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In microbiome studies, addressing the unique characteristics of sequence data—
such as compositionality, zero inflation, overdispersion, high dimensionality, and
non-normality—is crucial for accurate analysis. In addition, integrating
experimental design elements into microbiome data analysis is important for
understanding how factors such as treatment, time, and interactions affect
microbial abundance. To achieve these objectives, we developed a new
method that combines generalized linear models (GLMs) with ANOVA
simultaneous component analysis (ASCA), which we term GLM-ASCA. This
method aims to improve microbiome analysis by providing a more
comprehensive understanding of differential abundance patterns in response
to experimental conditions. GLM-ASCA models the unique characteristics of
microbiome sequence data with GLMs and uses ASCA to effectively separate the
effects of different experimental factors on microbial abundance. We evaluated
GLM-ASCA using simulated data and subsequently applied it to real data to
analyze the effect of nitrogen deficiency on root microbiome recruitment in
tomato. Simulation studies demonstrated the effectiveness of GLM-ASCA in
analyzing microbiome data in complex experimental designs, and the real-data
application revealed valuable insights into the dynamics of microbial
communities under nitrogen starvation, including the identification of
beneficial bacterial species that promote tomato (Solanum lycopersicum)
growth and health through nitrogen fixation.
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1 Introduction

In microbiome research, high-throughput sequencing
techniques such as amplicon sequencing (e.g., 16S rRNA gene
sequencing) and whole-genome shotgun sequencing have become
standard approaches for generating data from samples obtained
from well-designed experiments aimed at understanding the
mechanisms governing host-microbiome interactions (Zancarini
et al., 2021). The microbiome count data produced through these
sequencing methods typically exhibit distinct characteristics,
including compositionality, zero inflation, overdispersion, high
dimensionality, and non-normality. Various statistical tools have
been developed to analyze microbiome data while addressing one or
more of these characteristics, such as MaAsLin2: Multivariable
Association with Linear Models 2 (Mallick et al., 2021) and
LinDA: Linear Models for Differential Abundance (Zhou et al,
2022). While these tools implement univariate generalized linear
models (GLMs) and are effective in identifying associations between
individual features and covariates, they are limited in capturing the
multivariate structure of the data or the joint effects of multiple
factors across features.

It is also worthwhile to integrate treatment designs into
statistical models to effectively address relevant research questions
(Smilde et al., 2005). This facilitates precise accounting of the details
of the treatment design, such as intervention time, treatment
variations, and interactions between multiple factors, thereby
allowing for an accurate assessment of how each factor and their
combinations affect microbial abundance. However, in plant
microbiome studies involving hundreds to thousands of
correlated features and a limited number of samples, addressing
experimental design elements such as treatment, time, and
interactions, along with analyzing the specific characteristics of
microbiome data, remains a considerable challenge.

In this context, several developments have incorporated
techniques such as ANOVA-based partitioning of sources of
variation using multivariate methods, with the aim of accounting
for both the inherent data characteristics and the study design. One
prominent method in this regard is ANOVA simultaneous
component analysis (ASCA/ASCA+) (Smilde et al.,, 2005; Jansen
et al., 2005; Thiel et al., 2017; Bertinetto et al., 2020; Martin and
Govaerts, 2020; Thiel et al., 2023). ASCA/ASCA+ combines
dimension reduction projection techniques with traditional linear
statistical modeling to identify the main sources of variability in the
resulting responses. It also provides visually interpretable
representations of factor effects and their interactions, facilitating
the interpretation of multivariate structures within the statistical
model related to the experimental design (Smilde et al., 2005; Thiel
et al., 2017). Moreover, ASCA/ASCA+ has been modified to cope
with multivariate data in unbalanced multifactorial designs using
weighted-effect ASCA (WE-ASCA) (Ali et al,, 2020). ASCA+ has
also been extended to analyze longitudinal data using linear mixed-
effects models (Martin and Govaerts, 2020; Madssen et al., 2021;
Jarmund et al., 2022). Furthermore, variable selection approaches
have been implemented in VASCA (variable-selection ASCA)
(Camacho et al., 2023) using permutation-based testing, and in
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GASCA (group-wise ASCA) (Saccenti et al., 2018) utilizing sparse
group-wise principal component analysis (PCA).

Multivariate methodologies such as ASCA have proven useful
in the analysis of metabolomics data, where linear models and PCA
can be reasonably applied to continuous data. In the case of
microbiome studies, however, the ASCA+ framework needs to be
adapted to account for nonlinear and non-normally distributed
data. In particular, extending the linear modeling approach in
ASCA to GLMs, which assume an exponential family of
probability distributions to accommodate data features such as
counts, zero inflation, and overdispersion, would greatly enhance
its applicability to microbiome data. In this work, we introduce
GLM-ASCA (generalized linear models—ANOVA simultaneous
component analysis), a novel approach for the analysis of
microbiome data. GLM-ASCA incorporates the experimental
design within a multivariate framework, providing a stronger
statistical foundation for addressing the complexities of
microbiome data analysis.

In linear models that employ ordinary least squares, orthogonal
effect decomposition with ASCA/ASCA+ enables the separation
and identification of distinct sources of variation in multivariate
datasets, allowing for more precise and insightful analysis,
particularly for data resulting from balanced experimental
designs. In contrast, in GLMs, the iterative reweighted least
squares (IRLS) algorithm is widely used to find maximum
likelihood estimates rather than the ordinary least squares
algorithm applied in linear models. As a result, parameter
estimation in GLMs heavily relies on observation weights
determined by the specific exponential family model under
consideration. Including observation weights in GLMs
complicates orthogonal effect decomposition, regardless of
whether the treatment design is balanced. For this reason, it is
crucial to appropriately extend ASCA within the framework of
GLMs. In this context, we introduce methods for achieving
orthogonal effect decomposition in GLMs for balanced design
data to effectively utilize ASCA when integrated with GLMs.
Thus, GLM-ASCA provides distinct advantages in well-structured
experimental designs (e.g., full factorial designs, repeated measures)
by decomposing variation attributable to main effects and
interactions while accounting for the underlying multivariate
structure. This integrated approach enables more transparent
interpretation, improves the detection of biologically meaningful
effects that may be missed by univariate methods, and enhances the
identification of key features driving differential responses to
experimental conditions.

To evaluate the performance of GLM-ASCA, we conducted a
simulation study, which revealed that GLM-ASCA performs well,
particularly in small-sample settings, motivating its application to
microbiome experimental data. Subsequently, we applied GLM-
ASCA to real microbiome data from tomato plants subjected to
nitrogen starvation over time. Nitrogen is essential for plant fitness
and productivity; however, non-legume crop plants mainly rely on
chemical fertilizers. The application of these chemicals has severe
environmental consequences, including water pollution from
nutrient runoff, disruption of aquatic ecosystems through
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eutrophication, and the release of greenhouse gases that contribute
to climate change (Savci, 2012). Identifying beneficial
microorganisms capable of fixing atmospheric nitrogen (N,),
reducing denitrification, and releasing inorganic nitrogen through
mineralization—as well as the chemical communication that plants
use to recruit them—can reduce the use of chemical fertilizers and
pave the way toward sustainable agriculture and healthy ecosystems
(Moreau et al., 2019; Mahmud et al., 2020; Abedini et al., 2021).

The paper is organized as follows: Section 2 introduces GLM-
ASCA and demonstrates orthogonal decomposition in GLMs.
Section 3 presents the performance of GLM-ASCA on simulated
microbiome datasets and provides the analysis of plant microbiome
data. Finally, Section 4 concludes the work with a discussion of the
main results and future directions.

2 Methods and materials
2.1 GLM-ASCA

2.1.1 GLM-ASCA decomposition

Consider a model containing F main and interaction effects so
that the design matrix X can be decomposed into F + 1 blocks: X =
(X0,X1....Xp), where Xris a matrix depending on the levels of factor
fand Xj is a column vector of ones to estimate the intercept. Let Y =
(Y1--.»¥p) represent the n x p-dimensional response matrix. In order
to accommodate various types of response data, including
continuous, count, binary, and categorical variables, we extend
the standard ASCA framework to be applied with Generalized
Linear Models. That is, unlike ASCA, which uses ANOVA or
linear regression, GLM-ASCA utilizes appropriate Generalized
Linear Models to each column of the multivariate response
matrix Y. In particular, GLM-ASCA decomposes the working
response matrix rather than the observed response matrix Y
consistent with the standard extension of LMs to GLMs
(Lovison, 2014).

In GLM-ASCA, univariate GLMs are first fitted to each column
of the multivariate response matrix Y = (yy,...,y,) using the same
design matrix X. Consider the j-th response variable y; = (yj1,...,yjn)s
representing a vector of n observations with mean y;. A GLM is
specified for y; with linear predictor 1; = Xf;, link function g(y;) =
7, and variance function V (4;) = diag(V (y;)). The maximum
likelihood estimate of the regression coefficients () is given by
(McCullagh, 2019):

R TxA ~IxvTYAT 5
B;=X"WX)'X"Wi,

where Z; = 1]; + " is the working response, with 77; = Xp j»and
oW
Ti

matrix with entries

e ~ . . A~
=D; (y; - 4;) the aW(‘)rkmg residuals. Here, ]? j
al,;’f "70’ i=1,...,n, and Wj is a diagonal
. . . " N L, 2 N .
matrix of weights with elements i, = B_lr;j ﬁu) /V(ity). Details on

GLMs are given in the Supplementary Material Text S1 and

is a diagonal

Supplementary Table SI.
For all p responses in Y, the estimated parameter vectors f3 jare
collected as columns of the matrix B:
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B = B Bz "'ﬁlp . 1)

Bri Brx - By

Equivalently, we may write (Equation 1) as

where the f-th row vector B ¢ contains the estimated parameters
for Xrin the design matrix X = (X, X,,...,Xp) across all p responses.
The working responses can then be written in matrix form as

7 =XB +R", 2)

where Z = (1,...,2,) is the matrix of working responses, and
R" = (£7,..., ;) contains the corresponding working residuals as
column vectors.

By decomposing the design matrix according to the main and
interaction effects: X = (Xo,Xj,...,Xp), the working response matrix
in Equation 2 can be rewritten as

Z :Xoﬁo +X1]§1 + '"+XF]§F +RW

. A3)
=My +M; +- - +Mg +R",

where My = Xf]§ f =0,1,....,F, are the effect matrices for the
different main and interaction terms. To apply the standard ASCA
framework, Section (2.2) demonstrates, under certain conditions,
the orthogonal decomposition of the sum of squares of the working
response matrix into the sum of squares of effect matrices and the
sum of squares of working residuals matrix as follows using
Equation 3:

IZ 0P = 1 Mo I+ 1My 17+ 1 My [P 4+ M (1P + TR, (4)

where ||-|| is the Frobenius norm of a matrix. In the GLM-ASCA
decomposition similar to ASCA, Principal Component Analysis is
subsequently applied to the various effect matrices. For the f-th
effect matrix, we obtain

M; = T(P/, (5)

where Ty are the scores and Py are the loadings for the effect
matrix My. Note that when the first few principal components are
considered sufficient, a residual term is needed to be added on the
right-hand side of Equation 5.

Then, the GLM-ASCA decomposition of all effect matrices is
given by

V4 :M0+T1P1T+---+TFP§+RW.

As a result, each main and interaction effect is evaluated using
score and loading plots. For example, a plot of the first principal
component loadings of effect f; P shows which responses are most
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affected by the model effect f. Similarly, the score plots of T show
how the effect levels are located with respect to one another. In
addition, projecting the augmented effect matrix helps to show the
variability between the observations in the projected score plot
(Zwanenburg et al,, 2011). Given the augmented matrix,

M? =M, +R",

which is analogous to partial residuals in the univariate GLM
used for effect display (see Supplementary Table S1, Supplementary
Material), the projected scores are then calculated as

Tf = M{P{, f=1,2,..,F. (6)

2.1.2 Percentages of variation

For the multivariate case, the ASCA literature offers a modified
version of the classical ANOVA approach to calculate the
percentage of variance explained by each effect. In ASCA, the
square of the Frobenius norm is used to compute the sums of
squares of the effect matrices (Vis et al., 2007). In the GLM-ASCA
approach, for balanced experimental designs that provide an
orthogonal decomposition, as mentioned above (Equation 4), the
sum of squares of the working response matrix can be decomposed
into the sum of squares of the effect matrices and the sum of squares
of the working residual matrix as follows:

IZ A = 11 Mg 17+ 1 My [+ [ My [+ -+ | Mg I + | R™ |2

These sums of squares expressed in Frobenius norms can be
used to quantify the importance of effects.

That is, the importance of a given effect fis determined by the
percentage of the total working response variance explained by the
effect f:

Il M |12

% Varg = ———————
IZ 112 =11 M, |12

x 100, f=1,2,...,F,
where %V ary denotes the percentage of variance explained by
effect f or importance of effect f.

2.1.3 Permutation-based global effect tests

We also explored testing the statistical significance of main and
interaction effects across the response variables to support the
quantified effect importance. It is possible to determine whether
main and interaction effects have a globally significant influence on
all response variables by obtaining p-values using permutation
testing (Zwanenburg et al,, 2011). The advantage of permutation-
based tests is that they provide a robust, non-parametric alternative
to traditional parametric methods, avoiding reliance on
assumptions such as normality, which are often violated in high-
dimensional microbiome data. However, this advantage comes at
the cost of increased computational burden, particularly when a
large number of permutations are required for accurate inference
across many features. In the permutation-based global test, we first
generate N, random permutations (Y®, k= 1,2,...,N,) of the rows
of the response data matrix Y. For each permuted dataset, a GLM is
fitted, the effect matrices are retrieved, PCA is applied to the effect
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matrices, and the score and loading matrices are obtained for both
the observed data Y and all permuted datasets Y. The first g
principal components can be used for permutation testing,
visualization, and further analysis. The number of principal
components (g) retained plays a critical role in test sensitivity and
is generally chosen based on criteria such as cumulative explained
variance (e.g., 280%) or through visual inspection of scree plots.
Formal statistical tests may also be used to determine g (Camargo,
2022, and references therein). Importantly, g does not need to be the
same for all effect matrices, as each effect may explain a different
proportion of total variance and require separate consideration.

A global statistic is defined based on the square Frobenius norm
of the score matrix of the first g principal components, Ty . For
testing effect £, the statistic for the observed data is then computed as

SSr =11, II%,

and for all permuted datasets under the null distribution as

k k
sy = ||T§q> I k=1,...N,.

Finally, the p-value for effect of f is calculated as

#{ss = ss,

% k:1,...,Np}+1

p — value; = N1l
P

and the null hypothesis of no effect is rejected if the resulting
p-value is less than a specified significance level (e.g., 0.05).

2.1.4 Feature selection in GLM-ASCA

When an effect is found to be significant using the permutation-
based global effect test, the next step is to identify features that
contribute to the significant effect. In classical PCA, a rule of thumb
can be used to select features with high absolute loadings satisfying a
specified threshold criterion. Alternatively, sparse PCA can be used
to set the loadings of unimportant features to zero (Saccenti et al.,
2018). In the ASCA context, for example, group-wise ASCA
(GASCA) incorporates sparsity based on group-wise principal
component analysis, where sparsity is defined in terms of groups
of correlated variables identified in the correlation matrices
computed from the effect matrices (Saccenti et al, 2018). In
addition, several permutation-based significance tests have been
implemented in the ASCA framework. For example, tests based on
leverages and squared prediction errors are discussed in ASCA-
genes (Tarazona et al.,, 2012; Nueda et al., 2007).

In this work, we used scaled leverages that measure the
importance of features in a PCA model, computed as

hy = diag(C,Cf), f=1,2,....,F, @

where hy is a vector of scaled leverages corresponding to each
feature in the PCA model for effect f, diag denotes the diagonal entries
of a matrix, and Cs is a matrix of scaled loadings obtained by
multiplying the loadings Py of the first g principal components by
the square roots of the variances explained by the respective principal
components. When there are two or more principal components, this
adjustment to the unscaled leverages (diag(PfPfT )) (Tarazona et al.,
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2012; Nueda et al., 2007), takes into account the variance contribution
of each principal component to feature selection.

Based on the permutation procedure described above for global
effect tests and the computed PCA loadings, we assess the
importance of each feature for a given effect. To test the
contribution of feature j to effect f, we compute the scaled
leverage statistic from the observed data, given by the j-th
element of hyin Equation 7 and denoted by hg.

Under the null distribution, for each permuted dataset k = 1,...,
N, we compute the permuted scaled leverage statistics:

(PG ), =12,

where Cf is the matrix of scaled loadings obtained by
multiplying the permutation-based loadings P( ) (from the first g
principal components) by the square roots of the variances they
explain. The permuted scaled leverage statistic for feature j is the j-th
element, hj%k), of h}k).

The p-value for testing the contribution of feature j to effect fis
then calculated as:

#{bf = ny}+1

p — value;; = N7l
p

, f=1.,F andj=1,..p.
Finally, to account for multiple testing of p features on effect f,
we apply the Benjamini-Hochberg (BH) procedure to control the
1995).
Features with BH adjusted p-values below a predefined

false discovery rate (FDR) (Benjamini and Hochberg,

significance level (e.g., 0.05) are identified as significantly
contributing to the corresponding effect.

2.2 Orthogonal decomposition in GLM

This section presents the technical details of the orthogonal
decomposition in GLMs provided in (4). We demonstrate the
orthogonal decomposition of the sum of squares of the working
response variable by showing that the working residuals are
orthogonal to the fitted values in balanced designs where the
design matrix X is orthogonal with respect to effects. It has been
shown that in Generalized Linear Models, the adjusted working

residuals (r"* = 1/2”“)

like the linear model ordinary residuals,
provide an exact orthogonal decomposition of the sum of squares of
the adjusted working response (z* = Wl/2 z") (Lovison, 2014):
¥ Ta* = 77 77 X pwrTawe )
The main challenge in extending ASCA models directly to
GLMs, similar to their use in LMs, is the difficulty in further
orthogonally decomposing the linear predictor (1} *) in Equation 8
to specific effect sources of variation. That is, in GLM, unless the
observation weights are one or constant, further orthogonal effect

decomposition of * = w' Zﬁ -w

ZXB according to orthogonal
columns of a design matrix X is not straightforward (Hosmer et al,
2013). To address this problem, we considered two orthogonal

decomposition issues: decomposing the sum of squares of the
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working response and decomposing the sum of squares of the
linear predictor.

Decomposing the sum of squares of the working response: we
establish an exact orthogonal decomposition using the unscaled or
working response Z rather than the scaled or adjusted working
response (). That is, the sum of squares of the working response
can be decomposed into the sum of squares of the linear predictor
and the sum of squares of the working residuals:

' =nTn+ T, 9)

This can be demonstrated as follows. Using definitions of the
linear predictor we have

7 =Xp
=XX"WX)'X"Wz2

“1/2.2 1/2A

- W PW AR XTWX) I XTW AW

(10)
=W 1/ZHWUZA, where the Hat matrix H

- W AXXTWX) I XTW /2
=Gz,
Where

-1/2

G=Ww"PAW'?. 11)

Similarly, for the working residuals
t"=zZ-7n
=1-Gz

=(I-G)z.

(12)

In general, the sum of squares of the working response
decomposes as

2= +8" Tgw,

Tgw +27°¢F

So that, orthogonality of 7 and #* can be achieved if 7 T#" = 0.
Using Equations 10, 12 we obtain
NT#" = (G2)T(1 - G)z

=27(GT-G'G)z . (13)

We note that the orthogonality property can be satisfied if the
matrix G is idempotent and symmetric like the Hat matrix, H.
However, from the properties of H, it is clear that G is idempotent
but not symmetric. That is

GG =W PAW "W T PRW ! =W PRW ! = 6.
demonstrates that G is idempotent but
G = (W 125 1/2)T W rEW 2,

differs from G implying that G is not symmetric under the given
general setting of GLMs with observation weights W, posing a
challenge to achieving orthogonality. However, here two
approaches are introduced to ensure orthogonality in GLMs. The
first approach utilizes the properties of the Hat matrix derived from
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balanced treatment designs and saturated model formulations. The
second approach involves choosing or deriving a link function in
GLMs that provides observation weights equal to one or a
constant value.

2.2.1 Balanced designs and saturated models

First, we consider the properties of the Hat matrix to establish
an orthogonal decomposition of the sum of squares of the working
response as the sum of squares of the working residuals and the
fitted linear predictor values. As shown in Equation 11, given a
special structure of the Hat matrix H and weight matrix W that
allow these matrices to be commutative under multiplication, then
G = H can be established.

With some algebraic simplifications using the full rank property
of the design matrix arising from balanced designs and saturated
models for one replication per experimental unit (see examples in
the Supplementary Material Text S2), the Hat matrix turns out to be
the identity matrix of dimension # x n. That is, using the design
matrix X" for one replication per experimental unit:

H= wI/ZX(I)(X(I)Twnx(l))—lx(l)TW1/2

~1/2

-W!
x (WY)W

Wl

XOXOTW X0y~ 1X(1)TW1/2
N I/ZX(l))—1

1/2

X(l)(x(l)Tan(l)) (X(I)TW Xl))(w X(l))—l

A 1/2 A 1/2 —
W,/ 2XOL,,,,(W,/2x 1)

nxn *

(14)
In this case, it follows that the matrix G also equals the identity
matrix,

1/2

G=W "W -w ', W =W AW 2

If’le’l N

In general, for R replications included in the experiment, the
design matrix data structure can be expressed by vertically
concatenating the X" coding matrices as

B, /x1
B, x(M

X = ,
By x(M

where Biis used to indicate a block of #n experimental units for
the i-th replication. Similarly, the weights can be expressed as a
block diagonal matrix as

B, (W,
. Bl 0o WwW,0- 0

Letting

Q- W X (WI/ZX(1)>Wi;/2X(]),"';W,l/zx(l))T,
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the Hat matrix is rewritten as

H=QQ'Q'Q,
and using Equation 14 obtained for one replication per
experimental unit, we have the final structure of the Hat matrix
which is a matrix of identical identity block matrices multiplied by
the fraction of replications % (detail derivation is given in the
Supplementary Information, Text S3)

1 1
ﬁlnxn Elnxn

ey
1

I I

% nxn °°° % nxn

Similar Hat matrix structures are also described for ANOVA
fixed effect models (Orenti et al., 2012). Examples of Hat matrices in
balanced and saturated designs in GLMs are given in Text S4
(Supplementary Material).

We now finalize the orthogonality property in GLMs. For balanced
designs and saturated models, we carefully exploit the block identity
structure of the Hat matrix derived above and the diagonal form of the

weight matrix to do commutative multiplication of the matrices in G:

G-W AW
AW Y 2W 2 , since H includes block identity or block
diagonal matrices of ones and W is a diagonal
block matrix
=H.
It follows that, for saturated models and balanced designs, G is

idempotent and symmetric. Next, we simplify the orthogonal
condition in Equation 13

"t =2"G"(I-G)z

=2"(G-G)z,
=0.

G is symmetric and idempotent

Thus, 7] and r" are orthogonal. As a result, we obtain an exact
orthogonal decomposition of the sum of squares of the working
response:

T AwT AW

2 =0T +f

Introducing new link functions with weights equal to one or
a constant

The second approach to ensure orthogonality is to set the
observation weights to 1 or a constant value (Dossou-Gbete and
Tinsson, 2005). Under this constraint, G = H and orthogonality
follows as described above, or the scaled version of the orthogonal
decomposition in Equation 8 simplifies to the unscaled orthogonal
decomposition in Equation 9. The constraint can be met by
introducing a new link function with observation weights w; = w, i
= 1,..., n where w = 1 or a constant. Using the definition of
observation weights which can be expressed as

= ! 15
) "
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With weights equal to a constant, a new link function can be
derived (Dossou-Gbété and Tinsson, 2005) by simplifying Equation
15 as

1 -
e / V(™ du.
w

In general, we rewrite the resulting orthogonal decomposition

of the squared norm of Z as

HZ 0% = 1A 12+ e (16)

Decomposing the sum of squares of the linear predictor (7}): we
now address the second issue of orthogonality, which is an
orthogonal effect decomposition of the linear predictor 7 into
specific effect sources of variation. For a balanced design with a
model containing all F main and interaction effects, and using sum
coding of factor levels, the design matrix X can be decomposed into
F + 1 orthogonal blocks that include the constant term and one for
each model effect: X = (X, | X |... | Xp). The design matrix X being
orthogonal leads to further orthogonal decomposition of 7 =

XoBo +XiB1 + - XpfBp as

I 1% = 11 XoBo I+ 1 Xy By 112+ 1 XKoo 112 4 + | XpBr 17
17)

When the link function corresponds to observation weights
equal to one or a constant, a balanced design alone is a sufficient
condition to ensure this orthogonal decomposition, consistent with
the classical regression partitioning of the sum of squares
(Montgomery et al., 2021; Radhakrishna Rao and Toutenburg,
1999). For completeness of presentation, details of the derivations
under our framework are presented in Text S5 (Supplementary
Material). Consequently, in the context of GLM, a full orthogonal
decomposition of the sum of squares of the working response is
obtained by substituting Equation 17 into Equation 16 as

217 =1 XoBo I* + 11 X0 By I+ 11 X85 117

A2 sw 2
o | XpBe T+ IE7 ]

For example, for a two-factor model with main effects A and B
and interaction effect AB the GLM decomposition is

12117 = 1 XoBo II> + 1| XaBa 1> + 1| XpB3 II?
+ 1 XapBag P+ 117

In this study, we work under the assumption of a balanced
design and a saturated model, which enables orthogonal
decomposition and facilitates interpretable effect estimation
within the GLM-ASCA framework described in Section 2.1.1.
Although this assumption is strong, it is frequently satisfied in
well-controlled experimental settings, particularly in randomized
factorial designs, where balance is intentionally maintained to
ensure equal representation of treatment combinations, minimize
confounding, and support orthogonal design structures that allow
precise and independent estimation of factor effects. We also
observed that incorporating an offset term in the GLM violates
the orthogonal decomposition property. As part of our ongoing
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research, we are developing extensions to the GLM-ASCA
framework to accommodate unbalanced designs and non-
orthogonal decompositions, with the goal of increasing its
applicability to more diverse and complex experimental settings.

2.3 GLM for microbiome data analysis

Analyzing microbiome datasets from high-throughput
sequencing presents challenges due to overdispersion, zero
inflation, non-normality, and compositionality. We addressed
these issues using generalized linear models (GLMs) with a
Tweedie family of distributions—one of the more flexible and
general families for count and positive continuous data analysis.
Compared with negative binomial-based models (Love et al,
2014b; Robinson et al., 2010), which are sensitive to zero
inflation, and zero-inflated models (Zhang et al., 2016b), which
require separate components for modeling excess zeros and
abundance, the Tweedie GLM offers an integrated approach that
inherently accommodates both zero and nonzero values within a
single framework. This eliminates the need for an additional zero
inflation term or arbitrary data imputations. Furthermore, the
Tweedie model avoids the necessity of adding pseudocounts (Xia,
2023), which is typically required when applying log transformation
in Gaussian-based models.

The Tweedie distribution is parameterized by the mean (u),
dispersion (¢), and power parameter (p), and it yields several well-
known distributions for specific values of p, such as Gaussian (p =
0), Poisson (p = 1), gamma (p = 2), inverse Gaussian (p = 3), and
compound Poisson-gamma (1 < p < 2). In particular, the Tweedie
compound Poisson-gamma distribution has a point mass at zero
and a skewed distribution on the positive real line, making it
suitable for modeling count and positive continuous data with
excess zeros, such as microbiome sequence count data (Mallick
et al, 2022). This distribution has been applied for differential
expression analysis of single-cell RNA sequencing (scRNA-seq)
data (Mallick et al., 2022). The Tweedie compound Poisson-
gamma distribution (Dunn and Smyth, 2005; Lian et al,, 2023) is
given by

. = . 1 y‘ulip ,u27p
fOsu.,p) = aly; ¢, p) exp {* (1 5 2 _p) }

¢

where the form of a(y,¢,p) is found in (Dunn and Smyth, 2005).

We considered GLM with a Tweedie distribution for each
response, Y ~ Tweedie(y,$,p), with logarithm link function g(u) =
log(u) = n = x"B, then for given ¢ and p, the mean and variance to
be used in the GLM setting are given by Equation 18

E(Y)=p=g"'(n)
Var(Y) = gu” . (18)

Furthermore, the compositional nature of microbiome data—
resulting from differences in total sequence read counts (sequencing
depth or library size) across samples due to the sequencing process
—is addressed through normalization methods. Normalization is
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an important step in microbiome sequencing data analysis used to
remove bias caused by compositional effects or differences in
sequencing depths or library sizes between samples. Several forms
of normalization have been introduced (Xia, 2023) for microbiome
data, including scaling-based normalization, zero-inflation-based
normalization, and compositionally aware normalization. Some
commonly used scaling-based normalization procedures,
originally adopted from RNA sequencing (RNA-seq) data
analysis, include the median-of-ratios method (Love et al., 2014b)
and the trimmed mean of M-values (TMM) (Robinson et al., 2010).
In addition, methods such as the geometric mean of pairwise ratios
(Chen et al., 2018), Wrench normalization (Kumar et al., 2018), and
the geometric mean of positive counts (poscounts) (McMurdie and
Holmes, 2013) have been extended to account for zero inflation.
Scaling-based normalization involves obtaining a scaling factor that
adjusts raw counts to produce normalized counts or normalized
library sizes. Normalized library sizes, for example, are used as
offsets in generalized linear models (GLMs) to remove biases caused
by differences in sequencing depths (Love et al., 2014b; Robinson
etal, 2010; Mallick et al., 2022). On the other hand, compositionally
aware normalization methods commonly used include centered
log-ratio (CLR) transformation (Fernandes et al., 2014) and
additive log-ratio (ALR) transformation (Mandal et al., 2015).

In this work, the raw microbiome count data were normalized
using either the “poscounts” option in the DESeq2 R package (Love
et al., 2014a) or transformed using the modified centered log-ratio
transformation (mCLR) from the SPRING R package (Yoon et al.,
2019). By using normalized or transformed counts that account for
biases caused by compositional effects or variations in library size,
including an offset term is not necessary in the GLM. This approach
maintains the orthogonal decomposition outlined above within the
Tweedie GLM framework.

In general, the Tweedie GLM, which is appropriate for
modeling positive data with many zeros, can effectively address
the key characteristics of microbiome data. The Tweedie compound
Poisson-gamma model (1 < p < 2), implemented in the R packages
tweedieverse (Mallick et al., 2022) for the analysis of overdispersed
and zero-inflated single-cell RNA-seq count data and mcglm (Bonat
and Jorgensen, 2016), was used to estimate the model parameters.

2.4 Plant microbiome data: experimental
setup and microbial DNA extraction

To assess the impact of nitrogen availability on the bacterial
community composition of tomato roots, tomato seeds (Solanum
lycopersicum cv. Moneymaker) were grown in an aeroponic system
following the methodology outlined by Abedini et al. (manuscript
in preparation'). Briefly, the seeds underwent surface sterilization
and were pre-germinated at 25°C for 3 days. The pre-germinated
seeds were then transplanted into small baskets filled with

1 Abedini, D., White, F., Jain, R., Guerrieri, A, Schram, R., Dong, L., et al.
(2025). Multi-omics data analysis revealed a novel beneficial role for

strigolactones in tomato.
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greenhouse soil. These baskets were placed in a large bucket
equipped with an aeroponic system (Supplementary Figure SI).
The aeroponic system utilized one-quarter-strength Hoagland
solution, with a spraying duration of 15 s and a 10 min interval
between sprays. The greenhouse environment was maintained at
22°C with 60% relative humidity and an 8 h dark/16 h light
photoperiod. After 10 days of growth under standard control
conditions, nitrogen starvation was initiated. The plants were
randomly assigned to two groups: the control group, which
received one-quarter-strength Hoagland solution containing 5.6
mM nitrogen, and the nitrogen-starved group, which received one-
quarter-strength Hoagland solution without NH,NOj;. Sampling
occurred at 4, 8, 12, and 16 days after the start of nitrogen
starvation, with five replicates for both the control and nitrogen-
starved conditions. Because control and nitrogen-starved plants
were grown and harvested at the same time for each sampling point,
observed differences in the root microbiome between the two
conditions can be attributed to nitrogen deprivation rather than
to variations in growth stage.

Afterward, 45 mL of the collected Hoagland solution was
vacuum filtered through a 0.2 ym membrane filter. The resulting
filter, which retained the microbes, was placed into a PowerSoil kit
bead tube and processed using a bead mill Tissuelyser for 5 min.
Microbial DNA was then extracted following the PowerSoil
protocol. The extracted genomic DNA was amplified for bacterial
16S rDNA targeting the V3 and V4 regions using primers 341F (5'-
CCTACGGGNGGCWGCAG-3") and 805R (5'-
GACTACHVGGGTATCTAATCC-3"). Sequencing was
performed on the Illumina NovaSeq6000 SP platform at Genome
Quebec in Montreal, Quebec. Sample demultiplexing was carried
out at the Genome Quebec facility. The resulting sequences
underwent trimming, quality assessment, merging, and taxonomic
classification using the dadasnake pipeline (Weillbecker et al.,
2020). Taxonomic classification was performed with mothur
using SILVA SSU v138 as the reference database. After
preprocessing, the 16S dataset retained a total of 5300 amplicon
sequence variants (ASVs) across five replicates for each of the four
time points (4, 8, 12, and 16 days) under both control and nitrogen-
starved conditions, resulting in a total of 40 samples.

2.5 Simulation study

We conducted a simulation study to evaluate the effectiveness of
GLM-ASCA in identifying true positive taxa associated with main
and interaction effects. To achieve this, we generated synthetic
microbiome data based on experimental conditions consisting of
four time points, two treatment conditions, and eight levels for the
time-treatment interaction.

Our simulation approach used the R package SparseDOSSA2
(Ma et al., 2021), which operates independently of the distributional
assumptions underlying the Tweedie GLM. SparseDOSSA2 is a
statistical simulation framework that can be adapted to analyze
plant microbiome datasets, effectively capturing plant microbial
dynamics, as demonstrated previously in human microbiome
studies (Ma et al., 2021). SparseDOSSA2 generates realistic
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simulated data by parameterizing real-world template microbial
datasets to reflect key microbiome characteristics such as zero
inflation and overdispersion. For our study, we used the
experimental plant microbiome data described in Section 2.4 as a
template. First, SparseDOSSA2 was used to estimate taxon-specific
parameters with a Bayesian hierarchical model, including the means
and variances of nonzero log abundances, as well as the probabilities
of zeros ({107, yj = L,...,p). These estimated parameters were then
used to generate synthetic features from a zero-inflated, truncated
log-normal distribution. Accordingly, we produced null (baseline)
data consisting of 206 features and 20 samples under control
(nitrogen-rich) conditions. Strict filtering criteria were applied to
retain features with at least 10 counts in a minimum of five samples.

Next, to simulate taxa with differential effects, we incorporated
the plant microbiome experimental conditions, which included the
main effects growth condition (control and N-starvation) and time
(4, 8, 12, and 16 days), as well as the interaction effect between
growth condition and time. We then selected 45 of the 206 null taxa
with a relative abundance of at least 20% to be spiked-in as having
“true” differential main and interaction effects with known effect
sizes (log-fold differences). Of the 45 taxa with “true” differential
effects, 20 were assigned growth condition main effects (), 15 were
assigned time effects represented by three parameters (53, 53, Ba),
and 10 were assigned growth condition x time interaction effects
represented by three parameters (f5, B, B7). The effect size
parameter values were varied: half of the spiked features were
assigned positive effect sizes (f;,82 83 4,85 B B7) =
(2,3,1.5,1.5,2.8,2.4,1.4), and the other half were assigned negative
effect sizes (-2,-3,-1.5,—-1.5,-2.8,-2.4,—1.4). To account for these
effects on the data generation by SparseDOSSA2, the taxon-specific
mean log abundances (f;) used to generate null features were
modified to mean log abundances [i;; across samples for the
spiked-in features using

My
~—
Mean log abundance

across samples

= it "
~—
Taxon specific

B1 xy;
——

Growth conditon effect
mean log abundance

+ By xo; + BaXa; + Buxy; + Ps Xs; + BeXei + Brxn

Time effect

Interaction effect

where x represents values assigned through sum or deviation
coding for the factors: growth condition, time, and their interaction.
The spiked-in taxa are then generated based on zero-inflated
truncated log-normal distribution with (ﬂ,-j,cjz,ﬂ:j,i =L.,mj=1,
P).

The sample sizes were varied at 40, 80, and 160, with 5, 10, and
20 replications, respectively. We generated 100 simulated
abundance datasets, each containing 45 spiked-in taxa (“true
positives”) and 161 null taxa with no differential effect (“true
negatives”). Of the 45 spiked taxa, 20, 15, and 10 were true
positives for growth condition, time, and growth condition x time
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interaction effects, respectively. The efficacy of Tweedie GLM-
ASCA in identifying taxa with differential effects in high-
dimensional microbiome data was evaluated using these synthetic
datasets with known (“true”) effect sizes. We compared GLM-
ASCA with two recently developed methods for microbiome data
analysis, MaAsLin2 (Mallick et al., 2021) and LinDA (Zhou et al.,
2022). Both accommodate multiple continuous and categorical
covariates, unlike many differential abundance methods that
consider only a single categorical covariate. MaAsLin2 utilizes
generalized linear models to identify multivariable associations
between microbial features and metadata, whereas LinDA applies
linear models for differential abundance analysis, accounting for
compositional bias and inflated zeros in microbiome data.

3 Results
3.1 Simulation results

To evaluate the performance of GLM-ASCA in microbiome
data analysis, we conducted a simulation study generating 100
simulated microbiome datasets including 206 taxa with varying
total sample sizes (40, 80, and 160), as described in Section 2.5. After
fitting GLM-ASCA, BH-adjusted p-values were used to classify taxa
as true positives (TP), false positives (FP), true negatives (IN), and
false negatives (FN). Performance was evaluated based on
sensitivity (statistical power), specificity, FDR, area under the
curve (AUC), Fl-score (F-score), and Matthews correlation
coefficient (MCC).

3.1.1 Performance of GLM-ASCA with different
normalization methods

We first evaluated the performance of GLM-ASCA using two
normalization methods: “poscounts” from DESeq2 and mCLR from
SPRING, incorporating permutation-based feature selection with
scaled leverages. Performance was assessed based on FDR control
and statistical power (sensitivity) to detect relationships between
spiked taxa and the effects of growth condition, time, and their
interaction. As shown in Figure 1, GLM-ASCA with DESeq2-based
normalization and scaled-leverage feature selection exhibited
superior statistical power compared with mCLR normalization,
particularly in scenarios with small sample sizes. However, both
normalization methods effectively controlled FDR at the nominal
5% level across all sample size settings. Detailed performance
measures of GLM-ASCA for individual main and interaction
effects are presented in Supplementary Figure S2.

3.1.2 Comparison of GLM-ASCA with alternative
methods

To further assess GLM-ASCA, we compared its performance
with MaAsLin2 and LinDA. In these comparisons, GLM-ASCA was
implemented using “poscounts” normalization, while MaAsLin2 was
applied with its default settings except for normalization, which was
adjusted to CSS (cumulative sum scaling) to address zero inflation in
microbiome data. LinDA was used with all default settings.
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FIGURE 1

Performance measures [false discovery rate (FDR) and statistical power (sensitivity)] for GLM—-ASCA using DESeqg2 (poscounts) and mCLR
normalizations, evaluated on simulated data derived from a template plant microbiome dataset. Boxplots are colored by total sample size. (A) With
both normalizations, GLM-ASCA with scaled-leverage—based permutation feature selection demonstrated mean FDR (green dots) close to the
nominal 5% level. (B) GLM-ASCA with DESeq2 (poscounts) achieved higher power in small-sample scenarios, whereas GLM-ASCA with mCLR

achieved higher power in large-sample scenarios.

Samples EE 40 E3 80 E3 160

GLM-ASCA MaAsLin2 LinDA
1.00 1 wﬂﬂﬁﬁ 1.00 T == 1.00 1 T “memem- gy
0757 0.75- 0.751
Qo
=
©
>
3
< 0.50 0.50 0.50
£
£
[ ]
o
0.25 0.25- 0.251
0.05 1 ;é --------------------------- o.os-m --------------------------- 0.057 QI -====ssssseaiassaanasasing
0.00 0.00- 0.00
L D D Y ¢ L & & QD W O L QD S Y @& L
C T g F0® Wit EF TP €
© & < 4 < £ & <
& R & R

FIGURE 2

Performance measures

Performance measures (FDR, statistical power [sensitivity], specificity, AUC, F1-score, and MCC) for GLM—-ASCA, MaAsLin2, and LinDA, evaluated on
simulated data derived from a template plant microbiome dataset. Boxplots are colored by total sample size. GLM-ASCA, MaAsLin2, and LinDA

demonstrated mean FDR (green dots) ¢
achieved higher power in small-sample scenarios.

Figure 2 presents the simulation results across multiple
performance measures. In our simulations, all three methods—
GLM-ASCA, MaAsLin2, and LinDA—demonstrated high statistical
power (Figure 2) when the sample size was large (e.g., n = 80 or n =
160), suggesting that each method can reliably detect true effects.
However, in small-sample settings, GLM-ASCA exhibited greater
power than MaAsLin2 and LinDA, indicating improved performance
with limited sample sizes. This improved performance is likely due to
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lose to the nominal 5% level while maintaining high statistical power, AUC, F1-score, and MCC. GLM-ASCA

its multivariate modeling framework, which captures shared patterns
across features and leverages the joint data structure to detect effects
even with few samples. Despite this difference in power, all methods
performed comparably on measures such as specificity, AUC, F1-
score, and MCC. Moreover, all three methods effectively maintained
FDR control at the nominal 5% level.

The low feature—feature correlations observed in the template
plant microbiome data (Supplementary Figure S15), particularly for
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large sample sizes, appear to favor MaAsLin2 and LinDA, since
these univariate methods perform optimally when features are
weakly dependent and sufficient data support stable parameter
estimation. Taken together, these findings suggest that while
MaAsLin2 and LinDA are robust choices for univariate analysis
in large-sample contexts, GLM-ASCA offers a notable advantage in
small-sample, structured experimental designs by leveraging
multivariate information.

We extended the simulation study using SparseDOSSA2 by
increasing the number of features from 206 to 1000 with varying
sparsity (proportion of zeros), while retaining the small-sample
scenario (n = 40) and the same data generation procedure. This
reflects common challenges in microbiome research, where datasets
often involve limited samples and many sparse features. As shown
in Figure 3, GLM-ASCA maintained robust performance under
these conditions, effectively controlling FDR at the nominal 5% level
while achieving moderately high statistical power. These findings
highlight the effectiveness of GLM-ASCA in detecting true features
and controlling false discoveries despite high dimensionality and
small sample sizes. In terms of AUC, F1-score, and MCC, all three
methods showed comparable performance in this small-

sample scenario.

3.2 Microbiome data analysis results

The Tweedie-based GLM-ASCA was applied to tomato root
microbiome data to identify microbes whose abundance was
significantly affected by nitrogen starvation over time. The design
matrix included growth condition with two levels (N-starvation:
nitrogen starved; control: nitrogen rich), time with four levels (4, 8,
12, and 16 days), and their interaction (growth condition x days).
The following generalized linear model was used to estimate the

10.3389/frmbi.2025.1584516

effect matrices:

log(u) = By + Bg - GrowthCondition + S, - Days + fp

- GrowthCondition x Days, (19)

with a logarithm link function relating mean microbial
abundance to the experimental factors. Normalized counts were
computed using poscounts normalization from the R package
DESeq2. The design matrix was coded using sum coding. Out of
5300 ASVs, 1009 ASVs were retained after filtering for a minimum
of 5 counts in at least 3 of the 5 replicates in each growth condition-
time combination. The design was balanced, comprising 40 samples
with 5 replicates for each condition and time point, and the GLM
model (Equation 19) was saturated, including all main and
interaction effects. Thus, two basic requirements for GLM-ASCA
were satisfied: balanced design and saturated model specification.

For each filtered feature, univariate GLMs were fitted using the
Tweedie distribution with the R packages tweedieverse and mcglm,
which allow estimation of the dispersion (¢), power (p), and regression
parameters (f3). Estimates of the Tweedie power and dispersion
parameters are shown in Supplementary Figure S3. The regression
parameter estimates ([3) and design matrix were then used to calculate
the effect matrices for the main effects of growth condition and time, as
well as their interaction. PCA was applied to each effect matrix to
obtain the score and loading matrices. Table 1 displays the percentages
of explained variation due to main and interaction effects, calculated
based on the adjusted response. The experimental conditions
accounted for ~88% of the total variation. Table 1 also includes p-
values from global tests of effects, computed using the Frobenius norm
of principal component score matrices (see Section 2.1.3), which
revealed significant main and interaction effects (p < 0.05).

One advantage of ASCA-based approaches is the ability to
visualize effects using score and loading matrices. Results are shown
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FIGURE 3

Performance measures (FDR, statistical power [sensitivity], specificity, AUC, F1-score, and MCC) for GLM—-ASCA, MaAsLin2, and LinDA, evaluated on
simulated data derived from a template plant microbiome dataset with 40 samples, 1000 features, and varying sparsity. Boxplots are colored by
performance measures. Compared with MaAsLin2 and LinDA, GLM-ASCA demonstrated mean FDR (green dots) close to the nominal 5% level while

maintaining moderately high statistical power
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TABLE 1 Percentage of explained variation in the adjusted abundance
response of the tomato microbiome data, accounted for by experimental
factors, using the Tweedie GLM-ASCA model.

Explained Permutation
Component o o

variation (%) p-values
Growth Condition 21.99 0.0001
Days 34.89 0.0001
Growth Condition x Days 30.87 0.0005
Residuals 12.25
Total 100.00

in Supplementary Figures S8-S14; Figures 4, 5. In these figures,
points represent principal component scores computed for the two
growth conditions at each time point. Lines connect scores across
successive time points to illustrate temporal dynamics in microbial
relative abundance. Error bars correspond to mean + 1 standard
deviation of the projected scores (Equation 6).

Because of the significant interaction effect between time and
growth condition, the main effects (Supplementary Figures S8-514)
should not be interpreted separately. Thus, we combined the main
effect of growth condition with the interaction effect of time
(GrowthCondition + GrowthCondition x Days). This, in
particular, allows for a more direct assessment of how the
microbial abundance in the control and N-starvation groups
changes over time during tomato growth. We applied PCA to the
combined effect matrix (GrowthCondition + GrowthCondition x
Days). Using the scaled leverage permutation test with 10,000
permutations, 121 ASVs that belong to 44 families were identified

10.3389/frmbi.2025.1584516

(Figure 4B, Supplementary Figure 54) to be significantly affected by
nitrogen starvation over time (adjusted p-value < 0.05). The first
two principal components from the combined effect matrix
(Figures 4, 5) accounted for 75.3% of the total variation. On the
first principal component, no significant differences were observed
between the average principal scores of the N-starvation and
control groups at day 4. However, beyond day 4, thedifference
between groups increased over time (Figure 4A), indicating
increasing divergence in microbial abundance between nitrogen-
starved and nitrogen-rich conditions.

From loading plots (Figures 4B, Supplementary Figures S4, S5),
families with positive loadings in the control group showed increasing
microbial abundance over time, whereas in the N-starvation group,
families with negative loadings showed increasing abundance. Families/
genera enriched under nitrogen starvation included Acidobacteriaceae
(Paludibaculum), Bdellovibrionaceae (Bedellovibrio), Burkholderiaceae
(Polynucleobator), Caulobactraceae (Asticcacaulis), Chitinophagaceae
(Terrimonas and Edaphobaculum), Comamonadaceae (Acidovorax,
Aquabacterium and Methylibium), Gallionellacea (Candidatus
Nitrotoga), Hydrogenophilaceae (Thiobacillus), Mycobacteriaceae
(Mycobacterium), Nocardioidaceae (Aeromicrobium and Nocardioides),
Opitutaceae (Opitutus), Pleomorphomonadaceae (Pleomorphomonas),
Pseudomonadaceae (Pseudomonas), Reyranellaceae (Reyranella),
Rhizobiaceae (AllorhizobiumNeorhizobiumPararhizobiumRhizobium,
and Mesorhizobium), Solimonadaceae (Solimonas), and
Sphingomonadaceae (Novosphingobium, Sphingobium and
Sphingomonas) include one or more species that showed significantly
increased abundance under nitrogen starvation, whereas families (genera)
such as: Acetobacteraceae (Acidisoma), Alcaligenaceae (Bordetella),
Burkholderiaceae (Burkholderia-CaballeroniaParaburkholderia, Robbsia

A B
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FIGURE 4

First principal component visualizing temporal variation in microbial abundance patterns across taxa under nitrogen starvation and control
conditions. (A) Scores of the first principal component are plotted for nitrogen-starved (green line) and nitrogen-rich (control; red line) conditions
over time (days). The trajectories represent overall trends in microbial abundance under each condition. (B) Loadings of the first principal
component, representing the contribution of individual microbial species, are displayed as bars colored by their bacterial families. Downward-facing

bars correspond to families with higher relative abundance under nitrogen-
bars correspond to families with higher relative abundance under nitrogen-

starved conditions (green trajectory in panel A), whereas upward-facing
rich (control) conditions (red trajectory in panel A). For microbial families

with multiple contributing species, individual species loadings are indicated by horizontal segments within the same vertical bar.
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FIGURE 5

Second principal component visualizing nonlinear temporal patterns in microbial abundance across taxa under nitrogen starvation and control
conditions. (A) Scores of the second principal component reveal a nonlinear pattern characterized by either a peak (for taxa with positive loadings)
or a dip (for taxa with negative loadings) around day 12 in both nitrogen-starved and nitrogen-rich (control) conditions. (B) Loadings of the second
principal component, representing the contribution of individual microbial species to this nonlinear pattern, are displayed as bars colored by their
bacterial families. These trajectories capture temporal fluctuations in microbial abundance not explained by the first principal component,
highlighting complex, taxa-specific responses to nitrogen availability throughout the experimental period.

and Pandoraea), Clostridiaceae (Clostridium), Comamonadaceae
(Thiomonas), Microbacteriaceae (Leifsonia), Oxalobacteraceae,
Rhodanobacteraceae (Rhodanobacter), and Sphingobacteriaceae
(Mucilaginibacter) include one or more species that showed a
significant increase in abundance under the control or nitrogen
availability condition. When multiple species contributed significantly,
loadings are represented by horizontal bars within each family.

In the second principal component (Figure 5), average scores
followed a nonlinear (parabolic) pattern of microbial abundance over
time. Under N-starvation, average abundance of Gallionellaceae,
Hydrogenophilaceae, and Parachlamydiaceae increased until day 12,
then sharply declined at day 16. Similarly, under control conditions,
Alcaligenaceae, Candidatus Kaiserbacteria, Clostridiaceae,
Microbacteriaceae, and Rhodanobacteraceae exhibited such curved
abundance profiles. The third and fourth principal components,
explaining ~26% of the remaining variation, are shown in
Supplementary Figures S6-S7.

Enrichment of bacterial genera under nitrogen starvation
highlights their potential roles in adapting to and mitigating
nitrogen limitation. Several taxa identified here have previously
been reported in nitrogen-related processes. For instance, species
within Terrimonas (Guo et al., 2024), Thiobacillus (Li et al., 2023),
Mycobacterium (Sellstedt and Richau, 2013), Pseudomonas (Wu
etal., 2023; Sanow et al., 2023), Sphingomonas (Videira et al., 2009),
Novosphingobium (Addison et al., 2007), Mesorhizobium
(Meneéndez et al.,, 2020), and Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium (You et al., 2021) are known nitrogen
fixers, with nifH genes detected in many studies. Similarly,
Candidatus Nitrotoga (Lucker et al., 2015; Boddicker and Mosier,
2018), Aquabacterium (Zhang et al, 2016a), and Sphingobium
(Boss et al,, 2022) are implicated in nitrogen cycling. These taxa
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may enhance nitrogen availability to the plant either by directly
fixing atmospheric nitrogen into plant-available forms such as
ammonium, by contributing to nitrogen mineralization processes
that convert organic nitrogen compounds into inorganic forms like
ammonium and nitrate (Philippot et al., 2013), or by adapting plant
development, such as root architecture (Abedini et al., manuscript
in preparation’).

We also observed an increase in Bdellovibrio (Bratanis et al.,
2020), a potential biocontrol agent. Increased Bdellovibrio
abundance may reflect a regulatory mechanism suppressing
pathogenic or competing bacteria, indirectly supporting beneficial
taxa and plant health.

To validate our findings, for example, Sphingobium was
identified as enriched under nitrogen deficiency. Isolation of a
Sphingobium strain from nitrogen-starved tomato roots, followed
by in vitro assays, confirmed that it can stimulate tomato growth
under nitrogen-deficient conditions (Abedini et al., manuscript in
preparation'). These findings suggest that nitrogen deficiency alters
microbial community structure, and that recruited taxa support plant
adaptation by enhancing nitrogen availability. Overall, the results
highlight the effectiveness of GLM-ASCA in identifying key microbial
taxa under specific experimental conditions, underscoring its
potential as a powerful tool for microbiome data analysis.

4 Discussion

Statistical analysis of high-dimensional, non-normal, and non-
linear data—such as those obtained from microbiome studies—and
incorporating experimental design elements such as treatments,
time, and interactions present challenges because traditional
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statistical methods often assume normality and may not be
appropriate for such datasets. Advanced statistical tools, such as
ANOVA simultaneous component analysis (ASCA/ASCA+), have
emerged as valuable approaches, providing insights into the main
sources of variability and facilitating interpretation. However,
adapting ASCA to count data with excess zeros, such as
microbiome data, necessitates novel approaches. This led us to
develop GLM-ASCA (generalized linear models—ANOVA
simultaneous component analysis), which integrates treatment
design elements and GLMs within a multivariate framework.

The simulation results demonstrated effective control over false
discovery rates, highlighting the potential of GLM-ASCA as a
robust feature selection tool. Application of GLM-ASCA to
microbiome data to assess the effect of nitrogen starvation on
tomato over time identified several bacterial families and genera
that exhibited increased abundance under nitrogen deficiency,
many of which have been implicated in nitrogen metabolism in
previous studies. The observed changes in microbial abundance
during nitrogen starvation suggest that plants modulate root
exudation patterns to selectively recruit beneficial microbial taxa.
These microbes contribute to nitrogen availability and support
plant growth through multiple complementary mechanisms,
including nitrogen cycling and mineralization, symbiotic and
free-living nitrogen fixation, root colonization coupled with plant
growth promotion, stress adaptation and stabilization of the
rhizosphere under nutrient-limited conditions, and microbial
community regulation and niche structuring.

For instance, the increased abundance of genera such as
Sphingobium, Pseudomonas, and Mesorhizobium suggests
potential mechanisms where these microbes enhance nitrogen
availability either through biological nitrogen fixation or
mineralization pathways. To further support and validate these
results, whole-genome sequencing and co-culturing assays were
conducted with Sphingobium sp. RS1, a strain isolated from
nitrogen-starved tomato roots. These analyses revealed several
plant growth-promoting traits, including the production of
phytohormones such as indole-3-acetic acid (IAA) and the ability
to mineralize organic nitrogen into plant-available forms (Abedini
et al., manuscript in preparation'). Although this targeted
validation experiment supported the role of specific taxa such as
Sphingobium, many other microbial taxa identified in the present
study as potentially involved in mitigating nitrogen deficiency
require further validation. Rigorous experimental confirmation is
necessary to determine their functional roles and assess their
effectiveness in tomato, a nonlegume crop, under both controlled
and field conditions. Once thoroughly validated, these results could
enable the development of targeted inoculants or synthetic
microbial consortia designed to improve plant growth and health
in nitrogen-limited environments. Ultimately, such bio-based
strategies have the potential to support sustainable agriculture by
reducing dependence on chemical fertilizers and promoting more
efficient nutrient use in crop production systems.

The results from both simulated and real data underscore the
utility of the GLM-ASCA framework as an effective tool for identifying
key microbial species responding to specific experimental conditions,
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treatments, or interactions. However, a crucial aspect of the current
development of GLM-ASCA is its reliance on data from balanced
experimental designs with model specifications that include all main
and interaction effects. We are currently working on expanding the
framework by incorporating different link functions and extending it to
more general scenarios, including balanced designs without
specification constraints and unbalanced designs.

Finally, with the growing importance of plant microbiome
research in sustainable agriculture and human health, developing
such statistical tools is crucial for identifying biologically important
microbes that play key roles in enhancing agricultural practices and
improving health outcomes. Moreover, the ability of GLM-ASCA to
effectively handle complex experimental designs and accurately
analyze microbial abundance patterns highlights its potential for
broader applications beyond plant microbiome research. GLM-
ASCA can be applied in various fields that require the analysis of
high-dimensional, compositional, and zero-inflated data with
complex experimental designs, including human microbiome
studies, other omics applications involving high-throughput
sequencing, and ecological studies.
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