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Introduction: Hypertension has a multifactorial etiology. Recent studies have 
revealed a link between hypertension and gut microbiota dysbiosis. Pulse 
wave analysis holds significant clinical value for hypertension risk assessment. 
While research on deep learning models utilizing photoplethysmography 
(PPG) for hypertension classification has advanced, limitations persist. PPG 
offers limited richness and accuracy for characterizing blood pressure-related 
pathological information. In contrast, Arterial Pressure Waveform (APW) 
provides richer pathological information and exhibit stronger correlations with 
clinically interpretable features. However, deep learning research using APW for 
hypertension classification remains limited, as existing studies focus primarily on 
local feature extraction and neglect global temporal dynamics.
Methods: To address these challenges, we propose a novel 1D-CNN-BiLSTM-
Transformer architecture for hypertension risk assessment based on APW, where 
the 1D-CNN module extracts waveform morphology features from signals 
within individual pressure segments, the BiLSTM module models long-range 
temporal dependencies from signals within each segment, and the Transformer 
module explicitly captures nonlinear interaction from signals across different 
pressure segments through multi-head self-attention mechanisms.
Results: We use the multi-channel APW database from the Population Health 
Data Archive (PHDA), containing hypertensive and non-hypertensive cases with 
APW signals acquired from six traditional Chinese medicine points (left-cun, 
left-guan, left-chi, right-cun, right-guan, and right-chi) to evaluate the model’s 
performance. The model outperforms the current state-of-the-art methods in 
accuracy, precision, recall, and F1 score across all six points.
Conclusion: The proposed model enhances classification performance. The 
physiologically driven interpretable analysis demonstrates that APW can reflect 
pathophysiological features associated with gut microbiota dysbiosis. The 
model-driven interpretable analysis offers a decision-making basis for clinical 
diagnosis.
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1 Introduction

The development of hypertension results from the interplay 
between genetic and environmental factors (Townsend et al., 2016). 
To date, genetic contributors to hypertension have been extensively 
studied. Studies have suggested that dysbiosis of the gut microbiota is 
closely associated with the progression of hypertension. Alterations in 
the abundance of certain gut microbial strains may suppress or 
attenuate immune responses related to chronic inflammation, 
indicating their potential role as biomarkers for the prevention and 
treatment of hypertension (Yu et al., 2024). Therefore, exploring novel 
therapeutic targets from the perspective of the gut microbiome 
etiology is both highly feasible and necessary.

Blood pressure (BP) is defined as the lateral pressure exerted by 
blood flow per unit area on blood vessel walls. It is categorized by 
vessel type: capillary pressure, venous pressure, and arterial blood 
pressure (ABP), with ABP being the most commonly referenced 
measure (Polska et  al., 2007). Extensive research demonstrates a 
strong correlation between pulse wave signals and ABP. For instance, 
Luo et al. (2006) invasively measure ABP in the canine aorta while 
simultaneously capturing non-invasive pulse waves, observing 
consistent waveform morphology and temporal relationships. 
Martinez et al. (2018) further quantify this similarity in both the time 
and frequency domains, reporting an average Pearson correlation 
coefficient exceeding 0.9. Complementing these findings, Abhay et al. 
(2017) analyze specific feature-based similarities, finding high Pearson 
correlation coefficients for amplitudes (0.822), normalized time 
periods (0.99), and normalized rise times (0.78) between ABP and 
pulse wave signals. Collectively, this evidence strongly suggests that 
pulse wave signals provide valuable information for assessing BP.

Photoplethysmography (PPG) and Arterial Pressure Waveform 
(APW) represent two distinct pulse wave types acquired through 
different sensing modalities. PPG signals, obtained using optical 
sensors, detect blood volume fluctuations caused by light absorption 
or reflection within the microvasculature (small arterioles, small 
venules, and capillaries) in the subcutaneous microcirculation (Lee 
et  al., 2021). There has been considerable advancement in BP 
prediction studies based on PPG (De Nisio et al., 2025; Shoaib et al., 
2025; Shimazaki et al., 2019). APW signals are captured using pressure 
sensors directly coupled to the brachial or radial artery, thereby 
reflecting the dynamic pressure characteristics of the arterial wall 
(Avolio et al., 2009). Due to inherent limitations in its acquisition 
method, PPG signals are more constrained in characterizing the 
richness and fidelity of BP-related pathological information compared 
to APW signals. Furthermore, when deep learning networks process 
APW signals for classification, the primary classification features 
exhibit more direct and robust correlations with clinically interpretable 
physiological indicators. Consequently, APW signals are better suited 
as input for deep learning models targeting hypertension classification, 
offering enhanced potential for both model performance 
and interpretability.

Deep learning has gained significant momentum in recent 
research for pulse wave-based BP prediction (Nuryani et al., 2023). 
Among prevalent architectures, Convolutional Neural Networks 
(CNNs) are widely adopted, leveraging their powerful feature 
extraction capabilities to achieve commendable performance on this 
task (Khodabakhshi et al., 2022; Schlesinger et al., 2020; Qin et al., 
2021; Yan et al., 2019; Liu, 2021). However, CNNs possess inherent 

limitations: they can only extract local features due to their restricted 
receptive fields, and they are not specially designed for processing 
one-dimensional (1D) sequential data, whereas the pulse wave data 
represents quintessential 1D time series (Tian et al., 2025). To address 
these constraints, Recurrent Neural Networks (RNNs) have been 
proposed to model the temporal dependencies within pulse wave data 
(Aguirre et  al., 2021; El-Hajj and Kyriacou, 2021a; El-Hajj and 
Kyriacou, 2021b; Liu et al., 2024). Nevertheless, standard RNNs often 
struggle to capture very long-range dependencies effectively (Zhang 
et al., 2023). Further innovations involve hybrid architectures that 
integrate CNN and RNN components to leverage their complementary 
strengths in  local feature extraction and temporal dependency 
modeling, respectively (Hung et al., 2025; Wang et al., 2020; Panwar 
et  al., 2020; Zhang et  al., 2024; Leitner et  al., 2022). Recently, the 
Transformer architecture (Vaswani et al., 2017) has garnered extensive 
attention across diverse domains. Its core self-attention mechanism 
excels at recognizing long-range relationships within sequences and 
learning global contextual features, making the Transformer 
inherently more suitable for modeling the complex temporal dynamics 
of pulse wave signals compared to both CNNs and traditional RNNs.

To address the limitations of existing approaches for pulse wave-
based hypertension classification, we  propose a novel 1DCNN-
BiLSTM-Transformer architecture based on APW analysis (Ju et al., 
2024; Peng et al., 2024a; Peng et al., 2024b; Feng et al., 2023). This 
model integrates complementary strengths: the 1DCNN-BiLSTM 
module extracts the local features from signals within individual 
pressure segments, while the Transformer module captures the 
complex, long-range interdependence among signals across different 
pressure segments. The feature fusion module combines these 
hierarchically learned representations for final classification. 
We  evaluate model performance using the multi-channel APW 
database containing hypertensive and non-hypertensive cases from 
the Population Health Data Archive (PHDA) (Geng, 2024). The 
dataset includes APW data from 495 hypertensive and 611 
non-hypertensive subjects, collected at three points on each hand 
(referred to as cun, guan, and chi in Chinese medicine) under 14 step-
pressure gradients ranging from 10 to 140 mmHg at 10 mmHg 
intervals. Validation experiments demonstrate that our proposed 
model significantly outperforms state-of-the-art typical deep learning 
methods for pulse wave-based hypertension classification in accuracy, 
precision, recall, and F1 score across all six collection points. 
Furthermore, to bridge the gap between algorithmic output and 
clinical utility, we conduct the interpretability analysis from three 
perspectives: (1) model performance variation analysis under six 
collection points, (2) attention weight analysis of signals for each 
pressure segment, and (3) spatial feature importance analysis using 
Grad-CAM (Selvaraju et al., 2020). The synergistic combination of 
superior predictive performance and clinically grounded 
interpretability establishes a robust methodological framework for 
hypertension risk assessment.

2 Materials and methods

2.1 Network architecture

The overall architecture of the 1DCNN-BiLSTM-Transformer 
model we proposed is shown in Figure 1.
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2.2 1DCNN-BiLSTM module

The One-Dimensional Convolutional Neural Network-Bidirectional 
Long Short-Term Memory (1DCNN-BiLSTM) module extracts local 

features from signals within each pressure segment. The 1DCNN module 
extracts morphological features, and the BiLSTM module captures temporal 
dependencies. The 1DCNN-BiLSTM module preserves pressure gradient 
information and signal features within each pressure segment.

FIGURE 1

1DCNN-BiLSTM-Transformer model structure. APWi represents the pulse wave sequence under the i-th pressure level.  Local Featurei,  Global Featurei, 
and  Concatenating Featurei denote the local features, global features, and concatenated features, respectively, extracted from the pulse wave sequence 
at the i-th pressure level. α i refers to the attention weight assigned to the i-th pressure level.  Fusion Feature represents the final fused feature.
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2.2.1 1DCNN module
The convolutional layer identifies specific waveform fragments 

through convolutional kernels, while its translation invariance ensures 
that these kernels can detect the waveform features at each position. 
The 1DCNN module comprises three convolutional blocks. These 
three convolutional blocks employ convolutional kernels of decreasing 
sizes to extract waveform features at different scales: The first layer 
captures basic waveform features such as peaks and valleys; the middle 
layer combines first-layer features to identify more complex waveforms 
such as main waveforms, pre-prestroke waveforms, and re-prestroke 
waveforms; and the final layer further integrates these features to 
capture local morphological details. The one-dimensional convolution 
operation for signal feature extraction is shown in Equation 1:

	
k
jy i w j x i j1

0
=
=

= ⋅ +          ∑
	

(1)

x  is the APW sequence within each pressure segment,   w j  is the 
weight of the jth element in the convolution kernel, +  x i j  is the 
element taken from x  that corresponds with the current convolution 
kernel, and   y i  is the output feature value at position i .

2.2.2 BiLSTM module
With 2000 time steps per pressure segment, APW sequences are 

so lengthy that the 1DCNN module alone cannot capture global 
features within each pressure segment. Therefore, we introduce the 
BiLSTM module after the 1DCNN module to extract long-range 
temporal dependencies. For pulse wave signals, both forward evolution 
information from the systolic to diastolic phase and backward 
information reflected back from the distal end are equally significant 
for hypertension diagnosis. Consequently, we configure the LSTM 
module as bidirectional, enabling simultaneous forward and backward 
sequence processing to capture bidirectional signal dependencies.

2.3 Transformer module

The Transformer module captures interdependencies among signals 
across different pressure segments, learning pressure change patterns of 
the APW signals. The module comprises three transformer blocks 
connected in parallel, each containing an 8-head self-attention layer and 
a feed-forward network. The multi-head attention layer is designed to 
enable the model to consider all other positions in the sequence when 
processing each position, thereby capturing long-range intra-sequence 
dependencies. Feature importance is dynamically adjusted through the 
mechanism to enhance signal feature representations within each 
pressure segment according to global forward and backward information.

Each block accepts the local feature sequence 
( )= … …1 14 , .,  , ,  iL Local Feature Local Feature Local Feature  extracted 

by the 1DCNN-BiLSTM module as input. Within each block, the 
computation of Query (Q), Key (K), and Value (V) matrices, followed 
by the scaled dot-product attention mechanism, enables interactive 
modeling of the input, allowing information at each position to 
directly attend to and integrate features from all other positions. The 
feature sequences ( ) ( ) ( ){ }O O O1 2 3, ,  output by the three blocks are 
adaptively integrated through a gated fusion, which computes dynamic 
gating weights (Equations 2 and 3). The global feature sequence 

( )= … …1 14 , ,  , ,  iG Global Feature Global Feature Global Feature  is 

ultimately produced via weighted summation (Equation 4). The 
sequence G comprehensively encapsulates information from all 
pressure segments.

	
( ) ( ) ( ) ( )( )= +

k k k k
o oO Tanh O W b

	
(2)

	
( ) ( )( )= +

k
g gg k softmax O W b

	
(3)

	
( )k

kkG g O3
1==∑ 



	 (4)

( )


kO  is the transformed feature sequence of the k-th Transformer 
block, with the transformation serving to align the outputs of the three 
blocks into a unified feature space. ( )g k  is the dynamic gating weight 
vector associated with the k-th block.

2.4 Feature fusion module

The feature fusion module fuses local features from signals at each 
pressure segment (extracted by the 1DCNN-BiLSTM module) with 
global features from the entire signal (extracted by the Transformer 
module) in the feature dimension.

For the ith pressure segment, the concatenating feature iC  
calculation process is shown in Equation 5:

	
( )i c i i cC ReLU W L G b= ⋅ ⊕ +   	 (5)

iC s are input into an attention pooling layer to learn their importance 
weights αis (Equation 6), and then iC s are weighted and fused to generate 
a single feature vector (Equation 7), fusedF  that comprehensively 
represents APW signal information within all pressure segments.

	

( )

( )

α α

α α

α

=

+
=

+∑
14

1

exp ·

exp ·

i
i

i
i

W C b

W C b
	

(6)

	 α
=

=∑14
1 ·fused i iiF C 	 (7)

Finally, fusedF  is fed into the classification module, which consists 
of three fully-connected layers that perform nonlinear mapping and 
integration of the fused high-dimensional features. The network 
ultimately produces a binary prediction indicating either 
“Hypertension” or “Non-Hypertension,” achieving the automated 
classification of pulse wave sequence data.

3 Experiments

3.1 Dataset

The data are obtained from the APW dataset shared on the 
Population Health Data Archive (PHDA).
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Data collection employed a multi-channel pulse acquisition 
instrument consisting of an airbag pressurization device and 
three composite pressure sensors. The acquisition process 
operates as follows: the airbag pressurization device provides step 
pressures from 10 to 140 mmHg in 10 mmHg intervals, and the 
cuff is inflated to generate the specified pressure for approximately 
10 s with a 225 Hz sampling frequency at each pressure step, 
while APW signals and static pressure information from the three 
sensors are recorded in real time until the next inflation 
command. In this way, 14-order static pressure values and 
corresponding APW sequence data from three reference points 
on each hand under 14 pressure gradients from every subject 
(495 with hypertension and 611 without hypertension) are 
collected. These three points are designated as cun, guan, and chi 
in traditional Chinese medicine, reflecting human body health 
status across different dimensions. The collection points and 
results are shown in Figure 2, with dataset details presented in 
Table 1.

3.2 Data preprocessing

For the APW sequence data at each acquisition point, data 
preprocessing is performed in three aspects: conventional data 
cleaning, noise reduction, and baseline drift removal.

3.2.1 Conventional data cleaning
The collected data for each pressure segment contains approximately 

2,250 points. During data collection, APW signals briefly drift during 
each pressurization process. Furthermore, neural networks require equal 
points in each pressure segment. Therefore, if n points exist under each 
pressure section, we remove points a from the starting point and b before 
the ending point during each pressurization process to ensure the length 
under each pressure segment is 2000 (Equations 8 and 9).

	
( ) = − / 2a n length

	 (8)

	
( ) = − / 2b n length

	 (9)

3.2.2 Noise reduction
During actual collection, high-frequency noise becomes mixed 

into APW signals due to internal instrument noise, electromagnetic 
interference, motion artifacts, and other interferences, so low-pass 
filtering technology is needed to reduce the high-frequency noise 
component in collected signals. Wavelet threshold denoising (Zhang 
et  al., 2016) can eliminate the high-frequency noise influence on 
signals and extract the main features.

We represent the collected signal as ( ) ( ) ( )= +f t s t h t , where ( )f t  
is the unprocessed noisy signal, ( )s t  is the useful signal, and ( )h t  is the 

FIGURE 2

APW signal corresponds to six points (left-cun, left-guan, left-chi, right-cun, right-guan, and right-chi) under 14 step-pressure gradients ranging from 
10 to 140 mmHg at 10 mmHg intervals. The Cun, Guan, and Chi are three distinct TCM points on the medial wrist. The APW signal obtained from each 
point can, respectively, indicate the functional status of different Zang-fu organs.

TABLE 1  The details of the dataset.

Labels Sample size Points Pressure segments (mmHg)

Hypertension 495 Left-Cun, Left-Guan, Left-Chi,

Right-Cun, Right-Guan, Right-Chi

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 

130, 140Non-Hypertension 611
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high-frequency noise signal. The signal after wavelet threshold 
denoising is ( )g t . Based on extensive experimental comparisons, the 
coif6 wavelet is selected as the wavelet basis, with a decomposition 
level of 3. The threshold is determined using the fixed threshold 
estimation, and the high-frequency coefficients are processed with the 
soft thresholding function. The entire wavelet threshold denoising 
process can be  represented by the following pseudo-code: 

Begin: 
Input:f(t)
// Initialization
Choose wavelet basis as ‘coif6’
Set decomposition level to 3
Select fixed threshold estimation method
Select soft threshold function
// Wavelet decomposition
(LowFreqCoeffs, HighFreqCoeffs)=WaveletDecompose(f(t), ‘coif6’,3)
// Threshold determination
Threshold=FixedThresholdEstimation(HighFreqCoeffs)
// High-frequency coefficient processing
for each level in HighFreqCoeffs:
   for each Coeff in HighFreqCoeffs(level):
      if abs(Coeff)>Threshold:
        ProcessedHighFreqCoeffs(Level).append(Coeff)
      else:
        ProcessedCoeff=SoftThresholdFunction(Coeff,Threshold)
        ProcessedHighFredCoeffs(level).apped(ProcessedCoeff)
// Wavelet reconstruction
g(t) = WaveletReconstruct(LowFreqCoeffs, ProcessedHighFreqCoeffs, 
‘coif6’, 3)
Output:g(t)
End

3.2.3 Baseline drift removal
During actual collection, low-frequency noise becomes mixed into 

APW signals due to subject breathing or slight body movement, 
temperature drift, voltage drift, and other disturbances, causing APW 
signals to deviate from their baseline and present slow, non-periodic 
fluctuations. Empirical Mode Decomposition (EMD) (Kopsinis and 
McLaughlin, 2009) adaptively decomposes the signal layer by layer from 
high frequency to low frequency into multiple Intrinsic Mode Functions 
(IMFs) according to its characteristics. The low-frequency noise is 
eliminated by removing IMF1, while the high-frequency IMFs are 
retained and reconstructed as the signal after removing the baseline drift.

After data preprocessing, the waveform becomes smoother and 
retains the waveform features of the signal to the greatest extent. As shown 
in Figure 3, the waveforms of original and preprocessed signals remain 
consistent, establishing a solid foundation for subsequent analysis.

3.3 Data augmentation

For the small datasets in this study (495 hypertensive samples and 611 
non-hypertensive samples), we adopt data augmentation to introduce 
random variations of the original data to reasonably and effectively 
expand the scale and diversity of the training set, which enables the model 
to learn more robust and stable feature representation while reducing 
overfitting and enhancing model generalization ability.

Considering APW characteristics, we design the following three 
data augmentation methods to expand the training set while 
preserving physiological fidelity:

	(1)	 Injection of band-limited Gaussian noise: While preprocessing 
typically removes high-frequency noise, APW signals may 
exhibit subtle, low-amplitude stochastic variations due to 
physiological micro-tremors or sensor limitations. To simulate 
this realistically without reintroducing discarded noise, 
we  inject low-intensity, band-limited Gaussian noise with 
constrained probability.

	(2)	 Random cyclic time shifting: To account for inherent 
physiological fluctuations in the periodicity of APW signals, 
we simulate this natural phase variability by applying random 
cyclic shifts along the time axis.

	(3)	 Random amplitude scaling: To simulate natural amplitude 
variations in APW signals and enhance model robustness to 
absolute signal strength, we apply random scaling factors to the 
signal amplitude.

We set 0.005 as the noise level, 20 points as the maximum offset, 
and (0.95, 1.05) as the amplitude scaling range.

3.4 Parameter setting

We design and validate the deep learning models in a Python 
environment using the Pytorch library on a computer with a 

FIGURE 3

Waveforms obtained from the left-cun pulse of one subject under the 10 mmHg pressure: (a) original signal, (b) signal after wavelet threshold 
denoising, and (c) signal after baseline drift removal.
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14-core CPU and 32 GB RAM. The graphics card used is an 
NVIDIA GeForce RTX 4070 Ti Super 16GB to accelerate 
model training.

The 1DCNN module consists of three convolutional blocks with 
kernel sizes of 7, 5, and 3 and filter counts of 32, 64, and 128, 
respectively. The BiLSTM module comprises two stacked blocks with 
256 hidden units each. The Transformer block is composed of three 
transformer blocks connected in parallel, each equipped with eight 
attention heads. Three fully connected layers are appended at the end 
for classification.

We apply the cross-entropy loss function suitable for classification 
tasks. We set 0.001 as the initial learning rate and 32 as the batch size, 
train the model for 100 epochs applying the Adam optimizer, and stop 
training if performance does not improve after 15 epochs. To ensure 
the stability and generalization ability of the model, we adopt 5-fold 
cross-validation for data partitioning.

3.5 Evaluation metrics

We use accuracy rate, precision rate, recall rate, and F1 score to 
evaluate the model classification performance (Equations 10–13).

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(10)

	
=

+
TPPrecision

TP FP 	
(11)

	
=

+
TPRecall

TP FN 	
(12)

	
×

= ×
+

1 2 Precision RecallF
Precision Recall 	

(13)

TP is the number of samples that are actually hypertensive and 
correctly predicted as hypertensive, TN  is the number of samples that 
are actually non-hypertensive and correctly predicted as 
non-hypertensive, FP is the number of samples that are actually 
non-hypertensive but wrongly predicted as hypertensive, and FN  is 
the number of samples that are actually hypertensive but wrongly 
predicted as non-hypertensive.

4 Results

4.1 Model performance evaluation

To assess the effectiveness and computational complexity of the 
1DCNN-BiLSTM-Transformer model, we  compare it against five 
representative deep learning models commonly used for pulse wave-
based hypertension classification (Tables 2, 3).

In comparison with the five benchmarking models, our 
proposed 1DCNN-BiLSTM-Transformer model achieves the best 
performance across all six collection points. Notably, this superior 
performance is attained without incurring additional 
computational complexity.

4.2 Ablation experiments

To verify the positive guiding role of each sub-module in the 
classification process of the 1DNN-BiLSTM-Transformer model, 
we  conduct the ablation experiment with the APW data on the 
left-cun as the experimental object (Figure 4). The results are shown 
in Table 4.

In Experiment 1, removal of the Transformer module results in a 
6.5% drop in accuracy. In Experiment 2, omitting the BiLSTM module 
leads to a 4.1% decline in accuracy. These findings indicate that both 
the Transformer and BiLSTM modules positively contribute to the 
model’s performance. In Experiment 3, the absence of the 1DCNN 
module leads to a 6.8% decrease in accuracy. Compared with 
Experiments 1 and 2, the decrease in accuracy in Experiment 3 is the 
greatest, which indicates that the local waveform features extracted by 
the 1DCNN module under each pressure segment are crucial for 
classification, and the positive guiding role of the 1DCNN module is 
the strongest. In Experiment 4, the original model outperforms 
ablation models in every metric, which confirms the synergistic 
effectiveness of the three modules of 1DCNN, BiLSTM, 
and Transformer.

5 Discussion

5.1 Comparison of classification 
performance under the six points

As shown in Figure 5, the performance ranking of the six models 
at the six collection points from high to low is left-cun, left-guan, 
right-cun, left-chi, right-guan, and right-chi. The performance of the 
collection points on the left hand is generally greater than that on the 
right hand.

The left meridian belongs to Yin and governs blood, corresponds 
to the heart, liver, and kidneys, and directly participates in the 
regulation of blood circulation. Hyperactivity of liver Yang and 
insufficiency of kidney Yin are both core pathogenesis of hypertension 
(Zhang et  al., 2019). The physiological characteristics of the liver 
storing blood and the heart governing blood vessels enable the left 
meridian to more sensitively reflect the hemodynamic changes of 
hypertension (Sun et al., 2016). The internal organ of the left-cun is 
the heart, and the left-cun is the closest to the aorta, which retains 
most of the ventricular ejection features (Wei et al., 2015). From the 
perspective of gut microbiota etiology, the systemic pathological 
changes triggered by its dysregulation—such as immune-
inflammatory responses and abnormal metabolites—primarily affect 
the functions of organs closely associated with circulatory regulation, 
including the heart, liver, and kidneys. These alterations can 
be  effectively captured by the APW signals acquired from the 
left meridian.

The right meridian belongs to Yang and governs qi, 
corresponds to the life gate of the lung and spleen, and is in charge 
of the ascending and descending of qi and metabolism (Zhang 
et al., 2019). The internal organs of the right-chi are the life gate 
and large intestine, and the correlation between the large intestine 
and blood pressure regulation is relatively weak (Zhong et  al., 
2019). From the perspective of gut microbiota etiology, although 
intestinal dysbiosis can influence systemic status through multiple 
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pathways, the functions of the lung, spleen, and large intestine—
corresponding to the right meridian—are more closely associated 
with the diffusion and descent of functional dynamics (qi 
movement) and the metabolism of water and nutrients, which 

only indirectly influence blood pressure. Therefore, the APW 
signals acquired from the right meridian are less capable of 
reflecting the direct vascular pathophysiological changes induced 
by gut microbiota dysbiosis.

TABLE 2  Model performance comparison.

Points Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Right-Cun

1DCNN-RF 76.4 73.8 72.5 73.1

LSTM-RF 79.1 76.5 75.2 75.8

1DCNN-LSTM-RF 81.8 79.3 78.1 78.7

STFT-CNN-SVM 80.8 77.2 76.0 76.6

WT-CNN-SVM 81.8 79.1 77.9 78.5

1DCNN-BiLSTM-

Transformer
87.3 85.2 84.0 84.6

Right-Guan

1DCNN-RF 74.5 71.9 70.3 71.1

LSTM-RF 77.2 74.8 73.6 74.2

LSTM-1DCNN-RF 79.1 76.9 75.7 76.3

STFT-CNN-SVM 78.2 75.8 74.6 75.2

WT-CNN-SVM 79.1 76.7 75.5 76.1

1DCNN-BiLSTM-

Transformer
85.5 83.4 82.2 82.8

Right-Chi

1DCNN-RF 72.7 70.2 68.9 69.5

LSTM-RF 75.5 73.0 71.8 72.4

LSTM-1DCNN-RF 77.3 75.0 73.8 74.4

STFT-CNN-SVM 76.4 73.9 72.7 73.3

WT-CNN-SVM 77.3 75.0 73.8 74.4

1DCNN-BiLSTM-

Transformer
83.6 81.1 79.9 80.5

Left-Cun

1DCNN-RF 78.2 75.6 74.3 74.9

LSTM-RF 80.9 78.7 77.5 78.1

LSTM-1DCNN-RF 83.6 81.5 80.3 80.9

STFT-CNN-SVM 81.8 79.6 78.4 79.0

WT-CNN-SVM 83.6 81.2 80.0 80.6

1DCNN-BiLSTM-

Transformer
92.7 90.8 89.6 90.2

Left-Guan

1DCNN-RF 75.5 73.1 72.0 72.5

LSTM-RF 78.2 76.3 75.1 75.7

LSTM-1DCNN-RF 80.9 78.8 77.6 78.2

STFT-CNN-SVM 79.1 76.9 75.7 76.3

WT-CNN-SVM 80.9 78.6 77.4 78.0

1DCNN-BiLSTM-

Transformer
89.1 87.3 86.1 86.7

Left-Chi

1DCNN-RF 73.6 71.4 70.1 70.7

LSTM-RF 76.4 74.2 73.0 73.6

LSTM-1DCNN-RF 79.1 76.9 75.7 76.3

STFT-CNN-SVM 77.3 75.1 73.9 74.5

WT-CNN-SVM 79.1 76.9 75.7 76.3

1DCNN-BiLSTM-

Transformer
86.4 86.5 83.3 83.9
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5.2 Attention weight analysis

To explain the differences in individualized physiological and 
pathological characteristics in classification decisions, 
we randomly select a hypertensive sample and a non-hypertensive 
sample from the classification results and analyze the weights of 
APW signals under each pressure segment to results (Quan et al., 
2024) (Figure 6).

In the high-pressure range (110–140 mmHg), the weights of 
non-hypertensive samples are significantly higher than those of 
hypertensive samples. The vascular elasticity of non-hypertensive 
patients is so strong that their vessels can buffer pressure shock 
through effective dilation, allowing their APW signals to maintain 
relatively regular morphological characteristics even in the high-
pressure segments. In contrast, hypertensive patients often experience 
arteriosclerosis and reduced vascular wall compliance, resulting in 
flattened APW signals in high-pressure segments. As a result, the 
model assigns greater attention to the high-pressure segments of 
non-hypertensive samples to capture the elastic response patterns of 
healthy blood vessels.

In the medium- and low-pressure range (110–140 mmHg), the 
attention weights for hypertensive samples are significantly higher 
than those of non-hypertensive samples, with the differences 
displaying a fluctuating distribution. These segments correspond to 
hemodynamic processes spanning from the systolic to the 
mid-diastolic phase of the cardiac cycle. Due to increased vascular 
resistance and elevated left ventricular afterload in hypertensive 
patients, their APW signals in this pressure range often display 
abnormal features. In contrast, APW signals of non-hypertensive 
patients in these segments are smoother in this pressure range, and 
the consistency of their physiological characteristics is higher. 
Therefore, the model emphasizes the medium- and low-pressure 
segments of hypertensive samples to capture waveform distortions 
related to the underlying pathophysiology of hypertension.

In the extremely low-pressure range (10–20 mmHg), 
non-hypertensive samples receive higher attention weights than 
hypertensive samples. These extremely low-pressure segments 
correspond to the microcirculation and venous return states. In 
non-hypertensive individuals, higher capillary bed openness and 
lower peripheral blood flow resistance allow their APW signals to 

TABLE 3  Computational complexity comparison.

Models Model complexity Training time Inference speed

Params (M) Size (MB) Time per epoch (s) Throughtput (seq/s)

1DCNN-RF 1.25 5.0 45.2 890

LSTM-RF 1.68 6.7 58.9 680

1DCNN-LSTM-RF 2.45 9.8 82.3 380

STFT-CNN-SVM 1.92 7.7 65.8 520

WT-CNN-SVM 2.18 8.7 73.5 450

1DCNN-BiLSTM-

Transformer
2.36 9.4 79.8 420

FIGURE 4

Model architectures corresponding to the ablation experiments: (a) Experiment 1, (b) Experiment 2, (c) Experiment 3, and (d) Experiment 4.

TABLE 4  Ablation experiments results.

Experiments Sub-Module Evaluation metrics

1DCNN BiLSTM Transformer Accuracy (%) Precision (%) Recall (%) F1 Score 
(%)

1 √ √ 86.2 84.1 82.3 83.2

2 √ √ 88.4 86.7 85.1 85.9

3 √ √ 85.9 83.5 81.8 82.6

4 √ √ √ 92.7 90.8 89.6 90.2
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FIGURE 6

Distribution of weights across pressure segments under 14 step-pressure gradients ranging from 10 to 140 mmHg at 10 mmHg intervals: (a) 
hypertensive sample, (b) non-hypertensive sample, and (c) inter-sample differences. In (a,b), a brighter color indicates a greater weight.

reflect clear microcirculatory fluctuations even at very low 
pressures. By contrast, due to peripheral vascular constriction and 
endothelial dysfunction in hypertensive patients, their APW 
signals are prone to baseline drift or noise interference in the 
extremely low-pressure segment, resulting in the masking of 
effective physiological information. Therefore, the model pays 
enhanced attention to the extremely low-pressure segments of 
non-hypertensive samples to capture the differentiated features of 
health status under microcirculation and pays reduced attention to 
the extremely low-pressure segments of hypertensive samples to 
avoid the negative impact of noise interference on the 
classification results.

5.3 Grad-CAM analysis

Grad-CAM (Gradient-weighted Class Activation Mapping) is a 
visualization technique used to interpret the decisions of deep learning 
models by computing the gradient of the target class with respect to 
the last convolutional layer, generating a heatmap reflecting the 
regions of interest of the model, with higher-weighted regions 
contributing more to the prediction results.

We randomly select a hypertension sample and apply an 
improved Grad-CAM algorithm to generate time-frequency 
heatmaps under 14 pressure segments (Figure 7), along with the 
corresponding waveform. To validate the clinical significance of 

FIGURE 5

Heatmaps depicting differences in accuracy, precision, recall, and F1 score across six models at six points. A darker color indicates a higher value of the 
metric and a better performance.
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the waveform highlighted, we extract the waveform corresponding 
to the region with the highest activation in the heatmap and 
compare it with clinical waveform morphologies associated with 
hypertension (Nan et al., 2025; Hu et al., 2024). The results indicate 
that this waveform is located after the primary systolic peak and is 
highly consistent with the characteristic hypertensive waveform—
the augmented reflection wave zone (Huang et  al., 2018). The 
observed late-systolic peak in this region suggests early wave 
reflection due to increased arterial stiffness, which is a direct 
hemodynamic manifestation of increased left ventricular afterload. 

These findings support the clear clinical and pathological 
significance of the features identified by the model.

6 Conclusion

We propose a 1DCNN-BiLSTM-Transformer model for pulse 
wave-based hypertension classification and validate it on the APW 
dataset from the Population Health Data Archive (PHDA). 
We conduct physiologically driven interpretable analysis by evaluating 
model performance across different collection points, demonstrating 
that APW can reflect pathophysiological features linked to gut 
microbiota dysbiosis. We also conduct model-driven interpretable 
analysis employing both attention weights and Grad-CAM analysis to 
offer a clinical decision-making basis.

In future work, we plan to leverage APW as a non-invasive tool to 
explore novel therapeutic strategies for the prevention and management 
of hypertension. Additionally, we plan to develop an edge-deployable 
hypertension classification system based on our proposed model.
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