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Introduction: Verticillium dahliae, the pathogen producing Verticillium wilt in
olive orchards is a soilborne pathogenic fungus that has a long persistence
in soil due to the formation of melanized microsclerotia and represents a
devastating threat to the production in Mediterranean countries. Management
of Verticillium wilt of olive is not easily achieved by means of a single treatment
and thus integrated approaches are needed. Trichoderma asperellum strain T34
is a biological control agent that was isolated from a suppressive compost and
has been shown to reduce the severity of various soil-borne diseases in many
crops.

Material and methods: Two-year-old olive trees were planted in pots containing
soil. Plants were subjected to 3 factors (fertilization, inoculation with the
pathogen Verticillium dahliae and Trichoderma application) each one with two
levels (yes or no), resulting in 8 groups (treatments) of plants. Soils were sampled
20 months after transplanting to perform 16S and ITS sequencing as well as to
quantify the concentration of V. dahliae microsclerotia.

Results: The treatment of the pots with the biological control agent
T. asperellum strain T34 effectively reduced the amount of V. dahliae
microsclerotia, suggesting a promising alternative to chemical fumigation.
Moreover, it did not affect the diversity of bacteria and fungi in the rhizospheric
soil of olive trees. On the other hand, mineral fertilization doubled the amount
of microsclerotia in soil and drastically increased the relative abundance of
V. dahliae reads. Furthermore, fertilization had a significant effect on microbial
communities, mostly on bacterial populations. Interestingly, fertilization did not
have an effect on the phylum Glomeromycota, and bacterial genera affected by
fertilization were not specifically associated to N fixing or non-N fixing bacteria.
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Conclusion: Taken together, those results suggest that mineral fertilization has a
much more profound impact on the relative abundance of microorganisms than
the introduction of biological control agents such as T. asperellum strain T34.
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1 Introduction

Verticillium dahliae is the pathogen producing Verticillium
wilt in olive orchards and means a devastating threat to the
production in Mediterranean countries (Lopez-Escudero and
Mercado-Blanco, 2011). It is a soilborne pathogenic fungus that
has long persistence in soil even in the absence of a host
due to the formation of melanized microsclerotia (Short et al.,
2015). Favorable environmental conditions and the presence of
root exudates stimulate microsclerotia germination and hyphae
penetrate roots and colonize the epidermal cells and cortex
(Jiménez-Diaz et al.,, 2012). Once vascular colonization occurs,
and conidia formed are transported upwards via xylem, both
fungus and plant reactions lead to partial block of xylem vessels
which are responsible for chlorosis and wilt of the leaves (Trapero
et al, 2018). Among other causes, Verticillum wilt of olive
has increased in the last decades due to the introduction of
intensive cultivation systems in olive orchards. It is assumed
that, similarly to what has been reported in cotton, excessive
N fertilization and high irrigation doses typical from intensive
cultivation will increase the severity of V. dahliae infections
(Lopez-Escudero and Mercado-Blanco, 2011). Management of
Verticillium wilt of olive is difficult to achieve by using a
single treatment. For instance, an integrated approach has been
proposed that combines preplanting and postplanting control
measures including avoidance of highly infested soils, using
pathogen free plants, reduction of inoculum in soil, use of resistant
cultivars and agronomic practices (Jiménez-Diaz et al,, 2012).
Chemical fumigation with methyl bromide, now banned, to reduce
V. dahliae microsclerotia in soils was a common practice for
decades. Alternative treatments such as the application of organic
amendments and biological control are interesting from the point
of view of safety and environmental impact. Significant reduction
in microsclerotia viability and the severity of the symptoms of
V. dahliae in olive trees were obtained by using grape marc
compost and solid olive-oil waste, combined with other organic
amendments (Varo-Sudrez et al., 2018). When studying the ability
of several olive mill composts to suppress V. dahliae, it was
shown that enzymatic diversity, b-glucosidase activity, pH, and
electrical conductivity may be sufficient to predict if plant growth
media amended with a given compost will be suppressive to
Verticillium wilt (Avilés and Borrero, 2017). Moreover, the non-
pathogenic strain of Fusarium oxysporum FO12 was effective
in reducing soil inoculum and also reduced the incidence of
Verticillium wilt in olive trees (Mulero-Aparicio et al., 2020)
suggesting the potential for biological control in the management
of this disease.

Trichoderma asperellum strain T34 is a biological control
agent that was isolated from a suppressive compost and has
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been shown to reduce severity of diseases produced by the
soil-borne pathogen Fusarium oxysporum in various crops (Sant
et al., 2010; Segarra et al., 2010). Furthermore, it has been
shown to induce systemic resistance against foliar diseases
such as Botrytis cinerea and Hyaloperonospora parasitica when
applied to the roots (Segarra et al, 2009; Ferndndez et al,
2014; Martinez-Medina et al., 2017). T. asperellum strain T34 is
an authorized active substance to be used as plant protection
product. Contrary to chemical plant protection products, biological
control agents may have more than one mode of action,
including parasitism, competition for nutrients, production of
metabolites and even the induction of plant defenses (Kohl
et al., 2019). For instance, studies with T. asperellum strain
T34 indicate that competition for Fe and parasitism are present
in the antagonism against F. oxysporum while induction of
resistance is the main mode of action against foliar diseases
(Segarra et al., 2010).

Given that microorganisms used in biological control are
usually introduced in the environment, for example in the soil, at
concentrations higher than the natural concentrations, one of the
aspects that has to be proven is that it does not alter significantly the
natural microbial populations which play a critical role in driving
essential soil functions such as nutrient cycling, organic matter
decomposition, soil structure and plant health (Kaminsky et al,
2019; Kohl et al., 2019; Chen et al., 2024).

Intolerable non-target effects could be defined as those that
persist beyond the time of crop harvest and that are significantly
different from changes produced by the growth of the plant
and agricultural practices (Winding et al., 2004). In this sense,
agricultural management practices such as fertilization have been
reported as an important factor disturbing microbial populations
in the soil (Mishra et al., 2022). It is usually accepted that increases
in nutrient availability tend to promote copiotrophic microbial
taxa which exhibit fast growth and low C use efficiency while
reduces the abundances oligotrophic taxa with slow growth and
high C use efficiency (Leff et al., 2015). Indeed, fitness of soil
saprotrophic fungal taxa is expected to be low in low C agricultural
soils (Bonner et al., 2022).

Taken all that
management practices such as fertilization might have a higher

together we hypothesized agricultural
impact on soil microbial populations than the application of a
potential biological control agent in potted olive trees grown in
soil obtained from a well stablished productive olive orchard.
Specifically, our aims were i) to study the potential of T. asperellum
strain T34 to control Verticillium wilt of olive and ii) to study
the impact of the introduction of the biological control agent
T. asperellum strain T34 on the soil microbial populations in potted
olive trees compared to the effect of mineral fertilization.
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2 Materials and methods

2.1 Greenhouse experiment

Two-year-old olive tree clones (Olea europaea L.) of the cultivar
Picual were planted in 10-L pots containing soil. The soil used was
a sandy loam (14.5% clay) described as a Calcaric Cambisol with
an organic C content of 0.86%, C/N ratio of 10.7, and pH of 8.58
and was collected from a commercial olive orchard (Romanya et al.,
2019). Before potting, the soil was sieved and mixed with perlite
at the ratio of 2 soil:1 perlite (v/v) in order to improve aeration.
A greenhouse experiment was set up at the Torribera Campus
of the University of Barcelona, where environmental conditions
were controlled by opening and closing the roof. Air temperatures
ranged from 6 to 30 °C and relative humidity ranged from 11 to
59%. Plants were watered according to demand by drip irrigation in
order to maintain field capacity. Plants were subjected to 3 factors
(fertilization, inoculation with the pathogen Verticillium dahliae
and Trichoderma application) each one with two levels (yes or
no), resulting in 8 groups (treatments) of plants. Each treatment
included 10 replicates. All treatments were randomly distributed
on greenhouse benches.

Fertilization was applied to pots designated as F+ as an
NPK fertilizer (ENTEC Nitrofoska 14-7-17, EuroChem Agro,
Barcelona, Spain) that contained 8% ammonia-N and 6% nitrate-
N, 7% P,0s, 17% K;0, 22.5% SO3, 2%MgO, 0.02% B, 0.01% Zn,
and 0.8% 3,4-dimethylpyrazole phosphate (DMPP) at the dose of
142.5 kg N ha™!, 31.1 kg P ha™! and 150.45 kg K ha™!. Pots not
treated with fertilizer were designated as F-.

Trichoderma application was performed by applying the
biocontrol agent Trichoderma asperellum strain T34 (commercially
available as T34 Biocontrol®). It was inoculated with a conidial
suspension to a final concentration of 1 x 10% colony forming
units (CFU) per ml of soil. Along the experiment, plants received
4 applications of T34: 2, 6 (spring), 12 (fall) and 18 (spring) months
after transplantation, Plants that received Trichoderma application
were designated T+, while plants not treated were designated as T-.

A defoliating pathotype of Verticillium dahliae was kindly
provided by Dr. Manuel Avilés (Avilés and Borrero, 2017).
Pathogen inoculation was performed by applying a conidial
suspension to a final concentration of 10° CFU/mL soil (Romanya
et al, 2019). The conidial suspension was produced in a 40
L fermenter with Czapek-Dox Broth during 5 days with the
following conditions: aeration rate of 6 Il min—1 (pO; adjusted at
100 £ 5%), agitation of 1,000 rpm, 25 °C and non-buffered pH.
Inoculated plants were designated as V+ and received a total of 4
applications of the pathogen, which were performed 1 week after
each application of the biological control agent. Non inoculated
plants were designated as V-.

2.2 Nutrient analysis

Three weeks after the first V. dahliae inoculation 5 plants
per treatment were randomly selected for nutrient analysis. Two
mature leaves (present at the moment of transplanting) and two
young leaves (formed after transplanting) were sampled from each
selected plant. Three months after the first inoculation leaves
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opposite to the leaf sampled as a young leaf were sampled and
considered to be mature leaves; new grown young leaves at the tip
of each selected shoot were also sampled.

Leaves were rinsed with deionized water, oven-dried at 70 °C
for 48 h and weighed. Samples were finely ground in an agate
mortar. N content was determined by elemental analyzer (Thermo
EA 108 CHNS-O, Carlo Erba Instruments). A 10-40 mg of ground
plant tissue was pre-treated with nitric acid (HNO3 69.5%) and
left overnight. On the following day, all tubes were heated at
80 °C for an hour, let cool, and then 0.5 ml of perchloric acid
(HCIO4 70%) was added before heating the samples to 180 °C
for 3 h. Samples were then filtered and made up to 10 ml volume
with deionised water. Induced coupled plasma optical emission
spectrometry (simultaneous ICP-OES, Perkin Elmer Optima 8300)
was used to determine element content (P, K, S, Ca, Mg and Fe)
in the extracts.

2.3 Analysis of the number of sclerotia
present in the soil

Soils were sampled 20 months after transplanting and
processed as previously described in order to quantify the
concentration of V. dahliae microsclerotia (Avilés and Borrero,
2017). 3 pots per treatment were sampled. Briefly, 25 gram of the
soil sample was suspended in 250 ml of distilled water and agitated
during 1 h at 270 rpm. The suspension was filtered through nested
150 and 36 pm sieves with tap water and the material retained in
the 36 wm sieve was recovered, made up to 100 ml with distilled
water and plated on modified soil extract agar medium (Harris
et al.,, 1993). Two weeks after, the residues were eliminated from
the surface of the plates, and they were dried and incubated for 2-3
additional weeks after which V. dahliae colonies were counted.

2.4 DNA extraction and sequencing

Soils were sampled 20 months after transplanting using a 1.4-
cm diameter auger. Eight subsamples from each pot were combined
into one sample and roots were separated manually. Samples were
stored at 4 °C before DNA extraction. 3 pots per treatment were
sampled. One gram of each soil sample was used to extract DNA
using the E.ZN.A.™ Soil DNA isolation kit according to the
manufacturer instructions. The quality and quantity of DNA
was checked spectrophotometrically using a NanoPhotometer
P-Class (Implen GmbH, Germany). The amplification was
performed at MR DNA (Shallowater, TX, United States)
using the primers illCUs515F GTGYCAGCMGCCGCGGTAA
and new806RB GGACTACNVGGGTWTCTAAT for
bacteria (16S rRNA gene V4 variable region) and ITSIF-
Btl CTTGGTCATTTAGAGGAAGTAA and ITS2R
GCTGCGTTCTTCATCGATGC for fungi (ITS1 gene) (Walters
et al, 2016). A PCR consisting of 94 °C for 3 min, followed by
30 cycles of 94 °C for 30 s, 53 °C for 40 s, 72 °C for 1 min, and
a final elongation step at 72 °C for 5 min was performed with
the HotStarTaq Plus Master Mix Kit (Qiagen, United States). The
success of amplification and the relative intensity of the bands
was checked in 2% agarose gel. Samples were pooled together
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in equal proportions based on their molecular weight and DNA
concentrations, they were purified using calibrated AMPure XP
beads and the Illumina TruSeq Nano DNA library was prepared.
The Tllumina MiSeq sequencing platform at MR DNA was used
according to the manufacturer’s instructions. The standardized
analysis pipeline consisted in the joining of the sequences, barcode
depletion, removal of short sequences (<150 bp) and removal
of sequences with ambiguous base calls (Chiodini et al., 2015).
After the sequences were denoised the operational taxonomic
units (OTUs) were generated and UCHIME was used to remove
chimeras. UCLUST in standard default was used to define OTUs,
after the removal of singleton sequences, by clustering at 97%
similarity. BLASTn was used against a curated database derived
from RDPII' and NCBI? databases to taxonomically classified
final OTUs. The sequence data generated in this study were
deposited in the NCBI Sequence Read Archive under BioProject
ID PRJNA628525. Fungal genera were classified by trophic modes
according to the FUNGuild database (Nguyen et al, 2016).
Bacterial genera found to be significantly affected by the factors
were classified as N fixing or not according to Nelson et al. (2016).

2.5 Statistical analysis

Microbiome analyst was used to run principal coordinates
analyses (PCoA) using a Bray-Curtis dissimilarity matrix on the
OTU data as well as PERMANOVA (Chong et al, 2020). The
effect of the factors fertilization, Trichoderma application and
Verticillium inoculation on the relative abundance of bacteria and
fungi were studied at genus and phylum levels on squared root-
transformed data by means of a 3-way ANOVA performed on
IBM SPSS Statistics for Windows Version 21.0 (IBM Corp.) and
the p-values were corrected to consider the false discovery rate
(Benjamini and Hochberg, 1995). Krona was used to represent
taxonomical distribution of bacteria and archaea genera affected by
fertilization (Ondov et al., 2011).

3 Results

During the course of the experiment, despite receiving
4 applications of the pathogen, inoculated plants remained
asymptomatic, presenting no evident signs of wilt or defoliation.

The effect of fertilization and Trichoderma application on the
number of sclerotia per gram of soil is shown in Figure 1. The
fertilization of the plants resulted in a significant increase in
the concentration of microsclerotia in the soil compared to not
fertilized plants. On the other hand, the application of the biological
control agent T. asperellum strain T34 resulted in a significant
decrease in microsclerotia concentration. The interaction of both
factors was not significant suggesting that the beneficial effect
of T34 is independent of the fertilization. The concentration of
microsclerotia doubled in the presence of fertilization and the
absence of T34. T34 application resulted in an 82% reduction in the

1 https://www.glbrc.org/data-and-tools/glbrc-data- sets/ribosomal-
database-project

2 www.ncbi.nlm.nih.gov
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Fertilization 0.042
Trichoderma 0.005
Interaction 0.985

16 -

10

Microsclerotia per gram of soil

| £

F-T- F-T+

F+T- F+ T+

FIGURE 1

Effect of fertilization and T. asperellum strain T34 application on the
concentration of microsclerotia in the soil. F+ and F-, fertilized and
not-fertilized pots, respectively. T+ and T-, treated or not with T34.
Means =+ standard error of the means are shown. The number next
to the name of the factor indicates the p-value.

concentration of microsclerotia in not fertilized plants and a 72%
reduction in fertilized plants.

The Permanova analysis revealed that the effect of fertilization
on soil bacterial microbiome was significant (F-value: 5.473;
p = 0.001) while the effect of T34 application and V. dahliae
inoculation was not significant (Figure 2A). The component 1 and
2 of the PCoA explained a 25.9 and 18.7% of variation, respectively.
Similarly, the Permanova analysis of fungal OTUs showed that the
effect of fertilization was significant (F-value: 4.164; p = 0.001) while
the factors T34 application and V. dahliae inoculation were not
significant (Figure 2B). For fungi, the component 1 and 2 of the
PCoA explained an 18.1 and 12.8% of variation, respectively.

Alpha diversity indexes such as Richness and Shannon did
not show significant differences due to fertilization, pathogen
inoculation or Trichoderma application (Table 1).

The relative abundance of all bacterial and archaeal phyla
present in the soil samples is shown in Table 2. The most abundant
phyla were, in order, Proteobacteria, Actinobacteria and Firmicutes,
which accounted for a relative abundance of 77.75% in non-treated
soils. The relative abundance of Actinobacteria, Candidatus
Tectomicrobia, Firmicutes increased when soil was fertilized,
while the relative abundance of Elusimicrobia, Fibrobacteres,
Nitrospinae, Nitrospirae, Proteobacteria, Spirochaetes and
Tenericutes decreased. Neither the inoculation with the pathogen
nor the treatment with the biological control agent affected
the relative abundances of bacterialphyla. In our study the
Archaea phylum found in the samples were Euryarchaeota and
Thaumarchaeota and their relative abundances were not affected
by the treatments.

The relative abundance of all fungal phyla present in the soil
samples is shown in Table 3. The most abundant phyla were,
in order, Ascomycota, Basidiomycota and Glomeromycota that
accounted for a relative abundance of 84.06% in non-treated
soils. The relative abundance of Mucoromycotina decreased when
soil was fertilized. The factor Verticillium and the interaction of
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Principal coordinate analysis (PCoA) of bacterial (A) and fungal (B) operational taxonomic units (OTUs) in the soil subjected to the factors

factors Fertilization x Trichoderma were significant for the phylum
Blastocladiomycota. Above all, no treatment affected significantly
the relative abundance of Blastocladiomycota compared to the
untreated control. However, when fertilization was present,
the application of Trichoderma and/or the inoculation with
Verticillium significantly decreased the relative abundance of this
phylum compared to the fertilized control.

Fertilization affected either positively or negatively the relative
abundance of 162 genera of bacteria and archaea in a significant
way (Table 4). By contrast, T34 had no effect on any genera
of bacteria or archaea. The phylum with the major number of
genera affected was Proteobacteria with 59 genera which showed
reduced relative abundances and 21 genera that showed increased
relative abundances due to fertilization. On the other hand, 30
genera from the phylum Actinobacteria increased their relative
abundance and 3 decreased as a result of fertilization. In total
96 genera decreased their relative abundances and 66 increased
due to fertilization. Specifically, 19 and 15 genera associated with
N fixation decreased and increased their relative abundances,
respectively (see Supplementary material for detailed list of N fixing
genera).

When looking at the 30 top most abundant bacterial
and archaeal genera (Table 5), genera that increased with

fertilization included: Bacillus, Arthrobacter, Rubrobacter,
Conexibacter, Skermanella, Blastococcus, Microvirga, Streptomyces,
Mesorhizobium, Hahella, Thermoleophilum, Lysobacter,

Sphaerobacter, Devosia and Sinorhizobium. In particular genera
Bacillus, Streptomyces and Devosia showed a Fold change of
relative abundance of fertilized vs. not fertilized > 2. On the
other hand, genera that decreased include: Rheinheimera, Massilia,
Geobacter, Thiobacillus, Burkholderia,
Pirellula, Herbaspirillum, Xanthomonas,
Zoogloea, Nitrospira, Limnobacter and Geothermobacter. In

Azoarcus, Duganella,

Janthinobacterium,
particular, genera that showed a fold change lower than 0.5

were Rheinheimera, Massilia, Duganella, Janthinobacterium,
Herbaspirillum, Zoogloea and Limnobacter.
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TABLE 1 Alpha diversity (Richness and Shannon index) at OTU level of
soil microbiota subjected to the factors fertilization, V. dahliae
inoculation and Trichoderma application.

Treatment Bacteria and
archaea
Richness Richness

F-V-T- 344204892 6.9+ 0.0 739.6+37.5 | 4.540.1
F-V-T+ 34240+ 1011 6.6+ 0.0 741.0£60.1 | 4.6 +0.0
F-V+T- 3271.0+140.3 6.54+0.2 717.3 £15.0 42+0.1
F-V+T+ 3239.0+43.0 6440.2 725.0 £42.2 43402
F+V-T- 319334752 64403 727.6 4820 | 43402
F+V-T+ 3264.6 41262 6.6+ 0.1 748.64+31.4 | 4540.1
F+V+T- 3261.3+£452| 6.6402 777.0+484 | 4640.1
F+V+T+ 3204.04+199.3 6.6+ 0.2 69734516 | 41403

Values represent the mean + standard error of the mean. There were no significant
differences among factors and interactions in a 3-way ANOVA. Fertilization: yes, F+; no,
F-. V. dahliae inoculation: yes, V+; no, V-. Trichoderma application: yes, T+; no, T-. See
ANOVA table in Supplementary material.

Furthermore, within each phylum the genera affected by
fertilization belonged to orders that in some cases contained
only positively affected genera, only negatively affected genera
or a combination of both (Figure 3). In the case of the phylum
Actinobacteria, the order Actinomycetales and Acidomicrobiales
contained most of the genera that were found to have higher relative
abundances due to fertilization. Within phylum Proteobacteria,
the genera that were found to be more abundant due fertilization
belonged mostly to the order Rhizobiales and Deltaproteobacteria,
Thiotrichales, Rickettsiales,
Desulfuromonadales and Rhodocyclales contained only genera

while orders Desulfobacterales,
that showed reduced relative abundances due to fertilization. On
the other hand, in the phylum Firmicutes the order Bacillales
contained mostly genera that were favored by fertilization, while
Clostridiales,

Thermoanaerobacterales and Erysipelotrichales
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TABLE 2 Relative abundance (%) of all bacterial and archaeal Phyla present in the samples according to the treatments they received.

No fertilization Fertilization
No Verticillium Verticillium No Verticillium Verticillium

No Trichoderma Trichoderma No Trichoderma Trichoderma No Trichoderma Trichoderma No Trichoderma Trichoderma
F-V-T- F-V-T+ F-V+T- F-V+T+ F+V F+V-T+ F+V+T- F+V+T+

Acidobacteria 3394021 2.88 +£0.14 2.98 +0.33 2.6 £0.34 2.744+0.23 2.77+0.18 2.66 £ 0.15 2.62+0.22
Actinobacteria! 15.78 +1.22 13.21 +1.08 11.77 £ 1.84 11.12+1.78 19.38 +3.24 17.99 +1.27 25.9 +2.37 18.41 +1.33
Armatimonadetes 0.05 £ 0.02 0.04 £0.02 0.02 £0.01 0.01 £0.01 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.02 £0.01
Bacteroidetes 3.954+0.76 2.97 £0.24 332408 3.64+0.53 2.74+0.15 3.68 +0.39 2.36+£0.21 3.35+0.36
Candidatus Tectomicrobia ! 0.21 £ 0.02 0.16 & 0.02 0.18 £ 0.02 0.16 & 0.01 0.25 4 0.01 0.21 £ 0.02 0.22 £ 0.02 0.18 £ 0.01
Chlamydiae 0.05 % 0.00 0.04 & 0.00 0.04 +0.01 0.03 +0.01 0.03 +0.01 0.03 +0.01 0.04+0 0.03 +0.01
Chloroflexi 3.06+0.1 3.17£0.36 2.37£0.43 2.12£0.16 3394041 3.26 £0.37 3.08+0.19 2.514+0.21
Cyanobacteria 0.88 +0.18 0.72+0.14 1.08 &+ 0.36 1.03 £0.09 0.78 £0.18 1.08 £ 0.66 0.5£0.10 0.87 +0.26
Deinococcus-Thermus 0.2£0.01 0.23 4 0.02 0.21 +0.03 0.26 & 0.04 0.26 + 0.02 0.24 4 0.04 0.28 = 0.08 0.24 +0.03
Elusimicrobia ! 0.07 £ 0.02 0.04 £ 0.02 0.05 £ 0.02 0.05 £ 0.01 0.01 £ 0.00 0.01 £ 0.00 0.01 £ 0.00 0.01 £ 0.00
Euryarchaeota 0.04 £0.01 0.05+0 0.05 £0.01 0.03 £0.00 0.02 £0.01 0.05 £ 0.01 0.03 £0.01 0.08 4 0.04
Fibrobacteres' 0.19 £ 0.04 0.25 £ 0.05 0.17 £ 0.01 0.2 4+ 0.03 0.07 £ 0.02 0.09 £ 0.01 0.06 & 0.01 0.15 £ 0.06
Firmicutes' 5.13 £0.09 6.26 & 0.64 5.39 £0.52 5.04 +0.76 8.88 +0.83 12.1 +4.97 11.13 +1.35 7.19 £ 1.28
Fusobacteria 0.01+0 0.01+0 0.01+0 0.01 4 0.00 0.01 # 0.00 0.01+0 0.01 + 0.00 0.01 +0.01
Gemmatimonadetes 4.14 £ 0.09 3.3540.32 3.354+045 3.2540.65 3.78 £0.51 3.46 +0.47 3.95+0.41 3.77 £ 0.62
Ignavibacteriae 0.07 £ 0.03 0.04 4 0.01 0.07 £ 0.03 0.06 & 0.02 0.03 & 0.00 0.07 £ 0.01 0.03 £ 0.01 0.04 +0.01
Nitrospinae ! 0.02 £ 0.01 0.01 £ 0.00 0 +£0.00 0.01 £ 0.01 0.00 & 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Nitrospirae' 0.49 +0.04 0.38 +0.03 0.37 £ 0.04 0.43 +0.04 0.33 £ 0.05 0.31+0.07 0.27 £ 0.00 0.25 +0.04
Planctomycetes 2.9+0.09 2.63 1 0.02 2.46 +0.27 2.314+0.23 2.4440.03 2.524+0.11 2.98 +£0.27 2.66 +0.23
Proteobacteria ! 56.84 £ 1.5 61.06 & 2.2 63.86 1 4.06 65.72 +2.2 52.43 £2.92 49.64 +2.3 44.1 +2.25 55.7 +2.03
Spirochaetes! 0.03 £ 0.00 0.02 £ 0.01 0.02 £ 0.01 0.02 £ 0.01 0.01 £ 0.00 0.02 £ 0.01 0.01 £ 0.00 0.01 £ 0.01
Tenericutes! 0.09 +0.01 0.03 & 0.02 0.04 +0.01 0.04 £ 0.02 0.02 +0.01 0.02 + 0.00 0.03 £ 0.02 0.02 +0.01
Thaumarchaeota 1.354+0.15 1.58 £0.15 1.2£0.12 0.99 +0.17 1.59 £ 0.01 1.35£0.2 1.5540.07 0.98 +0.15
Verrucomicrobia 1.04 & 0.04 0.84 4 0.07 0.98 & 0.08 0.85 4 0.04 0.82+0.11 1.09 £0.13 0.81 £ 0.15 0.9 £0.12

IThe factor Fertilization is significant for this Phylum. Factor significance is indicated by bold text. No other significant factors or interactions were found in a 3-way ANOVA including factors Fertilization, Verticillium, Trichoderma and all possible interactions. Values
represent the mean =+ standard error of the mean. See ANOVA table in Supplementary material.
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TABLE 3 Relative abundance of all fungal phyla found in the samples according to the combination of treatments they received.

Fertilization

No Fertilization

No Verticillium | Verticillium | No Verticillium | Verticillium |

No Trichoderma Trichoderma No Trichoderma Trichoderma No Trichoderma Trichoderma No Trichoderma Trichoderma

F-V-T- F-V-T+ F-V+T- F-V+T+ F+V-T- F+V-T+ F+V+T- F+V+T+
Ascomycota 54.45 4 2.83 41.59 +3.19 50.85 4 1.08 57.12 4 8.4 50.72 4 4.16 48.64 + 5.11 62.52 + 8.45 57.65 & 6.07
Basidiomycota 20.28 + 3.63 40.82 + 6.09 22.09 + 4.64 25.57 + 6.61 25524 8.7 33.05 + 5.53 20.31 4 6.42 23.94 4 12.32
Blastocladiomycota ! 0.44 + 0.12 abc 0.62 + 0.07 ab 0.13+0.03¢ 0.31 4 0.04 abc 094+043a 0.17 +0.03 bc 0.19 £ 0.02 bc 0.07+0.01¢
Chytridiomycota 3.06 4 0.69 4.05 + 1.44 2.9941.76 2724+ 1.28 6.26 +0.73 4,04+ 1.53 2.640.98 2.06 + 0.72
Cryptomycota 0.11 + 0.04 0.02 + 0.01 0.04 %+ 0.02 0.88 + 0.87 0.02 + 0.01 0.01+0 0.03 + 0.01 0.03 + 0.01
Entomophthoromycota 0.03 + 0.01 0.06 == 0.03 0.02 £ 0.01 0.02 = 0.02 0.04 =+ 0.04 0.03 = 0.02 0.04 =+ 0.03 0.06 == 0.03
Glomeromycota 9.33 +2.06 5014143 11.07 +2.52 5244216 8.59 4 4.05 7.67 +1.24 9.46 4 1.68 8+ 5.36
Kickxellomycotina 0.16 + 0.03 0.1+ 0.03 0.21 % 0.02 0.14 + 0.05 0.16 %+ 0.05 0.07 % 0.02 0.5+ 0.39 0.11 + 0.04
Mortierellomycotina 3.6+ 1.74 4.74 + 1.66 1.42 +0.94 1.06 £ 0.51 6.73 + 1.39 3.93 4+ 1.32 3.55 4 0.66 7.54 4 3.51
Mucoromycotina 8.37+3.32 2.83+1.4 11.12+2.8 69+1.8 0.91 + 0.43 2.34+0.83 0.79 % 0.49 0.51+0.38
Olpidiaceae 0.18 %+ 0.06 0.15 4 0.12 0.06 %+ 0.03 0.04 % 0.01 0.1 4 0.09 0.05 + 0.03 0.02 + 0.01 0.03 4 0.01

! The factor Verticillium and the interaction of factors Fertilization x Trichoderma are significant for this phylum. Different letters indicate significant differences between different treatment combinations. 2The factor Fertilization is significant for this phylum. Factor
significance is indicated by bold text. No other significant factors or interactions were found in a 3-way ANOVA including factors Fertilization, Verticillium, Trichoderma and all possible interactions. Values represent the mean = standard error of the mean. See ANOVA
table in Supplementary material.
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TABLE 4 Bacterial and archaeal genera affected by fertilization.

10.3389/fmicb.2025.1708981

Number of genera affected by fertilization

Decreased relative abundance (number

of N fixing genera)

Increased relative abundance (number
of N fixing genera)

Acidobacteria 3(0) 0(0)
Actinobacteria 3(0) 30 (6)
Bacteroidetes 7 (0) 2(1)
Candidatus Tectomicrobia 0(0) 1(0)
Chloroflexi 0(0) 2(0)
Cyanobacteria 5(2) 0(0)
Deinococcus-Thermus 0(0) 2(0)
Elusimicrobia 1(0) 0(0)
Euryarchaeota 2(2) 2(2)
Fibrobacteres 1(1) 0(0)
Firmicutes 9(3) 5(1)
Nitrospinae 1(0) 0(0)
Nitrospirae 2(1) 0(0)
Planctomycetes 1(0) 1(0)
Proteobacteria 59 (10) 21 (5)
Spirochaetes 1(0) 0(0)
Thaumarchaeota 1(0) 0(0)
Total 96 (19) 66 (15)

contained only genera with reduced relative abundance due to
fertilization. Bacteroidetes genera whose relative abundances were
found to be reduced belonged mostly to order Sphingobacteriales.
All 5 genera of Cyanobacteria found to be affected by fertilization
showed reduced relative abundances and the same was true for
the 3 genera of Acidobacteria. Within Euryarchaeota genera,
the order Methanobacteriales contained two genera that were
favored by fertilization while the genera that showed reduced
relative abundances due to fertilization belonged to orders
Methanosarcinales and Methanococcales.

The relative abundance of 9 fungal genera was affected by
fertilization: Rhizopus, Hygrocybe, Ramariopsis, Geoglossum,
Chrysosporium, and Dactylellina showed reduced relative
abundances due to fertilization while Acremonium, Ilyonectria
and Inocybe showed increased relative abundances (Table 6). T34
inoculation did not affect the relative abundance of any fungal
genera. Moreover, genus Verticillium was found to be more
relatively abundant when the inoculation with V. dahliae was
performed.

According to FunGuild, those genera whose relative abundance
increased in fertilized soils were classified as: Rhizopus, Pathotroph-
Saprotroph; Hygrocybe, Saprotroph-Symbiotroph; Ramariopsis,
Saprotroph; Geoglossum, Saprotroph; Chrysosporium, not present
in FunGuild but according to Gopal et al. (2020) it is a
Saprotroph and opportunistic human pathogen; and Dactylellina,
Saprotroph. On the other hand, within fungal genera with reduced
relative abundances due to fertilization Acremonium is Pathotroph-
Saprotroph-Symbiotroph; Ilyonectria, Pathotroph; and Inocybe,
Symbiotroph.

Frontiers in Microbiology

When the effect of the 3 factors was studied specifically
on the relative abundance of T. asperellum and V. dahliae at
species level and without FDR correction, significant effects were
observed (Figure 4). The relative abundance of T. asperellum was
increased by the application of the biological control agent but
was decreased by the inoculation with the pathogen while the
factor fertilization was not significant (Figure 4A). Interestingly,
V. dahliae relative abundance was dramatically increased due to the
inoculation of the pathogen specifically when the soil was fertilized
(Figure 4B).

Young leaves sampled 3 weeks after pathogen inoculation had
higher concentrations of Ca, S and Mg if the plants had been treated
with T34 (Table 7). In mature leaves sampled at the same time,
fertilized plants had higher N content; plants treated with T34, had
higher concentrations of P and lower Mg; plants inoculated with
V. dahliae had lower levels of S. In the case of K, the plants treated
with F+T-V- had lower concentrations than F-T+V+ and F-T+V-
suggesting that T34 was more effective in increasing leaf K than
mineral fertilization. Furthermore, plants treated with F-T+V+ had
lower concentrations of Ca than F+T-V- and F-T-V+ (Table 8).

Young leaves sampled 3 months after pathogen inoculation had
higher concentrations of N, P and S but lower levels of Ca if the
plants had been fertilized (Table 9).

Mature leaves sampled 3 months after pathogen inoculation
had higher concentrations of N, K and § if the plants had been
fertilized (Table 10). Inoculation with the pathogen led to higher
concentration of Fe in those leaves.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1708981
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

AB0)01qOIDIN Ul SIB13U0I4

60

B40°UISIa13UOY

TABLE 5 Relative abundance (%) of the 30 most abundant bacterial and archaeal genera significantly affected by the treatments.

Genera

‘ No Trichoderma “ Trichoderma ‘ No Trichoderma “ Trichoderma ‘ No Trichoderma “ Trichoderma ‘ No Trichoderma “ Trichoderma ‘

No fertilization

No Verticillium

Verticillium

No Verticillium

Fertilization

Verticillium

Fold change
Fertilized vs.
Not fertilized

Bacillus! 2.46 £ 0.06 3.40 £ 0.54 3.10 £ 0.53 2.90 £0.70 6.35+0.71 9.52 +4.57 8.84+1.12 530+ 1.23 2.53
Arthrobacter' 2.42+0.13 1.94 £ 0.05 2.22+0.62 1.63 £0.34 3.6 £0.625 3.754+0.71 4.59 + 0.59 4.04 +0.85 1.95
Rheinheimera® 5.14 +2.30 2.70 £ 1.86 0.41 £0.30 5.02+1.72 0.14 £ 0.03 0.56 £ 0.46 0.05 £ 0.00 0.10 £ 0.02 0.06
Rubrobacter 1.65+0.11 1.28 +0.07 1.27 £0.14 1.22 £0.11 1.72£0.18 1.59 +£0.16 1.71 £0.16 1.47 +0.09 1.20
Conexibacter' 1.50 £ 0.22 1.16 £0.13 0.90 + 0.15 0.82 +£0.24 1.88 £0.38 1.38 £0.22 2.20 £ 0.35 1.23 £0.12 1.53
Massilia® 1.88 +0.29 0.919 £ 0.5 2.62+0.73 4.39 +2.07 0.09 + 0.03 0.14 +0.01 0.07 £ 0.02 0.31 +0.08 0.06
Skermanella® 1.08 £0.14 1.22+0.16 1.04 £0.10 1.08 £ 0.04 1.49 £0.17 1.22 £0.10 1.51 £ 0.06 1.51 £0.15 1.30
Azoarcus' 1.81 £0.12 1.41 £0.19 1.19£0.27 1.01 £0.17 0.60 £ 0.04 0.71 £0.14 0.77 £ 0.09 0.74 £ 0.07 0.52
Blastococcus! 0.94 £+ 0.09 0.84 +0.12 0.71 £0.21 0.74 £ 0.20 1.16 £ 0.20 0.92 £+ 0.09 1.75 +0.24 1.14 £ 0.09 1.54
Micruvirgal 0.84 £+ 0.02 0.82 £ 0.06 0.95+0.14 0.7 £ 0.033 1.24 £0.17 0.991 £0.1 1.13£0.17 1.13 £ 0.06 1.36
Duganellrz1 1.67 £0.75 2.33+£2.19 1.00 £ 0.85 2.68 £ 1.10 0.02 £ 0.00 0.02 £ 0.00 0.02 £ 0.01 0.03 £0.01 0.01
St‘reptomycesl 0.61 + 0.05 0.44 + 0.05 0.60 + 0.02 0.39 + 0.08 1.19£0.15 1.34 £0.24 2.09 £0.59 1.03£0.24 2.77
Geobacter! 1.11 £ 0.10 1.61 £0.26 0.98 £0.17 0.81 +0.11 0.90 £+ 0.20 0.72 £ 0.06 0.76 £ 0.01 0.66 £+ 0.10 0.67
Thiobacillus' 1.18 £ 0.06 1.03 £ 0.02 1.08 £+ 0.06 0.81 £ 0.09 0.63 £ 0.06 0.79 £ 0.11 0.68 + 0.05 0.69 £ 0.09 0.68
Mesorhizobium" 0.62 £+ 0.02 0.65 £ 0.06 0.67 £ 0.06 0.70 £ 0.06 0.85 £ 0.06 0.93 £0.05 0.83 £ 0.09 1.02 £ 0.12 1.37
Burkholderia® 0.86 + 0.03 0.77 £ 0.05 0.72 £ 0.01 0.64 + 0.08 0.46 + 0.05 0.42 +0.01 0.59 £ 0.11 0.58 £+ 0.07 0.69
Hahella! 0.54 + 0.06 0.53 + 0.02 0.50 £ 0.04 0.42 + 0.05 0.73 £0.10 0.65 + 0.02 0.73 £ 0.03 0.63 £+ 0.07 1.38

(Continued)
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TABLE 5 (Continued)

No fertilization Fertilization Fold change
Fertilized vs.
Not fertilized

No Verticillium Verticillium No Verticillium Verticillium

No Trichoderma | Trichoderma No Trichoderma | Trichoderma No Trichoderma | Trichoderma No Trichoderma Trlchoderma
V-T+ \—

F-V-T- V+T- F-V+T+ F+V-T+ F+V+T+
Janthinobacterium' 0.93 +0.25 0.28 +0.14 1.28 £0.63 1.89 £1.19 0.03 +0.01 0.04 & 0.00 0.02 £ 0.00 0.09 4+ 0.01 0.04
Thermoleophilum1 0.55+0.1 0.44 £0.03 0.34 +0.04 0.31 £0.06 0.71+£0.11 0.54 £0.09 0.87 £ 0.15 0.56 £ 0.06 1.63
Lysobacter! 0.24 +0.04 0.22 +0.05 0.66 & 0.04 0.31 4 0.06 0.84+0.11 0.67 +0.13 0.30 & 0.09 0.93 4 0.42 1.92
Pirellula® 0.77 £ 0.06 0.59 4 0.03 0.48 +0.10 0.53 4 0.08 0.40 & 0.04 0.43 4 0.05 0.49 £ 0.02 0.47 £ 0.06 0.76
Herbaspirillum’ 0.31 4+ 0.02 0.54 +0.16 1.36 £0.71 0.18 +0.03 0.20 + 0.04 0.19 +0.04 0.16 + 0.02 0.324+0.10 0.36
Xanthomonas' 0.59 &+ 0.06 0.50 +0.15 0.438 + 0.2 0.27 +0.04 0.18 +0.05 0.19 +0.03 0.25 4+ 0.06 0.33 +0.09 0.53
Sphaerobacter' 0.29 +0.03 0.28 & 0.06 0.26 £ 0.01 0.22 +0.05 0.41 +0.07 0.47 4 0.08 0.45 £ 0.06 0.3540.05 1.60
Devosia® 0.19 +0.03 0.17 4 0.02 0.19 +0.03 0.23 4+ 0.04 0.39 + 0.02 0.63 +0.17 0.28 + 0.04 0.50 +0.14 2.31
Sinorhizobium' 0.26 + 0.04 0.23 +0.04 0.28 + 0.06 0.24 +0.07 0.34 4+ 0.03 0.29 4 0.02 0.36 + 0.05 0.56 +0.11 1.53
Zoogloea! 0.06 & 0.02 0.24 +0.07 210+ 1.44 0.0540.01 0.01 & 0.00 0.04 & 0.00 0.01 & 0.00 0.02 +0.01 0.03
Nitrospira® 0.42 4 0.02 0.33 +0.03 0.32 4+ 0.04 0.36 4+ 0.03 0.31 +0.04 0.29 & 0.06 0.25 4 0.00 0.23 +0.03 0.76
Limnobacter! 0.83 +0.44 0.41 +0.16 0.17 +0.03 0.64 +0.24 0.04 +0.01 0.15 4 0.08 0.02 £ 0.00 0.20 +0.16 0.20
Geothermobacter! 0.50 £ 0.01 0.40 £0.01 0.33 £0.07 0.33 £0.07 0.18 £0.03 0.20 £0.03 0.28 £0.00 0.23 £0.04 0.57

!Factor Fertilization is significant for this genus. No other significant factors or interactions were found in a 3-way ANOVA including factors Fertilization, Verticillium, Trichoderma and all possible interactions. Values represent the mean = standard error of the mean.
See ANOVA table in Supplementary material.
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increased (green) by the fertilization treatment.
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Krona diagram showing taxonomical distribution of bacteria and archaea genera affected by fertilization. Taxonomy levels shown are phylum and
order. The color index is meant to indicate the proportion of genera within each taxonomical level whose relative abundance is decreased (red) or

4 Discussion

4.1 Lack of disease symptoms

It is known that the disease produced by V. dahliae has two
distinct phases which consist of an initial biotrophic phase, in
which symptoms are not yet evident, and a necrotrophic phase,
that involves wilt symptoms when colonization is widespread and
which occurs as a consequence of impaired vascular transportation
(Scholz et al., 2018). No wilt or defoliation symptoms of disease
produced by V. dahliae inoculation were found in this experiment,
even though the olive tree variety used is highly susceptible and the
virulent defoliating pathotype of the pathogen was used (Garcia-
Ruiz et al,, 2014). Disease symptoms did not develop even after
several reinoculations with the pathogen but the relative abundance
of Verticillium dahliae sequencing reads in soil samples increased
due to the application of the pathogen, particularly in fertilized
pots.

One explanation for the lack of symptoms development could
be the high temperatures recorded during the assay, in particular
during the summer, since it has been shown that temperatures
above 25 °C are usually detrimental to the development of the
disease by V. dahliae and could slow or stop the biotrophic host-
pathogen phase and difficult its transition to the necrotrophic phase
(Calderdn et al.,, 2014). Moreover, variations in climatic conditions,
such as temperature, along the year can slow the disease progress
in comparison with constant temperatures favorable to the fungus
(Calderon et al., 2014). Furthermore, the soil used in the pots could
have had unexpected suppressive effects (Tienda et al., 2025). In
this sense a reduction of Verticillum dahliae disease severity has
been observed as a result of using substrates based on compost to
grow plants (Avilés and Borrero, 2017). Interestingly, the significant
reduction on S content on young leaves inoculated with Vd could
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be attributed to competition of host and pathogen in the early stage
of the interaction (Romanya et al., 2019).

Between 1.2 a 54 microesclerotia per gram of soil were
found in samples collected from stablished olive orchards
affected by Verticillium wilt (Lopez-Escudero and Blanco-Lopez,
2005). Moreover, a natural infestation of soil with V. dahliage
was determined to be 5.5 microsclerotia per gram while 35
microsclerotia per gram of soil was considered to be a high
inoculum density (Mulero-Aparicio et al, 2020). In this sense,
the levels of microsclerotia found in the present work could be
considered in the range of a naturally occurring infection.

4.2 Trichoderma effects on
microsclerotia

Even though the conditions in this assay were not favorable
to study the biological control activity of T. asperellum strain T34
on V. dahliae, due to the lack of plant symptoms observed, it
was possible to prove the effect of the biological control agent in
reducing the concentration of microsclerotia in the potted soil.
This reduction was quite notable (70-80%) and was independent
of the presence of mineral fertilization. Other authors found that
soil inoculated with the fungus Talaromyces flavus reduced the
germinability of V. dahliae microsclerotia which had been buried
in treated soil for 14 days and electronic microscopy revealed that
microsclerotia were colonized by T. flavus (Fahima et al., 1992).
We hypothesize that mycoparasitism of V. dahliae microsclerotia
by T34 hyphae could play an important role in the biological
control of Verticillium wilt disease. In this sense, a grape marc
compost that showed a high capacity to inhibit microsclerotia
viability, also greatly reduced the severity produced by V. dahliae
in olive plants (Varo-Sudrez et al., 2018). A survey that studied
fungi colonizing microsclerotia in a wide variety of habitats, showed
that Trichoderma koningii, Fusarium oxysporum and Alternaria
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alternata were the most frequently isolated from microsclerotia
buried in the soil and it was hypothesized that these species possess
a greater affinity for microsclerotia of V. dahliae than other species
present in the soil (Grunden et al, 2001). In the past, there
has been research efforts to use mycoparasites for the control of
V. dahliae by using isolates of the genus Talaromyces, Trichoderma
and Gliocladium (Grunden et al,, 2001). Interestingly, T. asperellum
strain T25 has shown promising results in terms of controlling the
disease produced by V. dahliae in olive trees since its application
delayed the time of first symptom detection and also the disease
severity (Carrero-Carrén et al., 2016).

4.3 Effects of Trichoderma on V. dahliae
and viceversa

Even though T34 application reduced the number of
microsclerotia per gram of soil, its application did not have a
significant effect on the relative abundance of Verticillium dahliae
sequencing reads in soil samples. T34 has been reported to
control the disease caused by Fusarium oxysporum f.sp. lycopersici
on tomato plants in pot experiments and in that case T34 was
shown to reduce the population of F. oxysporum. Moreover, the
population of T34 increased in the presence of the pathogen,
probably as a consequence of hyperparasitism (Segarra et al., 2010).

On the other hand, when V. dahliae was inoculated, the relative
abundance of T34 decreased significantly. Interestingly, strains Bt2,
Bt3 and T25 of T. asperellum which were able to overgrow the
colonies of several V. dahliae isolates in vitro, showed diverse
degree of susceptibility to V. dahliae-secreted compounds since
growth of Bt2 was reduced whereas that of Bt3 and T25 was
not affected (Carrero-Carrén et al,, 2016). It is noteworthy that
V. dahliae has been shown to inhibit fungal growth in vitro, to
produce antibiotics, detoxify antifungal compounds, and act as a
mycoparasite (Barron and Fletcher, 1970; Grunden et al., 2001).

4 4 Effect of fertilization on microbial
communities

Despite the limitations of a single point sampling for
microbiome studies, which has previously been reported, many
publications about soil microbiome still rely on sampling at
a single point in time (Geisen and Stefan, 2021). This is a
limitation of this experiment, since it is clear that seasonal
factors are important in shaping soil biodiversity (Boutin and
Laforest-Lapointe, 2025). In this study, the application of
mineral fertilization, treatment with T. asperellum strain T34
and inoculation with the pathogen V. dahliae did not have
an impact on bacterial and fungal diversity indices. The factor
fertilization was the only that affected significantly the fungal
and bacterial communities at OTU level when studied by PCoA
and Permanova, while the effect of Trichoderma and Verticillium
inoculation was not significant. It is known that plants have a
profound effect on the microbiome of the rizhosphere but soil
and management practices also have an important role (Bulgarelli
et al, 2013; Mishra et al,, 2022). Interestingly, similarly to what
happens in our study, Eo and Park (2016) did not find a

Frontiers in Microbiology

12

10.3389/fmicb.2025.1708981

significant effect of mineral fertilization on diversity indices of
soil cultivated with pepper plants, while the effect of fertilization
varied at genus level. On the other hand, in a review of
studies that experimentally exposed microbial communities to
various disturbances, more than 80% of the mineral fertilization
studies found significant effects of disturbance on microbial
composition (Allison and Martiny, 2008). In addition (at 120 kg
N ha~!, similar to the 140 kg used in our study) resulted
in a significant shift in bacterial community composition and
a decrease in bacterial OTU richness in surface soil in in
a grassland fertilization experimental field (Zeng et al., 2016).
Long-term use of inorganic nitrogen (N) fertilization influenced
the bacterial community in a black soil in China: N addition
consistently decreased bacterial diversity and altered bacterial
community composition, by increasing the relative abundance
of Proteobacteria, and decreasing that of Acidobacteria and
Nitrospirae (Zhou et al., 2017).

It is noteworthy that in a meta-analysis on changes in
bacterial community under long-term mineral fertilization,
bacterial taxonomic diversity was decreased by N fertilization
alone but was increased by NPK fertilization in a variety of soil
chemical and physical properties (Dai et al, 2018). Nitrogen
fertilization increased the relative abundance of Proteobacteria
and Actinobacteria, but reduced the abundance of Acidobacteria
(Dai et al., 2018). However, while in our study an increase
in the relative abundance of Actinobacteria associated with
mineral fertilization was observed, the relative abundance of
Proteobacteria slightly decreased. In addition, a study on 25
globally distributed grassland sites showed consistent alterations
in microbial communities as a consequence of N and P addition
(Leff et al., 2015). In particular, nutrient application decreased
the relative abundance of mycorrhizal fungi, methanogenic
archaea, and oligotrophic bacterial taxa, while increased the
relative abundances of fast growth copiotrophic bacterial taxa (Left
et al,, 2015). In our study, we did not find a significant effect of
fertilization on Glomeromycota. While the relative abundance
of Actinobacteria (considered copiotrophic) increased as a result
of fertilization, we did not observe a significant effect on the
oligotrophic Acidobacteria phylum. On the contrary, in our
study, relative abundance of Proteobacteria, which are usually
considered to be copiotrophic, slightly decreased with fertilizer
application.

There have been attempts to classify high level bacterial
taxa into ecologically meaningful categories such as copiotrophic
and oligotrophic in relation to C and N availability. A negative
correlation of the abundance of Acidobacteria and a positive
relationship for both Bacteroidetes and Betaproteobacteria and
C amendment level were found (Fierer et al, 2007). On the
other hand, Gammaproteobacteria and Actinobacteria increased
with N inputs while Acidobacteria, Cyanobacteria, and Nitrospira
decreased with N input rates (Ramirez et al., 2010). In our case, the
metabollicaly active (copiotrophic) pyllum Bacteroidetes was not
affected by fertilization.

It is remarkable that the most abundant bacterial phylum in the
rhizosphere (Proteobacteria, Actinobacteria and Firmicutes) were
significantly affected by fertilization in our study. Proteobacteria
and Actinobacteria are the most abundant phyla in microbiome
studies on olive orchard soils (Fausto et al, 2018; Pathan
et al, 2021). In fact, 59 genera of Proteobacteria (including
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TABLE 6 Relative abundance (%) of fungal genera significantly affected by the treatments.

No fertilization

No Verticillium

Verticillium

No Verticillium

Fertilization

Verticillium

Rhizopus 8.36 = 3.32 2.77 £ 1.44 11.12+2.8 6.88 & 1.81 091 +0.43 2.344+0.83 0.79 £ 0.49 0.50 & 0.37
Hygrocybe! 3.55+2.68 15.06 & 3.43 3.71 +£2.94 11.17 &+ 5.66 0.11 £ 0.01 0.26 +0.14 0.2 £0.05 0.21 +0.03
Ramm‘iopsis1 0.59 £0.28 1.05 £ 0.45 0.31£0.16 0.45£0.16 0.02+0 0.1 £0.06 0.08 £0.03 0.18 £0.07
Acremonium® 0.71 £ 0.29 0.8440.13 0.70 £ 0.29 1.03 £0.18 2.09 £ 0.68 3.144+0.85 2.96 + 1.08 4.69 +2.54
Geoglossum* 0.05 4 0.03 0.06 & 0.04 0£0 0.03 4 0.02 0£0 0+0 0.01+0 0+0
Chrysosporium' 0.07 +0.03 0.07 +0.01 0.04 +0.01 0.04 £ 0.02 0.03 +0.01 0.01 4 0.01 0.02 +0.01 0.01+0
Dactylellinal 0.17 £ 0.09 0.16 £0.08 0.1 £0.07 0.21 £0.16 00 0.01£0 0.01£0 0.01 £0.01
Ilyonectria® 0.24+0.1 0.12 4+ 0.04 0.07 & 0.02 0.11 4 0.04 0.81 £ 0.31 0.29 +£0.21 1.42 £ 0.6 0.60 &+ 0.31
Inocybe! 0.22 +0.02 0.24 4 0.07 0.27 £0.17 0.11 4 0.02 0.77 £ 0.29 1.02 £ 0.55 091+0.2 0.52+0.31
Verticillium? 0.09 +0.01 0.13 4+ 0.02 1.04 +0.17 2.62 +0.09 0.11 +0.03 0.2540.18 494+ 1.71 6.84 +2.88

!Factor Fertilization is significant for this genus. 2Factor Verticillium is significant for this genus. No other significant factors or interactions were found in a 3-way ANOVA including factors Fertilization, Verticillium, Trichoderma and all possible interactions. Values
represent the mean = standard error of the mean. See ANOVA table in Supplementary material.
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FIGURE 4

Effect of fertilization, T. asperellum T34 application and V. dahliae inoculation on the relative abundance of T. asperellum (A) and V. dahliae (B).
Fertilization: yes, F+; no, F-. V. dahliae inoculation: yes, V+; no, V-. Trichoderma application: yes, T+; no, T-. Means =+ standard error of the means
are shown. The number next to the name of the factor indicates the p-value.

TABLE 7 Concentration of nutrients in young leaves sampled 3 weeks after pathogen inoculation.

Treatment N (mg/q) P (mg/g) | K(mg/q) S (mg/g) | Mg (mg/g) | Fe (mg/qg)
No fertilization

V-T- 18.28 +2.09 1.74 +£0.18 12.69 £ 1.03 3.72+£0.6 1.55+0.16 0.72 £ 0.06 0.09 £ 0.02
V-T+ 19.92 +£1.78 2.1040.20 13.74 £ 1.18 573 £0.38 2.00 £+ 0.22 1.07 £ 0.07 0.28 £ 0.62
V+T- 20.18 £4.03 1.84 +£0.26 13.30 £ 0.84 3.64+1.24 1.58 +0.25 0.70 £ 0.23 0.12 £ 0.05
V+T+ 21.84 £2.96 22940.19 11.84 £ 1.08 5.96 +1.38 1.69 +0.15 1.20 +0.19 0.14 £ 0.16
Fertilization

V-T- 26.10 £ 3.00 2334025 13.24 £ 0.75 2.44 +0.88 1.87 £0.25 0.73 £0.13 0.82 £ 0.06
V-T+ 24.00 £ 3.42 2.10 +0.26 13.23 £1.03 4.49 +0.93 2.10£0.20 1.04 +0.14 0.29 4 0.04
V+T- 17.56 +2.27 1.78 +0.31 12.67 £ 0.64 2.94 4+ 0.94 1.67 +0.23 0.72 £ 0.21 0.05 £ 0.03
V+T+ 20.78 £2.31 2.19+£0.13 12.29 £+ 0.42 4.33 +£0.45 2.18 £0.12 0.87 £ 0.05 0.19 £ 0.03
ANOVA

Fertilization n.s n.s. n.s. n.s. n.s. n.s. n.s.
Trichoderma ns. ns. ns. 0.006 0.017 0.002 ns.
Fertilizacion x Trichoderma ns. n.s. n.s. n.s. n.s. n.s. ns.
Verticillium n.s. n.s. n.s. ns. ns. ns. n.s.
Fertilization x Verticillium n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Trichoderma x Verticillium ns. ns. n.s. n.s. n.s. n.s. n.s.
Fertilization x Trichoderma x Verticillium n.s. n.s. n.s. ns. n.s. ns. n.s.

Values represent the mean =+ standard error of the mean.

10 N fixing genera) had their relative abundances decreased  (Ramirez et al, 2012). Nitrospirae bacteria, dominant nitrite
due to fertilization while 21 (including 5 N fixing bacteria)  oxidizers in various environments including olive orchards are
increased due to fertilization. Moreover, the relative abundance  considered oligotrophic taxa and usually decline with nitrogen
of 30 Actinobacterial genera increased, including 6 N fixing addition, as happened in the present study (Caliz et al.,, 2015; Eo
genera, while only 3 Actinobacterial genera decreased due to  and Park, 2016; Fujitani et al., 2020; Beltran-Garcia et al., 2021).
fertilization. Overall, there was not a clear effect of mineral  Nitrospinae, which are marine nitrite-oxidizing bacteria decreased
fertilization on the relative abundances of N fixing bacteria since ~ with high N organic fertilization and in our study were completely
the relative abundances of 19 and 15 genera associated with  suppressed by fertilization (Spieck et al., 2014; Wang M. et al,
N fixation were decreased and increased, respectively, due to  2022). Tectomicrobia, known for bioactive compound synthesis in
fertilization. sponges, increased under mineral fertilization despite previously

Firmicutes thrive in carbon-rich soils (Cesarano et al., 2017).  described negative correlations with N and P soil content (Wilson
In 28 North-American soils, inorganic N increased Actinobacteria et al., 2014; Saravanakumar et al., 2016; Wang Q. et al., 2022).
and Firmicutes, but reduced Acidobacteria and Verrucomicrobia  Fibrobacteres, cellulose degraders, decreased with fertilization
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TABLE 8 Concentration of nutrients in mature leaves sampled 3 weeks after pathogen inoculation.

Treatment

No fertilization

10.3389/fmicb.2025.1708981

V-T- 23.20 £ 1.17 1.90 +0.15 12.10 £ 0.39abc | 8.20 + 0.71ab 2.34 £ 0.40 1.65 4+ 0.07 0.08 £ 0.03
V-T+ 25.54 £ 1.76 2.31£0.14 15.83 + 1.01a 4.08 + 1.22ab 2.5240.16 1.10 +£0.20 0.06 £ 0.09
V+T- 23.72 £ 0.96 2.26 £0.18 11.02 £ 0.56bc | 8.46 & 0.56a 1.04 £+ 0.59 1.57 +0.06 0.19 £ 0.06
V+T+ 20.88 £ 1.57 2.48 £0.31 14.97 £ 1.53ab | 3.55+0.93b 0.42 £ 0.59 1.224+0.32 0.07 £ 0.03
Fertilization

V-T- 3212432 1.93 £0.38 10.21 £ 0.94c 8.56 £ 0.80a 336 £0.72 1.90 +0.12 0.09 £ 0.02
V-T+ 31.88 £ 3.31 2.30 £0.22 12.83 £ 1.00abc | 7.97 £ 1.04ab 2.64 £0.53 1.62+0.21 0.12 £ 0.04
V+T- 29.92 £2.82 1.88 +£0.19 13.09 £ 0.72abc | 7.70 + 1.03ab 1.08 £ 0.56 149 4+0.13 0.12 £ 0.04
V+T+ 32.72 £ 1.89 2.56 £ 0.21 13.90 £ 1.29abc | 5.85 + 1.13ab 1.46 +0.39 1.224+0.21 0.19 £ 0.08
ANOVA

Fertilization 0.000 n.s. n.s. 0.046 n.s. n.s. n.s.
Trichoderma ns. 0.014 0.000 0.000 ns. 0.012 n.s.
Fertilizacion x Trichoderma n.s n.s. ns. 0.024 n.s. n.s. n.s
Verticillium n.s n.s. ns. ns. 0.000 n.s. n.s
Fertilization x Verticillium ns. ns. 0.040 ns. n.s. n.s. n.s.
Trichoderma x Verticillium ns. ns. n.s. n.s. ns. ns. n.s.
Fertilization x Trichoderma x Verticillium | n.s. n.s. ns. n.s. n.s. n.s n.s

Values represent the mean =+ standard error of the mean. Numbers followed by different letters are significantly different (P < 0.05, Tukey’s test).

TABLE 9 Concentration of nutrients in young leaves sampled 3 months after pathogen inoculation.

Treatment

N (mg/g)

P (mg/qg)

K (mg/qg)

S (mg/qg)

Mg (mg/g)

Fe (mg/q)

No fertilization

V-T- 11.16 +1.83 1.454+0.21 15.44 £ 0.60 6.11 +0.71 1.26 £0.12 0.70 £ 0.02 0.02 £ 0.01
V-T+ 12.34 +£2.55 1.494+0.20 16.06 £ 0.50 6.49 £+ 1.03 1.39+0.14 0.77 £+ 0.04 0.03 £ 0.00
V+T- 11.48 £2.79 1.344+0.22 16.04 £0.77 | 5974078 1.194+0.18 0.73 4 0.03 0.03 £ 0.00
V+T+ 11.94 +2.38 1.2540.20 14.60 £ 0.71 7.32+£1.14 1.244+0.11 0.73 4+ 0.03 0.03 £ 0.01
Fertilization

V-T- 18.82 £+ 1.65 2144017 17.89 £+ 0.68 3.62£0.54 1.76 £ 0.11 0.74 £+ 0.05 0.04 £ 0.00
V-T+ 18.30 £ 2.01 1.97 +£0.18 16.34 £ 1.02 4.45 4 0.81 1.61 +£0.13 0.68 £ 0.03 0.03 £ 0.01
V+T- 17.92 +1.48 1.79 £ 0.12 15.63 +0.99 514+£1.13 1.47 £0.12 0.76 £ 0.03 0.04 £ 0.00
V+T+ 18.53 +2.43 1.84 +£0.18 15.47 £+ 0.34 5.13+£0.38 1.56 +0.19 0.74 £ 0.05 0.04 £ 0.01
ANOVA

Fertilization 0.000 0.000 n.s. 0.001 0.001 n.s. n.s.
Trichoderma n.s ns. ns. ns. n.s. n.s. n.s.
Fertilizacion x Trichoderma n.s n.s n.s n.s n.s n.s n.s
Verticillium n.s n.s n.s n.s n.s n.s n.s
Fertilization x Verticillium n.s ns. ns. n.s. n.s. n.s. n.s
Trichoderma x Verticillium n.s ns. n.s. n.s. n.s. n.s. n.s
Fertilization x Trichoderma x Verticillium n.s. n.s n.s n.s n.s n.s n.s

Values represent the mean =+ standard error of the mean.

(Ransom-Jones et al., 2012; Jewell et al., 2013). Tenericutes, with
limited rhizospheric roles but involved in polyol synthesis, also

declined (Sun et al., 2022). Elusimicrobia, found in insect guts and
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soils, were reduced by fertilization in our study and have been
previously shown to decrease by N fertilization while showing

a positive correlation with available soil K (Zhang et al., 2019;
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TABLE 10 Concentration of nutrients in mature leaves sampled 3 months after pathogen inoculation.

No fertilization

V-T- 12.48 £1.52 1.29£0.11 10.14 £ 0.91 8.41 £1.58 1.354+0.28 0.84 +£0.21 0.05 £ 0.02
V-T+ 11.74 £+ 0.86 1.73 +£0.22 11.16 & 1.07 9.35+0.98 1.29 £0.10 0.74 £ 0.09 0.03 £ 0.02
V+T- 12.38 £ 1.38 1.41 £ 0.16 10.45 £ 0.85 8.74 £ 1.65 1.26 +0.24 0.87 £ 0.19 0.10 £ 0.04
V+T+ 11.10 £ 0.96 1.64 +£0.24 9.93 £+ 1.00 9.15 + 1.42 1.17+£0.11 0.73 £0.12 0.08 £ 0.03
Fertilization

V-T- 17.20 £+ 1.49 1.45+0.2 12.21 +£0.82 7.11+£1.27 1.44 +£0.12 0.61 £ 0.10 0.04 £ 0.04
V-T+ 14.52 +£0.93 1.734+0.21 11.42 £ 0.99 8.23 £1.01 1.36 +0.11 0.66 £ 0.12 0.03 £ 0.00
V+T- 17.00 £ 1.03 1.99 £0.12 13.41 £1.02 9.68 £ 0.99 1.51 £0.13 0.84 £0.12 0.04 £ 0.01
V+T+ 17.72 + 1.04 1.89 +0.20 11.86 £ 0.83 9.87 £ 1.32 1.61 +0.13 0.98 +0.10 0.08 £ 0.03
ANOVA

Fertilization 0.000 n.s 0.010 n.s. 0.047 n.s. n.s
Trichoderma n.s n.s n.s n.s n.s n.s n.s.
Fertilizacion x Trichoderma ns. n.s n.s. n.s. n.s n.s n.s.
Verticillium ns. n.s n.s n.s n.s n.s. 0.049
Fertilization x Verticillium n.s n.s n.s n.s n.s n.s n.s
Trichoderma x Verticillium n.s n.s n.s n.s n.s n.s n.s.
Fertilization x Trichoderma x Verticillium | n.s. n.s n.s. n.s n.s n.s n.s.

Values represent the mean =+ standard error of the mean.

Méheust et al., 2020; Yu et al., 2023). Spirochaetes, spiral-shaped
bacteria with diverse lifestyles, increased in corn soils treated with
manure and fertilizer, contrary to our findings (Wolters et al., 2018;
Hallmaier-Wacker et al., 2019).

Considering the 30 top most abundant bacteria and archaea
genera affected by fertilization, there was an increase in the
abundance of genera of aerobic chemoheterotrophs
Arthrobacter,
Conexibacter, Lysobacter, Skermanella, Streptomyces; and the

and
decomposers, such as Bacillus, Blastococcus,
thermophilic Rubrobacter, Sphaerobacter and Thermoleophilum;
with the exception of the genus Massilia which decreased. These
genera harbor broad enzyme repertoires that contribute to organic-
matter turnover and degradation of complex metabolites and
competitive traits such as sporulation and secondary metabolites
synthesis (Yakimov et al., 2003; Pati et al., 2010; Zhu et al., 2015;
Expdsito et al., 2015; Chater, 2016; Castro et al., 2019; Saxena et al.,
2020; Gushgari-Doyle et al., 2022; Lei et al., 2023; Amirhosseini
et al., 2025; Sbissi et al., 2025). On the other hand, fertilization
increased the abundance of genera related to classical rhizobial
symbionts such as Mesorhizobium and Sinorhizobium and other
nodulating bacteria with nitrogen-fixation potential such as some
Microvirga and Devosia species, whereas associative/freeliving
N fixers such as Azoarcus and Herbaspirillum decreased, as
did the functionally diverse Burkholderia which includes some
N-fixing species (Coenye and Vandamme, 2003; Laranjo et al,
2014; Toro et al., 2017; Jiménez-Gomez et al., 2019; Raittz et al.,
2021; Pedrolo et al., 2023; Tian et al.,, 2024). On the other hand,
there was a reduction in the abundance of chemolithotrophic
and redox-specialist guilds. The fertilized soils showed consistent
decreases in sulfur oxidizers (Thiobacillus and Limnobacter), as
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well as iron reducers (Geobacter, Geothermobacter) (Chen et al,
2016; Hillary et al., 2018; Reguera and Kashefi, 2019; Lopez-
Fernandez et al., 2023). Concomitantly, there was a decline of
nitrifiers (Nitrospira, canonical nitrite oxidizers) (Meng et al,
2023). Several taxa that declined such as Rheinheimera, Duganella,
Zoogloea, Janthinobacterium and Pirellula are frequently linked to
aquatic environments which are potentially oligotrophic, with the
exception of Hahella that increased with fertilization (Glockner
et al.,, 2003; Chen et al., 2010; Haack et al., 2016; Muller et al.,
2017; He et al., 2022; Zhao et al,, 2022). Notably, the decrease in
the plant-pathogenic genus Xanthomonas coincided with the rise
of antagonistic taxa such as Bacillus, Lysobacter, and Streptomyces
(Huang et al., 2015).

Fertilization negatively affected the relative abundance of
Mucoromycotina. Mucoromycotina “fine root endophytes,” are soil
fungi that form endosymbioses with a wide range of plants and
are distinct from the arbuscular mycorrhizal fungi (which belong
to the Glomeromycota) in that they transfer a significant amount
of nitrogen to their host plant (Sinanaj et al., 2021). Interestingly,
in our study, the relative abundance of Glomeromycota was not
affected by fertilization.

In fertilized soils, the inoculation with V. dahliae and/or
Trichoderma had a negative effect on Blastocladiomycota.
The zoosporic fungi of Blastocladiomycota are important
components decomposing
of organic matter and/or hosts
(Jeronimo and Pires-Zottarell, 2019).

Furthermore, in our study fertilization had an effect on

in  freshwater  ecosystems,

parasiting  several

the relative abundances of some fungal taxa at genus level.
There was not a clear tendency on whether certain groups were
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favored or inhibited by fertilization according to their phylum
and trophic mode (FunGuild). It is remarkable, however that
relative abundance of the nematode trapping genus Dactylellina
decreased and the plant pathogenic genus Ilyonectria increased due
to fertilization (Jiang et al., 2016).

4.5 Effect of Trichoderma asperellum
strain T34 and Verticillium on microbial

communities

Manufacturers of plant protection products based on
microorganism must prove the safety of the product in terms
of toxicological and ecotoxicological profiles. There have been
some reviews raising concerns about the potential negative effects
of biological control agents such as Trichoderma spp. on non-target
organisms. For instance, Brimner and Boland (2003) mentioned in
their review that non-target effects could include mycoparasitism
of mycorrhizae and reductions in plant root colonization by
mycorrhizal fungi and nodulation by Rhizobium spp.

Repeated application of T. asperellum strain T34 did not affect
significantly the diversity of fungi and bacteria nor the relative
abundances of phyla and genera. In this sense, the application
of the antagonistic strain of Trichoderma atroviride strain 1-1237
slightly modified the microbial diversity only for a short period
of time, studied by means of terminal restriction fragment length
polymorphism method of 18S and 16S rRNA genes and 9 months
after the inoculation, differences between control and inoculated
soils were no longer found (Cordier and Alabouvette, 2009).

Given that some detrimental unintentional effects produced by
Trichoderma spp. isolates appear in the literature, it is important
that studies on non-target effects of microbial PPP are performed
for each strain and no conclusions on safety are taken at genus or
species level (Jangir et al., 2019).

Since there is a trend on the increase of use of microbial
PPP and very likely there are going to be interactions with other
beneficial microorganisms applied to improve crop fertilization
such as N-fixing microorganisms (Azospirillum spp., Rhizobium
spp.) and those that increase P availability (such as mycorrhizae),
the compatibility of PPP with microbial biostimulants is an
important trait to be considered. In, this sense, the inoculation
with the biostimulant Azospirillum brasilense Sp245 and biocontrol
strains Pseudomonas fluorescens WCS 365 and Trichoderma
harzianum T12 did not show negative effects on arbuscular
mycorrhizal fungi establishment in the rhizosphere of maize plants
(Vazquez et al., 2000).

Similarly to what happens in our study, the introduction of
the pathogen V. dahliae in two olive cultivars did not result in
significant alterations in the structure and functionality of soil
microbial communities (Ferndndez-Gonzdlez et al., 2020).

4.6 Effect of fertilization on V. dahliae

Fertilization has an impact on the progression of vascular
diseases which has been reported in various crops. In particular,
high N fertilization in irrigated olive tree orchards is expected to
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stimulate the incidence and severity of V. dahliae wilt (Lopez-
Escudero and Mercado-Blanco, 2011). In this sense, in our
experiment both the number of microsclerotia per gram of soil and
the relative abundance of V. dahliae increased significantly due to
mineral fertilization which included both nitrate and amonia.

The application of T34 increased the concentration of Ca, S
and Mg in young leaves and of P in mature leaves. This effect
was not observed 3 months after the application suggesting that
the beneficial effects last for a certain amount of time after the
application. Interestingly, Mg concentration in mature leaves was
lower in the presence of T34 suggesting that there might be a
stimulation of the mobilization of this element from mature to
young leaves in the presence of T34. T34 application to the root
system has been shown to increase the concentrations of nutrients
such as Ca, Mg, Mn, B, and Si in tomato leaves grown in pots
(Bidellaoui et al., 2019).

Interestingly, inoculation with the pathogen V. dahliae resulted
in lower concentrations of S in the leaves 3 weeks after pathogen
inoculation. It has been shown that S plays an important role in
tomato disease resistance against V. dahliae by synthesis of sulfur
containing defense compounds (Fu et al., 2016). Moreover, there
seems to be an important plant-pathogen competition for available
S in the initial phases of the interaction (Romanya et al., 2019).

Inoculation with the pathogen led to higher concentration of
Fe in mature leaves sampled 3 months after pathogen inoculation.
Interestingly, addition of FeEEDDHA to eggplants infected with V.
dahliae significantly reduced disease severity in calcareous soil,
suggesting an implication or Fe homeostasis in pathogenicity of this
pathogen (Barash et al., 1988).

5 Conclusion

The treatment of the pots with the biological control agent
T. asperellum strain T34 effectively reduced the amount of
V. dahliae microsclerotia suggesting a promising alternative to
chemical fumigation. Moreover, it did not affect the diversity
of bacteria and fungi in the rhizospheric soil of olive trees.
On the other hand, mineral fertilization doubled the amount
of microsclerotia in soil and drastically increased the relative
abundance of V. dahliae reads. Furthermore, fertilization had a
significant effect on microbial communities, affecting the relative
abundance of 162 and 9 genera of bacteria and fungi, respectively.
Interestingly, fertilization did not have an effect on the phylum
Glomeromycota and bacterial genera affected by fertilization were
not specifically associated to N fixing or non-N fixing bacteria.

Taken together, those results suggest that mineral fertilization
has a much more profound impact on the relative abundance of
microorganisms than the introduction of biological control agents
such as T. asperellum strain T34.
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