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Recent studies on Fusaria associated with hazelnut have pointed out a role of
these fungi as both disease agents and endophytic symbionts, raising concern for
the possible mycotoxin contamination of kernels and derived products. Molecular
evidence has shown that previous classifications of these isolates as Fusarium
lateritium were incorrect, indicating that most of them instead belong to the
Fusarium citricola species complex (FCCSC). Based on a set of isolates collected
in Italy and Poland, the present work provides a phylogenetic analysis supported
by three species delimitation algorithms. The results confirm that all the available
hazelnut isolates belong to the FCCSC, and that the discrimination between three
currently accepted taxa in this species complex, namely F. aconidiale, F. celtidicola
and F. juglandicola, should be reconsidered. The inclusion in our analysis of 25
species identified in the closely related Fusarium tricinctum species complex
provides an indication that the statistical methods for species delimitation represent
a useful tool for checking the reliability of the species boundaries currently defined
in these fungi.

KEYWORDS

Fusarium citricola species complex, Fusarium tricinctum species complex, hazelnut
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1 Introduction

The genus Fusarium comprises a large and diverse group of filamentous ascomycetous
fungi that are ubiquitous in nature, colonizing soil, plant debris, and a variety of other
substrates. Many Fusarium species are recognized as major plant pathogens, causing
devastating diseases across a wide range of crops worldwide (Todorovi¢ et al., 2023). Recent
taxonomic studies have revealed that the genus Fusarium comprises more than 400
phylogenetically distinct species, grouped into over 30 species complexes and several
monotypic lineages (Hof and Schrecker, 2024). These advances, together with ongoing
revisions based on molecular data, continue to reshape the taxonomy of the genus through the
description of new species and the redefinition of phylogenetic relationships (Crous et al.,
2022; O'Donnell et al., 2022; Ulaszewski et al., 2025). Although morphological features provide
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valuable diagnostic information, their reliability for species-level
identification in Fusarium is limited by high phenotypic plasticity and
overlapping traits among species, often influenced by culture
This
convergence, or synapomorphy, where distantly related taxa share

conditions and environmental factors. morphological
similar characters, has historically complicated Fusarium taxonomy
and the species identification (Stepien, 2014; Manganiello et al., 2019;
Crous et al, 2022). The integration of molecular approaches,
particularly DNA barcoding and multilocus sequencing, has therefore
become essential for accurate species delineation, providing greater
resolution within cryptic or recently diversified lineages (Summerell,
2019; Sandoval-Denis et al., 2018; Lombard et al., 2021; Stoeva et al.,
2023; Kamil et al., 2025).

The economic impact of hazelnut (Corylus avellana) is
increasing worldwide, with an estimated global production of
1.15 million tons in 2023; Turkey is the leader country, producing
as much as 56% of shelled hazelnuts, followed by Italy with a
market share of about 9% (FAOSTAT; www.fao.org/statistics/en,
accessed on 30 November 2025). A major concern for product
storage and marketing is represented by fungi causing kernel
contamination with a wide array of mycotoxins, for which there
is increasing attention by the control authorities (Salvatore et al.,
2023). In this respect, the role by Fusarium spp. deserves more-
in-depth assessments in light of their reputation as producers of
mycotoxins, such as trichothecenes and enniatins, and the
increasing number of reports in association with this crop
(Munkvold et al., 2021; Gautier et al., 2020; Zimowska et al.,
2024). Indeed, Fusaria isolated from hazelnut represent a
meaningful example of how traditional morphology-based
taxonomic schemes are insufficient for accurate species
identification and have often led to misclassification. Early
investigations on the nut gray necrosis (NGN) affecting hazelnuts
in the Viterbo area (Central Italy) carried out in the first decade
of the 2000s identified Fusarium lateritium as the causal agent
(Vitale et al., 2011). However, genomic evidence from a more
recent study questioned this identification, highlighting a closer
affinity of these isolates with the Fusarium tricinctum species
(FTSC) 2021).
characterization of a new lineage related to the FTSC, designated

complex (Turco et al, Following the
as Fusarium citricola species complex (FCCSC) (Sandoval-Denis
et al., 2018), two endophytic isolates from hazelnut collected in
Poland were identified as members of this complex (Zimowska et
al., 2024). Although this inference was later confirmed after the
whole genome sequencing of one of these isolates (Becchimanzi
et al., 2025), the limited number of reference strains available at
that time did not allow to conclusively assign them to either
Fusarium celtidicola or Fusarium juglandicola. Similar uncertainty
regarding the separation between these species also emerged in a
recent phylogenetic study based on strains available from reputed
mycological collections, which had been classified as F. lateritium
and found to rather belong to either the FTSC or the FCCSC
(Costa et al., 2024). In this context, the availability of a broader set
of isolates from both Italy and Poland enabled us to perform a
more comprehensive phylogenetic reconstruction supported by
species delimitation analyses. These species delimitation methods
provide a valuable tool for resolving complex taxonomic
relationships and detecting cryptic diversity, as demonstrated in
other Ascomycota lineages (Liu et al., 2016; Bustamante et al.,
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2019; Maharachchikumbura et al., 2021; Becchimanzi et al., 2021;
Sklenaf et al., 2022; Dissanayake et al., 2024; Zapata et al., 2024).
In this framework, the present study aims to clarify the taxonomic
position of Fusarium isolates associated with hazelnut and to
evaluate the validity of the current species boundaries within the
E citricola species complex (FCCSC).

2 Materials and methods
2.1 Fusarium isolates

In May and June 2023, a field survey was carried out in three
hazelnut orchards located in the Viterbo area (Central Italy), to
investigate the presence of early NGN symptoms. Twenty five
symptomatic hazelnut samples, collected from cultivar ‘Nocchione’
and “Tonda Romana, were sealed in sterile plastic bags and brought to
the Plant Pathology Laboratory of the Tuscia University in Viterbo.
Briefly, hazelnut inner kernel sections were surface-sterilized with 3%
sodium hypochlorite for 3 min, rinsed twice with sterile distilled
water, and dried under laminar flow. One-centimeter sections from
both healthy and symptomatic tissues were aseptically placed onto
potato dextrose agar (PDA, Dinkelberg analytics, Gablingen,
Germany) plates and incubated at 25 + 1 °C for 5-7 days. The pure
fungal cultures were obtained through serial transfer of emerging
colonies onto fresh PDA plates and further used for morphological
and molecular analyses. For morphological characterization, single
hyphal tips were transferred to plates containing the standard PDA
and oatmeal agar (OA, Condalab, Madrid, Spain), which were
incubated at 25 °C in the dark. After 10 days, the morphology of the
colony was observed. Morphology of the conidia was examined by
growing the isolates on synthetic nutrient agar (SNA), prepared
according to Nirenberg (1976). Plates were incubated at 25 °C in the
dark at 100% relative humidity. Observations on the conidial
morphology and size were carried out at 100x magnification through
a microscope (Leitz).

In addition to those available from our previous study (Zimowska
etal., 2024), four more endophytic isolates conforming to the FCCSC
were collected from secondary branches of both hazelnut and small-
leaved linden (Tilia cordata) in the Krakdw area (Southwest Poland),
following the procedure described in the mentioned reference. The
details concerning the isolation sources and the GenBank accession
numbers of the DNA barcode sequences used in this study are
indicated in Table 1.

2.2 DNA extraction and PCR amplification
for molecular characterization

Genomic DNA (gDNA) was extracted from fresh, filtered
mycelium obtained from pure colonies grown in 50 mL tubes
containing potato dextrose broth (PDB) using the Plant Genomic
DNA Extraction Mini Kit (Fisher Molecular Biology, Rome, Italy).
Molecular characterization was carried out following published
protocols (O'Donnell et al., 1998; Liu et al., 1999; Hofstetter et al.,
2007), through amplification of the translation elongation factor
1-alpha (tef-1) and the second largest subunit of RNA polymerase
II (rpb2) gene regions, using the primers listed in Table 2. For each
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TABLE 1 Fusarium isolates obtained in this study and their DNA barcode
sequence GenBank accession numbers.

10.3389/fmicb.2025.1741069

TABLE 2 Primers used for the molecular characterization of the Fusarium
isolates.

Strain Origin tefl rpb2 Primer Sequences 5'-3’ Reference
number .
EF-1 5-ATGGGTAAGGA(A/G) O'Donnell et al.
FUS 3 Corylus avellana NGN, Italy PX244362 | PX244345 GACAAGAC-3’ (1998)
FUS 4 C. avellana NGN, Italy PX244363 | PX244346 EF-2 5-GGA(G/A)GTACCAGT (G/A) O'Donnell et al.
FUS 7 C. avellana NGN, Italy PX244364 | PX244347 ATCATGTT-3’ (1998)
FUS 8 C. avellana NGN, Italy PX244365 | PX244348 fRPB2-5f 5-GAYGAYMGWGATCAYTTYGG-3’ Hofstetter et al.
FUS 11 C. avellana NGN, Italy PX244366 | PX244349 (2007)
FUS 12 C. avellana NGN, Italy PX244367 | PX244350 fRPB2-7cR 5-GTA(A/G)TTCAT(C/T)AC(A/G) Liu et al. (1999)
FUS 13 C. avellana NGN, Italy PX244368 | PX244351 CCNGG-3'
FUS 14 C. avellana NGN, Italy PX244369 | PX244352
FUS 15 C. avellana NGN, Italy PX244370 | PX244353
RAXML-HPC v8.2.12 (Stamatakis, 2014), employing the
FUS 16 C. avellana NGN, Italy PX244371 | PX244354 . i
GTRGAMMALI substitution model and 1,000 bootstrap replicates. The
FUs 18 C. avellana NGN, ltaly PX244372 | PX244355 tree was visualized with FigTree v1.4.4' and further edited with
FUS 19 C. avellana NGN, Italy PX244373 | PX244356 Inkscape v0.92.2
FUS 21 C. avellana NGN, Italy PX244374 | PX244357 Species delimitation analysis was performed employing the
FUS 22 C. avellana NGN, Ttaly PX244375 | PX244358 distance-based Automatic Barcode Gap Discovery (ABGD), the
FUS 23 C. avellana NGN, Traly PX244376 | PX244359 Generalized Mixed Yule-Coalescent (GMYC) model, and the Poisson
Tree Processes method with multi-rate (mPTP) implementations,
FUS 24 C. avellana NGN, Italy PX244377 | PX244360 . ) . .
using RAXML output tree as input. In particular, the ABGD algorithm
FUS 25 C. avellana NGN, Italy PX244378 | PX244361 splits sequences based on break points in pairwise genetic distances
Hzk 18 C. avellana endophyte, Poland PX521117 | PX521113 (“barcode gaps,” Puillandre et al., 2012). The mPTP algorithm (Kapli
Hzk 28 C. avellana endophyte, Poland PX521118  PX521114 et al, 2017) inspects a substitution-based, non-ultrametric
Ti3 Tilia cordata endophyte, Poland PX521115 | PX521111 phylogenetic tree to detect changes in branching rates. These rates,
T T cordata endophyte, Poland PX521116 | PX521112 modeled as a Poisson process, occur randomly at a relatively constant

PCR reaction, 5 ng of gDNA was used as a template in a final
volume of 25 pL, containing 2 x PCRBIO HS Taq DNA Polymerase
(PCR Biosystems, UK) and 0.5 pM of both forward and reverse
primers. The thermal cycling program for tef-1, using primers
EF-1 and EF-2, consisted of an initial denaturation at 94 °C for
3 min, followed by 35 cycles of denaturation at 94 °C for 30,
annealing at 55 °C for 30 s, and extension at 72 °C for 30 s, with a
final extension at 72 °C for 5 min. For rpb2 amplification, using
primers fRPB2-5f and fRPB2-7cR, the program consisted of an
initial denaturation at 94 °C for 5 min, followed by 35 cycles of
denaturation at 94 °C for 60 s, annealing at 57 °C for 75s, and
extension at 72 °C for 60 s, with a final extension at 72 °C for
10 min. Two pL of the amplified products were analyzed by 1.2%
agarose gel electrophoresis, while the remaining products were
sent to Macrogen Europe (Milan, Italy) for Sanger sequencing.

2.3 Phylogenetic and species delimitation
analyses

All the collected Fusarium isolates were submitted to a detailed
phylogenetic analysis, along with 60 strains belonging to the FCCSC
and the FTSC whose sequences are available in the GenBank database
(Supplementary Table 1); E lateritium NRRL 13622 was included as
an outgroup. The original sequences were edited using UGENE v48.1
(Okonechnikov et al., 2012), concatenated, and aligned with MUSCLE
v3.8.31 (Edgar, 2004). The resulting alignment file was used as input
to construct a maximum likelihood (ML) phylogenetic tree with
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rate within species and more slowly between species, allowing the
algorithm to delineate species boundaries. The GMYC algorithm uses
a time-calibrated (ultrametric) tree to find the point where the
branching pattern shifts from splits between species to merge among
individuals of the same species; thus, it is really sensitive to recent
divergence when they tend to over-split. For the ABGD analysis, the
parameters were set to test variability (P) between 0.001 (Pmin) and
0.1 (Pmax), standard for fungal ITS or protein-coding markers
(Puillandre et al., 2012), with a minimum gap width of 0.1, employing
the Kimura 2-parameter model and 50 screening steps. For the mPTP
approach, 50 million generations were employed with MCM or ML
algorithm, with sampling every 1,000 generations, using the minimum
branch length calculated from each tree. For the GMYC analysis, an
ultrametric tree was constructed on BEAST2 v2.7.7 (Bouckaert et al.,
2014), setting the gamma site model with GTR + G + I as substitution,
the Yule prior with a relaxed molecular clock, and Markov Chain
Monte Carlo (MCMC) run for 50 million generations, sampled every
1,000 generations. Convergence and effective sample size (ESS) higher
than 200 was checked using Tracer v.1.7.2 (Rambaut et al., 2018) and
the maximum credibility clade tree was obtained with Treeannotator
v2.7.7 (Bouckaert et al., 2014) applying the mean heights parameter
and discarding the first 10% of the trees as burn-in period. The
resulting tree was then imported into the R environment and the
GMYC analysis was performed using the splits package using the
single threshold approach (Fujisawa and Barraclough, 2013).

1 http://tree.bio.ed.ac.uk/software/figtree/
2 https://inkscape.org
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3 Results
3.1 Morphological features

The hazelnut samples collected in orchards located in the Viterbo
area from NGN symptomatic plants showed the presence of orange to
light brown sporodochia on the fruit surface, indicating active fungal
growth; these fruiting structures contained numerous hyaline,
multiseptate, crescent-shaped macroconidia (Figure 1). The isolations
done from the inner kernel tissues consistently yielded Fusarium from
all the samples examined; a total of 17 isolates were recovered and
stored in pure culture for the subsequent assessments. Four more
Fusarium isolates exhibiting similar morphological features were
recovered in the Krakow area, respectively two from hazelnut and two
from linden tree, within the cooperative work in progress concerning
endophytic associates of forest trees (Nicoletti and Zimowska, 2023).
Notably, no symptoms referable to NGN were observed in the course
of inspections carried out in Southern Poland in summer 2025.

When grown in axenic culture on PDA, the morphological
characteristics of both pathogenic and endophytic isolates were
comparable and consistent with the description previously reported
for Polish isolates (Zimowska et al., 2024). On OA, radial growth
was more pronounced; however, sporulation was generally reduced,
and only minor differences in colony color and morphology were
observed (Figure 2). On SNA, abundant macroconidia were
produced from monophialidic conidiogenous cells. These conidia
were hyaline, multicellular, typically with three to five septa, slightly
curved and tapering toward both ends. The apical cells were more
distinctly curved, whereas the basal cells exhibited a characteristic
foot-shaped morphology (Figure 3). Throughout the 14-day
incubation period, no pigmentation of the medium was detected,
and microconidia were not produced. Chlamydospores were absent
in the Italian isolates, whereas they were consistently observed in
all the Polish isolates examined (Figure 4). The relevant
morphological features as assessed in comparison with the
descriptions of the reference FCCSC species, and reported for
homogeneous groups of isolates, are resumed in Table 3.

10.3389/fmicb.2025.1741069

3.2 Phylogenetic and species delimitation
analyses

The phylogenetic analysis based on the selected DNA markers
(Figure 5) confirmed that all strains analyzed belong to the Fusarium
citricola species complex (FCCSC), although they exhibit a certain
degree of intra-clade variation. The 17 strains collected from the Viterbo
area are positioned in the lower portion of the dendrogram and form
four main clusters. The first cluster consists exclusively of isolate FUS 25;
the second includes the type strain of E aconidiale together with isolate
PT, previously assigned to the FTSC (Turco et al.,, 2021); the third group
includes E celtidicola and the endophytic isolates from the Lublin area;
and the fourth occupies an intermediate position, encompassing
E juglandicola and the isolates from the Krakow area. As a whole, the
FCCSC and its related isolates are clearly separated from the rest of the
strains, reinforcing their distinction from the FTSC.

This separation is consistently supported by all the three independent
species-delimitation algorithms (Figure 5). In fact, both mPTP and
ABGD assigned all the 21 isolates to a single species-level unit, whereas
GMYC identified three distinct entities. The first GMYC group
comprised a single NGN isolate (FUS 25), which forms an independent
lineage congruent with its unique placement in the phylogenetic tree.
The second group included eight Italian NGN isolates, all the Polish
isolates, and the strains identified as E celtidicola and E juglandicola. The
third cluster encompassed the remaining NGN isolates, including isolate
PT, isolate IHEM 28077, and the type strain of E. aconidiale. All the three
delimitation methods consistently recognized E citricola and E salinense
as distinct species, but the placement of isolate ZLVG982 was discordant.
In the ABGD analysis this isolate grouped with E salinense, whereas in
both mPTP and GMYC it formed an independent lineage, supporting
our earlier inference that it may represent a separate, as-yet undescribed
species (Zimowska et al., 2024).

Within the FTSC, the three algorithms are generally concordant,
consistently recovering well-supported clades corresponding to
E acuminatum, E tricinctum, F torulosum, E reticulatum,
F. avenaceum, and E gamsii. Minor discrepancies concern the
discrimination among E iranicum, F. flocciferum and FTSC 24,

FIGURE 1
Symptomatic hazelnuts showing Fusarium sporodochia and macroconidia.

Sy,
)
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PDA

OA

FIGURE 2

Colony morphology of representative isolates on PDA and OA after 10-day incubation at 25 °C.

FUS 21 Hzk 18

FUS 18

50pm

FIGURE 3

Morphology of macroconidia of isolate FUS 21, Hzk 18, FUS 18, and FUS 25 after 2-week incubation on SNA at 25 °C

which were grouped as a single taxon by all three delimitation
methods, as well as isolate FTSC 21, which clustered together with
E avenaceum into a single operational unit in the GMYC analysis.
Also noteworthy was the case of FTSC 25, represented by a single
strain, which was placed in an intermediate position at a seemingly
equal phylogenetic distance from both the FCCSC and the other
FTSC lineages. This finding, consistent with our previous
phylogenetic results (Becchimanzi et al., 2025), deserves further
examination if additional isolates belonging to this provisional
taxon become available.

3.3 In-depth investigation of K2P genetic
distance

Pairwise Kimura 2-parameter (K2P) distance matrices derived

from the ABGD analysis confirmed a clear discontinuity between the
FCCSC and FTSC species complexes (Supplementary Figure 1).

Frontiers in Microbiology

Inter-complex distances ranged from 0.0614 to 0.0955, with a median
of 0.0767, delineating a clear barcode gap that separates the two
complexes (Supplementary Table 2). By contrast, intra-complex
distances were much smaller: within the FTSC, distances were higher
(Q3 =0.0406, i.e., the 75th percentile of the dataset, meaning that
75% of all pairwise distances are smaller than this value and 25% are
larger; max = 0.0560), reflecting greater internal structuring
associated to several distinct, recognized species-level entities.
Within the FCCSC, values remained very low, with a median of
0.0036, Q3 of 0.0229 of 0.0279
(Supplementary Figure 2; Supplementary Table 2). These results

and max distance
confirm a strong genetic separation between the two complexes, with
no overlap between their intra- and inter-group distance
distributions. This absence of overlap represents a clear “barcode gap”,
quantitatively reinforcing the distinct evolutionary identity of the
FCCSC and its separation from the FTSC.

When going deeper into the FCCSC, the K2P distance matrix
revealed a cohesive but internally structured lineage composed of

frontiersin.org
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TABLE 3 Main morphological characters of the groups of isolates delimited in the phylogenetic analysis in comparison with the related FCCSC species.

Species/strains

Colony description

Macroconidia

Microconidia

Clamydospores

(Crous et al., 2022)

wooly to cottony with radial patches of
white aerial mycelium, reverse white to

pale rosy buff

moderately curved, tapering toward
the base, apical cell equally sized
than the adjacent cell, curved to
hooked; basal cell well developed,
foot-shaped, rarely papillate

Hznl, Hzn5 Colony @ after 7 days on PDA: 37 mm; Mostly 3-4 septate, hyaline, Absent Chlamydospores abundant, formed
on OA: 75 mm; aerial mycelium on unequally curved; apex pointed, quickly mainly in chains, but also
PDA abundant and dense, floccose to base foot-shaped, poorly developed. single or paired, smooth-walled,
wooly with crenate margin, white- Abundantly formed at intercalary, globose-subglobose to
cream; reverse salmon-orange. Dark monophialidic conidiogenous cells pyriform
gray sclerotia-like structures visible in
30-day old cultures
FUS 3, FUS 11, FUS 13, Colony @ after 7 days on PDA: 34 mmy; Abundantly formed at Absent Absent
FUS 14, FUS 15, FUS 21, on OA: 81 mm; aerial mycelium on monophialidic conidiogenous cells
FUS 23, FUS 24 PDA dense, floccose to wooly with on SNA, hyaline, with an average of
irregular margin, white-cream; reverse, 4-5 septa, slightly curved, tapered at
light salmon with dark areas in the the ends; apical cells more curved,
center. On OA abundant white floccose basal cells foot-like shaped
aerial mycelium produced with dark
sclerotia, cream colored on the back
Hzk 18, Hzk 28, Ti 3, Ti Colony @ after 7 days on PDA: 35 mm; Mostly 4-5 septate, hyaline, slightly Absent Chlamydospores formed in older
17 on OA: 80 mm; aerial mycelium on curved; apex pointed, base foot- cultures mainly in chains, but also
PDA dense, floccose to wooly with shaped. Abundantly formed at single or paired, smooth-walled,
irregular margin, white-cream; reverse monophialidic conidiogenous cells intercalary, globose or subglobose
salmon-orange. Dark gray sclerotia-like
structures visible in 30-day old cultures
FUS 4, FUS 7, FUS 8, Colony @ after 7 days on PDA: 34 mmy; Abundantly formed at Absent Absent
FUS 12, FUS 16, FUS 18, on OA: 81 mm; aerial mycelium on monophialidic conidiogenous cells
FUS 19, FUS 22 PDA dense, floccose to wooly with on SNA, hyaline, with an average of
irregular margin, white-cream; reverse, 3-4 septa, slightly curved, tapered at
light salmon with dark areas at the the ends; apical cells more curved,
center. On OA abundant white floccose basal cells foot-like shaped
aerial mycelium produced with dark
sclerotia, cream colored on the back
FUS 25 Colony @ after 7 days on PDA: 32 mmy; Abundantly formed at Absent Absent
on OA: 79 mm; aerial mycelium on monophialidic conidiogenous cells
PDA dense, floccose to wooly with on SNA, hyaline, with an average of
irregular margin, white-cream; reverse, 4 septa, sporadically with 5 septa,
light salmon with dark areas at the slightly curved, tapered at the ends;
center. On OA abundant white floccose apical cells more curved, basal cells
aerial mycelium produced with dark foot-like shaped
sclerotia, cream colored on the back
Fusarium celtidicola Colony @ after 7 days on PDA: 2.5- 3-5-septate, hyaline, naviculate to Absent Chlamydospores ellipsoidal to
(Shang et al., 2018) 4 mm; aerial mycelium on PDA white to | falcate, beak at the base pyriform, single or chain inter the
yellowish or vinaceous, edge crenate, flat hyphae
or effuse. Colonies white above, reddish
at the center, reverse reddish-white
Fusarium juglandicola Colonies on PDA white to pale luteous (1-)3-4(-5)-septate, falcate, Absent Absent
(Crous et al., 2022) on surface and reverse moderately dorsiventrally curved
with almost parallel sides, tapering
toward the ends, with a blunt to
slightly hooked, somewhat curved
apical cell and papillate to well-
developed, foot-shaped basal cell
Fusarium aconidiale Colonies on PDA white to rosy buff, flat, | 3(-5)-septate, falcate, straight to Absent Absent
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FIGURE 4
Chlamydospores of isolate Hzk 18 produced on SNA after 2-week
incubation at 25 °C. Scale bar = 10 pm.

four genetic groups: F citricola, F. salinense, Fusarium sp.
ZIVGY982, and a larger assemblage including F aconidiale,
E celtidicola, F. juglandicola, and the Italian and Polish isolates
(referred to as “the FCCSC comprehensive taxon, or FCCSC-
CT?”), in line with our previous phylogenetic consideration.
Pairwise distances within these groups were uniformly low, with
no variation observed in F citricola (all distances = 0, indicating
that these five isolates are genetically identical for the loci
analyzed), and slight variability observed in F salinense
(median = 0.0048; max = 0.0048) and in FCCSC-CT isolates
(median = 0.0024; Q3 = 0.0036, max = 0.0060). Between-group
comparison within the FCCSC also yielded very low divergence,
with median values ranging from 0.016 to 0.023 K2P
(Supplementary Table 2). The smallest inter-group distance was
recorded between ZLVG982 and F salinense (median = 0.0144),
whereas the largest occurred between E citricola and F salinense
(median = 0.0230). The FCCSC-CT consistently showed low
differentiation from all the other FCCSC
(median = 0.0168-0.0229). Their internal

(median = 0.0024) fall well within the expected intraspecific

subgroups
distances

range, while their inter-group divergences (0.017-0.023) suggest
incipient speciation rather than established separation.
Collectively, these data indicate that the FCCSC-CT constitutes a
single, genetically cohesive lineage distinct from, but closely
related to, F citricola, F. salinense and ZLVG982; together, they
form a compact species complex characterized by shallow internal
divergence and strong inter-complex separation. Regarding FTSC
25, which is intermediate between FTSC and FCCSC, the distance
indicates that this provisional taxon is genetically closer to the
former complex. Specifically, the distances from the FTSC were:
distance = 0.0333, distance = 0.0560, and
median = 0.0430; while higher values could be determined toward
the FCCSC: min distance = 0.0674, max distance = 0.0739, and
median = 0.0700.

min max
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4 Discussion

The genus Fusarium includes a highly diverse assemblage of plant
pathogens, endophytes, and saprotrophs occupying a wide range of
ecological niches. Its remarkable morphological plasticity and the
frequent occurrence of cryptic species have long complicated species
delimitation (Summerell, 2019; Crous et al., 2022). Traditional
morphology-based identification is often unreliable, as diagnostic
traits may vary with culture conditions or overlap among distinct taxa.
The introduction of molecular tools has greatly refined Fusarium
taxonomy, leading to the recognition of several major species
complexes through multilocus phylogenetic approaches (O'Donnell
etal.,, 2015; Lombard et al., 2015). However, despite these advances,
many recently described species are still based on a limited number of
isolates, raising questions about the robustness of their typification
and the stability of species boundaries.

Among these, the FCCSC represents one of the most recently
delineated and least resolved groups, characterized by low interspecific
divergence and overlapping morphological features (Crous et al., 2022;
Costa et al., 2024). Within this framework, the present study provides
an integrative assessment of FCCSC isolates from Italy and Poland
associated with hazelnut, combining morphological observations with
phylogenetic inference and three complementary species delimitation
methods.

Consistent with previous uncertainties, morphological variation
was observed among the analyzed isolates, none of which fully
matched the original descriptions of E celtidicola, E. juglandicola, or
E aconidiale (Shang et al., 2018; Crous et al., 2022). Moreover, the
uneven micromorphological traits did not correspond clearly to their
phylogenetic distribution. The cluster centered on the type strain of
E celtidicola included isolates lacking microconidia and medium
pigmentation, with only a few producing chlamydospores. Conversely,
the four endophytic isolates associated with E juglandicola all
produced chlamydospores, a feature absent from the species’ original
description. Finally, the eight isolates related to E aconidiale were most
consistent with its morphological profile, although they exhibited
macroconidia with a lower average number of septa.

The examination of phylogenetic relationships through genetic
distances and species delimitation analyses does not support the
these within  the
FCCSC. Delimiting species boundaries in recently diversified fungal

current discrimination among species
lineages is inherently challenging, particularly in complexes such as
the FCCSC, where low sequence divergence, incomplete lineage
sorting, and possible gene flow can obscure the evolutionary patterns,
as observed in other Fusarium species complex (O’Donnell et al.,
2009; Vu et al., 2019). To explore these boundaries, we applied three
complementary species delimitation algorithms, ABGD, mPTP, and
GMYC, each based on distinct theoretical and evolutionary
assumptions. Although they produced partially divergent outcomes,
their combined results provide a coherent picture of a genetically
cohesive yet internally structured species complex.

The more conservative ABGD and mPTP methods identified a
single species-level taxonomic unit including all isolates within the
FCCSC, since they failed to detect any significant gap and branching
rate shifts within the FCCSC isolates, while clearly discriminating
between the two complexes.

Despite being designed to infer species boundaries using a
single-locus gene tree, the GMYC model (Fujisawa and
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FIGURE 5
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Species delimitation of the combined tef-1 and rpb2 sequences of 81 Fusarium isolates according to ABGD, mPTP, and GMYC algorithms. Bootstrap
values indicating the robustness of the clustering are reported as node values >70.

Frontiers in Microbiology

08

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1741069
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Brugneti et al.

Barraclough, 2013) has been extensively used in defining species
boundaries in several taxonomic groups using concatenated loci
(Liu et al., 2016; Luo et al., 2018; Hilario et al., 2021; Dissanayake
et al., 2024; Zapata et al, 2024). Here, GMYC splits the
FCCSC-CT into three subgroups, most likely identifying
subpopulation structures, rather than real differentiated species.
This finer subdivision is consistent with the model’s sensitivity to
shallow population-level divergence and has been frequently
reported in other Fusarium complexes where recent
diversification conceals clear species boundaries (Lombard et al.,
2015; Crous et al., 2022). The different outcomes among the three
algorithms reflect their distinct underlying principles. While the
distance- and rate-based methods (ABGD and mPTP) emphasize
clear genetic discontinuities, the coalescent-based GMYC is more
sensitive to recent divergence and population structure. The
slight over-splitting observed with GMYC has similarly been
reported in other Fusarium complexes such as the F. incarnatum-
equiseti and F. tricinctum s.c. (Marin-Felix et al., 2019; Xia et
al., 2019).

Quantitative analyses of K2P distances independently
supported the species delimitation results, confirming a clear
genetic gap between the FCCSC and the FTSC. Inter-complex
distances were more than three times higher than those observed
within the FCCSC, underscoring their distinct evolutionary
separation.

Within the FCCSC, genetic variation remained minimal:
intra-group distances were an order of magnitude lower
(median = 0.002-0.005) than the interspecific thresholds typically
recognized for Fusarium (0.04-0.06; Vu et al., 2019), indicating
strong internal cohesion. Four main genetic clusters were
identified, F citricola, F. salinense, Fusarium sp. ZLVG982, and the
broad FCCSC-CT assemblage. The latter group displayed very
shallow divergence consistent with intraspecific variability rather
than distinct speciation, in line with the GMYC results. Isolate
ZIVG982 from Slovenia occupied an intermediate position,
suggesting an incipient lineage possibly reflecting early divergence
or limited geographic isolation. Overall, the concordant outcomes
of ABGD and mPTP, supported by low K2P distances, indicate
that the FCCSC represents a single monophyletic lineage with
shallow but structured intraspecific diversity.

However, as the analyses were based on two loci (tefI-a and
rpb2) and on a defined number of Italian and Polish isolates,
additional genomic data, together with an expanded sampling
across hosts and regions, will be essential to determine whether
the observed variability reflects early speciation or polymorphism
within a recently diversified species complex. To the best of our
knowledge, the present study was comprehensive of all the strains
currently ascribed to the three species in question within the
FCCSC. Fusarium juglandicola has also been identified in Poland
in leaves of mistletoe (Viscum album subsp. austriacum)
(Jankowiak et al., 2023) and on diseased stems of pedunculate oak
(Quercus robur) seedlings (Jankowiak et al., 2025), as well as in
Slovakia on larvae and inside galls of the cecidomyid midges
Asphondylia echii and Lasioptera rubi (Pyszko et al., 2024);
unfortunately, the pair of marker sequences required for
phylogenetic assessments were not available in GenBank for
including these strains in our analyses. Despite these limitations,
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the close genetic relatedness of isolates collected from both
cultivated and wild hosts suggests that members of the FCCSC are
widespread and potentially share an endophytic phase in hazelnut.
In line with the recent observations by Costa et al. (2024), many
strains previously classified as F lateritium likely belong to the
FCCSC, reinforcing the need for a comprehensive taxonomic
revision and a re-evaluation of the species boundaries among
E celtidicola, F. juglandicola, and F. aconidiale.

5 Conclusion

The results of this study provide new insights into the
taxonomy of the FCCSC, demonstrating that the currently
accepted separation among FE aconidiale, F. celtidicola, and
E juglandicola is not supported by molecular and distance-based
evidence. Phylogenetic reconstruction, species delimitation
analyses (ABGD, mPTP, and GMYC), and pairwise K2P distance
comparisons consistently indicate that these taxa, together with
the Italian and Polish isolates, form a single, genetically cohesive
lineage characterized by shallow but structured intraspecific
diversity. While ABGD and mPTP converged on a single species-
level unit, GMYC detected limited substructure likely reflecting
population-level differentiation or incomplete lineage sorting.

These findings highlight that, although the FCCSC is clearly
distinct from the FTSC, internal diversification within the FCCSC
remains below the interspecific thresholds typically recognized for
Fusarium. The observed genetic cohesion suggests that several
taxa currently regarded as separate species may instead represent
variants of a single evolutionary lineage. More broadly, the study
illustrates that while species boundaries in some Fusarium s.c. are
robust and reproducible across methods, others remain
ambiguous. This underscores the need to expand taxon sampling
and adopt integrative approaches that combine molecular,
morphological, and ecological data. In this respect, distance-based
and model-based species delimitation algorithms provide a
valuable framework for reassessing recently described taxa and for
verifying the stability of species boundaries as the ongoing
exploration of Fusarium diversity continues.
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