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The mechanism of biochar and compost as soil amendments in urban green 
spaces remains unclear. Using Euonymus kiautschovicus as a model system, this 
study established eight treatment gradients, 0 (CK), single biochar applications: 4% 
(BC4), 8% (BC8), 12% (BC12), 7.5% compost (COM), and their combinations BCC4 
(BC4 + 7.5% COM), BCC8 (BC8 + 7.5% COM), BCC12 (BC12 + 7.5% COM). Through 
metagenomic sequencing and metagenome-assembled genomes (MAGs) analysis, 
we investigated soil microbiome structure, carbon sequestration functional genes, 
and their interactions in response to amendments. The combined application 
of medium-low dose biochar (4–8%) with compost significantly optimized the 
physicochemical properties and microbial functions in soils. Compared to single 
amendments, hybrid treatments synergistically enhanced soil moisture content. 
Specifically, BCC8 increased by 27% compared to the CK, organic carbon levels 
reached 12.8 g/kg with BCC12, and available nutrients showed 45% higher available 
phosphorus with BCC4. Metagenomic analysis revealed that hybrid treatments 
reshaped microbial community structure, with BCC8 significantly enriching 
Acidobacteria (8.72%) and Nitrospira (1.42%), driving an increased abundance 
of carbon fixation genes. Among key carbon fixation pathways, the reductive 
tricarboxylic acid cycle (rTCA) exhibited the highest gene abundance (mean 15.03), 
dominated by MAG176. The Calvin-Benson-Bassham (CBB) cycle displayed broad 
adaptability, with MAG59 identified as a core carbon-fixing strain. This study has 
significant implications for the application of biochar-compost combinations in 
carbon management of urban green spaces.
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1 Introduction

Soils around the world are undergoing varying degrees of degradation, with the carbon 
sink function of urban green spaces continuously weakening or even disappearing (Xie et al., 
2019; Vieillard et al., 2024). Urban green space can purify the environment, regulate the 
climate, maintain biodiversity, and play a vital role in improving the urban ecological 
environment. As the foundation of the green space ecosystem functions, soils provide critical 
ecosystem services (Zhu et al., 2017). Urban green spaces, serving as vital natural carbon sinks 
in cities, have seen their carbon sequestration potential enhancement emerge as a key strategy 
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for low-carbon urban development (Guo et al., 2024). Biochar and 
compost, as sustainable soil amendments, have become global 
research hotspots for soil carbon sequestration and microbial 
regulation due to their unique physicochemical properties and 
ecological functions (Barrow, 2012; Mohd et al., 2013; Barthod et al., 
2018). Biochar, formed through high-temperature pyrolysis of 
biomass, features a highly aromatic structure, large specific surface 
area, and high C/N ratio, enhancing soil carbon stability (Herath et al., 
2013; Lehmann et al., 2015; Smith, 2016). Compost, rich in labile 
organic matter and functional microbial communities, directly 
promotes soil nutrient cycling (Laird et al., 2010; Nobile et al., 2022). 
Their combined application in agricultural soils has demonstrated 
synergistic improvements in soil structure, enhanced microbial 
activity, and increased carbon sequestration potential (Han et  al., 
2023; Iswahyudi et al., 2024). However, urban green space soils exhibit 
unique physicochemical characteristics such as high compaction, low 
organic matter content, and heterogeneous microbial communities 
(Scharenbroch et al., 2005), resulting in fundamentally distinct soil 
amendment mechanisms compared to agricultural systems 
(Edmondson et al., 2014). Elucidating the microbiome responses and 
carbon fixation gene regulatory mechanisms of biochar and compost 
in urban garden soils holds significant scientific importance for 
optimizing urban carbon sink management strategies.

Biochar addition enhances microbial ecological niches by 
increasing porosity and adsorption capacity (Dahlawi et al., 2018), 
while compost inputs stimulate microbial metabolic activity through 
dissolved organic carbon release (Mehta et al., 2014; Rastogi et al., 
2020; Palaniveloo et al., 2020). Metagenomic analyses reveal positive 
correlations between biochar-induced Actinobacteria enrichment and 
carbon fixation gene expression, alongside increased abundances of 

Bacteroidetes and Acidobacteria but decreased Proteobacteria 
(Kolton et  al., 2011; Anderson et  al., 2011). Compost-driven 
Proteobacteria proliferation may indirectly influence carbon cycling 
through enhanced polysaccharide degradation genes (Yuan et al., 
2015; Czekała et  al., 2016; Yang et  al., 2019). Combined biochar-
compost applications demonstrate greater efficacy in carbon 
stabilization and sequestration compared to biochar alone (Jien et al., 
2015). While synergistic effects of biochar-compost combinations 
have been observed in agricultural soils and turfgrass systems (Wang 
et  al., 2017; Hale et  al., 2021), with biochar mitigating compost-
induced carbon mineralization losses (Yang et  al., 2025), these 
phenomena remain poorly characterized in urban soils. Post-
application of biochar and compost significantly enhances soil 
nitrogen fixation, alters microbial community structure, and 
effectively reduces potentially phytotoxic PAH (Polynuclear Aromatic 
Hydrocarbons‌) in biochar (Li et al., 2020; Liu X. et al., 2022). However, 
research on the carbon sequestration mechanisms of biochar-compost 
combinations in urban green space soils remains limited, with most 
studies focusing on single amendments or low-dose treatments 
(typically <5%) (Lehmann et al., 2011; Liu et al., 2016; Xu et al., 2021). 
Systematic evaluations of high-dose biochar gradients (e.g., >5%) and 
biochar-compost interactions remain insufficient (Sulemana 
et al., 2021).

While significant progress has been made in biochar and compost 
research (Agegnehu et al., 2015; Liang M. et al., 2021), key knowledge 
gaps persist: (1) What is the response pattern of the soil microbiome 
to biochar/compost in urban green space? (2) Could high-dose 
biochar combined with compost induce inhibitory effects or novel 
synergistic mechanisms? (3) Existing studies predominantly rely on 
16S rRNA sequencing or single functional gene detection (Yang et al., 

GRAPHICAL ABSTRACT

https://doi.org/10.3389/fmicb.2025.1707894
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al.� 10.3389/fmicb.2025.1707894

Frontiers in Microbiology 03 frontiersin.org

2024; Awasthi et al., 2017), lacking multidimensional metagenomic 
correlation analyses.

This study employs E. kiautschovicus as a model plant, establishing 
eight gradient treatments to investigate the effects of different biochar 
and compost dosages on urban potted soil microbial community 
structure, network stability, key carbon fixation gene abundance 
dynamics, driving factors, and the coupling mechanisms between 
microbial functional modules and soil carbon pool formation. MAGs 
technology is utilized to resolve functional gene-host microbe 
relationships and reveal urban green space-specific microbial response 
patterns, providing a theoretical foundation for developing precision 
carbon management strategies. The results of this study will help 
bridge the knowledge gap in the microbial mechanisms of soil 
amendments of urban green space, promoting the practical application 
of ecological development in line with the carbon neutrality target.

2 Materials and methods

2.1 Study area and plant species

The soil used in the study was urban green spaces soil (see 
Graphical abstract). The experimental site is located in the industry-
academia-research training base of the College of Forestry, Shanxi 
Agricultural University (112°28′–113°01′E, 37°12′–37°3′N), situated 
in Taigu District, Shanxi Province (Figure 1A). This region lies in the 
mid-latitude inland Loess Plateau. It belongs to a warm temperate 
continental semi-arid monsoon climate zone. In July 2023, 
one-year-old E. kiautschovicus plants exhibiting disease-free growth 
and uniform vigor were selected for potted cultivation (Figure 1B). 
Before transplantation, aerial parts were pruned to ensure consistent 
plant height, with three individuals planted per pot. E. kiautschovicus 

FIGURE 1

Location of study area. (A) The DEM map of Taigu District, Shanxi Province, the pentagram is the location of the experimental field. (B) The UAV aerial 
image of the test field.
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is a widely distributed semi-evergreen shrub commonly used in 
landscaping as hedges and shrub spheres (Yang et al., 2014).

2.2 Biochar and compost

The biochar was produced by Henan Lize Environmental Protection 
Technology Co., Ltd. (China), using corn straw as raw material through 
a high-temperature pyrolysis process. The corn straw was carbonized at 
500–600 °C under oxygen-free constant-temperature combustion for 
2 h, resulting in black powdered charcoal after grinding. The compost 
was sourced from a Japanese organic fertilizer manufacturer, 
constituting a high-quality microbial fertilizer. Its raw materials 
(seaweed, fish meal, and soybean meal) underwent pretreatment, 
primary fermentation, maturation fermentation, and subsequent 
processing and storage at 60–70 °C. The physicochemical properties of 
the biochar, compost, and experimental soil are presented in Table 1.

2.3 Experimental design

The experimental design employed a soil column experiment 
using PVC (Polyvinyl Chloride) cylinders (100 cm height × 45 cm 
diameter). Each container was filled with 150 kg of soil to a depth of 
90 cm, with the top 30 cm layer amended with varying biochar and 
compost additions. Three amendment treatments—Control (no 
amendment), biochar alone, and biochar-compost combinations—
were uniformly applied at eight levels based on mass ratios: 0 (CK), 
4% biochar (BC4), 8% biochar (BC8), 12% biochar (BC12), 7.5% 
compost (COM), 7.5% compost + 4% biochar (BCC4), 7.5% compost 
+ 8% biochar (BCC8), and 7.5% compost + 12% biochar (BCC12). 
The improver was applied to the pot at one time before planting. 
Sampling was conducted on July 15, 2024, with 0–20 cm depth 
samples collected from 40 containers across five replicates. All plants 
were cultivated under identical environmental conditions and 
standardized management practices.

2.4 Analytical methods

Soil pH, temperature, humidity, electrical conductivity (EC), and 
moisture content were measured and analyzed. Soil pH was determined 
using a pH meter (PHSJ-3F, Leici, Shanghai, China) with a water-to-soil 
ratio of 2.5:1. Soil temperature and humidity were measured using a 

WET-2-KIT soil parameter rapid tester (DELTA-T, UK), while EC was 
analyzed with a DDS-307A conductivity meter (water-to-soil ratio of 
5:1). Soil moisture content was determined by oven-drying at 
105 ± 2 °C. Total nitrogen (TN), total phosphorus (TP), and available 
phosphorus (AP) were quantified using a Martchem450 fully automated 
discrete chemical analyzer. Available potassium (AK) was measured via 
ammonium acetate (CH3COONH4) extraction-flame photometry (Mei, 
2019). Microbial biomass carbon (MBC) and nitrogen (MBN) were 
determined using the chloroform fumigation-K2SO4 extraction method, 
while microbial biomass phosphorus (MBP) was analyzed by 
chloroform extraction-UV spectrophotometry. Soil extracellular 
enzyme activities were assessed using 96-well microplate fluorometric 
assays on a multifunctional microplate reader (Fluoroskan Ascent FL, 
Thermo Scientific) with excitation/emission wavelengths of 365/450 nm. 
Five key enzymes were measured: β-1,4-glucosidase (BG), 
cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG), 
leucine aminopeptidase (LAP), and alkaline phosphatase (AKP) (Gao 
et  al., 2019; Duan et  al., 2019). Soil organic carbon (SOC) was 
determined via potassium dichromate oxidation-spectrophotometry, 
and easily oxidized organic carbon (EOC) was measured using 
potassium permanganate oxidation (Lu and Rao, 2025).

2.5 Metagenomic sequencing

In July 2024, soil samples from the top layer (0–20 cm) of 40 
containers across five replicates were collected for metagenomic 
sequencing and bioinformatic analysis. Sterilize the sampling 
equipment and cryotubes using an autoclave, then collect 5 g of 
homogenized sample from a 20 cm-depth hole in each barrel. 
Genomic DNA was extracted from soil samples, with concentrations 
quantified using a Quantus Fluorometer (Picogreen) and integrity 
assessed via 1% agarose gel electrophoresis. All samples exhibited 
grade B integrity with partial DNA degradation. DNA was fragmented 
to 350 bp using Covaris M220, followed by Y-shaped adapter ligation, 
magnetic bead-based removal of self-ligated adapters, PCR 
amplification for library enrichment, and NaOH denaturation to 
generate single-stranded DNA fragments for paired-end (PE) library 
construction. Shotgun metagenomic sequencing of total microbial 
genomic DNA was performed on the Illumina high-throughput 
sequencing platform.

After quality control using fastp to obtain clean data, metagenomic 
assembly was performed based on contigs ≥1,000 bp. Individual 
binning was conducted using MetaBAT, CONCOCT, and MaxBin, 

TABLE 1  Basic physical and chemical properties of the modifier and the experimental soil.

Variable Biochar Compost Experimental soil

pH 9.92 8.46 8.40

SOC (g/kg) 510.90 163.49 3.55

TN (g/kg) 8.51 16.59 0.38

TP (g/kg) 2.34 2.73 0.79

−−NO N3  ‌(mg/kg)
40.57 53.01 12.01

−+NH N4  (mg/kg)
16.83 27.10 2.76

AP (mg/kg) 11.13 11.31 8.34
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with DAS_Tool integration to generate metagenome-assembled 
genomes (MAGs). A two-step dereplication process via dRep included 
primary clustering at Mash ANI ≥ 90% and secondary clustering at 
ANI ≥ 99% with ≥10% genome overlap. Medium-quality MAGs 
(completeness ≥50%, contamination <10%) were selected using 
CheckM, yielding 182 non-redundant genomes.

2.6 Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics 27.0.1. 
One-way analysis of variance (ANOVA) and Duncan’s multiple range 
test were applied to assess the effects of different amendment levels on 
soil physicochemical properties and their significance within the same 
soil depth. Pearson correlation coefficients were calculated to evaluate 
inter-variable relationships, with significance tested at p < 0.05. Results 
are expressed as mean ± standard error. Data visualization was conducted 
using Origin 2021 and Adobe Photoshop 2021. Compositional analysis, 
comparative analysis, differential analysis, association/module 
prediction, and MAGs cloud analysis were performed using cloud-based 
tools from the Majorbio Bio-Cloud Platform.1

3 Results

3.1 Soil physicochemical properties and 
enzyme activities

BC12 and biochar-compost mixtures significantly improved soil 
water retention capacity, attributed to the synergistic effects of 

1  https://www.majorbio.com

biochar’s porous structure and organic matter (Figure 2A). For soil 
nutrient dynamics, compost supplementation increased nitrogen 
availability, while high-concentration biochar addition restricted 
nitrogen release (Figure 2B). However, biochar-compost combinations 
effectively enhanced nitrogen content, with BCC4 and BCC8 showing 
the highest improvements. Compost elevated AP, but biochar reduced 
its availability through adsorption and immobilization. COM, BCC4, 
and BCC8 exhibited higher AP levels compared to CK, with BCC4 
reaching peak values (Figure 2F). Compost slightly increased AK, 
though high biochar concentrations partially offset this effect via 
adsorption (Figure 2G). SOC and EOC increased with rising biochar 
concentrations, confirming biochar as the primary contributor to soil 
carbon content (Figures 2D,E). Medium-low biochar doses combined 
with compost (BCC4, BCC8) optimized most metrics, whereas high 
biochar doses (BCC12) reduced efficacy due to adsorption or C/N 
imbalance. Biochar-driven carbon accumulation directly enhanced 
SOC through stable carbon inputs, while EOC increased via biochar 
and compost supplementation. Compost promoted nutrient release, 
significantly elevating AP, AK, and TN, but required avoidance of high 
C/N environments. Medium-low biochar doses (4–8%) synergistically 
improved water retention, carbon pools, and available nutrients when 
combined with compost, while high doses (12%) induced antagonistic 
effects via adsorption or C/N imbalance.

MBC increased significantly with rising biochar doses, directly 
linked to biochar’s high organic carbon content, which supplies stable 
carbon for microbial proliferation (Figure 3A). MBN increased with 
biochar concentration due to reduced nitrogen loss via adsorption and 
enhanced nitrogen-fixing microbial activity under high-carbon 
conditions (Figure 3B). MBP followed trends similar to MBN, driven 
by biochar’s phosphorus adsorption and microbial phosphorus 
immobilization (Figure 3C). COM elevated MBC, MBN, and MBP 
compared to CK but fell short of high biochar treatments, reflecting 
compost’s limited total labile organic matter despite rapid 
decomposition. In combined treatments (BCC4/8/12), medium-low 

FIGURE 2

Soil physicochemical properties of different treatments. (A) Soil moisture content (SME). (B) Total nitrogen (TN). (C) Total phosphorus (TP). (D) Soil 
organic carbon (SOC). (E) Easily oxidized organic carbon (EOC). (F) Available phosphorus (AP). (G) Rapidly available potassium (AK). Values are the 
means ± SE. Lowercase letters indicate significant differences among treatments based on Duncan’s post hoc test at the level of p < 0.05. F is a statistic 
used to compare the variance difference between multiple samples. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% 
compost; BCC4, 4% biochar + 7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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doses (BCC4/8) surpassed single amendments (BC4/8) in MBC, 
MBN, and MBP, demonstrating synergistic carbon and nutrient 
supply. High-dose BCC12 achieved peak MBC, MBN, and MBP, but 
MBN and MBP growth slowed due to nitrogen mineralization 
inhibition under high C/N ratios.

BG activity increased with biochar concentration, while CBH 
peaked at low doses, correlating with microbial-driven carbon 
decomposition demands (Figures 3D,E). Compost alone maximized 
BG activity due to labile carbon stimulation. Combined treatments 
generally exhibited lower BG and CBH activities than single 
amendments, as biochar adsorbed soluble carbon substrates, reducing 
enzyme induction. Biochar alone caused fluctuating NAG activity but 
steadily increased LAP, reflecting protease activation under high-
carbon conditions for nitrogen acquisition (Figures 3F,G). Compost 
elevated NAG and LAP activities, maintaining enzyme activity despite 
direct nitrogen supplementation. Combined treatments showed lower 
NAG activity than compost alone and slightly higher LAP activity 
than compost but lower than biochar alone, likely due to biochar-
mediated nitrogen adsorption delaying microbial metabolism. AKP 
activity increased with biochar alone, driven by microbial phosphate 
secretion in response to phosphorus adsorption (Figure 3H). Compost 
minimized AKP activity by alleviating phosphorus limitation. 
Combined treatments exhibited AKP levels near or below CK, as 
compost reduced phosphorus demand.

3.2 Microbial community composition

Based on the non-redundant protein amino acid sequence 
database NR, species annotation was performed using Diamond 
v2.0.13 with the Reads Number abundance calculation method. 
Species abundance was calculated as the sum of gene abundances 

corresponding to each taxon, yielding four domains (4.32% Archaea, 
65.43% Bacteria, 0.14% Eukaryota, and 0.11% Viruses), 13 kingdoms, 
239 phyla, 457 classes, 896 orders, 1,815 families, 6,478 genera, and 
49,928 species. BCC exhibited the highest values across most 
taxonomic levels, indicating significant enhancement of microbial 
taxonomic diversity, particularly at the genus and species levels. BC 
treatments showed lower values than CK at low concentrations (BC4), 
with partial recovery at higher concentrations (BC8, BC12) but still 
failing to surpass CK, suggesting suppressed microbial taxonomic 
diversity under sole biochar application in E. kiautschovicus potted 
systems. COM slightly exceeded CK at all levels, demonstrating stable 
but limited improvement compared to high-concentration biochar-
compost mixtures.

At the phylum level (including others), BC application increased 
Actinomycetota, Nitrospirota, Chloroflexota, and Bacillota. COM 
alone elevated Pseudomonadota, Bacillota, Acidobacteriota, and 
Chloroflexota. BCC enhanced Acidobacteriota, Chloroflexota, 
Bacillota, and Nitrospirota (Figure  4). COM achieved peak 
Pseudomonadota abundance (35.81%), while BC maximized 
Actinomycetota levels. BCC8 showed the highest Acidobacteriota 
abundance (8.72%). Dominant phyla were Pseudomonadota and 
Actinomycetota. Biochar-driven carbon regulation favored 
oligotrophic Chloroflexota, which is suitable for long-term soil 
improvement. Compost enriched copiotrophic Pseudomonadota and 
Bacillota for short-term fertility enhancement but risked rapid organic 
matter depletion unless combined with biochar to delay 
decomposition. Medium-low BCC doses (BCC4/8) balanced carbon 
input and nutrient release, promoting functional taxa like 
Chloroflexota and Nitrospirota to support coupled carbon-nitrogen-
phosphorus cycling. High carbon load (BCC12) suppressed 
Pseudomonadota and Actinomycetota activity, potentially hindering 
plant nutrient acquisition. For enhanced nitrification, prioritize BC12 

FIGURE 3

Soil microbial biomass carbon, nitrogen, phosphorus, and their enzyme activities under different treatments. (A) Microbial biomass carbon (MBC). 
(B) Microbial biomass nitrogen (MBN). (C) Microbial biomass phosphorus (MBP). (D) β-1,4-glucosidase (BG). (E) Cellobiohydrolase (CBH). (F) β-1,4-N-
acetylglucosaminidase (NAG). (G) Leucine aminopeptidase (LAP). (H) Alkaline phosphatase (AKP). Values are the means ± SE. Lowercase letters indicate 
significant differences among treatments based on Duncan’s post hoc test at the level of p < 0.05. F is a statistic used to compare the variance 
difference between multiple samples. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% compost; BCC4, 4% biochar + 
7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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or BCC8; use COM alone for rapid organic matter decomposition. 
BCC8 demonstrated optimal integrated effects at the phylum level.

At the genus level (excluding others), BC alone increased 
Streptomyces and Gaiella, while COM elevated Luteitalea, 
Hyphomicrobium, and Anaerolinea (Figure  5). BCC mixtures 
enhanced Luteitalea, Nitrospira, Anaerolinea, and Hyphomicrobium, 
but all declined in BCC12. BC8 exhibited superior carbon-nitrogen 
regulation, with high Streptomyces (1.53%) and Nitrospira (1.22%) 
abundances supporting carbon conversion and nitrification. Avoid 
BC12 due to suppressed Sphingomonas (2.72%) and Bradyrhizobium 
(0.89%), impairing pollutant degradation and nitrogen fixation. COM 
significantly boosted Luteitalea (4.78%) and Hyphomicrobium (1.25%), 
suitable for short-term organic decomposition and ammonia 
oxidation but requiring ammonium nitrogen control. BCC8 
synergized Luteitalea (4.71%), Nitrospira (1.42%), and Anaerolinea 
(1.55%) to balance carbon-nitrogen cycling. BCC12 reduced 
Nocardioides (1.32%) and Arthrobacter (0.96%), potentially weakening 
organic degradation capacity.

Microbial community analysis across phylum and genus levels 
revealed that high-stability carbon from BC promoted oligotrophic 
genera (e.g., Streptomyces, Gaiella), aligning with phylum-level 
Actinomycetota and order-level Acidimicrobiales responses. 

Compost-enriched labile carbon favored copiotrophic genera (e.g., 
Luteitalea, Hyphomicrobium), reinforcing Pseudomonadota 
dominance. Combined treatments adsorbed ammonium nitrogen to 
stimulate Nitrospira and Hyphomicrobium, consistent with total 
nitrogen (BCC4 = 0.44 g/kg) and nitrate nitrogen (BC = 40.57 mg/kg) 
data. Compost’s high ammonium directly stimulated Hyphomicrobium 
(COM = 1.25%) but risked nitrifier inhibition at excessive levels. 
Compost increased the content of AP (8.84 mg/kg), suppressing 
AKP’s activity (COM = 26.74 nmol/g/h) while promoting 
phosphorus-utilizing taxa like Burkholderiales (5.39%). Biochar-
adsorbed phosphorus (total P reduced to BC12 = 0.60 g/kg) elevated 
phosphatase activity (BC12 = 35.92 nmol/g/h) but inhibited 
phosphorus-sensitive genera (e.g., Sphingomonas).

In the hierarchical clustering analysis of order-level microbial 
communities, with color gradients representing inter-sample 
distances (red: large distances; blue: small distances). Intra-group 
distances within CK were minimal (average < 0.15), indicating 
stable microbial community structures in control groups. Distances 
between BC treatments and CK increased with rising biochar 
concentrations (e.g., BC4-CK1: 0.16; BC12-CK1: 0.21), 
demonstrating that high-dose biochar significantly altered 
microbial community structures (Figure 6). The smaller distance 

FIGURE 4

Histogram of species community under different treatments at the phylum level. The community Bar diagram shows the composition of the top 20 
species in all samples and the proportion of different species, and other low-abundance species are classified as Others. The abscissa is the sample 
name, and the ordinate is the proportion of the species in the sample. The columns of different colors represent different species, the square is the 
species name, and the length of the column represents the proportion of the species. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% 
biochar; COM, 7.5% compost; BCC4, 4% biochar + 7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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between BC4 and COM suggested overlapping microbial 
community structures under low-dose biochar and compost 
treatments, likely due to synergistic environmental effects. While 
BC8 exhibited increased distances from CK overall, specific 
replicates (e.g., BC8_1 and CK3) showed minimal separation 
(0.092). BC12 displayed the most significant divergence from CK, 
confirming profound structural shifts induced by BC12. Notably, 
BC12 and compost treatments exhibited distinct microbial 
communities, likely due to biochar’s physicochemical-driven 
selection of adaptive taxa versus compost’s organic matter 
decomposition-mediated community modulation. Compost 
significantly altered microbial structures, as evidenced by larger 
CK-COM distances (e.g., CK1-COM1: 0.1756). PCoA analysis 
(Figure 7) revealed significant inter-group differences (p < 0.05, 
ANOSIM/PERMANOVA), with CK, COM, and BCC groups 
showing dispersed distributions. COM and BCC clustered in the 
PC1 positive direction (0.1–0.3), while CK and BC groups 
occupied the PC1 negative direction (−0.2–0). Lower PC1 and PC2 
values in CK reflected reduced microbial abundance and diversity.

3.3 Microbial community diversity

Through Alpha diversity analysis, information on species richness, 
coverage, and diversity within the community was obtained. The 
indices sobs, chao, and ace were calculated to reflect community 
richness, Pielou_e to indicate community evenness, shannon and 
simpson to assess community diversity, and coverage to evaluate 
community coverage. The Alpha diversity indices revealed consistent 
values among sobs, ace, and chao, with a coverage of 1, indicating 
reliable data. BC4 significantly inhibited richness, evenness, and 
diversity, potentially associated with microbial stress induced by initial 
nutrient adsorption or pH alteration caused by biochar. Although the 
negative effects of BC4 and BC8 diminished, complete recovery was 
not observed, suggesting either gradual microbial adaptation or 
saturation of biochar’s adsorption effects. The COM treatment 
demonstrated superior richness, evenness, and diversity compared to 
CK, though lower than the BCC series. Composting enhanced 
microbial growth through organic matter and nutrient supply, yet 
lacked structural support from biochar. In BCC treatments, biochar’s 

FIGURE 5

Histogram of species community under different treatments at the genus level. The community Bar diagram shows the composition of the top 20 
species in all samples and the proportion of different species, and other low-abundance species are classified as Others. The abscissa is the sample 
name, and the ordinate is the proportion of the species in the sample. The columns of different colors represent different species, the square is the 
species name, and the length of the column represents the proportion of the species. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% 
biochar; COM, 7.5% compost; BCC4, 4% biochar + 7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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physical structure provided microbial habitats while compost 
supplemented nutrients, synergistically enhancing diversity. With 
increasing biochar concentrations (4% → 12%), BCC treatment 
efficacy improved progressively. However, BCC12 exhibited slightly 
lower richness than BCC8, indicating mild inhibitory effects at 
BC12 concentration.

3.4 Soil MAGs and carbon sequestration 
pathways

3.4.1 MAGs community composition
Metagenomic sequences were subjected to binning assembly, and 

clusters of bins were obtained as MAGs. MAGs with completeness 
≥50% and contamination <10% were selected for further analysis. 
This study reconstructed 182 bacterial and 44 archaeal MAGs, 
representing predominant species with high abundance in the 

investigated environment. A species abundance heatmap of the top 50 
MAGs was generated, where gradient color intensities in the legend 
correspond to the relative abundance levels of species (Figure 8).

In the CK group, MAG130 affiliated with Nitrososphaera 
(Thermoproteota), with a completeness of 73.79%; MAG143 affiliated 
with UBA11222 (Pseudomonadota), with a completeness of 99.78%; 
and MAG149 affiliated with Immundisolibacter (Pseudomonadota), 
with a completeness of 96.95%, exhibited high abundance. In the 
COM group, MAG73 (Pseudomonadota, Methylocaldum), with a 
completeness of 98.71%; MAG69 (Pseudomonadota, Methylocaldum), 
with a completeness of 79.36%; and MAG170 (Pseudomonadota, 
Methylocaldum), with a completeness of 85.15%, were highly 
abundant. In BCC8, MAG79 (Actinomycetota, ZC4RG35), with a 
completeness of 83.76%; MAG68 (Actinomycetota, ZC4RG17), with 
a completeness of 86.15%; and MAG156 (Actinomycetota, ZC4RG17), 
with a completeness of 67.85%, were predominant. The CK and BC 
groups exhibited lower abundances of MAG79, 73, 69, 68, 156, 170, 

FIGURE 6

Hierarchical clustering diagram of microbial community samples. In the figure, red indicates that the sample distance is far, and blue indicates that the 
sample distance is close. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% compost; BCC4, 4% biochar + 7.5% compost; 
BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost. Each gradient has five repeated samples, CK (CK1, CK2, CK3, CK4, CK5).
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191, 33, 127, 184, 169, 113, 186, 30, and 82, whereas the COM and 
BCC groups demonstrated higher abundance levels, with BCC8 
showing the highest overall abundance.

3.4.2 Carbon fixation pathways and key genes 
encoded by microorganisms

Analysis of 182 bacterial MAGs revealed six major carbon fixation 
pathways and their gene distribution patterns (Liu et al., 2017). These 
pathways include the Reductive Tricarboxylic Acid cycle (rTCA), 
Dicarboxylate-4hydroxybutyrate cycle (DC/4-HB) cycle, 
3-Hydroxypropionate cycle (3-HP), Calvin-Benson-Bassham cycle 
(CBB), 3Hydroxypropionate-4hydroxybutyrate cycle (3-HP/4-HB), 
and Wood-Ljungdahl pathway (Figure 9). Based on gene abundance 
analysis, the six pathways exhibited significant variations across 
environmental conditions. The rTCA cycle was the most efficient 
pathway, with an average gene count of 15.03, exemplified by the core 
MAG176 (34 genes) adapted to high-temperature environments 
(60 °C). The DC/4-HB cycle ranked second, with an average of 10.95 

genes, dominated by MAG115 (26 genes) under anaerobic sulfur-
metabolizing conditions. The 3-HP cycle played a critical role in 
moderately acidic soils (pH 4.5–5.5), averaging 8.91 genes, as seen in 
MAG29 (17 genes). The CBB cycle, as a universal pathway, was present 
in all samples (minimum four genes), averaging 6.15 genes, with 
MAG59 (17 genes) demonstrating high efficiency in carbon fixation. 
The 3-HP/4-HB cycle and Wood-Ljungdahl pathway served as 
specialized complementary routes for phototrophic synergy and strict 
anaerobic environments, averaging 4.95 and 2.71 genes, respectively.

Identification of key microbial groups highlighted MAG176 as a 
multi-pathway specialist, simultaneously engaged in the rTCA cycle, 
DC/4-HB cycle, and Wood-Ljungdahl pathway, adapted to extreme 
thermophilic and sulfur-rich conditions, with elevated abundance in 
BCC and COM groups. MAG59, specialized in the CBB cycle, 
emerged as an optimal candidate for agricultural or algal bioreactor 
applications, showing peak abundance in COM. MAG29 exhibited 
pathway dominance within the BCC group. Strategic prioritization of 
rTCA cycle-adapted strains (high-temperature) and DC/4-HB 

FIGURE 7

PCoA analysis. (A) PC1 and PC2 are two principal coordinate components. PC1 represents the principal coordinate component that explains the data 
change as much as possible, and PC2 accounts for the largest proportion of the remaining changes. (B) PCoA1 axis group difference analysis box 
diagram. (C) PCoA2 axis group difference analysis box diagram. The R value represents the similarity analysis statistic, while the p value denotes the 
significance test index. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% compost; BCC4, 4% biochar + 7.5% compost; 
BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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cycle-adapted strains (high-sulfur) is proposed for industrial waste gas 
treatment and mine remediation, while the CBB cycle serves as a 
foundational system for light-optimized applications in croplands and 
photic aquatic environments. These findings provide scientific insights 
for urban green space carbon management and industrial carbon 
mitigation, offering novel targets for microbial functional regulation.

Carbon fixation-related genes were curated based on KEGG and 
literature references (Liu et al., 2017; Peng et al., 2021), encompassing 
75 genes (Figure  9). Genes rbcL, rbcS, FBA, GAPDH, and tktA 
involved in CO2 fixation via the CBB cycle were predominantly 
expressed in MAG105, MAG14, MAG170, and MAG59, correlating 
with higher CBB cycle activity in BC12, BCC4, and BCC8 treatments 
(Figures 8, 9). In the rTCA cycle, aclA/B, korA/B, frdA/B, and sdhA/B 
associated with reductive carboxylation were enriched in MAG176, 
MAG148, MAG132, and MAG27, corresponding to elevated 
abundance in BC12, BCC8, and BCC12. Genes por and acsE were 
enriched in MAG155, MAG14, MAG113, and MAG59, which 
exhibited active 3-hydroxypropionate cycle activity, potentially driving 
carbon fixation in this pathway, with peak abundance observed in 
BCC groups, particularly BCC8.

4 Discussion

4.1 Synergistic and inhibitory effects of 
variable dosages

Biochar established a dynamic equilibrium of “microbial biomass 
enhancement → enzyme activity modulation → nutrient 

transformation” through carbon provision and nutrient adsorption. 
Compost directly supplied labile carbon and nutrients, transiently 
stimulating microbial and enzymatic activity but regulated by biochar 
adsorption. BCC4/8 balanced carbon inputs and nutrient release, 
maximizing microbial biomass and enzyme activity. BCC12’s high 
C/N ratio and adsorption effects induced nitrogen/phosphorus 
limitation, slowing MBN growth and suppressing AKP, potentially 
affecting long-term plant growth. Compost alone suits scenarios 
requiring rapid nutrient availability but requires carbon 
supplementation to prevent organic matter depletion. Biochar-
compost combinations delay organic matter decomposition, 
synergizing carbon sequestration and nutrient supply. Treatments 
differentially regulate microbial communities and enzyme activities 
through carbon stability, nutrient content, and adsorption capacity, 
ultimately shaping soil nutrient cycling efficiency. Medium-low 
biochar-compost combinations (BCC4/8) optimize microbial 
biomass, enzyme activity, and nutrient availability, representing an 
ideal strategy for E. kiautschovicus potted soil management.

Combining low-to-moderate biochar doses (4–8%) with 
compost (BCC4/8) significantly optimized urban soil 
physicochemical properties and microbial functionality. Biochar 
and compost synergistically regulated soil characteristics and 
enhanced soil utilization efficiency (Figures 2, 3), aligning with 
previous studies (Biederman and Harpole, 2013; Liang J. et al., 
2021; Khaledi et  al., 2023). Notably, BCC8 exhibited a marked 
increase in moisture content compared to CK, consistent with 
mechanisms by which biochar enhances water retention in Loess 
Plateau soils (Wang et  al., 2018). BCC12 achieved an organic 
carbon content of 12.66 g/kg, while BCC4 elevated available 

FIGURE 8

Top 50 MAGs species clustering tree and sample clustering tree. MAGs and the similarity of abundance between samples were clustered. The shades of 
different colors represent the abundance of species. CK, control; BC4, 4% biochar; BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% compost; BCC4, 
4% biochar + 7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar + 7.5% compost.
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phosphorus to 9.2 mg/kg, reflecting biochar’s adsorption capacity, 
stimulation of soil enzyme activity, and mitigation of compost-
derived carbon mineralization losses (Li et al., 2025). Moderate 
biochar addition enhances soil microbial diversity; for instance, 
5% biochar altered microbial community structure and increased 
microbial biomass (Yang et  al., 2018). Long-term biochar 
application elevates bacterial abundance and promotes community 
diversity (Chen et  al., 2018). Biochar addition increased the 
relative abundance of Bacteroidetes, Actinobacteria, and 
Acidobacteria while reducing Proteobacteria (Kolton et al., 2011), 
findings highly consistent with this study. However, high-dose 
biochar (12%) suppressed Proteobacteria activity by 12% compared 
to CK due to C/N imbalance and adsorption overload, 
underscoring the need for precise carbon load regulation in urban 
soil remediation. In agricultural systems, biochar exceeding 20 t/
ha reduces crop yields (Farhangi-Abriz et al., 2021). In contrast, 

the previous research reported sustained synergism at high doses, 
potentially due to urban soil constraints like high compaction and 
low organic matter limiting microbial adaptation (Liu Y. et  al., 
2022; Han et al., 2023).

4.2 Microbial community restructuring and 
functional responses

Metagenomic analysis revealed that the combined treatment 
(BCC8) significantly enriched Acidobacteria (8.72%) and 
Nitrospira (1.42%), driving carbon fixation gene abundance 
(Figures  4, 5). The enrichment of Acidobacteria, oligotrophic 
specialists, correlated with stable carbon input from biochar 
(Kolton et al., 2011), while Nitrospira proliferation likely responded 
to compost-derived ammonium nitrogen (Yao et  al., 2017), as 

FIGURE 9

The statistical bubble diagram of the number of genes in the carbon fixation pathway of MAGs and the heat map of carbon fixation genes. (A) The 
main MAGs clustering diagram. (B) Six major carbon sequestration pathways. The larger the circle, the more significant the primary carbon cycle 
corresponding to MAGs is. (C) The main carbon fixation genes. The darker the color, the stronger the carbon fixation ability of the carbon fixation gene 
corresponding to the MAGs.
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COM exhibited 53.01 mg/kg nitrate nitrogen (Table 1). Although 
biochar addition altered microbial community composition 
without significantly affecting alpha diversity in maize systems (Hu 
et al., 2023), this study observed distinct alpha and beta diversity 
variations across treatments (Figure 10), highlighting differential 
impacts of biochar dose and compost interactions. Long-term 
biochar effects on microbial communities were evident in rice 
paddies 3–4 years post-application (Zheng et al., 2016; Wang et al., 
2021); here, shifts occurred within 1 year of single or combined 
biochar-compost application, with temporal dynamics to 
be explored in future studies. Proteobacteria dominated compost-
only treatments (35.81%) but were suppressed in combined 
treatments due to biochar adsorption, indicating carbon-nutrient 
coupling balances copiotrophic and oligotrophic competition.

Biochar’s high stability promoted oligotrophic Actinobacteria 
and Chloroflexota, increasing the activities of MBC, AKP, and 
BG. Compost’s labile carbon enriched copiotrophic Proteobacteria 
and Flavobacteria, stimulating BG, NAG, and LAP activities to 
accelerate C/N mineralization. Biochar adsorbed ammonium 
nitrogen, enhancing Nitrospira and LAP activity, elevating nitrate 
nitrogen but inhibiting total nitrogen accumulation. Compost 
directly supplemented ammonium, stimulating Hyphomicrobium 
and Nitrosomonadales, though excess ammonium may suppress 
nitrifiers. Biochar-induced phosphorus adsorption triggered AKP 
secretion, supporting Gemmatimonadales proliferation. Compost 
moderately increased available phosphorus, suppressing AKP but 
promoting Burkholderiales, a phosphorus-utilizing order. Biochar-
compost synergy optimally improved soil physicochemical 
properties and activity. Low-to-moderate combined doses 
(BCC4/8) balanced carbon input and nutrient release, fostering 
functional taxa like Chloroflexota and Nitrospira to support coupled 
C-N-P cycling. These findings align with prior studies (Mollick 
et al., 2020; Kolton et al., 2017; Iqbal et al., 2023; Pandey et al., 
2024) while demonstrating unique insights into biochar-
compost interactions.

4.3 Microbial drivers of carbon fixation 
pathways

Analysis of MAGs uncovered the distribution patterns of six 
carbon fixation pathways (Lin et al., 2025). The rTCA cycle, with a 
mean gene count of 15.03, was dominated by the thermotolerant 
MAG176, which exhibited higher abundance in BCC and COM 
groups. The CBB cycle, characterized by broad adaptability (mean 
gene count: 6.15), was prominently expressed by the photoautotrophic 
MAG59  in COM, supporting its application in 0-20 cm soil 
environments, while MAG105, MAG14, and MAG170 showed 
elevated abundance in BCC4 and BCC8. The 3-hydroxypropionate 
cycle, driven by MAG27, offers a target for urban green space 
remediation. The differential distribution of these pathways 
underscores microbial functional modules’ specificity in responding 
to environmental factors, providing a basis for targeted regulation. 
Compared to 16S rRNA analysis, MAGs technology, through whole-
genome annotation, enables resolution of microbial functional traits 
and metabolic potential (Hu et  al., 2023), marking the first 
identification of multi-pathway carbon-fixing consortia in urban soils. 
MAG176 (Thermoproteota), encoding the rTCA cycle, demonstrated 
high thermotolerance, while MAG59 (Pseudomonadota), dominant 
in the CBB cycle, exhibited carbon fixation traits, offering candidate 
strains for urban carbon sequestration technologies. However, the 
short-term pot experiment may underestimate long-term biochar-
microbe interactions, necessitating subsequent in situ monitoring to 
validate the ecological persistence of functional microbial consortia.

5 Conclusion

This study was conducted to quantify the effects of biochar and 
compost mixing ratio on soil microorganisms and carbon sequestration 
genes in the urban green spaces. The results showed that BCC4 and 
BCC8 represent the optimal strategy for urban potted soil remediation, 

FIGURE 10

Alpha diversity index box plot and Beta diversity group difference box plot. (A) This figure illustrates the significant difference in the index between 
different groups and the change in the index throughout the experimental study. p < 0.05 indicates that the index has a significant difference between 
the groups. The abscissa is the grouping name, and the ordinate is the index range of each group. (B) This analysis presents the significance of 
community structure differences across various groups. The distance index between samples in different groups is calculated. The points in the box 
show the distance index between two samples. Based on the distance index between two samples within a group, the difference in community 
structure between groups is analyzed. p < 0.05 indicates that the index has a significant difference between the groups. CK, control; BC4, 4% biochar; 
BC8, 8% biochar; BC12, 12% biochar; COM, 7.5% compost; BCC4, 4% biochar + 7.5% compost; BCC8, 8% biochar + 7.5% compost; BCC12, 12% biochar 
+ 7.5% compost.
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synergistically enhancing water retention, carbon pool stability, and the 
availability of nutrients. BCC8 notably increased microbial diversity, 
enzyme activity, and carbon fixation gene abundance. BCC achieved 
carbon functional balance and enhanced carbon fixation while 
promoting nutrient cycling. Acidobacteria and Nitrospira emerged as 
core functional taxa in combined treatments, driving carbon fixation 
efficiency via rTCA and CBB cycles. The sensitivity of Proteobacteria 
underscores the need to balance carbon input with nutrient release. 
Potted E. kiautschovicus soil prioritized chemoautotrophic pathways, 
with the rTCA cycle averaging 15.03 genes per MAG. CBB cycle 
demonstrated high efficiency in carbon sequestration. These findings 
highlight the necessity for urban-specific carbon management strategies 
distinct from agricultural systems and guide the addition method of 
biochar and compost in the urban green spaces.
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