac795

Camargo, A. (2022). Pcatest: testing the statistical significance of principal
component analysis in r. PeerJ 10, e12967. doi: 10.7717/peerj.12967

Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X., and Chen, J. (2018). GMPR: A
robust normalization method for zero-inflated count data with application to
microbiome sequencing data. PeerJ 6, e4600. doi: 10.7717/peerj.4600

Dossou-Gbete, S., and Tinsson, W. (2005). Factorial experimental designs and
generalized linear models. SORT: Stat Operations Res. Trans. 29, 0249–0268.

Dunn, P. K., and Smyth, G. K. (2005). Series evaluation of Tweedie exponential
dispersion model densities. Stat Comput 15, 267–280. doi: 10.1007/s11222-005-4070-y

Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., and
Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets:
characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments
by compositional data analysis. Microbiome 2, 1–13. doi: 10.1186/2049-2618-2-15

Guo, L., Liu, S., Zhang, P., Hakeem, A., Song, H., Yu, M., et al. (2024). Effects of
different mulching practices on soil environment and fruit quality in Peach Orchards.
Plants 13, 827. doi: 10.3390/plants13060827

Hosmer, J. D.W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic
regression Vol. 398 (Hoboken, New Jersey: John Wiley & Sons).

Jansen, J. J., Hoefsloot, H. C., van der Greef, J., Timmerman, M. E., Westerhuis, J. A.,
and Smilde, A. K. (2005). ASCA: analysis of multivariate data obtained from an
experimental design. J. Chemomet 19, 469–481. doi: 10.1002/cem.952

Jarmund, A. H., Madssen, T. S., and Giskeødegard, G. F. (2022). ALASCA: An R
package for longitudinal and cross-sectional analysis of multivariate data by ASCA-
based methods. Front. Mol. Biosci. 9, 962431. doi: 10.3389/fmolb.2022.962431

Kumar, M. S., Slud, E. V., Okrah, K., Hicks, S. C., Hannenhalli, S., and Corrada
Bravo, H. (2018). Analysis and correction of compositional bias in sparse sequencing
count data. BMC Genomics 19, 1–23. doi: 10.1186/s12864-018-5160-5

Li, Y., Guo, L., Yang, R., Yang, Z., Zhang, H., Li, Q., et al. (2023). Thiobacillus spp. and
Anaeromyxobacter spp. mediate arsenite oxidation-dependent biological nitrogen fixation
in two contrasting types of arsenic-contaminated soils. J. Hazard Mater 443, 130220.

Lian, Y., Yang, A. Y., Wang, B., Shi, P., and Platt, R. W. (2023). A tweedie compound
poisson model in reproducing kernel hilbert space. Technometrics 65, 281–295.
doi: 10.1080/00401706.2022.2156615

Love, M., Anders, S., and Huber, W. (2014a). Differential analysis of count data–the
DESeq2 package. Genome Biol. 15, 10–1186. doi: 10.1186/s13059-014-0550-8

Love, M. I., Huber, W., and Anders, S. (2014b). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21. doi: 10.1186/
s13059-014-0550-8

Lovison, G. (2014). A note on adjusted responses, fitted values and residuals in
Generalized Linear Models. Stat. Model. 14, 337–359. doi: 10.1177/1471082X13508263

Lucker, S., Schwarz, J., Gruber-Dorninger, C., Spieck, E., Wagner, M., and Daims, H.
(2015). Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-
scale wastewater treatment plants. ISME J. 9, 708–720.

Ma, S., Ren, B., Mallick, H., Moon, Y. S., Schwager, E., Maharjan, S., et al. (2021). A
statistical model for describing and simulating microbial community profiles. PloS
Comput. Biol. 17, e1008913. doi: 10.1371/journal.pcbi.1008913

Madssen, T. S., Giskeødegard, G. F., Smilde, A. K., and Westerhuis, J. A. (2021).
Repeated measures ASCA+ for analysis of longitudinal intervention studies with
multivariate outcome data. PloS Comput. Biol. 17, e1009585. doi: 10.1371/
journal.pcbi.1009585

Mahmud, K., Makaju, S., Ibrahim, R., and Missaoui, A. (2020). Current progress in
nitrogen fixing plants and microbiome research. Plants 9, 97. doi: 10.3390/
plants9010097
frontiersin.org

https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frmbi.2025.1584516/full#supplementary-material
https://doi.org/10.1016/j.copbio.2021.06.015
https://doi.org/10.1099/ijs.0.64627-0
https://doi.org/10.3390/molecules26010066
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.acax.2020.100061
https://doi.org/10.1016/j.acax.2020.100061
https://doi.org/10.1038/s41396-018-0240-8
https://doi.org/10.1111/rssc.12145
https://doi.org/10.1186/s12864-022-08738-8
https://doi.org/10.3389/fmicb.2020.00662
https://doi.org/10.1093/bioinformatics/btac795
https://doi.org/10.7717/peerj.12967
https://doi.org/10.7717/peerj.4600
https://doi.org/10.1007/s11222-005-4070-y
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.3390/plants13060827
https://doi.org/10.1002/cem.952
https://doi.org/10.3389/fmolb.2022.962431
https://doi.org/10.1186/s12864-018-5160-5
https://doi.org/10.1080/00401706.2022.2156615
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1177/1471082X13508263
https://doi.org/10.1371/journal.pcbi.1008913
https://doi.org/10.1371/journal.pcbi.1009585
https://doi.org/10.1371/journal.pcbi.1009585
https://doi.org/10.3390/plants9010097
https://doi.org/10.3390/plants9010097
https://doi.org/10.3389/frmbi.2025.1584516
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Abegaz et al. 10.3389/frmbi.2025.1584516
Mallick, H., Chatterjee, S., Chowdhury, S., Chatterjee, S., Rahnavard, A., and Hicks,
S. C. (2022). Differential expression of single-cell RNA-seq data using Tweedie models.
Stat Med. 41, 3492–3510. doi: 10.1002/sim.9430

Mallick, H., Rahnavard, A., McIver, L. J., Ma, S., Zhang, Y., Nguyen, L. H., et al.
(2021). Multivariable association discovery in population-scale meta-omics studies.
PloS Comput. Biol. 17, e1009442. doi: 10.1371/journal.pcbi.1009442

Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., and Peddada, S. D.
(2015). Analysis of composition of microbiomes: a novel method for studying microbial
composition. Microb Ecol Health Dis. 26, 27663. doi: 10.3402/mehd.v26.27663

Martin, M., and Govaerts, B. (2020). LiMM-PCA: Combining ASCA+ and linear
mixed models to analyse high-dimensional designed data. J. Chemomet 34, e3232.
doi: 10.1002/cem.3232

McCullagh, P. (2019). Generalized linear models (New York: Routledge).

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PloS One 8, e61217.
doi: 10.1371/journal.pone.0061217

Menéndez, E., Perez-Yepez, J., Hernandez, M., Rodriguez-Perez, A., Velazquez, E.,
and Leon-Barrios, M. (2020). Plant growth promotion abilities of phylogenetically
diverse mesorhizobium strains: effect in the root colonization and development of
tomato seedlings. Microorganisms 8, 412. doi: 10.3390/microorganisms8030412

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021). Introduction to linear
regression analysis (Hoboken, New Jersey: John Wiley & Sons).

Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., and Philippot, L. (2019). A
plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552.
doi: 10.1111/1365-2435.13303

Nueda, M. J., Conesa, A., Westerhuis, J. A., Hoefsloot, H. C., Smilde, A. K., Talon, M.,
et al. (2007). Discovering gene expression patterns in time course microarray experiments
by ANOVA–SCA. Bioinformatics 23, 1792–1800. doi: 10.1093/bioinformatics/btm251

Orenti, A., Marano, G., Boracchi, P., and Marubini, E. (2012). Pinpointing outliers in
experimental data: the Hat matrix in Anova for fixed and mixed effects models. Ital. J.
Public Health 9. doi: 10.2427/8663

Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. (2013).
Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.
11, 789–799. doi: 10.1038/nrmicro3109

Radhakrishna Rao, C., and Toutenburg, H. (1999). Linear models: least squares and
alternatives (New York: Springer).

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Saccenti, E., Smilde, A. K., and Camacho, J. (2018). Group-wise ANOVA
simultaneous component analysis for designed omics experiments. Metabolomics 14,
1–18. doi: 10.1007/s11306-018-1369-1

Sanow, S., Kuang, W., Schaaf, G., Huesgen, P., Schurr, U., Roessner, U., et al. (2023).
Molecular mechanisms of pseudomonas-assisted plant nitrogen uptake: Opportunities
for modern agriculture.Mol. Plant-Microbe Interact. 36, 536–548. doi: 10.1094/MPMI-
10-22-0223-CR

Savci, S. (2012). An agricultural pollutant: chemical fertilizer. Int. J. Environ. Sci. Dev.
3, 73. doi: 10.7763/IJESD.2012.V3.191

Sellstedt, A., and Richau, K. H. (2013). Aspects of nitrogen-fixing Actinobacteria, in
particular free-living and symbiotic Frankia. FEMS Microbiol. Lett. 342, 179–186.
doi: 10.1111/1574-6968.12116
Frontiers in Microbiomes 16
Smilde, A. K., Jansen, J. J., Hoefsloot, H. C., Lamers, R.-J. A., van der Greef, J., and
Timmerman, M. E. (2005). Anova-simultaneous component analysis (ASCA): a new
tool for analyzing designed metabolomics data. Bioinformatics 21, 3043–3048.
doi: 10.1093/bioinformatics/bti476

Tarazona, S., Prado-Lopez, S., Dopazo, J., Ferrer, A., and Conesa, A. (2012). Variable
selection for multifactorial genomic data. Chemomet Intell Lab. Syst. 110, 113–122.
doi: 10.1016/j.chemolab.2011.10.012

Thiel, M., Benaiche, N., Martin, M., Franceschini, S., Van Oirbeek, R., and Govaerts,
B. (2023). limpca: An R package for the linear modeling of high-dimensional designed
data based on ASCA/APCA family of methods. J. Chemomet 37, e3482. doi: 10.1002/
cem.3482

Thiel, M., Feraud, B., and Govaerts, B. (2017). ASCA+ and APCA+: Extensions of
ASCA and APCA in the analysis of unbalanced multifactorial designs. J. Chemomet 31,
e2895. doi: 10.1002/cem.2895

Videira, S. S., De Araujo, J. L. S., da Silva Rodrigues, L., Baldani, V. L. D., and Baldani,
J. I. (2009). Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria
associated with rice plants grown in Brazil. FEMS Microbiol. Lett. 293, 11–19.
doi: 10.1111/j.1574-6968.2008.01475.x

Vis, D. J., Westerhuis, J. A., Smilde, A. K., and van der Greef, J. (2007). Statistical
validation of megavariate effects in ASCA. BMC Bioinf. 8, 1–8. doi: 10.1186/1471-2105-
8-322

Weißbecker, C., Schnabel, B., and Heintz-Buschart, A. (2020). Dadasnake, a
Snakemake implementation of DADA2 to process amplicon sequencing data for
microbial ecology. GigaScience 9, giaa135. doi: 10.1093/gigascience/giaa135

Wu, X., Wang, X., Meng, H., Zhang, J., Lead, J. R., and Hong, J. (2023). Pseudomonas
fluorescens with nitrogen-fixing function facilitates nitrogen recovery in reclaimed coal
mining soils. Microorganisms 12, 9. doi: 10.3390/microorganisms12010009

Xia, Y. (2023). Statistical normalization methods in microbiome data with
application to microbiome cancer research. Gut Microbes 15, 2244139. doi: 10.1080/
19490976.2023.2244139

Yoon, G., Gaynanova, I., and Muller, C. L. (2019). Microbial networks in SPRING-
semi-parametric rank-based correlation and partial correlation estimation for
quantitative microbiome data. Front. Genet. 10, 449195. doi: 10.3389/fgene.2019.00516

You, Y., Aho, K., Lohse, K. A., Schwabedissen, S. G., Ledbetter, R. N., and Magnuson,
T. S. (2021). Biological soil crust bacterial communities vary along climatic and shrub
cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 569791.
doi: 10.3389/fmicb.2021.569791

Zancarini, A., Westerhuis, J. A., Smilde, A. K., and Bouwmeester, H. J. (2021).
Integration of omics data to unravel root microbiome recruitment. Curr. Opin.
Biotechnol. 70, 255–261. doi: 10.1016/j.copbio.2021.06.016

Zhang, X., Li, A., Szewzyk, U., and Ma, F. (2016a). Improvement of biological
nitrogen removal with nitrate-dependent fe (ii) oxidation bacterium Aquabacterium
parvum B6 in an up-flow bioreactor for wastewater treatment. Bioresource Technol.
219, 624–631. doi: 10.1016/j.biortech.2016.08.041

Zhang, X., Mallick, H., and Yi, N. (2016b). Zero-inflated negative binomial regression
for differential abundance testing in microbiome studies. J. Bioinf. Genomics 2, 1–9.

Zhou, H., He, K., Chen, J., and Zhang, X. (2022). LinDA: linear models for differential
abundance analysis of microbiome compositional data. Genome Biol. 23, 95.
doi: 10.1186/s13059-022-02655-5

Zwanenburg, G., Hoefsloot, H. C., Westerhuis, J. A., Jansen, J. J., and Smilde, A. K.
(2011). Anova–principal component analysis and ANOVA–simultaneous component
analysis: a comparison. J. Chemomet 25, 561–567. doi: 10.1002/cem.1400
frontiersin.org

https://doi.org/10.1002/sim.9430
https://doi.org/10.1371/journal.pcbi.1009442
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1002/cem.3232
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.3390/microorganisms8030412
https://doi.org/10.1111/1365-2435.13303
https://doi.org/10.1093/bioinformatics/btm251
https://doi.org/10.2427/8663
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1007/s11306-018-1369-1
https://doi.org/10.1094/MPMI-10-22-0223-CR
https://doi.org/10.1094/MPMI-10-22-0223-CR
https://doi.org/10.7763/IJESD.2012.V3.191
https://doi.org/10.1111/1574-6968.12116
https://doi.org/10.1093/bioinformatics/bti476
https://doi.org/10.1016/j.chemolab.2011.10.012
https://doi.org/10.1002/cem.3482
https://doi.org/10.1002/cem.3482
https://doi.org/10.1002/cem.2895
https://doi.org/10.1111/j.1574-6968.2008.01475.x
https://doi.org/10.1186/1471-2105-8-322
https://doi.org/10.1186/1471-2105-8-322
https://doi.org/10.1093/gigascience/giaa135
https://doi.org/10.3390/microorganisms12010009
https://doi.org/10.1080/19490976.2023.2244139
https://doi.org/10.1080/19490976.2023.2244139
https://doi.org/10.3389/fgene.2019.00516
https://doi.org/10.3389/fmicb.2021.569791
https://doi.org/10.1016/j.copbio.2021.06.016
https://doi.org/10.1016/j.biortech.2016.08.041
https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1002/cem.1400
https://doi.org/10.3389/frmbi.2025.1584516
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org

	Analysis of microbiome high-dimensional experimental design data using generalized linear models and ANOVA simultaneous component analysis
	1 Introduction
	2 Methods and materials
	2.1 GLM-ASCA
	2.1.1 GLM-ASCA decomposition
	2.1.2 Percentages of variation
	2.1.3 Permutation-based global effect tests
	2.1.4 Feature selection in GLM-ASCA

	2.2 Orthogonal decomposition in GLM
	2.2.1 Balanced designs and saturated models

	2.3 GLM for microbiome data analysis
	2.4 Plant microbiome data: experimental setup and microbial DNA extraction
	2.5 Simulation study

	3 Results
	3.1 Simulation results
	3.1.1 Performance of GLM-ASCA with different normalization methods
	3.1.2 Comparison of GLM-ASCA with alternative methods

	3.2 Microbiome data analysis results

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


