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Industrial wastewater is a significant contributor to coastal pollution. Heavy metal 
contamination poses a substantial risk to the ecological integrity of an area by 
altering the structure and function of bacterial communities. This study systematically 
analyzed the distribution of total and arsenic (As) fractions in surface and sediment 
profiles, as well as the response of bacterial communities to As contamination in 
industrially polluted estuarine areas. The results revealed significant spatial variability 
in As concentrations across the sampling sites, with the highest As level detected 
at the sewage discharge outlet, reaching 979.05 ± 106.17 mg/kg. A pronounced 
decline in total As (T-As) concentrations was observed with increasing sediment 
depth, underscoring the predominant contribution of industrial emissions to 
sedimentary As accumulation. A significant positive correlation between As and 
iron (Fe) suggested that As retention was likely to be primarily associated with 
amorphous Fe minerals. Notably, bioavailable As (B-As) constituted 72.92 ± 4.15% 
of the T-As in sediments, highlighting its potential ecological impact. Further 
analysis demonstrated that T-As, B-As, and strongly adsorbed As (AsPO4) were key 
determinants of bacterial community diversity and composition. It also found that 
sediment As levels correlated significantly with the abundance of a major bacterial 
phylum, the expression of arsenic resistance genes, and the functional potentials 
of bacterial communities involved in nitrogen (N), sulfur (S), and phosphorus (P) 
cycling. Overall, this study shows that As contamination in industrially polluted 
estuarine areas exerts a profound influence on the abundance, diversity, and 
functional potential of bacterial communities.
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1 Introduction

The accelerated industrialization of coastal regions has led to a substantial release of 
arsenic (As) into the marine environment (Candeias et al., 2015; Li et al., 2013; Sun et al., 2019; 
Liu et  al., 2025). As a toxic metalloid, As is notable for its persistence, biotoxicity, and 
involvement in biogeochemical cycling. Its widespread environmental distribution poses 
significant risks to both human and ecosystem health, garnering considerable attention, 
particularly regarding its behavior in marine sediments (Christophoridis et al., 2009; Larrose 
et al., 2010; Sundaray et al., 2011; Varol, 2011). It has been classified as a priority contaminant 
in water resources (CNEMC, 1990; USEPA, 1998), and its transport in aquatic systems is 
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influenced by environmental factors such as dissolved oxygen, pH, 
and reaction thermodynamics (Weber et al., 2010). Over time, As 
accumulates in sediments, where trivalent As (As(III)) and pentavalent 
As (As(V)) are immobilized, leading to significantly higher As 
concentrations in sediments compared to overlying water (Bai et al., 
2016; Unlu et al., 2008). Furthermore, As species in sediments exhibit 
varying bioavailability and toxicity. For example, phosphate-
extractable and carbonate-bound As fractions can equilibrate with the 
aqueous phase, becoming more bioavailable, while As(III) is more 
toxic than As(V) (Cummings et al., 1999; Harvey et al., 2002; Singh 
et al., 2005). These findings underscore the need for further research 
to elucidate the distribution, speciation, and ecological impacts of As 
in estuarine and coastal environments.

Recent studies have highlighted the intricate relationship between 
arsenic and nutrient cycles, particularly the synergistic relationship 
between denitrification and arsenic oxidation in estuaries (Canfield et al., 
2010; Zhang et  al., 2020). These biogeochemical processes are 
predominantly driven by microorganisms, which play a pivotal role in 
mitigating arsenic toxicity through adsorption, transformation, and by 
oxidizing As(III) to the less mobile As(V) (Sagova-Mareckova et al., 2021; 
Ayangbenro and Babalola, 2017; Guo et al., 2016). It has been 
demonstrated that key genera such as Thiobacillus spp. and 
Anaeromyxobacter spp. are capable of performing both As oxidation and 
nitrogen fixation simultaneously (Chen et al., 2024; Li et al., 2022a; Li et 
al., 2023). Such functional connections have been demonstrated to extend 
to other ecosystems; for instance, Zhang et al. (2025) have shown that 
heavy metal pollution enhances microbial metabolic potentials such as 
denitrification and phosphate uptake while identifying key host 
microorganisms that bridge elemental cycling and metal resistance. In 
addition, the coupling of nutrient cycles is system-dependent, as 
demonstrated in recirculating aquaculture systems where functional 
bacteria mediate the coordinated cycling of nitrogen and phosphorus (An 
et al., 2025). However, these essential microbial functions are susceptible 
to environmental stressors such as heavy metal contamination, which can 
reshape community structure and suppress activity (Chen et al., 2022; Ma 
et al., 2025; Tian et al., 2025). For instance, metal stress has been linked to 
reduced bacterial diversity and a shift toward metal-tolerant taxa (Ahmed 
et  al., 2020; Rajeev et  al., 2021), which ultimately results in the 
overwhelming of microbial antioxidant capacity and the degradation of 
their ability to process pollutants (Sun et al., 2018; Zeng et al., 2023). The 
dynamics of these microbial communities are further complicated by the 
inherent properties of the sediment, with community composition and 
diversity typically declining with depth and shifting in response to 
changing redox conditions and nutrient availability (Li Y. et al., 2024).

Jinzhou Bay has been identified as one of the most heavily polluted 
marine environments globally, with excessive heavy metal levels in its 
sediments (Fan et al., 2002; Wang et al., 2012). Estuarine areas within 
the bay exhibit the highest pollution levels, with contaminant 
concentrations decreasing toward the open sea, reflecting the 
significant impact of industrial activities (Li et al., 2012). Mercury (Hg) 
and cadmium (Cd) contamination in Jinzhou Bay sediments has been 
attributed to inadequate management of hazardous waste and 
wastewater (Li et al., 2018). The spatial and vertical distribution of 
heavy metals in these sediments has profound ecological implications, 
influencing microbial community diversity and contributing distinct 
ecological adaptation mechanisms. In particular, As has been identified 
as a key factor influencing microbial community composition in these 
sediments (Li Y. et al., 2024; Li Y. B. et al., 2024; Zeng et al., 2023).

In summary, the focus of this study is to understand arsenic (As) 
contamination in the sediments of industrially polluted estuarine areas. The 
primary objectives were to (1) assess the concentration and fractional 
distribution of arsenic (As) in sediments; (2) investigate the effects of As 
contamination on bacterial community structure and diversity; and (3) 
elucidate the role of As binding states in influencing microbial community 
dynamics. A total of 26 surface sediment samples (0–5 cm) were collected 
along an upstream-to-downstream gradient at the Jinzhou Bay outfall, 
alongside 33 profile sediment samples (0–60 cm) from three sites near the 
outfall. Unlike previous studies, which often focused on individual aspects, 
this work provides an integrated assessment for the first time in this heavily 
polluted estuary, linking multi-fraction arsenic speciation in both surface 
and profile sediments to bacterial community structure and functional 
genes encoding arsenic resistance and key biogeochemical cycles.

2 Materials and methods

2.1 Chemicals and reagents

Sediment standard samples (GBW07314 and GBW07436) and an 
As standard solution (GBW08611) were obtained from the Chinese 
National Standard Materials Center for calibration and quality control. 
All laboratory glassware and plasticware were soaked in 10% (v/v) 
HNO3 for at least 24 h and then thoroughly rinsed with deionized 
water. All chemicals were of analytical reagent grade, and all reagent 
solutions were prepared in deionized water. All results for solid-phase 
properties were on a dry-weight basis.

2.2 Sediment sampling

The study area was located in Jinzhou Bay, an area surrounded by 
highly industrialized regions, and which was identified as one of the 
most polluted coastal areas in China. A total of 26 surface sediment 
(0–5 cm) samples were collected in June 2019 (Figure 1), including seven 
sites upstream of the outlet (UP), four sites in the midstream of the 
sewage outlet (MI), eight sites located in the sewage outlet (SO), and 
seven sites located downstream of the sewage outlet (DO). Surface 
sediment samples were collected using a sterile stainless-steel spatula and 
placed in polythene sample bags. Furthermore, three vertical sediment 
columns were collected at the outfall sampling site (SO1, SO4, SO7) at a 
depth of 60 cm, with the sediment columns divided into 15 cm intervals. 
The sediments were categorized into four groups based on vertical 
sampling depths: C1 (0–15 cm), C2 (15–30 cm), C3 (30–45 cm), and C4 
(45–60 cm). Each group contained nine samples, with the exception of 
C4, which contained six samples. As delineated in Supplementary Table S1, 
the precise coordinate data is provided in meticulous detail. The samples 
were transported to the laboratory within 2 h. The sediment samples 
were subjected to freeze-drying and then ground in an agate mortar. 
Thereafter, the samples were passed through a 100-mesh sieve, 
thoroughly mixed, and stored in a desiccator in a sealed container.

2.3 Sediment geochemical analyses

A modified sequential extraction procedure was employed to 
investigate the chemical speciation and distribution of As in estuarine 
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sediments (Keon et al., 2001; Xu L. Y. et al., 2016) (Table 1). Sediment 
samples were sequentially extracted using phosphate, HCl, a reducing 
agent, and an oxidizing agent, and then digested with a strong acid to 
estimate As concentrations. This approach targeted five arsenic 
fractions: strongly adsorbed (AsPO4), acid-volatile sulfide/carbonate/
manganese oxide/amorphous Fe oxide coprecipitated (AsHCl), Fe oxide 
coprecipitated (AsRe), pyrite and organic matter-bound states (ASOX), 
and residual state (ASR), which were extracted sequentially. After each 
extraction, the samples were centrifuged at 4,000 rpm for 5 min, and 
the supernatant was filtered through a 0.22-μm membrane. All 
extractions were analyzed within 24 h.

For T-As determination, 0.2 g of freeze-dried sediment was 
digested with 8 mL of aqua regia (HNO3:HCl = 1:3) in a microwave 
digestion system (Milestone Ethos One) following standard protocol 
HJ 680–2013 (heating procedure detailed in Supplementary Table S2). 
As concentrations, including T-As and arsenite (As(III)), were 
measured using hydride generation atomic fluorescence spectrometry 
(HG-AFS, Haiguang, Beijing), while total Fe (T-Fe) was quantified via 

flame atomic absorption spectrometry (FAAS, Varian AA240, 
United States). The detection limits (DLs) for As were 0.01 μg/L for 
solutions and 0.01 mg/kg for sediments, with a lower measurement 
limit of 0.05 mg/kg. Recovery rates for As ranged from 95 to 105%. 
Analytical precision and quality were verified using Chinese national 
standard reference materials (GBW07314 and GBW07436). 
Additionally, 10% of the total samples were spiked for recovery testing, 
yielding recovery rates ranging from 95 to 114%.

2.4 DNA extraction and 16S rRNA gene 
sequencing

The total DNA from the sediments was extracted using the 
PowerSoil DNA Isolation Kits. The DNA quality and content were 
determined using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). The variable regions (V3-V4 
region) of bacterial 16S rRNA were amplified using the thermal 

FIGURE 1

Map of sampling sites in the study area.

TABLE 1  Sequential extraction process for As in sediments.

Step Fraction Extractant Condition

AsPO4 Strongly adsorbed As 1 M KH2PO4/KOH 20°C, 24 h in dark

AsHCl

As coprecipitated with AVS, carbonates, Mn oxides, and very 

amorphous Fe oxy(hydr)oxides
1 M HCl 20°C, 2 h in the dark

AsRe As coprecipitated with crystalline Fe oxyhydroxides
CBD solution (0.27 M sodium citrate and 0.11 M 

NaHCO3). Adding 0.5 g Na2S2O4·2H2O
85 °C for 15 min

AsOx As coprecipitated with pyrite and amorphous As2S3 16 M HNO3 20°C, 2 h

ASR Orpiment and remaining recalcitrant As minerals 16 M HNO3 + 30% H2O2

Heated until all solids 

dissolved
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cycler polymerase chain reaction (PCR) system with bacterial-
specific primer pairs 338F and 806R and then sequenced on the 
Illumina High-Throughput Platform of Mariobio Ltd. (Shanghai, 
China). The raw data were trimmed and quality-controlled using 
the QIIME2 software program, and then the DADA2 software was 
used to remove chimeras, yielding clean data for subsequent 
analyses. Representative amplicon sequence variants (ASVs) were 
assigned based on the SILVA database. Calculation of alpha 
diversity indices for bacterial communities. The metabolic potential 
of phylotypes was predicted using PICRUSt2, referencing the 
KEGG database (Douglas et al., 2020; Kanehisa et al., 2012).

2.5 Statistical analyses

Descriptive statistics for total and extracted As concentrations 
in sediments were performed using SPSS 25.0. The data 
processing, visualization, and result evaluation stages were 
conducted using Origin 2016. The bacterial 16S rRNA sequences 
of 59 samples had previously been subjected to sequencing, with 
detailed methods, community composition, and diversity 
described in other studies (Li Y. et al., 2024; Zeng et al., 2023). The 
data obtained were utilized in this study to analyze the effects of 
As contamination on the bacterial community. A Random Forest 
(RF) classification model was constructed using the RandomForest 
v.4.7.1.1 and rfPermute package in R software to examine the 
impact of total and fractionated arsenic (As) on microbial 
community diversity, with the random seed set to 123 and all 
other parameters set to their default values. To optimize the 
parameters, the random forest model was initially trained on 70% 
of the data, with the remaining data serving as a validation set to 
assess model accuracy. The final model is constructed using the 
following parameters: importance = TRUE, ntree = 500, 
nrep = 1,000. The significance of the model and cross-validation 

R2 values was evaluated based on 1,000 permutations of all 
datasets. The Mantel test was applied to evaluate the correlation 
between microbial community structure (Bray-Curtis distance) 
and As contamination, as well as microbial community shifts in 
sediments, with a permutation number of 999. Co-occurrence 
network analysis, implemented via the igraph v.1.5.1 package in 
R, was used to assess the Spearman’s correlation between As and 
operational taxonomic units (OTUs). When the |r| value exceeds 
0.6 and p < 0.05, the correlation was considered statistically 
significant, and the generated p-values were corrected for multiple 
testing using the false discovery rate (FDR) method (Benjamini-
Hochberg correction) (Benjamini and Hochberg, 1995). The 
Gephi platform was adopted to visualize correlations.

3 Results

3.1 Total As concentration in sediments

The concentration and distribution of T-As were investigated in 
surface and profile sediments from Jinzhou Bay. Spatial analysis of 
surface sediments revealed severe As contamination, with 
concentrations ranging from 10.60 mg/kg to 1308.22 mg/kg 
(Figure  2a). Mean T-As concentrations increased markedly from 
upstream (UP: 14.32 ± 1.80 mg/kg) to the sewage outlet (SO: 
979.05 ± 106.17 mg/kg), before decreasing downstream (DO: 
246.55 ± 43.44 mg/kg) (Figure 2a). The mean concentration at the 
outfall (SO) exceeded China’s marine sediment quality standard (GB 
18668–2002) by 48-fold, highlighting the severity of local pollution. 
Vertically, T-As concentrations decreased substantially with depth 
(Figure 2b). Mean concentrations were 737.32 ± 135.39 mg/kg in the 
surface layer (C1, 0–15 cm) and declined sharply to 14.17 ± 2.02 mg/
kg in the deepest layer (C4, 45–60 cm), demonstrating a significant 
negative correlation between T-As and sediment depth. These profile 

FIGURE 2

Total As content in surface (a) and profile (b) sediments (mg/kg). UP: upstream of the sewage outlet; MI: midstream of the sewage outlet; SO: sewage 
outlet; DO: downstream of the sewage outlet; C1: 0–15 cm; C2: 15–30 cm; C3: 30–45 cm; C4: 45–60 cm.
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results indicate that industrial emissions are the primary source of 
recent As accumulation in the surface sediments.

3.2 Fractions of As in the sediments

As in the sediment was predominantly present as AsPO₄, accounting 
for 41.92 ± 4.69%, 67.86 ± 10.74%, 47.84 ± 4.33%, and 59.31 ± 2.20% of 
T-As at the UP, MI, SO, and DO sites, respectively (Figure 3a), AsPO4 was 
significantly (p < 0.05) lower at the UP site. The proportion of AsR was 
significantly higher in UP sediments when compared to MI, SO, and DO 
sediments (p < 0.05), with a percentage composition of 34.55 ± 6.39% 
(UP), 3.92 ± 1.00% (MI), 7.74 ± 2.33% (SO), and 8.98 ± 2.12% (DO) of 
T-As (Figure 3a). Among the profiles, sediments from C1 exhibited the 
highest T-As concentrations, primarily as AsPO4, accounting for 
54.82 ± 6.54% of T-As (Figure  3b). The application of sequential 

extraction revealed that the mean percentage of As species followed 
distinct trends across sediment layers: AsPO4 > AsHCl > AsOx > AsR > AsRe 
in C1 and C2, AsPO4 > AsHCl > AsOx > AsRe > AsR in C3, and 
AsOX > AsPO4 > AsR > AsHCl > AsRe in C4 (Figure 3b). While AsPO4 and AsHCl 
dominated the upper three layers, AsOx and AsR were significantly 
(p < 0.05) higher in the C4 layer, suggesting that the deeper C4 layer 
primarily contained As in the stable form of As coprecipitated with pyrite 
and amorphous As2S3 (AsOX), indicating greater stability and reduced 
mobility in deeper sediments.

The valence state of As significantly influences its toxicity and 
mobility. Due to limitations of the sequential extraction method, 
As(III) and As(V) were not distinguished; instead, bioavailable As 
(B-As(III) and B-As(V)) concentrations were measured. B-As 
concentrations were significantly (p <  0.05) higher at the SO 
(725.50 ± 97.56 mg/kg) site, followed by levels at the MI 
(306.82 ± 48.37 mg/kg), DO (198.55 ± 38.40 mg/kg), and UP 
(6.92 ± 0.70 mg/kg) sites, accounting for 50.72 ± 4.88%, 81.92 ± 7.40%, 
72.92 ± 4.15%, and 79.15 ± 1.85% of T-As at the UP, MI, SO, and DO 
sites (Figure 3c), respectively. B-As concentrations were significantly 
(p < 0.05) higher at the SO (725.50 ± 97.56 mg/kg) site, followed by 
levels at the MI (306.82 ± 48.37 mg/kg), DO (198.55 ± 38.40 mg/kg), 
and UP (6.92 ± 0.70 mg/kg) sites, accounting for 50.72 ± 4.88%, 
81.92 ± 7.40%, 72.92 ± 4.15%, and 79.15 ± 1.85% of T-As at the UP, 
MI, SO, and DO sites (Figure  3c), respectively. In the sediment 
profiles, B-As concentrations decreased with depth: 523.49 ± 93.05 mg/
kg (C1), 297.90 ± 62.98 mg/kg (C2), 281.44 ± 36.74 mg/kg (C3), and 
5.91 ± 1.69 mg/kg (C4), accounting for 73.59 ± 3.60% (C1), 
82.87 ± 3.76% (C2), 77.34 ± 4.20% (C3), and 39.77 ± 7.19% (C4) of 
T-As (Figure  3b). The significantly (p < 0.05) lowest level of 
bioavailable concentrations of As was observed at the C4 layer. 
Notably, B-As in the C1 layer contained slightly more As(III) than 
As(V), whereas in the C2, C3, and C4 layers, B-As were predominantly 
present as As(V) (Figure 3d).

3.3 Effects of As contamination on 
sediment bacterial communities and 
functions

An analysis of alpha diversity indices revealed variations in 
bacterial community diversity across surface sediment sites. The 
Chao1 and ACE indices were significantly (p < 0.05) higher at the SO 
and DO sites, whereas there was no significant difference in the 
Shannon and Simpson indices (Supplementary Table S3), indicating 
the highest bacterial abundance and diversity at these sites. Across 
sediment depths, ACE and Chao1 indices followed the order 
C1 > C4 > C2 > C3, while Shannon and Simpson indices were ranked 
as C4 > C1 > C2 > C3 (Supplementary Table S4); however, the 
differences in alpha diversity indices between the profile sediments 
were not significant. A Random Forest analysis identified AsOx 
(15.78%), AsPO4 (10.50%), AsHCl (10.06%), AsR (9.74%), B-As(V) 
(9.18%), and B-As (8.81%) as the primary factors influencing bacterial 
community diversity (p < 0.05, Supplementary Figure S1). 
Co-occurrence network analysis and Mantel tests further explored the 
effects of As extraction states on bacterial community composition. 
Co-occurrence networks revealed AsPO4, T-As, B-As, B-As(III), and 
B-As(V) as the most influential factors (Figure 4a), while Mantel tests 
confirmed the significant effects of AsPO4, T-As, B-As, and B-As(V) 

FIGURE 3

Percentage of different forms of As in surface (a) and profile (b) 
sediments; percentage of bioavailable As(III) and As(V) in surface (c) 
and profile (d) sediments (mg/kg). UP: upstream of the sewage 
outlet; MI: midstream of the sewage outlet; SO: sewage outlet; DO: 
downstream of the sewage outlet; C1: 0–15 cm; C2: 15–30 cm; C3: 
30–45 cm; C4: 45–60 cm; AsPO4: phosphate-extractable; AsHCl: acid 
volatile sulfide/carbonate/manganese oxide/amorphous iron oxide 
coprecipitate; AsRe: iron oxide coprecipitate; AsOx: pyrite and organic 
matter bound states; AsR: residual state; T-As: total As; B-As: 
bioavailable As; B-As(III): bioavailable As(III); B-As(V): bioavailable 
As(V).
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(p < 0.01, Figure 4b). These results indicate that AsPO4, T-As, and B-As 
were the dominant factors shaping bacterial community composition.

The most abundant bacterial phyla in sediments were 
Pseudomonadota, Bacteroidota, Chloroflexota, Actinomycetota, 
Acidobacteriota, Bacillota, Patescibacteria, and Cyanobacteria 
(Supplementary Figures S2a,b). Correlation analysis showed 
significant (p < 0.05) associations between T-As, B-As, B-As(III), 
B-As(V), and AsPO4 with the abundance of Bacteroidota, 
Pseudomonadota, and Patescibacteria, while negative correlations 
were observed with Acidobacteriota, Actinomycetota, and 
Chloroflexota (Figure 4c). These findings suggest that bacteria are 
adaptable to As-induced environmental stress. Further analysis at 
the genus level revealed that distinct microbial taxa were enriched 
at different sediment sampling sites. Compared to UP sites with 
lower As concentrations, the abundance of Flavobacteriaceae, 
Anaerolineaceae, Desulfobacteraceae, Woeseiaceae, 

Spirochaetaceae, Clostridiaceae_1, and Solirubrobacteraceae was 
higher in downstream sediments with elevated As content; the 
abundance of Desulfarculaceae and Burkholderiaceae exhibited 
the opposite trend (Supplementary Figure S2c). As the sediment 
sampling depth increases, the abundance of Desulfobacteraceae, 
Desulfobulbaceae, Halieaceae, Clostridiaceae_1, and 
Methyloligellaceae increases, while the abundance of 
Spirochaetaceae, Marinilabiliaceae, Synergistaceae, and 
Solirubrobacteraceae decreases (Supplementary Figure S2d). 
Correlation analysis showed significantly (p < 0.05) positive 
associations between T-As, B-As, B-As(III), B-As(V), and AsPO4 
with the abundance of Desulfarculaceae, Flavobacteriaceae, 
Peptostreptococcaceae, and Solirubrobacteraceae, while negative 
significantly (p < 0.05) correlations were observed with 
Gaiellaceae, Marinilabiliaceae, and Methyloligellaceae (Figure 4d). 
Six genes related to As resistance—arsC, ACR3, ArsR, arsB, aoxAB, 

FIGURE 4

Co-occurrence networks of As-microbe interactions reveal correlations between the relative abundance of bacterial operational taxonomic units 
(OTUs) and As (a). Correlations among As and community composition are based on the Mantel test (b). The heatmap displays correlations between As 
and the major bacterial phyla; the color blocks represent values of Pearson’s correlation coefficients ranging from −0.4 to 0.6 (c). AsPO4: exchangeable; 
AsHCl: acid volatile sulfide/carbonate/manganese oxide/amorphous iron oxide coprecipitated; AsRe: iron oxide coprecipitated; AsOx: pyrite and organic 
matter-bound states; AsR: residual state; T-As: total As; B-As: bioavailable As; B-As(III): bioavailable As(III); B-As(V): bioavailable As(V).
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and arsH—were identified (Figure  5). Among these, aoxAB, 
ACR3, and arsC exhibited significant positive correlations with 
sediment As concentration. Additionally, genes linked to 

elemental cycles were analyzed, including psrA, fccB, and cysDN 
(S cycle); aphA, phnGHILM, phnN, phnp, and phoR (P cycle); and 
NR, nosZ, and norBC (N cycle), all of which were significantly 

FIGURE 5

Heatmap showing the correlation between sediment As content and genes associated with As resistance or the elemental S/P/N cycle, *p < 0.05, 
**p < 0.01, ***p < 0.001. AsPO4: exchangeable; AsHCl: acid volatile sulfide/carbonate/manganese oxide/amorphous iron oxide coprecipitate; AsRe: iron 
oxide coprecipitate; AsOx: pyrite and organic matter-bound states; AsR: residual state; T-As: total As; B-As: bioavailable As; B-As(III): bioavailable As(III); 
B-As(V): bioavailable As(V).
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influenced by sediment As levels. These results suggest that As 
contamination in estuarine sediments impacts bacterial gene 
expression, potentially altering the cycling of S, P, and N in 
contaminated areas.

4 Discussion

4.1 General characterization of sediment

In this study, the highest surface sediment As concentrations were 
observed at the SO site, where the average T-As concentration reached 
979.05 mg/kg. The SO sampling sites are surrounded by industrial 
areas, and significant amounts of industrial and municipal wastewater 
flow through these locations (Li et al., 2018). These industrial activities 
are the primary contributors to As contamination at the SO sites. At 
the outfall, T-As concentrations in sediment profiles exhibited a 
gradual increase from the bottom to the surface, indicating the 
accumulation of As in sediments, primarily driven by industrial 
emissions (Wang et al., 2012). As river water traveled downstream, it 
transported sediments and wastewater contaminated with pollutants, 
which accumulated in the estuarine zone. Although the flushing and 
dilution effects of seawater backwash played a significant role in 
reducing sedimentary As concentrations, these concentrations still 
exceeded the marine sediment quality standard (GB 18668–2002). 
Contaminated As accumulated in the Wuli River estuary sediments 
and was subsequently transported into the Bohai Sea (Zheng et al., 
2008). Furthermore, the vertical distribution of As exhibited a strong 
correlation with other heavy metals, such as Cu, Zn, and Pb (Wang 
et  al., 2012), suggesting a shared contamination source. Smelting 
activities and industrial discharges have significantly altered the 
composition of sediments in the Wuli estuary.

The toxicity of As is determined by its chemical speciation rather 
than its concentration (Sundaray et  al., 2011). Exchangeable As is 
particularly sensitive to environmental changes and may be released 
from sediments under changing conditions, thereby impacting 
microbial communities (Singh et al., 2005; Feng et al., 2014). Consistent 
with previous studies (Wang et al., 2012), sequential extraction data 
from the estuary-bay system revealed that AsPO4 accounted for 
approximately 50% of the As in surface and profile sediments. This 
fraction is considered to be the weakest bound form of As in sediments 
and is in equilibrium with the aqueous phase, making it more 
bioavailable (Singh et al., 2005). The adsorption of As onto Fe (hydroxyl) 
oxides has been identified as the primary mechanism influencing As 
retention in the solid phase (Bostick et al., 2004; O'Day et al., 2004; Root 
et al., 2007). Notably, As(III) is more mobile and toxic compared to 
As(V) (Cummings et al., 1999). Thus, the elevated presence of As(III) 
in the C1 sediments near the outfall may have a significant influence on 
microbial community structure. Additionally, the coupling of reductive 
dissolution of Fe(hydr)oxides and As mobilization in sediments has 
been widely documented (Bennett et al., 2012; Shaheen et al., 2016). 
Reductive dissolution of Fe (hydr) oxides is considered the primary 
mechanism involved in As release (Cummings et al., 1999). This is 
supported by the significant correlations between T-As and T_Fe 
(r = 0.576, p < 0.01) and between AsHCl and FeHCl (r = 0.494, p < 0.01) in 
sediments (Supplementary Figure S3), suggesting that a substantial 
proportion of As is associated with amorphous Fe (hydr) oxides in the 
sediment matrix.

As illustrated in Figure 3b, the proportion of AsPO4 in the C1 layer 
(54.82 ± 6.54%) of the sediment profile was lower than that in the C2 
(58.04 ± 11.36%) layers. This phenomenon may be  attributed to 
competitive interactions between chloride ions (Cl−) and arsenate/
arsenite (AsO₄3−/AsO₃3−) for surface binding sites on mineral oxides 
in sediments (Monabbati, 1999), which reduces the adsorption of As 
species. Additionally, NaCl could decrease intergranular attraction 
through the action of Na+ ions, leading to the release of particles, 
colloids, and particle-AsPO4 from the sediment bed (Chakraborty et al., 
2012). Furthermore, increased salinity in the overlying water column 
has been shown to reduce total sedimentary As concentrations in 
natural systems (Chakraborty et al., 2012). Therefore, the relatively 
low levels of AsPO4 in the surface layer of the sediment profile are likely 
attributed to the higher salinity of the surface water. The pH of coastal 
sediments significantly influences the bioavailability of As. It has been 
reported that As(V) exhibits a higher adsorption affinity at lower pH 
values, whereas As(III) shows a higher adsorption affinity at higher 
pH values (Chapagain et al., 2009). Additionally, the retention capacity 
of sediments for As decreases as the pH increases (Rubinos et al., 
2011). Sediments in this study are found in a neutral to alkaline 
environment (pH 7–8.5), which may lead to the release of arsenic (As) 
from estuarine sediments into seawater.

4.2 Response of bacterial communities to 
metalloid as contamination

As vital components of ecosystems, microorganisms play a critical 
role in facilitating the transformation of materials in sediments (Ledin, 
2000; Pal et al., 2006). These organisms have been shown to alter the 
activity of heavy metal ions, thereby influencing their bioavailability. 
The interaction between microorganisms and heavy metals involves a 
variety of processes, including adsorption, accumulation, and 
transformation (Tayang and Songachan, 2021). Heavy metal 
contamination in sediments has been demonstrated to significantly 
affect microbial communities, primarily reflected in changes to 
microbial activity, sediment enzyme activity, and the composition of 
microbial communities associated with heavy metals. In this study, 
bacterial community composition was analyzed across surface 
sediments from four sampling sites, ranging from upstream 
As-contaminated rivers to estuarine offshore areas, as well as sediment 
profiles from downstream outfalls. Results indicated that alpha 
diversity indices in surface sediments increased progressively from 
upstream to offshore estuaries, whereas alpha diversity indices in 
sediment profiles decreased with increasing depth. Heavy metal 
contamination was identified as a major factor contributing to 
variability in microbial communities. Specifically, contamination was 
found to significantly impact the diversity and composition of 
bacteria, fungi, archaea, and protists (Li et al., 2021; Wang et al., 2019; 
Zhu et al., 2021). In addition to metal exposure, salinity gradients in 
estuarine systems were identified as another key driver of microbial 
community variability (Zeng et al., 2023). Sediments at the SO and 
DO estuary sites, which were subjected to combined salinity and 
heavy metal stress, exhibited significantly higher alpha diversity 
compared to sediments at the UP and MI sites.

A detailed investigation into the impact of As contamination on 
sediment bacterial communities revealed that T-As, AsPO4, and B-As were 
the key As species exerting a significant influence on bacterial community 
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composition. The phosphate-extractable fraction of As was hypothesized 
to be the least firmly bound form in sediments, potentially in equilibrium 
with the aqueous phase and thus more bioavailable. Consequently, the 
bioavailable state of As was identified as a major factor affecting bacterial 
community structure (Huang et al., 2013; Xu D. Q. et al., 2016). Bacteria 
play a positive role in sediment processes, including nutrient cycling, 
organic matter decomposition, and contaminant transfer (Qiu et al., 2021; 
Ma et  al., 2023). While heavy metal pollution may adversely affect 
bacterial communities, certain bacteria have demonstrated the ability to 
develop tolerance and thrive in polluted environments (Li et al., 2022b; Li 
Y. B. et al., 2024; Ogilvie and Grant, 2008). In As-contaminated sediments, 
significant differences in bacterial community composition were 
observed. Pseudomonadota and Acidobacteriota emerged as the 
dominant phyla across all samples, consistent with findings from other 
studies on microbial communities in As-contaminated soils (Wu et al., 
2022; Zhu et al., 2021). These phyla demonstrated resilience to As stress 
and maintained dominance under contamination. Among sediment 
profiles, Pseudomonadota was the predominant phylum in the C1 layer, 
with Deltapseudomonadota and Gammapseudomonadota significantly 
enriched in this layer (Supplementary Figure S4). Previous studies have 
shown that Deltapseudomonadota consists of many sulfate-reducing 
genera, playing a crucial role in the anaerobic degradation of organic 
matter (Leloup et al., 2009). Research has indicated that sulfate-reducing 
bacteria metabolize sulfate to produce sulfide (S2−), which forms insoluble 
As sulfide precipitates (As₂S₃), resulting in decreased As bioavailability 
(Xie et al., 2016). Furthermore, the sulfate reduction process promoted 
the reduction and dissolution of iron oxides in sediments, resulting in the 
release of bound As (Wu et  al., 2024). Additionally, 
Gammapseudomonadota has been found to play an important role in As 
cycling in As-contaminated groundwater (Sonthiphand et  al., 2021). 
Pseudomonadota are characterized by their abundance of proteins, active 
metabolism, and the production of amino acids, enabling them to rapidly 
adapt to environmental changes and utilize pollutants through carbon 
cycling and N fixation processes under heavy metal stress (Wu et al., 2022).

In contrast, Bacillota demonstrated a limited correlation with As 
concentration (Figure  4c), indicating reduced sensitivity to As 
contamination compared to other dominant bacterial phyla. 
Nonetheless, Bacillota exhibited exceptional tolerance to As 
contamination. This phylum is characterized by thicker cell walls and 
the ability to produce spores. These spores can persist under stressful 
conditions and form resistant, differentiated structures, which confer 
robust resistance to heavy metals (Hou et al., 2023).

4.3 Impact of As contamination on the 
elemental cycle potential

To further investigate the response of bacterial communities to As 
contamination in sediments, this study analyzed genes associated with 
metal resistance and elemental cycling. The abundance of genes 
encoding As(III) oxidase (aoxAB), As(III) transporter (ACR3), and 
As(V) reductase (arsC) was positively correlated with As 
concentrations in sediments (Figure 5). During the biogeochemical 
cycling of As, the aoxAB genes encode enzymes that convert the 
highly toxic and mobile As(III) into the less toxic and less mobile 
As(V), while the arsC gene facilitates the reductive efflux of As(V), 
enabling resistance mechanisms in bacteria (Cummings et al., 1999; 
Garbinski et  al., 2019; Li et  al., 2016). Bacterial taxa inhabiting 

sediments are fundamental constituents of marine ecosystems, serving 
as key mediators of biogeochemical cycles. These microorganisms play 
a crucial role in maintaining ecosystem stability and influencing the 
cycling of essential elements. Correlation analyses between 
sedimentary As concentrations and functional genes associated with 
N, P, and S cycling provide valuable insights into the effects of As 
contamination on nutrient cycling in sedimentary environments.

The S cycle in sediments is closely linked to the decomposition of 
organic matter and the transformation of S compounds under anaerobic 
conditions (Brown, 1982). Sulfur-metabolizing bacteria play a crucial role 
in these cycles, particularly in mediating the transformation of sulfur and 
As in the environment (Yin et al., 2022). The formation, mobility, and 
behavior of As species are strongly influenced by S cycling (Bostick et al., 
2004). Genes involved in S cycle-related functions, such as psrA, fccB, 
dsrAB, and cysDN, showed significant correlations with sedimentary As 
levels, suggesting their role in regulating As fate and mobility in sediments. 
In this study, genes encoding thiosulfate reduction (psrA) and sulfite 
reduction (dsrAB) exhibit significant correlations with sediment arsenic 
content. After sulfates were reduced and ultimately converted into 
sulfides, As was immobilized through mineral precipitates such as 
arsenopyrite and iron sulfides (ThomasArrigo et al., 2020; Wang et al., 
2023). In the P cycle, organophosphorus mineralization-related genes 
(phnN, phnP, phoN, and phnGHILM) were positively correlated with 
sediment As concentrations, indicating that sediment As contamination 
promoted the expression of organophosphorus mineralization genes. 
Phosphate played a crucial role in influencing the release of As from 
sediments. Research has shown that phosphate increases both the 
percentage and rate of arsenic (As) release from sediments (Rubinos et al., 
2011). High concentrations of phosphate competed for transport 
channels, reducing As uptake into cells and alleviating toxic stress. 
Microorganisms can survive without maintaining a high abundance of As 
metabolism genes, and phosphate mitigates As stress on microbial 
communities (Sun et  al., 2016). This relationship highlights the 
competitive interactions between As and P for adsorption sites on Fe 
oxides (Rubinos et al., 2011). As contamination in estuarine sediments 
may disrupt P sequestration processes, it alters ecosystem nutrient 
dynamics. Similarly, denitrification functional genes (NR, nosZ, and 
norBC) were significantly correlated with sediment As concentrations, 
particularly with crystalline oxide-bound As and residual As fractions, 
indicating that microbial denitrification activity may increase in 
sediments with high As concentration. This finding aligns with Ding et al. 
(2024), who demonstrated that denitrification processes promote the 
transformation of As into forms associated with Fe oxides. Research has 
indicated that microbial-mediated nitrate-dependent As oxidation 
(NDAO) may be a significant process for As(III) oxidation in anaerobic 
environments (Zhang et al., 2020). Therefore, the increased abundance of 
denitrification genes in high-As environments observed in this study may 
represent an important resistance strategy employed by microorganisms. 
These observations highlight the interconnection between arsenic (As) 
contamination and key biogeochemical processes, offering crucial 
insights into the broader environmental implications of As in 
sedimentary systems.

5 Conclusion

This study demonstrated that surface sediments in the SO region 
exhibited the highest As concentrations, while midstream and downstream 
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surface sediments displayed comparatively lower levels. In the sediment 
profiles, As concentrations decreased progressively with depth, indicating 
that industrial discharges were the primary source of As contamination in 
the Wuli estuary sediments. The results revealed that the sedimentary 
arsenic (As) in the contaminated area was predominantly present in the 
strongly phosphate-extractable fraction, with only a small proportion 
remaining in the residual state. Furthermore, the majority of As was 
associated with amorphous Fe (hydr) oxides, and Fe (hydr) oxides were 
identified as a main factor associated with the release of As. Random forest 
analysis indicated that As significantly influenced bacterial community 
diversity in the sediments. The results from the co-occurrence network 
and Mantel test further revealed that T-As, AsPO4, and B-As were the 
primary factors associated with bacterial community composition. The 
dominant bacterial phyla in sediments exhibited distinct responses to As 
contamination: positive correlations were observed between As 
concentrations and the phyla Bacteroidota, Pseudomonadota, and 
Patescibacteria, whereas negative correlations were found with 
Acidobacteriota, Actinomycetota, and Chloroflexota. Additionally, 
sediment-associated contaminants were shown to influence the expression 
of genes involved in the cycling of S, P, and N elements. Notably, As 
contamination had a significant impact on genes associated with the 
mineralization of organophosphorus and denitrification processes. This 
study highlights spatial variations in the distribution of As species from 
upstream regions to the estuary, as well as their interactions with sediment 
bacterial communities. These findings are based on the total and fractional 
distribution of As in surface and profiled sediments, alongside the 
composition of bacterial communities, providing new insights into the 
ecological impacts of As contamination in estuarine environments.
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