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The West Nile virus (WNV), an emerging neurotropic flavivirus and a leading

cause of viral encephalitis worldwide, represents a significant public health threat

owing to its neuroinvasive potential and the absence of a licensed human

vaccine. Understanding the host immune response to WNV, particularly the

role of Toll-like receptors (TLRs), is critical for elucidating viral pathogenesis

and developing therapeutic strategies. TLRs are essential for the detection

of viral components, initiation of innate immunity, and shaping of adaptive

responses. Despite progress in research, no clinically approved WNV vaccine is

currently available for humans, highlighting the urgent need for effective vaccine

development. This review summarizes the current knowledge regarding the

TLR-mediated immunity in WNV infection, with a focus on immune activation

mechanisms and viral evasion strategies. Furthermore, we examine recent

advances in vaccine development, emphasizing the potential of TLR agonists

as adjuvants to enhance immunogenicity and protective efficacy.

KEYWORDS
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1 Introduction

The West Nile virus (WNV) is an emerging mosquito-borne flavivirus that causes acute
viral encephalitis with long-term neurological sequelae in humans and horses (Fulton et al.,
2020; Saiz, 2020). Although most WNV infections are asymptomatic or mild, in some cases,
severe neuroinvasive diseases, including meningitis, encephalitis, and acute flaccid paralysis
develop, particularly in older or immunocompromised individuals (Sejvar, 2014; Gould
et al., 2023). First identified in Uganda in 1937 (Smithburn et al., 1940) and introduced into
the Western Hemisphere in 1999 (Colpitts et al., 2012), WNV is now widely distributed
across Africa, Europe, Asia, and the Americas (Chancey et al., 2015). Transmission occurs
primarily via Culex mosquitoes, with birds serving as amplifying hosts in the enzootic
cycle, whereas humans and horses are incidental dead-end hosts (Chancey et al., 2015).
Although ticks have been shown to transmit WNV in the laboratory, their role in the
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natural transmission and maintenance of the virus remains unclear 
(Abbassy et al., 1993; Hutcheson et al., 2005; Formosinho 
and Santos-Silva, 2006). In addition to the vector-borne 
transmission, alternative routes, such as blood transfusions, 
organ transplantation, and intrauterine transfer, have also been 
documented (Zeller and Schuenecker, 2004). 

West Nile virus belongs to genus Flavivirus in the Flaviviridae 
family, which also includes other medically important viruses, 
such as yellow fever virus, dengue virus, and Japanese encephalitis 
virus (Daep et al., 2014). The WNV genome contains a 
single-stranded, positive-sense RNA of approximately 11,000 
nucleotides in length. It is translated into a single polyprotein 
that undergoes co- and post-translational cleavage to generate 
ten distinct proteins: three structural proteins — envelope (E), 
membrane (M), and nucleocapsid (C) — and seven non-
structural (NS) proteins, including NS1, NS2A, NS2B, NS3, 
NS4A, NS4B, and NS5 (Anderson et al., 1999; Lanciotti 
et al., 1999). Non-structural proteins play key roles in viral 
transcription, translation, replication, maturation, and immune 
evasion (Diamond et al., 2009). 

Although WNV was previously classified into two major 
lineages (Zeller and Schuenecker, 2004), phylogenetic analyses 
have identified nine distinct lineages: 1a, 1b, 1c, 2, 3, 4, 7, and 
8 (Koch et al., 2024). Among these, lineages 1a and 2 are most 
commonly associated with human disease. Lineage 1a is widely 
distributed across Africa, Europe, the Middle East, parts of Asia, 
Oceania, and the United States, whereas lineage 2, once confined 
only to sub-Saharan Africa, has recently emerged in Europe 
and established endemic transmission (Davis et al., 2024; Koch 
et al., 2024). Initially linked to sporadic outbreaks, the WNV has 
become a major cause of neurological diseases over recent decades, 
particularly in North America, where it led to severe conditions, 
such as meningitis and encephalitis (Kramer et al., 2007). 

Currently, no licensed therapies or vaccines have been 
approved for WNV in humans, although several vaccines have 
been developed and approved for use in horses (El Garch 
et al., 2008; Kocabiyik et al., 2025). Therefore, safe and eective 
human vaccines are urgently needed. Various vaccine platforms, 
including live-attenuated, inactivated, nucleic acid-based, viral 
vector, and recombinant subunit vaccines, have been investigated, 
with several candidates demonstrating favorable immunogenicity 
and safety profiles in clinical trials (Saiz, 2020; Kocabiyik et al., 
2025). Advanced adjuvant formulations oer a promising strategy 
for enhancing vaccine eÿcacy, particularly in the context of 
emerging or reemerging viral threats (Reed et al., 2013). Adjuvants 
enhance vaccine eÿcacy through multiple mechanisms, including 
promoting the maturation of antigen-presenting cells, enhancing 
T cell activation, and increasing the production of cytokines, 
multifunctional T cells, and antibodies (Zhao et al., 2023). Although 
aluminum salts (e.g., alum) are widely used, newer adjuvants, such 
as CpG ODN 1018, AS01, AS03, and AS04, have been incorporated 
into licensed vaccines (Iwasaki and Omer, 2020). Notably, Toll-
like receptor (TLR) agonists have shown promise as adjuvants in 
vaccines against pathogens, including viruses such as hepatitis B 
virus, human papillomavirus, varicella zoster virus, and respiratory 
syncytial virus, thereby supporting their potential utility in future 
WNV vaccine development (Kayesh et al., 2023; Carter et al., 2025). 

The innate immune response serves as the first line of 
defense against viral infections and plays a critical role in shaping 

disease outcomes and directing adaptive immunity (Diamond 
and Kanneganti, 2022). Recent advances have shed light on 
the complex interactions between viruses and innate immune 
pathways, including TLR signaling (Kawai et al., 2024). Elucidating 
these mechanisms is particularly important for understanding 
WNV pathogenesis and the development of targeted antiviral 
therapies (Lim et al., 2011). TLRs are pattern recognition receptors 
(PRRs) that play a key role in antiviral immunity by recognizing 
viral components, including viral nucleic acids and proteins, and 
triggering innate immune responses that regulate viral replication 
and shape the host’s defense mechanisms (Lester and Li, 2014). 

Humans possess 10 TLRs (TLR1–TLR10), whereas mice have 
12 TLRs (TLR1–TLR9 and TLR11–TLR13) (Kawasaki and Kawai, 
2014). TLR1, TLR2, TLR4–TLR6, and TLR10 are expressed on 
the cell surface and primarily detect viral proteins, whereas TLR3, 
TLR7, TLR8, and TLR9 are localized intracellularly (mainly in 
the endoplasmic reticulum and endosomes) and recognize viral 
RNA and DNA (Alexopoulou et al., 2001; Diebold et al., 2004; 
Kawai and Akira, 2008; Chaturvedi and Pierce, 2009; Heim 
and Thimme, 2014; Lee et al., 2014). Upon activation, TLRs 
signal through adaptor proteins, most commonly MyD88, except 
for TLR3, which exclusively uses TRIF, to trigger downstream 
signaling pathways, leading to the production of proinflammatory 
cytokines, chemokines, and type I interferons (IFNs) (Medzhitov 
and Janeway, 2000; Akira et al., 2001; Lee and Kim, 2007; 
Mogensen, 2009; Fitzgerald and Kagan, 2020). These responses, 
essential for early viral recognition and adaptive immunity 
priming, determine infection outcomes (Lester and Li, 2014; Carty 
et al., 2021). TLRs are a double-edged sword, as although they 
are necessary for early pathogen recognition and the initiation 
of host defense, their dysregulation may lead to pathological 
immune responses instead of providing protection (Huang et al., 
2008; Yokota et al., 2010; Modhiran et al., 2015; Kayesh et al., 
2021). Therefore, thorough understanding of the involvement 
of TLRs in WNV infection is critical for the elucidation of 
immunopathogenetic mechanisms and development of eective 
therapeutic and preventive strategies. This review outlines the 
current knowledge regarding host TLR response to the WNV, 
highlights viral immune evasion mechanisms, and examines the 
potential of TLR-targeted approaches, particularly the use of 
TLR agonists as vaccine adjuvants, in advancing WNV vaccine 
development. 

2 Innate immune response to West 
Nile virus infection 

The innate immune response serves as the first line of 
defense against invading pathogens and plays a crucial role in 
preventing infections (Marshall et al., 2018). Pattern recognition 
receptors (PRRs), including TLRs, RIG-I-like receptors (RLRs), 
nucleotide-binding oligomerization domain (NOD)-like receptors 
(NLRs), protein kinase R, oligoadenylate synthetase (OAS), absent 
in melanoma-2, C-type lectin receptors, and cyclic GMP-AMP 
synthase (cGAS)–stimulator of interferon genes (STING) pathway, 
play critical roles in initiating and regulating the innate immune 
response against WNV infection (Behari et al., 2024). As with many 
other RNA and DNA viruses, type I interferons (IFN-α/β) play 
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a critical role in controlling WNV infection and limiting disease 
development through the induction of IFN-stimulated genes (ISGs) 
(Samuel and Diamond, 2005; Daÿs et al., 2011; Lazear et al., 2011). 
Several protein products of ISGs and their receptors, including 
IRF1, C6orf150, HPSE, RIG-I, MDA5, and IFITM3, possess direct 
antiviral activity against WNV, underscoring the complexity and 
breadth of IFN-mediated antiviral defenses (Schoggins et al., 2011). 
High-throughput overexpression screening has identified both 
broadly acting and WNV-specific ISGs, revealing a multifaceted 
network of antiviral eectors (Schoggins et al., 2011). Among these 
ISGs, the Oas1b gene was shown to play a critical role in controlling 
WNV infection in mice. Green et al. (2017) demonstrated 
that Oas1b influenced host susceptibility, disease severity, and 
tissue-specific gene expression, thereby contributing to OAS1B-
dependent and independent antiviral mechanisms. These findings 
suggest that Oas1b is a key genetic determinant of resistance to 
WNV (Green et al., 2017). 

Although it is traditionally associated with DNA sensing, 
cyclic GMP-AMP synthase (cGAS) also contributes to the immune 
response against RNA viruses, including WNV, via a STING-
dependent IRF3-mediated pathway that functions independently of 
the canonical IFN/STAT1 signaling (Schoggins et al., 2015). Mice 
lacking cGAS are significantly more susceptible to lethal WNV 
infection, with an elevated viral load observed in bone marrow-
derived macrophages compared to that in macrophages from wild-
type counterparts, which demonstrates a protective role for cGAS 
in WNV control (Schoggins et al., 2015). 

Early detection of WNV is mediated by PRRs, particularly 
RLRs such as RIG-I and MDA5, which detect cytosolic viral RNA. 
Recent studies highlight the pivotal role of RIG-I in initiating innate 
immune responses by detecting cytoplasmic antigenomic negative-
sense viral RNA (-vRNA). Although flaviviruses typically conceal -
vRNA within membrane-bound replication compartments to evade 
immune detection, a small amount can escape—likely facilitated by 
viral capsid proteins—during the later stages of infection, triggering 
antiviral signaling via RIG-I activation (Andino and Darling, 
2025; Genoyer et al., 2025). These RLR-mediated receptors are 
critical for limiting viral replication and promoting host survival 
(Fredericksen and Gale, 2006). MDA5 plays a protective role 
during WNV infection by promoting antiviral immunity in the 
central nervous system (CNS). Mice deficient in MDA5 show 
increased susceptibility to WNV, characterized by increased viral 
loads in the CNS and impaired CD8+ T cell responses, despite 
modest eects on peripheral viral control and no direct impact 
on neuronal infection (Lazear et al., 2013). RIG-I is critical for 
the early sensing of WNV, and together with MDA5, it drives 
the robust induction of innate immune genes. Loss of either 
receptor alone impairs immune signaling and increases mortality; 
however, the combined deletion of RIG-I and MDA5 results 
in the complete failure of antiviral gene expression and severe 
disease outcomes comparable to those observed in MAVS-deficient 
mice. These findings highlight the non-redundant, complementary 
roles of RIG-I and MDA5, which detect distinct pathogen-
associated molecular patterns during dierent phases of viral 
replication (Errett et al., 2013). These RLRs signal through the 
adaptor protein IPS-1 (also known as MAVS), which is essential 
for activating downstream pathways and production of type I 
IFN and proinflammatory cytokines (Kumar et al., 2006). IPS-
1 deficiency results in uncontrolled viral replication, impaired 

cytokine responses, and increased susceptibility to WNV infection 
(Suthar et al., 2010). Similarly, transcription factor ELF4 enhances 
antiviral immunity through the MAVS-TBK1 signaling (You et al., 
2013), and IRF3 is indispensable for limiting viral replication in 
peripheral and CNS tissues (Daÿs et al., 2007). 

In addition to RLRs, the phosphatidylinositol 3-kinase (PI3K) 
signaling pathway also contributes to the antiviral defense 
against WNV. PI3K plays a critical role in the regulation of 
type I IFN responses by promoting IRF7 nuclear translocation, 
which is essential for IFN production. Pharmacological inhibition 
of PI3K significantly increases viral replication and impairs 
IRF7 activation, underscoring the importance of this pathway 
in mounting eective innate immune responses during WNV 
infection (Wang et al., 2017). 

Mice lacking both MyD88 and TRIF— the two key adaptor 
proteins in TLR signaling — display an even greater susceptibility 
to WNV infection than mice lacking either adaptor alone, 
indicating their cooperative roles in host defense. These double 
knockout mice showed markedly reduced levels of innate immune 
cytokines, further emphasizing the importance of TLR-mediated 
pathways in coordinating eective antiviral responses (Sabouri 
et al., 2014). However, the absence of individual TLRs, such as 
TLR9 or TLR4, did not significantly alter the susceptibility to WNV 
infection, suggesting that these receptors are not essential on their 
own in this context (Sabouri et al., 2014). 

While TLR3 recognizes WNV-derived dsRNA, there is no 
evidence that it directly mediates viral entry. TLRs play diverse and 
sometimes contrasting roles in WNV pathogenesis. TLR3 limits 
viral replication in neurons, and protects against neuroinvasive 
diseases (Daÿs et al., 2008), but its function is context-
dependent. TLR3 expression is downregulated in macrophages 
from young individuals via a STAT1-dependent mechanism 
during WNV infection, but this regulation is impaired in the 
elderly, leading to elevated TLR3 levels and increased cytokine 
production. This dysregulation may contribute to blood-brain 
barrier (BBB) permeability, contributing to the increased severity 
of WNV infections in aged populations (Kong et al., 2008). 
Furthermore, TLR3 may not significantly prevent viral entry into 
the brain, but instead regulates inflammation within the CNS. 
NS1 immunization has been shown to reduce neuroinflammation, 
even in TLR3-deficient mice, suggesting TLR3 contribution is more 
immunomodulatory rather than directly antiviral in this context 
(Patel et al., 2019). In support of this notion, TLR3 was also shown 
to promote WNV neuroinvasion by enhancing inflammation-
induced BBB disruption, highlighting its dual role in peripheral 
defense and CNS pathology (Wang et al., 2004). 

TLR7 also plays a dual role in WNV infection. Although 
TLR7- and MyD88-deficient mice are highly susceptible to 
mutant WNV infection, suggesting a protective function (Xie 
et al., 2013), TLR7 has also been implicated in facilitating viral 
dissemination. In murine models, TLR7 promotes IL-23-mediated 
immune cells recruitment to infected tissues, and limits viral 
spread and disease severity (Town et al., 2009). At the cellular 
level, TLR7 enhances antiviral defenses in keratinocytes through 
the increased production of IFN-α and inflammatory cytokines 
(Welte et al., 2009). However, the same TLR7-driven responses 
may also promote WNV spread from the skin to peripheral 
organs, contributing to systemic infection (Welte et al., 2009). 
Furthermore, TLR8 may modulate TLR7-mediated immunity, 
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potentially enhancing WNV pathogenesis by suppressing antiviral 
responses via interaction with SOCS-1, a negative regulator of IFN 
signaling (Paul et al., 2015). 

MyD88 serves as a central adaptor protein in TLR signaling, 
mediating downstream inflammatory responses through 
recruitment of IRAK family kinases and activation of key 
transcription factors, such as NF-κB and AP-1 (Deguine and 
Barton, 2014). During WNV infection, MyD88 plays a critical 
role in limiting viral replication in specific cell types and supports 
the chemokine-driven recruitment of immune cells to the CNS. 
Although systemic type I IFN responses are largely preserved 
in MyD88-deficient mice, they show elevated viral loads in the 
brain and increased mortality, highlighting the importance of 
theMyD88-mediated inflammatory pathways in CNS protection 
(Szretter et al., 2010). 

Polymorphisms in TLR genes have been shown to influence 
host susceptibility and clinical outcomes in both DNA and RNA 
virus infections (Carty and Bowie, 2010; Medvedev, 2013). Many 
studies have reported the associations between single-nucleotide 
polymorphisms (SNPs) of the specific TLR genes and disease 
severity in RNA virus infections, including those caused by SARS-
CoV-2 (Alhabibi et al., 2023; Parsania et al., 2024), HIV (Oh et al., 
2009), HCV (Du et al., 2023b), dengue virus (Alagarasu et al., 
2015), Zika virus (Santos et al., 2023), and Japanese encephalitis 
virus (JEV) (Biyani et al., 2015). For example, the TLR3 Leu412Phe 
polymorphism has been found at a higher frequency in patients 
with JEV compared to healthy controls, suggesting a possible role 
in neurotropic flavivirus infections (Biyani et al., 2015). However, 
to date, no direct association between TLR polymorphisms and 
clinical outcomes in human WNV infection has been established, 
highlighting an important gap in our understanding that warrants 
further investigation. 

In addition to classical innate immune pathways, several 
host factors modulate WNV pathogenesis. For example, Pellino 
1 (Peli1), an E3 ubiquitin ligase and adaptor protein involved 
in TLR signaling (Choi et al., 2006), facilitates WNV entry and 
replication in neurons, microglia, and macrophages (Luo et al., 
2018). Peli1 enhances pro-inflammatory cytokine and chemokine 
production in the CNS, contributing to neuroinflammation and 
disease severity. Peli1-deficient mice showed improved survival 
and reduced viral loads, suggesting a pathogenic role in WNV 
infection (Luo et al., 2018). Moreover, inhibition of Peli1 has been 
shown to reduce disease in Zika virus infection, suggesting its 
therapeutic potential across flaviviruses (Luo et al., 2020). Another 
host factor that contributes to the pathogenesis is semaphorin 7A 
(Sema7A), which facilitates viral replication, increases blood–brain 
barrier permeability, and enhances expression levels of TGF-β1 and 
SMAD6, both of which are associated with immunomodulation 
and neuroinflammation. Mice lacking Sema7A show enhanced 
survival and reduced viral burden, underscoring Sema7A function 
as a proviral factor during WNV infection (Sultana et al., 2012). 
Together, these findings emphasize the complexity of the innate 
immune landscape in WNV infection, where both antiviral and 
proviral host factors, along with finely tuned signaling pathways, 
determine disease outcomes and highlight potential targets for 
therapeutic intervention. A schematic overview of the innate 
immune response to WNV infection, including the roles of PRRs, 
IFNs, and inflammatory signaling, is presented in Figure 1. 

3 Inhibition of innate immune 
response by WNV infection 

West Nile virus employs multiple strategies to subvert 
host innate immunity, thereby facilitating viral replication, 
dissemination, and persistence. A major component of this evasion 
strategy is the suppression of PRR signaling and downstream IFN 
responses. WNV non-structural protein 1 (NS1), a multifunctional 
glycoprotein localized intracellularly and in the plasma membrane, 
plays a pivotal role in immune evasion. Secreted NS1 disrupts 
TLR signaling pathways by inhibiting the TLR3, TLR4, and TLR7 
pathways, leading to reduced cytokine production in macrophages 
and dendritic cells both in vitro and in vivo (Crook et al., 2014). 
Wilson et al. (2008) further demonstrated that WNV NS1 disrupts 
TLR3 signaling by inhibiting nuclear translocation of IRF3 and NF-
κB, thereby preventing the transcriptional activation of the IFN-β 
promoter and TLR3-dependent interleukin-6 (IL-6) production 
(Wilson et al., 2008). This interference eectively suppresses the 
innate immune response, contributing to viral evasion of host 
defenses (Wilson et al., 2008). However, no evidence of WNV 
non-structural proteins inhibiting IRF3 activation was reported, 
suggesting that the interaction between the WNV and IRF3 may 
be context-dependent (Fredericksen and Gale, 2006). 

In addition to modulating TLR signaling, NS1 facilitates 
immune evasion by interacting with the complement system. 
NS1 binds to the complement regulatory protein factor H, 
promoting C3b cleavage and inactivation of the alternative 
complement pathway (Zipfel et al., 2002). Consequently, NS1 
inhibits complement activation both in solution and on cell 
surfaces, reducing the deposition of C3 fragments and C5b–9 
membrane attack complexes, thereby limiting immune recognition 
of infected cells (Chung et al., 2006). 

Zhang et al. (2017) demonstrated that WNV NS1 interacts 
with RIG-I and MDA5, promoting their proteasomal degradation 
and blocking the K63-linked polyubiquitination of RIG-I, which 
is an essential step for downstream signaling. As a result, 
NS1 inhibits IRF3 phosphorylation and nuclear translocation, 
impairing IFN-β production and dampening the antiviral response 
(Zhang et al., 2017). WNV infection also inhibits poly(I:C)-
induced IRF3 activation and subsequent IFN-β transcription 
(Scholle and Mason, 2005). 

In addition to NS1, other WNV non-structural proteins, 
including NS2A, NS2B, NS3, NS4A, and NS4B, contribute 
significantly to immune evasion (Liu et al., 2005). Specifically, 
these proteins from the WNV Kunjin strain have been shown 
to block IFN-α-induced STAT2 activation, inhibiting JAK-STAT 
signaling and the induction of ISGs (Liu et al., 2005). In 
addition, the NS5 protein of certain flaviviruses interferes with 
IFN signaling by inhibiting STAT1 phosphorylation or promoting 
STAT2 degradation. In the context of the WNV, NS5 disrupts 
TLR3-mediated type I IFN production (Laurent-Rolle et al., 2010). 
Mutational analysis further highlighted the immunomodulatory 
role of WNV non-structural proteins. Mutations in NS4B altered 
TLR expression profiles, which may indirectly influence RLR-
mediated responses, indicating a complex interplay between these 
innate immune pathways during WNV infection (Xie et al., 2015). 
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FIGURE 1 

Schematic overview of the innate immune response to West Nile Virus (WNV) infection. Upon WNV entry into the host cells, viral RNAs are 
recognized by the host pattern recognition receptors (PRRs), including RIG-I, MDA5 (cytosolic sensors), and TLR3 or TLR7 (endosomal sensors), as 
appropriate. Recognition by these receptors initiates signaling via IRF3/7 and NF-κB, leading to the production of type I interferons (IFN-α/β), 
proinflammatory cytokines, and chemokines. IFNs restrict viral replication, whereas excessive TLR3-mediated inflammation may drive 
immunopathology. TLR7 acts as a double-edged sword, promoting antiviral immunity via the MyD88-dependent signaling. However, TLR8 
suppresses TLR7 responses through SOCS1, potentially promoting pathogenesis. Red arrows indicate activation of innate immune signaling by WNV 
or its components, enhancing or reducing viral replication. Black blunt arrows indicate suppression or inhibition of the host innate immune response 
or WNV replication, as appropriate. IFN, interferon; IL-6, interleukin-6; IRF3, interferon regulatory factor 3; IRF7, interferon regulatory factor 7; ISG, 
interferon-stimulated gene; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B 
cells; SOCS1, suppressor of cytokine signaling 1; TNF-α, tumor necrosis factor-alpha; TRIF; TIR domain-containing adaptor-inducing IFN-β. 

West Nile virus structural proteins also contribute to immune 
evasion. The envelope protein suppresses double-stranded RNA-
induced cytokine production in murine macrophages via a TLR3-
independent mechanism involving receptor-interacting protein 1 
(Arjona et al., 2007). Furthermore, the WNV impairs functions 
of dendritic cells (DCs), key players bridging innate and 
adaptive immunity (Zimmerman et al., 2019). WNV-infected 
DCs have reduced expression of proinflammatory cytokines (IL-6, 
granulocyte-macrophage colony-stimulating factor, CCL3, CCL5, 
and CXCL9) and T cell modulatory cytokines (IL-4, IL-12, and IL-
15), ultimately weakening the early immune response and T cell 
activation (Zimmerman et al., 2019). 

The immune evasion capacity determines the virulence of 
WNV strains. The lineage II MAD78 strain is highly sensitive 
to type I IFNs and unable to antagonize IFN-induced JAK-STAT 
signaling, unlike the more pathogenic lineage I TX02 strain. 
These findings underscore the importance of IFN antagonism in 
determining WNV replication, fitness, and virulence (Keller et al., 
2006). An overview of the WNV-mediated modulation of host 
innate immune responses, highlighting how structural and non-
structural proteins, including NS1, disrupt interferon signaling, is 
illustrated in Figure 2. 

4 Agonists of TLRs as adjuvants in 
WNV vaccine development 

Toll-like receptor agonists have emerged as promising vaccine 
adjuvants for enhancing immunity against viral infections, 
including those caused by flaviviruses, by stimulating robust innate 
and adaptive immune responses (Kayesh et al., 2023). TLR4 agonist 
adjuvant significantly enhanced the immunogenicity and protective 
eÿcacy of a promising clinical-stage recombinant WNV E-protein 
vaccine WN-80E (Van Hoeven et al., 2016). The formulation 
of WN-80E with TLR4 agonists in either a stable oil-in-water 
emulsion or aluminum hydroxide robustly protected C57BL/6 mice 
after a single low-dose immunization, which correlated with Th1-
skewed immune responses and undetectable serum WNV loads 
(Van Hoeven et al., 2016). These findings underscore the potential 
of TLR4-based adjuvants to improve WNV vaccine performance 
and support their continued development for use in rapid-response 
vaccination strategies. Building on this work, Van Hoeven et al. 
(2018) investigated advanced adjuvant formulations by combining 
WNV recombinant antigens with the potent TLR4 agonist SLA, 
saponin QS21, or a combination thereof delivered in liposomal 
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FIGURE 2 

Overview of West Nile virus (WNV)-mediated immune evasion strategies through the modulation of host innate immune signaling. Both structural 
and non-structural proteins interfere with pattern recognition receptor (PRR) signaling pathways, including Toll-like receptors (TLRs), RIG-I-like 
receptors (RLRs), and other components of the innate immune response. Non-structural protein 1 (NS1), including its secretory form (sNS1), appears 
to be a key protein that disrupts critical steps in the interferon (IFN) response cascade, such as inhibiting interferon regulatory factor 3 (IRF3) 
activation and interfering with interferon-β promoter activation. The overall effect is attenuation of antiviral responses and the resulting increase in 
viral replication. 

formulations. These formulations induced strong adaptive immune 
responses and high neutralizing antibody titers after a single 
immunization in both mouse and hamster models. Importantly, 
this immune response conferred long-lasting immunity and 
protection against the WNV challenge (Van Hoeven et al., 2018). 
Notably, adjuvants based on TLR4 agonists have been approved 
for use in several viral vaccines, including those against hepatitis B 
virus, human papillomavirus, varicella zoster virus, and respiratory 
syncytial virus (Carter et al., 2025). 

TLR5 agonists have gained attention because of their ability 
to enhance immune responses by activating innate signaling 
pathways, highlighting their potential as eective vaccine adjuvants 
(Hajam et al., 2017). For example, modified flagellin, a TLR5 
agonist fused to domain III of the WNV E protein, enhanced 
both the innate and adaptive immune responses, providing 
strong protection without the need for additional adjuvants 
(McDonald et al., 2007). However, age-related dierences in 
vaccine eÿcacy remain a critical consideration. For example, aged 
mice (21–22 months old) were susceptible to infection with the 
attenuated WNV NS4B-P38G mutant that was otherwise safe and 
immunogenic in young mice (Xie et al., 2016). In aged mice, 
NS4B-P38G infection resulted in elevated levels of inflammatory 

cytokines and IL-10, delayed γδ T cell expansion, and reduced 
antibody and WNV-specific T cell responses. These defects were 
attributed to age-related dysregulation of TLR7 signaling (Xie et al., 
2016). Notably, administration of R848, a synthetic TLR7 agonist 
(Okuzumi et al., 2021), enhanced immune responses in aged mice 
vaccinated with the NS 4B-P38G mutant, by restoring DC function 
and promoting γδ T cell and regulatory T cell expansion (Xie et al., 
2016), suggesting important implications for the use of a TLR7 
agonist in the context of a WNV vaccine, particularly for the elderly. 

TLR9 agonists, such as CpG oligodeoxynucleotides, have 
shown considerable promise as adjuvants for WNV vaccines by 
enhancing both humoral and cell-mediated immune responses. 
When delivered via surface-modified nanoparticles (NPs) carrying 
the WNV envelope protein, these agonists elicited strong Th1-
biased immunity and provided superior protection compared to 
that aorded by conventional alum-based adjuvants (Demento 
et al., 2010). These findings indicate that other TLR agonists may be 
incorporated into NP-based vaccine platforms to further optimize 
immune responses against the WNV and related flaviviruses. 
A careful selection of TLR agonists as adjuvants is essential for the 
development of eective and well-tolerated WNV vaccines. Further 
studies are warranted to evaluate the use of individual TLR agonists 
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or their combinations to optimize immune responses and improve 
the eÿcacy of WNV vaccine formulations. 

5 WNV vaccines in preclinical 
development 

Several WNV vaccine candidates are currently undergoing 
preclinical evaluations for the ability to induce strong and 
protective immune responses. These include subunit, DNA, 
viral vector-based, and live-attenuated vaccines, most of which 
target key viral components, such as the envelope (E) protein 
(Kaiser and Barrett, 2019). A promising approach involves a 
plasmid DNA vaccine encoding the ectodomain of the WNV 
E protein, formulated into NPs using mannose-modified linear 
polyethyleneimine. In a murine model, when followed by a 
heterologous boost with a recombinant E protein, this vaccine 
elicited robust neutralizing antibody and T cell responses, 
providing eective protection against the lethal WNV challenge 
(De Filette et al., 2014b). Additionally, DNA vaccine-generated 
subviral particles expanded the WNV-E-specific T-cell repertoire 
in Balb/c mice, demonstrating a potent and targeted cellular 
immune response (De Filette et al., 2014a). Similarly, another 
DNA vaccine expressing only the ectodomain of the WNV 
E protein induced strong T-cell responses and neutralizing 
antibodies in mice and conferred full protection against a lethal 
challenge (Schneeweiss et al., 2011). Immunogenicity was further 
enhanced by a recombinant protein boost, supporting the role 
of E protein as a key antigen in DNA vaccine development 
(Schneeweiss et al., 2011). 

A recombinant subunit vaccine based on the WNV E protein 
(WN-80E), with or without NS1, and formulated with the GPI-0100 
adjuvant, also demonstrated strong immunogenicity. It conferred 
protection to young, aged, and immunocompromised hamsters, 
highlighting the potential of this vaccine to achieve a broader 
population coverage (Siirin et al., 2008). In another strategy, an 
intranasally administered vesicular stomatitis virus-based vaccine 
expressing the WNV E protein, administered at a dose of 105 

PFU per mouse with a booster on day 21, induced both humoral 
and cellular immunity and protected mice against the WNV lethal 
challenge (Iyer et al., 2009). 

Recombinant WNV E and domain III proteins produced in 
insect larvae also showed strong immunogenicity, eliciting high 
titers of neutralizing antibodies and providing complete protection 
against challenge with neurovirulent WNV NY99 in mice (Alonso-
Padilla et al., 2011). These results support the use of insect-
derived antigens as cost-eective subunit vaccines. The conjugation 
of WNV E protein domain III to bacteriophage AP205 virus-
like particles significantly enhanced immunogenicity, providing 
robust neutralizing antibody responses and full protection after 
three doses (Spohn et al., 2010). The combination of eÿcacy, 
safety, and low production costs make this conjugate vaccine 
platform particularly promising. Similarly, a plant-based approach 
using domain III of the WNV E protein expressed in Nicotiana 
benthamiana elicited a robust systemic immune response in 
mice following subcutaneous immunization, demonstrating its 
potential as an economical and scalable WNV vaccine candidate 
(He et al., 2014). 

Immunogenicity of a subunit vaccine candidate consisting 
of the recombinant truncated WNV E protein (rWNV-80E) 
formulated with alum and CpG adjuvants was evaluated in 
C57BL/6 mice (Du et al., 2023a). The vaccine elicited strong 
humoral and cellular immune responses, including high titers 
of neutralizing antibodies and T cell-derived IFN-γ and TNF-α, 
indicating its potential as a promising WNV vaccine candidate for 
further investigation (Du et al., 2023a). 

A plant-produced virus-like particle (VLP) displaying WNV 
E protein domain III was shown to induce potent neutralizing 
antibody and antigen-specific cellular immune responses in mice, 
while also reducing the risk of antibody-dependent enhancement, 
a concern commonly associated with severe dengue or Zika virus 
infections (Sun et al., 2023). Similarly, immunization with the 
wild-type WNV E protein provided complete protection against 
viral challenge in mice (Weiß et al., 2023). In contrast, modified 
antigens either incorporating a mutated fusion loop or consisting 
solely of domain III provided only partial protection. However, 
these modified constructs significantly reduced serological cross-
reactivity with heterologous flaviviruses, such as dengue and Zika, 
highlighting a promising strategy for enhancing WNV vaccine 
specificity (Weiß et al., 2023). Additionally, a recent preclinical 
study by Vorovitch et al. (2024) evaluated an inactivated whole-
virion WNV vaccine based on the SHUA strain, which achieved 
100% seroconversion and conferred complete protection against 
a lethal viral challenge to mice, demonstrating strong potential as 
a safe and eective vaccine candidate for preventing severe WNV 
infections (Vorovitch et al., 2024). Collectively, these preclinical 
studies illustrate the progress and diversity of WNV vaccine 
platforms in development, emphasizing how rational antigen 
design and novel delivery systems can enhance immunogenicity, 
improve safety, and reduce cross-reactivity with related flaviviruses. 

6 WNV vaccines in clinical 
development 

Vaccination remains the most eective strategy for preventing 
infectious diseases, including those caused by flaviviruses such as 
WNV (Gould et al., 2023). Currently, several vaccine candidates 
are at various phases of clinical development. ChimeriVax-WN02, a 
live attenuated chimeric vaccine, has shown considerable promise. 
In a phase I clinical trial, it elicited robust immune responses 
after a single dose, supporting its potential as a candidate for 
the prevention of WNV disease (Monath et al., 2006). In a 
subsequent Phase II randomized, double-blind, placebo-controlled 
trial, ChimeriVax-WN02 demonstrated high immunogenicity and 
a favorable safety profile across all age groups, with seroconversion 
rates exceeding 96%. The highest dose induced stronger antibody 
responses and reduced viremia (Biedenbender et al., 2011). 
A separate phase II study confirmed its immunogenicity and 
safety, reinforcing the rationale for continued clinical development 
(Gould et al., 2023). 

The National Institutes of Health has developed a recombinant 
live-attenuated vaccine candidate, rWN/DEN430, in which genes 
encoding the premembrane (prM) and envelope (E) proteins of the 
WNV NY99 strain replaced those of the live-attenuated dengue 
virus serotype 4 (rDEN430) backbone (Pletnev et al., 2002). 
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TABLE 1 Summary of West Nile virus (WNV) vaccines under clinical development. 

Vaccine name Vaccine type Vaccine 
formulation/ 

antigen 

Developer/ 
sponsor 

/manufacturer 

Clinical phase 
and trial 
duration 

Participants 
enrolled 

Dosage and 
route 

Target age 
group 

Strengths Limitations References/ 
clinical trial 

number 

ChimeriVax-WN02 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 inserted into 

YFV 17D backbone 

Sanofi Pasteur Phase 2 112 and 96 Single dose, SC 18–50 years Highly 

immunogenic, high 

seroconversion rates 
(> 96%), no severe 

adverse eect 

No data on 

children/adolescents; 
all subjects 

seronegative; ADE 

not evaluated 

(Lanciotti et al., 
1999; Monath et al., 
2006; Biedenbender 

et al., 2011); 
NCT00442169 

ChimeriVax-WN02 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 inserted into 

YFV 17D backbone 

Sanofi Pasteur Phase 2 

479 

Single dose of ∼ 

4 × 103 to 105 PFU, 
SC 

≥ 50 years of age Highly 

immunogenic, 
92%–95% 

seroconversion 

Same as above (Gould et al., 2023); 
NCT00746798 

ChimeriVax-WN02 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 inserted into 

YFV 17D backbone 

Sanofi Pasteur Phase 1 80 Single dose (5.0/3.0 

log10 PFU) 
18–40 years Robust 

immunogenicity; 
100% seroconversion 

Same as above Monath et al., 2006 

rWN/DEN430 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 strain inserted 

into DENV-4 

backbone 

(rDEN430) 

National Institute of 
Allergy and Infectious 

Diseases (NIAID) 

Phase 1 56 Single dose of 103 or 

104 PFU, SC 

18–50 years Well-tolerated, 
immunogenic, 74% 

(103 PFU), 75% 

seroconversion 

Same as above (Durbin et al., 2013); 
NCT00094718 

rWN/DEN430 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 strain inserted 

into DENV-4 

backbone 

(rDEN430) 

NIAID Phase 1 26 Two doses of 105 

PFU, 6 months apart, 
SC 

18–50 years Well-tolerated, 
immunogenic; 55% 

seroconversion (after 

single dose); 89% 

after 2nd dose 

Same as above (Durbin et al., 2013); 
NCT00537147 

rWN/DEN430 Live, attenuated 

chimeric vaccine 

prM/E from WNV 

NY99 strain inserted 

into DENV-4 

backbone 

(rDEN430) 

NIAID Phase 1 28 Two-dose regimen 

of 104 PFU, 
6 months apart, SC 

50–65 years Well-tolerated and 

immunogenic 

Same as above NCT02186626 

HydroVax-001 

WNV vaccine 

Inactivated WNV 

vaccine 

Whole inactivated 

virion (WNV-Kunjin 

strain) 

NIAID Phase 1 

96 

1 or 4 µg; two IM 

doses, 28 days apart 
18–49 years of age Safe and 

well-tolerated 

Same as above (Woods et al., 2019); 
NCT02337868 

HydroVax-001B Inactivated WNV 

vaccine 

Whole inactivated 

virion (WNV-Kunjin 

strain) 

NIAID Phase 1 30 4 or 10 µg; IM on 

Days 1, 29 and 181 

18–49 years of age Ongoing, no data 

released yet 
Ongoing, no data 

released yet 
NCT06745921 

(Continued) 
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In phase I clinical trials, the rWN/DEN430 chimeric vaccine 
was well-tolerated and immunogenic, with seroconversion rates 
ranging from 74% to 89%, depending on the dose and vaccination 
schedule. These findings support continued clinical development, 
particularly for use with older adults (Durbin et al., 2013; Pierce 
et al., 2017). Similarly, in a phase I trial, HydroVax-001, a hydrogen 
peroxide–inactivated WNV vaccine adjuvanted with aluminum 
hydroxide, was found to be safe and well-tolerated, with no serious 
side eects. A dose of 1 µg elicited a limited immune response, 
whereas a dose of 4 µg elicited stronger responses, with up to 
75% of participants developing antibodies, depending on the assay 
used (Woods et al., 2019). Building on these results, a subsequent 
phase 1 trial of HydroVax-001B was launched on 24 February 2025, 
to evaluate higher doses of 4 and 10 µg (ClinicalTrials.gov ID: 
NCT06745921). 

In a phase 1 open-label trial, a DNA vaccine encoding WNV 
prM and E proteins was found to be safe and well-tolerated, 
with no significant adverse events. Neutralizing antibody and T 
cell responses were observed in most participants who completed 
the three-dose regimen (Martin et al., 2007). A subsequent 
phase 1 trial confirmed these findings and further demonstrated 
immunogenicity in adults aged 51–65 years, a population that 
is typically less responsive to conventional vaccines (Ledgerwood 
et al., 2011). Collectively, these early phase clinical trials of 
WNV vaccine candidates, including live-attenuated, inactivated, 
chimeric, and DNA-based platforms, have shown promising safety 
and immunogenicity profiles. However, the limited follow-up 
duration of most studies restricts our understanding of the 
durability of vaccine-induced protection. Additionally, the absence 
of a universally accepted immune correlate of protection against 
WNV complicates the interpretation of immunogenicity data. 
Continued clinical development is essential to determine the most 
eective strategies for protecting diverse high-risk populations. 
An overview of WNV vaccine candidates currently in clinical 
development is presented in Table 1. 

7 Discussion 

Although much of our understanding of the TLR-mediated 
antiviral responses is derived from knockout mouse models, data 
on the functional role of TLRs in human viral immunity remain 
limited. However, several key insights have emerged. For example, 
human TLR3 has been implicated in the neuroprotection against 
herpes simplex virus 1 infection, with loss-of-function mutations 
in the corresponding gene associated with susceptibility to herpes 
simplex encephalitis (Zhang et al., 2007). 

In the context of WNV infection, TLR3 appears to play 
a similarly context-dependent and tissue-specific role. Although 
in vitro studies using HEK293 cells have shown a minimal impact 
of TLR3 on viral replication or immune signaling (Chugh et al., 
2014), in vivo data suggested an important role of TLR3. TLR3-
deficient mice had an elevated viral burden in the brain and 
increased mortality despite normal peripheral interferon responses, 
highlighting a neuroprotective rather than systemic antiviral role 
(Daÿs et al., 2008). Interestingly, TLR3 may not prevent viral 
entry into the CNS but instead likely modulates the inflammatory 
response once the infection is established (Patel et al., 2019). 
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Moreover, WNV induces a largely TLR3-independent miRNA 
response, suggesting that other innate sensors may also regulate 
antiviral gene expression (Chugh et al., 2014). 

The observation that TLR3 supports germinal center formation 
and long-lived plasma cell generation following vaccination with 
the RepliVAX WN platform further highlights its relevance for 
durable humoral immunity (Xia et al., 2013). These findings 
have important implications for vaccine design. TLR agonists are 
already used in licensed viral vaccines, so they may enhance the 
WNV vaccine eÿcacy by boosting long-term antibody responses. 
For example, TLR7/8 agonist INI-4001 has shown promise in 
preclinical models of the Powassan virus — a neuroinvasive 
flavivirus related to WNV — and may hold potential for WNV 
VLP-based vaccines by promoting strong innate activation and 
adaptive priming (Crawford et al., 2025). Although INI-4001 
targets both TLR7 and TLR8, its design and dosing could 
potentially favor TLR7-driven responses, especially when used in 
a vaccine formulation where this balance is optimized (Kayesh 
et al., 2025). Despite these advances, WNV vaccine development 
continues to face significant challenges, including sporadic 
outbreaks, limited case numbers for eÿcacy trials, diÿculty in 
distinguishing between vaccine-induced and natural immunity, 
and underrepresentation of high-risk populations. These factors 
limit broader clinical application of the tested vaccine preparations 
and regulatory progress (Gould et al., 2023). 

In addition to adjuvants, some WNV vaccine platforms 
intrinsically activate the innate immune pathways. For instance, 
the RepliVAX WN vaccine includes built-in PAMPs and depends 
on both MyD88 and TLR3 signaling for optimal B cell activation 
and antibody longevity (Xia et al., 2013). This suggests that 
rational vaccine design can leverage innate sensing pathways to 
enhance protective immunity even in the absence of external 
adjuvants. In addition, RIG-I agonists, such as 5’-pppRNA, 
induce potent IFN-independent antiviral states and may oer 
complementary or synergistic benefits alongside TLR-based 
interventions (Goulet et al., 2013). 

Finally, alternative immunotherapeutic strategies are also 
explored. A humanized, plant-derived monoclonal antibody 
targeting the WNV envelope protein (Hu-E16) showed protective 
eÿcacy in mice, even when administered up to 4 days post-
infection, oering a proof-of-concept for passive immunotherapy 
approaches (Lai et al., 2010). Together, these findings underscore 
the importance of innate immune sensing not only in the early 
control of WNV infection but also in shaping the quality and 
durability of adaptive responses. Understanding how to manipulate 
TLR signaling in a controlled manner is essential for advancing 
both prophylactic and therapeutic strategies against WNV and 
related flaviviruses. 

8 Limitations and future directions 

Despite advances in understanding TLR-mediated sensing 
of WNV and current vaccine strategies, key gaps remain. 
The functional overlap and tissue-specific expression of TLRs 
complicate eorts to define their distinct roles in WNV 
pathogenesis, and most insights rely on murine models that may 
not fully reflect human immunity. Future studies should focus on 

TLR signaling in human primary cells, especially in the context 
of neuroinvasion. 

Although TLR polymorphisms are linked to disease severity in 
other RNA virus infections, such associations remain unexplored 
for WNV. Genetic studies in endemic regions, coupled with 
functional analyses of TLR variants, are needed to clarify their 
role in host susceptibility. Vaccine development may also benefit 
from TLR-based adjuvants to enhance immune responses. A deeper 
understanding of viral evasion of TLR pathways will be critical for 
guiding next-generation vaccine and therapeutic strategies. 

9 Conclusion 

West Nile virus remains a significant global health threat 
because of its neuroinvasive potential, severe sequelae, and the 
absence of an approved human vaccine. Understanding the 
immune mechanisms, particularly the role of TLRs, is essential 
for deciphering WNV pathogenesis and guiding therapeutic 
development. TLRs serve as key mediators of antiviral defense by 
initiating and shaping immune responses, although the WNV has 
evolved strategies to evade the detection by TLRs. Advances in our 
understanding of TLR-mediated immunity oer promising avenues 
for vaccine development, especially by using TLR agonists as 
adjuvants to enhance the protective eÿcacy of vaccines. Continued 
research into these pathways is crucial for the development of 
eective vaccines and targeted interventions against WNV. 
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