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Introduction: Hypertension has a multifactorial etiology. Recent studies have
revealed a link between hypertension and gut microbiota dysbiosis. Pulse
wave analysis holds significant clinical value for hypertension risk assessment.
While research on deep learning models utilizing photoplethysmography
(PPG) for hypertension classification has advanced, limitations persist. PPG
offers limited richness and accuracy for characterizing blood pressure-related
pathological information. In contrast, Arterial Pressure Waveform (APW)
provides richer pathological information and exhibit stronger correlations with
clinically interpretable features. However, deep learning research using APW for
hypertension classification remains limited, as existing studies focus primarily on
local feature extraction and neglect global temporal dynamics.

Methods: To address these challenges, we propose a novel 1D-CNN-BiLSTM-
Transformer architecture for hypertension risk assessment based on APW, where
the 1D-CNN module extracts waveform morphology features from signals
within individual pressure segments, the BiLSTM module models long-range
temporal dependencies from signals within each segment, and the Transformer
module explicitly captures nonlinear interaction from signals across different
pressure segments through multi-head self-attention mechanisms.

Results: We use the multi-channel APW database from the Population Health
Data Archive (PHDA), containing hypertensive and non-hypertensive cases with
APW signals acquired from six traditional Chinese medicine points (left-cun,
left-guan, left-chi, right-cun, right-guan, and right-chi) to evaluate the model's
performance. The model outperforms the current state-of-the-art methods in
accuracy, precision, recall, and F1 score across all six points.

Conclusion: The proposed model enhances classification performance. The
physiologically driven interpretable analysis demonstrates that APW can reflect
pathophysiological features associated with gut microbiota dysbiosis. The
model-driven interpretable analysis offers a decision-making basis for clinical
diagnosis.
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arterial pressure waveform, hypertension, gastrointestinal microbiome, CNN, RNN,
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1 Introduction

The development of hypertension results from the interplay
between genetic and environmental factors (Townsend et al., 2016).
To date, genetic contributors to hypertension have been extensively
studied. Studies have suggested that dysbiosis of the gut microbiota is
closely associated with the progression of hypertension. Alterations in
the abundance of certain gut microbial strains may suppress or
attenuate immune responses related to chronic inflammation,
indicating their potential role as biomarkers for the prevention and
treatment of hypertension (Yu et al., 2024). Therefore, exploring novel
therapeutic targets from the perspective of the gut microbiome
etiology is both highly feasible and necessary.

Blood pressure (BP) is defined as the lateral pressure exerted by
blood flow per unit area on blood vessel walls. It is categorized by
vessel type: capillary pressure, venous pressure, and arterial blood
pressure (ABP), with ABP being the most commonly referenced
measure (Polska et al., 2007). Extensive research demonstrates a
strong correlation between pulse wave signals and ABP. For instance,
Luo et al. (2006) invasively measure ABP in the canine aorta while
simultaneously capturing non-invasive pulse waves, observing
consistent waveform morphology and temporal relationships.
Martinez et al. (2018) further quantify this similarity in both the time
and frequency domains, reporting an average Pearson correlation
coefficient exceeding 0.9. Complementing these findings, Abhay et al.
(2017) analyze specific feature-based similarities, finding high Pearson
correlation coefficients for amplitudes (0.822), normalized time
periods (0.99), and normalized rise times (0.78) between ABP and
pulse wave signals. Collectively, this evidence strongly suggests that
pulse wave signals provide valuable information for assessing BP.

Photoplethysmography (PPG) and Arterial Pressure Waveform
(APW) represent two distinct pulse wave types acquired through
different sensing modalities. PPG signals, obtained using optical
sensors, detect blood volume fluctuations caused by light absorption
or reflection within the microvasculature (small arterioles, small
venules, and capillaries) in the subcutaneous microcirculation (Lee
et al, 2021). There has been considerable advancement in BP
prediction studies based on PPG (De Nisio et al., 2025; Shoaib et al.,
2025; Shimazaki et al.,, 2019). APW signals are captured using pressure
sensors directly coupled to the brachial or radial artery, thereby
reflecting the dynamic pressure characteristics of the arterial wall
(Avolio et al., 2009). Due to inherent limitations in its acquisition
method, PPG signals are more constrained in characterizing the
richness and fidelity of BP-related pathological information compared
to APW signals. Furthermore, when deep learning networks process
APW signals for classification, the primary classification features
exhibit more direct and robust correlations with clinically interpretable
physiological indicators. Consequently, APW signals are better suited
as input for deep learning models targeting hypertension classification,
offering enhanced potential for both model performance
and interpretability.

Deep learning has gained significant momentum in recent
research for pulse wave-based BP prediction (Nuryani et al., 2023).
Among prevalent architectures, Convolutional Neural Networks
(CNNs) are widely adopted, leveraging their powerful feature
extraction capabilities to achieve commendable performance on this
task (Khodabakhshi et al., 2022; Schlesinger et al., 2020; Qin et al.,
2021; Yan et al., 2019; Liu, 2021). However, CNNs possess inherent
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limitations: they can only extract local features due to their restricted
receptive fields, and they are not specially designed for processing
one-dimensional (1D) sequential data, whereas the pulse wave data
represents quintessential 1D time series (Tian et al., 2025). To address
these constraints, Recurrent Neural Networks (RNNs) have been
proposed to model the temporal dependencies within pulse wave data
(Aguirre et al., 2021; El-Hajj and Kyriacou, 2021a; El-Hajj and
Kyriacou, 2021b; Liu et al., 2024). Nevertheless, standard RNNs often
struggle to capture very long-range dependencies effectively (Zhang
et al., 2023). Further innovations involve hybrid architectures that
integrate CNN and RNN components to leverage their complementary
strengths in local feature extraction and temporal dependency
modeling, respectively (Hung et al., 2025; Wang et al., 2020; Panwar
et al., 2020; Zhang et al., 2024; Leitner et al., 2022). Recently, the
Transformer architecture (Vaswani et al., 2017) has garnered extensive
attention across diverse domains. Its core self-attention mechanism
excels at recognizing long-range relationships within sequences and
learning global contextual features, making the Transformer
inherently more suitable for modeling the complex temporal dynamics
of pulse wave signals compared to both CNNs and traditional RNNs.

To address the limitations of existing approaches for pulse wave-
based hypertension classification, we propose a novel 1IDCNN-
BiLSTM-Transformer architecture based on APW analysis (Ju et al.,
2024; Peng et al.,, 2024a; Peng et al., 2024b; Feng et al., 2023). This
model integrates complementary strengths: the IDCNN-BiLSTM
module extracts the local features from signals within individual
pressure segments, while the Transformer module captures the
complex, long-range interdependence among signals across different
pressure segments. The feature fusion module combines these
hierarchically learned representations for final classification.
We evaluate model performance using the multi-channel APW
database containing hypertensive and non-hypertensive cases from
the Population Health Data Archive (PHDA) (Geng, 2024). The
dataset includes APW data from 495 hypertensive and 611
non-hypertensive subjects, collected at three points on each hand
(referred to as cun, guan, and chi in Chinese medicine) under 14 step-
pressure gradients ranging from 10 to 140 mmHg at 10 mmHg
intervals. Validation experiments demonstrate that our proposed
model significantly outperforms state-of-the-art typical deep learning
methods for pulse wave-based hypertension classification in accuracy,
precision, recall, and F1 score across all six collection points.
Furthermore, to bridge the gap between algorithmic output and
clinical utility, we conduct the interpretability analysis from three
perspectives: (1) model performance variation analysis under six
collection points, (2) attention weight analysis of signals for each
pressure segment, and (3) spatial feature importance analysis using
Grad-CAM (Selvaraju et al., 2020). The synergistic combination of
superior predictive performance and clinically grounded
interpretability establishes a robust methodological framework for
hypertension risk assessment.

2 Materials and methods
2.1 Network architecture

The overall architecture of the 1IDCNN-BiLSTM-Transformer
model we proposed is shown in Figure 1.
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FIGURE 1

1DCNN-BILSTM-Transformer model structure. APW;j represents the pulse wave sequence under the i-th pressure level. Local Featurej, Global Feature;j,
and Concatenating Featurej denote the local features, global features, and concatenated features, respectively, extracted from the pulse wave sequence
at the i-th pressure level. ¢ refers to the attention weight assigned to the i-th pressure level. Fusion Feature represents the final fused feature.

2.2 1IDCNN-BILSTM module

The One-Dimensional Convolutional Neural Network-Bidirectional
Long Short-Term Memory (IDCNN-BiLSTM) module extracts local

Frontiers in Microbiology

features from signals within each pressure segment. The IDCNN module
extracts morphological features, and the BILSTM module captures temporal
dependencies. The IDCNN-BIiLSTM module preserves pressure gradient
information and signal features within each pressure segment.
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2.2.1 1IDCNN module

The convolutional layer identifies specific waveform fragments
through convolutional kernels, while its translation invariance ensures
that these kernels can detect the waveform features at each position.
The 1DCNN module comprises three convolutional blocks. These
three convolutional blocks employ convolutional kernels of decreasing
sizes to extract waveform features at different scales: The first layer
captures basic waveform features such as peaks and valleys; the middle
layer combines first-layer features to identify more complex waveforms
such as main waveforms, pre-prestroke waveforms, and re-prestroke
waveforms; and the final layer further integrates these features to
capture local morphological details. The one-dimensional convolution
operation for signal feature extraction is shown in Equation 1:

=2 it i+ ] M

x is the APW sequence within each pressure segment, w[ ]] is the
weight of the jth element in the convolution kernel, x[i + ]] is the
element taken from x that corresponds with the current convolution
kernel, and y[i: is the output feature value at position i.

2.2.2 BiLSTM module

With 2000 time steps per pressure segment, APW sequences are
so lengthy that the IDCNN module alone cannot capture global
features within each pressure segment. Therefore, we introduce the
BiLSTM module after the IDCNN module to extract long-range
temporal dependencies. For pulse wave signals, both forward evolution
information from the systolic to diastolic phase and backward
information reflected back from the distal end are equally significant
for hypertension diagnosis. Consequently, we configure the LSTM
module as bidirectional, enabling simultaneous forward and backward
sequence processing to capture bidirectional signal dependencies.

2.3 Transformer module

The Transformer module captures interdependencies among signals
across different pressure segments, learning pressure change patterns of
the APW signals. The module comprises three transformer blocks
connected in parallel, each containing an 8-head self-attention layer and
a feed-forward network. The multi-head attention layer is designed to
enable the model to consider all other positions in the sequence when
processing each position, thereby capturing long-range intra-sequence
dependencies. Feature importance is dynamically adjusted through the
mechanism to enhance signal feature representations within each
pressure segment according to global forward and backward information.

Each  block
L= (Local Featurey,.....Local Feature;,...,Local Featurel4)extracted
by the 1IDCNN-BIiLSTM module as input. Within each block, the
computation of Query (Q), Key (K), and Value (V) matrices, followed

accepts the local feature sequence

by the scaled dot-product attention mechanism, enables interactive
modeling of the input, allowing information at each position to
directly attend to and integrate features from all other positions. The
feature sequences oW,0? 00 output by the three blocks are
adaptively integrated through a gated fusion, which computes dynamic
gating weights (Equations 2 and 3). The global feature sequence
G= (Global Feature,,...,Global Feature;,...,Global Featurel4) is
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ultimately produced via weighted summation (Equation 4). The
sequence G comprehensively encapsulates information from all
pressure segments.

6k :Tanh(O(k)Wo(k) +b£")) @)
g(k):soﬂmax(é(k)wg +bg) (3)
G:Zizlgk ook (4)

é(k) is the transformed feature sequence of the k-th Transformer
block, with the transformation serving to align the outputs of the three
blocks into a unified feature space. g(k) is the dynamic gating weight
vector associated with the k-th block.

2.4 Feature fusion module

The feature fusion module fuses local features from signals at each
pressure segment (extracted by the IDCNN-BiLSTM module) with
global features from the entire signal (extracted by the Transformer
module) in the feature dimension.

For the ith pressure segment, the concatenating feature C;
calculation process is shown in Equation 5:

Ci =ReLU(W, {L; ®G;]+b,) )

C;s are input into an attention pooling layer to learn their importance
weights a;s (Equation 6), and then C;s are weighted and fused to generate
a single feature vector (Equation 7), Ffyseq that comprehensively
represents APW signal information within all pressure segments.

o= PG )
Z exp(Wa -C; +b, )
i=1

14
Ffissed = z,':lai'ci (7)

Finally, Ffyseq is fed into the classification module, which consists
of three fully-connected layers that perform nonlinear mapping and
integration of the fused high-dimensional features. The network
ultimately produces a binary prediction indicating either
“Hypertension” or “Non-Hypertension,” achieving the automated

classification of pulse wave sequence data.

3 Experiments

3.1 Dataset

The data are obtained from the APW dataset shared on the
Population Health Data Archive (PHDA).
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Data collection employed a multi-channel pulse acquisition
instrument consisting of an airbag pressurization device and
three composite pressure sensors. The acquisition process
operates as follows: the airbag pressurization device provides step
pressures from 10 to 140 mmHg in 10 mmHg intervals, and the
cuffis inflated to generate the specified pressure for approximately
10 s with a 225 Hz sampling frequency at each pressure step,
while APW signals and static pressure information from the three
sensors are recorded in real time until the next inflation
command. In this way, 14-order static pressure values and
corresponding APW sequence data from three reference points
on each hand under 14 pressure gradients from every subject
(495 with hypertension and 611 without hypertension) are
collected. These three points are designated as cun, guan, and chi
in traditional Chinese medicine, reflecting human body health
status across different dimensions. The collection points and
results are shown in Figure 2, with dataset details presented in
Table 1.

3.2 Data preprocessing

For the APW sequence data at each acquisition point, data
preprocessing is performed in three aspects: conventional data
cleaning, noise reduction, and baseline drift removal.

10.3389/fmicb.2025.1714654

3.2.1 Conventional data cleaning

The collected data for each pressure segment contains approximately
2,250 points. During data collection, APW signals briefly drift during
each pressurization process. Furthermore, neural networks require equal
points in each pressure segment. Therefore, if n points exist under each
pressure section, we remove points a from the starting point and b before
the ending point during each pressurization process to ensure the length
under each pressure segment is 2000 (Equations 8 and 9).

a:'_(n—length)/ﬂ 8)

b:L(n—length)/ZJ ©9)

3.2.2 Noise reduction

During actual collection, high-frequency noise becomes mixed
into APW signals due to internal instrument noise, electromagnetic
interference, motion artifacts, and other interferences, so low-pass
filtering technology is needed to reduce the high-frequency noise
component in collected signals. Wavelet threshold denoising (Zhang
et al., 2016) can eliminate the high-frequency noise influence on
signals and extract the main features.

We represent the collected signal as f (t) = s(t) + h(t) where f (t)
is the unprocessed noisy signal, s (t) is the useful signal, and h (t) is the

Pulse-Wave
Sequence
at 14
consecutive

FIGURE 2

pressure
segments

APW signal corresponds to six points (left-cun, left-guan, left-chi, right-cun, right-guan, and right-chi) under 14 step-pressure gradients ranging from
10 to 140 mmHg at 10 mmHg intervals. The Cun, Guan, and Chi are three distinct TCM points on the medial wrist. The APW signal obtained from each
point can, respectively, indicate the functional status of different Zang-fu organs.

TABLE 1 The details of the dataset.

Labels Sample size
Hypertension 495
Non-Hypertension 611

Points Pressure segments (mmHg)

‘ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 140

Left-Cun, Left-Guan, Left-Chi,
Right-Cun, Right-Guan, Right-Chi
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high-frequency noise signal. The signal after wavelet threshold
denoising is g(t). Based on extensive experimental comparisons, the
coif6 wavelet is selected as the wavelet basis, with a decomposition
level of 3. The threshold is determined using the fixed threshold
estimation, and the high-frequency coefficients are processed with the
soft thresholding function. The entire wavelet threshold denoising
process can be represented by the following pseudo-code:

Begin:
Input:f(t)
// Initialization
Choose wavelet basis as ‘coif6’
Set decomposition level to 3
Select fixed threshold estimation method
Select soft threshold function
/] Wavelet decomposition
(LowFreqCoefls, HighFreqCoefts)=WaveletDecompose(f{(t), ‘coif633)
// Threshold determination
Threshold=FixedThresholdEstimation(HighFreqCoeffs)
/] High-frequency coefficient processing
for each level in HighFreqCoefTs:
for each Coeff in HighFreqCoeffs(level):
if abs(Coeff)>Threshold:
ProcessedHighFreqCoeffs(Level).append(Coeft)
else:
ProcessedCoeff=SoftThresholdFunction(Coeff,Threshold)
ProcessedHighFredCoeffs(level).apped(ProcessedCoeff)
/1 Wavelet reconstruction
g(t) = WaveletReconstruct(LowFreqCoeffs, ProcessedHighFreqCoeffs,
‘coif6), 3)
Output:g(t)
End

3.2.3 Baseline drift removal

During actual collection, low-frequency noise becomes mixed into
APW signals due to subject breathing or slight body movement,
temperature drift, voltage drift, and other disturbances, causing APW
signals to deviate from their baseline and present slow, non-periodic
fluctuations. Empirical Mode Decomposition (EMD) (Kopsinis and
McLaughlin, 2009) adaptively decomposes the signal layer by layer from
high frequency to low frequency into multiple Intrinsic Mode Functions
(IMFs) according to its characteristics. The low-frequency noise is
eliminated by removing IMF1, while the high-frequency IMFs are
retained and reconstructed as the signal after removing the baseline drift.

10.3389/fmicb.2025.1714654

After data preprocessing, the waveform becomes smoother and
retains the waveform features of the signal to the greatest extent. As shown
in Figure 3, the waveforms of original and preprocessed signals remain
consistent, establishing a solid foundation for subsequent analysis.

3.3 Data augmentation

For the small datasets in this study (495 hypertensive samples and 611
non-hypertensive samples), we adopt data augmentation to introduce
random variations of the original data to reasonably and effectively
expand the scale and diversity of the training set, which enables the model
to learn more robust and stable feature representation while reducing
overfitting and enhancing model generalization ability.

Considering APW characteristics, we design the following three
data augmentation methods to expand the training set while
preserving physiological fidelity:

(1) Injection of band-limited Gaussian noise: While preprocessing
typically removes high-frequency noise, APW signals may
exhibit subtle, low-amplitude stochastic variations due to
physiological micro-tremors or sensor limitations. To simulate
this realistically without reintroducing discarded noise,
we inject low-intensity, band-limited Gaussian noise with
constrained probability.

(2) Random cyclic time shifting: To account for inherent

physiological fluctuations in the periodicity of APW signals,

we simulate this natural phase variability by applying random
cyclic shifts along the time axis.

(3) Random amplitude scaling: To simulate natural amplitude

variations in APW signals and enhance model robustness to

absolute signal strength, we apply random scaling factors to the

signal amplitude.

We set 0.005 as the noise level, 20 points as the maximum offset,
and (0.95, 1.05) as the amplitude scaling range.

3.4 Parameter setting

We design and validate the deep learning models in a Python
environment using the Pytorch library on a computer with a
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14-core CPU and 32 GB RAM. The graphics card used is an
NVIDIA GeForce RTX 4070 Ti Super 16GB to accelerate
model training.

The IDCNN module consists of three convolutional blocks with
kernel sizes of 7, 5, and 3 and filter counts of 32, 64, and 128,
respectively. The BiILSTM module comprises two stacked blocks with
256 hidden units each. The Transformer block is composed of three
transformer blocks connected in parallel, each equipped with eight
attention heads. Three fully connected layers are appended at the end
for classification.

We apply the cross-entropy loss function suitable for classification
tasks. We set 0.001 as the initial learning rate and 32 as the batch size,
train the model for 100 epochs applying the Adam optimizer, and stop
training if performance does not improve after 15 epochs. To ensure
the stability and generalization ability of the model, we adopt 5-fold
cross-validation for data partitioning.

3.5 Evaluation metrics

We use accuracy rate, precision rate, recall rate, and F1 score to
evaluate the model classification performance (Equations 10-13).

TP+TN

Accuracy =———————— (10)
TP+TN + FP+FN
TP
Precision = (11)
TP + FP
TP
Recall=———— (12)
TP+ FN
Fl=2x Precisionx Recall (13)
Precision+ Recall

TP is the number of samples that are actually hypertensive and
correctly predicted as hypertensive, TN is the number of samples that
are actually non-hypertensive and correctly predicted as
non-hypertensive, FP is the number of samples that are actually
non-hypertensive but wrongly predicted as hypertensive, and FN is
the number of samples that are actually hypertensive but wrongly
predicted as non-hypertensive.

4 Results
4.1 Model performance evaluation

To assess the effectiveness and computational complexity of the
IDCNN-BIiLSTM-Transformer model, we compare it against five
representative deep learning models commonly used for pulse wave-
based hypertension classification (Tables 2, 3).

In comparison with the five benchmarking models, our
proposed IDCNN-BiLSTM-Transformer model achieves the best
performance across all six collection points. Notably, this superior
attained  without additional

performance is incurring

computational complexity.
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4.2 Ablation experiments

To verify the positive guiding role of each sub-module in the
classification process of the 1IDNN-BiLSTM-Transformer model,
we conduct the ablation experiment with the APW data on the
left-cun as the experimental object (Figure 4). The results are shown
in Table 4.

In Experiment 1, removal of the Transformer module results in a
6.5% drop in accuracy. In Experiment 2, omitting the BILSTM module
leads to a 4.1% decline in accuracy. These findings indicate that both
the Transformer and BiLSTM modules positively contribute to the
model’s performance. In Experiment 3, the absence of the IDCNN
module leads to a 6.8% decrease in accuracy. Compared with
Experiments 1 and 2, the decrease in accuracy in Experiment 3 is the
greatest, which indicates that the local waveform features extracted by
the IDCNN module under each pressure segment are crucial for
classification, and the positive guiding role of the IDCNN module is
the strongest. In Experiment 4, the original model outperforms
ablation models in every metric, which confirms the synergistic
of 1DCNN, BiLSTM,

effectiveness of the three modules

and Transformer.

5 Discussion

5.1 Comparison of classification
performance under the six points

As shown in Figure 5, the performance ranking of the six models
at the six collection points from high to low is left-cun, left-guan,
right-cun, left-chi, right-guan, and right-chi. The performance of the
collection points on the left hand is generally greater than that on the
right hand.

The left meridian belongs to Yin and governs blood, corresponds
to the heart, liver, and kidneys, and directly participates in the
regulation of blood circulation. Hyperactivity of liver Yang and
insufficiency of kidney Yin are both core pathogenesis of hypertension
(Zhang et al., 2019). The physiological characteristics of the liver
storing blood and the heart governing blood vessels enable the left
meridian to more sensitively reflect the hemodynamic changes of
hypertension (Sun et al., 2016). The internal organ of the left-cun is
the heart, and the left-cun is the closest to the aorta, which retains
most of the ventricular ejection features (Wei et al., 2015). From the
perspective of gut microbiota etiology, the systemic pathological
changes triggered by its dysregulation—such as immune-
inflammatory responses and abnormal metabolites—primarily affect
the functions of organs closely associated with circulatory regulation,
including the heart, liver, and kidneys. These alterations can
be effectively captured by the APW signals acquired from the
left meridian.

The right meridian belongs to Yang and governs qi,
corresponds to the life gate of the lung and spleen, and is in charge
of the ascending and descending of qi and metabolism (Zhang
et al,, 2019). The internal organs of the right-chi are the life gate
and large intestine, and the correlation between the large intestine
and blood pressure regulation is relatively weak (Zhong et al.,
2019). From the perspective of gut microbiota etiology, although
intestinal dysbiosis can influence systemic status through multiple
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TABLE 2 Model performance comparison.

10.3389/fmicb.2025.1714654

Points Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)
IDCNN-RE 76.4 73.8 725 73.1
LSTM-RF 79.1 76.5 75.2 75.8
IDCNN-LSTM-RF 81.8 79.3 78.1 78.7
Right-Cun STFT-CNN-SVM 80.8 77.2 76.0 76.6
WT-CNN-SVM 81.8 79.1 77.9 785
IDCNN-BILSTM-
Transformer 87.3 85.2 84.0 84.6
IDCNN-RE 745 71.9 703 71.1
LSTM-RF 77.2 74.8 73.6 742
LSTM-1DCNN-RF 79.1 76.9 75.7 763
Right-Guan STFT-CNN-SVM 782 75.8 74.6 752
WT-CNN-SVM 79.1 76.7 755 76.1
IDCNN-BIiLSTM-
Transformer 85.5 83.4 822 82.8
IDCNN-RF 72.7 70.2 68.9 69.5
LSTM-RF 755 73.0 71.8 724
LSTM-1DCNN-RF 77.3 75.0 73.8 744
Right-Chi STET-CNN-SVM 76.4 73.9 72.7 733
WT-CNN-SVM 77.3 75.0 73.8 744
IDCNN-BIiLSTM-
Transformer 83.6 81.1 79.9 80.5
IDCNN-RE 782 75.6 743 74.9
LSTM-RF 80.9 78.7 775 78.1
LSTM-1DCNN-RF 83.6 81.5 80.3 80.9
Left-Cun STET-CNN-SVM 81.8 79.6 78.4 79.0
WT-CNN-SVM 83.6 81.2 80.0 80.6
IDCNN-BIiLSTM-
Transformer 92.7 90.8 89.6 90.2
IDCNN-RF 755 73.1 72.0 725
LSTM-RF 782 76.3 75.1 75.7
LSTM-1DCNN-RF 80.9 78.8 77.6 78.2
Left-Guan STFT-CNN-SVM 79.1 76.9 75.7 763
WT-CNN-SVM 80.9 78.6 77.4 78.0
IDCNN-BIiLSTM-
Transformer 89.1 87.3 86.1 86.7
IDCNN-RE 73.6 714 70.1 70.7
LSTM-RF 76.4 742 73.0 73.6
LSTM-1DCNN-RF 79.1 76.9 75.7 763
Left-Chi STET-CNN-SVM 77.3 75.1 73.9 74.5
WT-CNN-SVM 79.1 76.9 75.7 763
IDCNN-BIiLSTM-
Transformer 86.4 86.5 833 83.9

pathways, the functions of the lung, spleen, and large intestine—
corresponding to the right meridian—are more closely associated
with the diffusion and descent of functional dynamics (qi
movement) and the metabolism of water and nutrients, which

Frontiers in Microbiology

only indirectly influence blood pressure. Therefore, the APW
signals acquired from the right meridian are less capable of
reflecting the direct vascular pathophysiological changes induced
by gut microbiota dysbiosis.
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TABLE 3 Computational complexity comparison.

10.3389/fmicb.2025.1714654

Models Model complexity Training time Inference speed
Params (M) Size (MB) Time per epoch (s) Throughtput (seq/s)

IDCNN-RF 1.25 5.0 452 890

LSTM-RF 1.68 6.7 58.9 680
IDCNN-LSTM-RF 245 9.8 82.3 380
STFT-CNN-SVM 1.92 7.7 65.8 520
WT-CNN-SVM 2.18 8.7 73.5 450
IDCNN-BiLSTM-

Transformer 2.36 9.4 79.8 420

(a

FIGURE 4

Model architectures corresponding to the ablation experiments: (a) Experiment 1, (b) Experiment 2, (c) Experiment 3, and (d) Experiment 4.

TABLE 4 Ablation experiments results.

Sub-Module
BiLSTM

Experiments

1DCNN

Transformer

Evaluation metrics

Recall (%) F1 Score

(%)

Accuracy (%) = Precision (%)

5.2 Attention weight analysis

To explain the differences in individualized physiological and

pathological characteristics in classification decisions,
we randomly select a hypertensive sample and a non-hypertensive
sample from the classification results and analyze the weights of
APW signals under each pressure segment to results (Quan et al.,
2024) (Figure 6).

In the high-pressure range (110-140 mmHg), the weights of
non-hypertensive samples are significantly higher than those of
hypertensive samples. The vascular elasticity of non-hypertensive
patients is so strong that their vessels can buffer pressure shock
through effective dilation, allowing their APW signals to maintain
relatively regular morphological characteristics even in the high-
pressure segments. In contrast, hypertensive patients often experience
arteriosclerosis and reduced vascular wall compliance, resulting in
flattened APW signals in high-pressure segments. As a result, the
model assigns greater attention to the high-pressure segments of
non-hypertensive samples to capture the elastic response patterns of

healthy blood vessels.

Frontiers in Microbiology

In the medium- and low-pressure range (110-140 mmHg), the
attention weights for hypertensive samples are significantly higher
than those of non-hypertensive samples, with the differences
displaying a fluctuating distribution. These segments correspond to
hemodynamic processes spanning from the systolic to the
mid-diastolic phase of the cardiac cycle. Due to increased vascular
resistance and elevated left ventricular afterload in hypertensive
patients, their APW signals in this pressure range often display
abnormal features. In contrast, APW signals of non-hypertensive
patients in these segments are smoother in this pressure range, and
the consistency of their physiological characteristics is higher.
Therefore, the model emphasizes the medium- and low-pressure
segments of hypertensive samples to capture waveform distortions
related to the underlying pathophysiology of hypertension.

In the extremely low-pressure range (10-20 mmHg),
non-hypertensive samples receive higher attention weights than
hypertensive samples. These extremely low-pressure segments
correspond to the microcirculation and venous return states. In
non-hypertensive individuals, higher capillary bed openness and
lower peripheral blood flow resistance allow their APW signals to
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reflect clear microcirculatory fluctuations even at very low
pressures. By contrast, due to peripheral vascular constriction and
endothelial dysfunction in hypertensive patients, their APW
signals are prone to baseline drift or noise interference in the
extremely low-pressure segment, resulting in the masking of
effective physiological information. Therefore, the model pays
enhanced attention to the extremely low-pressure segments of
non-hypertensive samples to capture the differentiated features of
health status under microcirculation and pays reduced attention to
the extremely low-pressure segments of hypertensive samples to
avoid the negative impact of noise interference on the
classification results.
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5.3 Grad-CAM analysis

Grad-CAM (Gradient-weighted Class Activation Mapping) is a
visualization technique used to interpret the decisions of deep learning
models by computing the gradient of the target class with respect to
the last convolutional layer, generating a heatmap reflecting the
regions of interest of the model, with higher-weighted regions
contributing more to the prediction results.

We randomly select a hypertension sample and apply an
improved Grad-CAM algorithm to generate time-frequency
heatmaps under 14 pressure segments (Figure 7), along with the
corresponding waveform. To validate the clinical significance of
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FIGURE 7

Waveforms and time-frequency heatmaps across 14 pressure
segments for a hypertension sample. In the heatmaps, a brighter
color indicates a greater weight. The region marked in red
corresponds to the waveform with the highest activation in the
heatmap.

the waveform highlighted, we extract the waveform corresponding
to the region with the highest activation in the heatmap and
compare it with clinical waveform morphologies associated with
hypertension (Nan et al., 2025; Hu et al., 2024). The results indicate
that this waveform is located after the primary systolic peak and is
highly consistent with the characteristic hypertensive waveform—
2018). The
observed late-systolic peak in this region suggests early wave

the augmented reflection wave zone (Huang et al.,

reflection due to increased arterial stiffness, which is a direct
hemodynamic manifestation of increased left ventricular afterload.
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These findings support the clear clinical and pathological
significance of the features identified by the model.

6 Conclusion

We propose a IDCNN-BiLSTM-Transformer model for pulse
wave-based hypertension classification and validate it on the APW
dataset from the Population Health Data Archive (PHDA).
We conduct physiologically driven interpretable analysis by evaluating
model performance across different collection points, demonstrating
that APW can reflect pathophysiological features linked to gut
microbiota dysbiosis. We also conduct model-driven interpretable
analysis employing both attention weights and Grad-CAM analysis to
offer a clinical decision-making basis.

In future work, we plan to leverage APW as a non-invasive tool to
explore novel therapeutic strategies for the prevention and management
of hypertension. Additionally, we plan to develop an edge-deployable
hypertension classification system based on our proposed model.
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