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Lactic acid bacteria (LAB) play a pivotal role in the food industry, particularly in 
the fermentation and preservation of meat products. These Gram-positive, non-
spore-forming microorganisms contribute significantly to food safety, shelf-life 
extension, and sensory quality enhancement through the production of various 
bioactive compounds, including organic acids, bacteriocins, exopolysaccharides, 
and gamma-aminobutyric acid. Their antimicrobial and probiotic properties are 
attributed to inhibiting the growth of spoilage organisms and foodborne pathogens, 
thereby reducing the reliance on synthetic preservatives. This review discusses 
the general characteristics and selection criteria of LAB, with a focus on their 
biochemical contributions to the development of flavor, texture, and functional 
properties in meat-based products. LABs are increasingly being recognized for 
their potential as natural bio-preservatives, aligning with the growing consumer 
demand for clean-label and functional foods. However, several challenges persist, 
including strain-specific variability in functional properties, safety assessments, 
optimization of metabolite production, and consumer perception. Addressing 
these limitations through multidisciplinary research and technological innovation 
is essential to enhance the effective and sustainable application of LAB in the 
meat industry.
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1 Introduction

Lactic acid bacteria (LAB) have long been recognized for their significant role in the 
food industry, particularly in fermentation, preservation, and quality enhancement. They 
are non-spore-forming bacteria belonging to genera including Lactiplantibacillus, 
Leuconostoc, and Streptococcus. They are classified as obligatory or relative anaerobes, 
which gives them the ability to withstand the acidic environmental conditions (Gupta 
et  al., 2018). These microorganisms are primarily known for their ability to convert 
carbohydrates into lactic acid; this metabolic process allows them to produce organic 
compounds other than lactic acid, such as mannitol and dextran. These organic 
compounds play a crucial role in extending shelf life, enhancing safety, and improving the 
sensory properties of various food products (Mesele, 2018). To produce fermented dairy 
products, such as yogurt, cheese, butter, and sour cream, lactic fermentation is utilized to 
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acidify milk. Furthermore, this method is utilized for cold cut 
maturation, and it is responsible for producing and stabilizing 
sourdough and vegetable silage (Muhialdin et al., 2020). As these 
LAB are widely used in the food industry, they are usually regarded 
as safe; additionally, they are an essential part of the natural 
microflora found in the human intestine (Agriopoulou et  al., 
2020). Among their many applications, their role in the meat 
industry is particularly significant. Meat and meat products are 
rich in nutrients like protein, fats, vitamins, and minerals; they 
have long been a staple of human diets. Meat, however, also serves 
as a significant source of nutrients for pathogenic bacteria, which 
can proliferate quickly, leading to increased food waste and 
financial losses for the meat industry (Woraprayote et al., 2016). 
Microbial contamination is therefore a significant concern 
regarding quality and safety in the meat industry (Pradhan et al., 
2018). Thus, the meat industry employs a range of traditional 
techniques, including drying, freezing, packaging, canning, curing, 

and dehydration, as well as chemical treatment processes, to create 
safe food items with extended shelf life. Over the past several years, 
there has been a growing demand for high-quality meats and food 
products with high nutritional content, free from synthetic 
chemicals (Zhaxybayeva et al., 2020).

To address these issues, the food manufacturing sector is seeking 
innovative natural alternatives that serve as preservatives, ensure sufficient 
microbiological safety, and prolong the shelf life of products. According to 
numerous studies, a small number of microorganisms from the LAB can 
be added or utilized as bio-protective cultures or starters in meat-based 
products (Bintsis, 2018). LAB can stop the growth and other reactions of 
spoilage bacteria, possibly due to their metabolites, antimicrobial 
compounds, which help prevent meat degradation. LAB also has prospects 
as efficient and natural food preservatives, and a suitable alternative to 
chemicals. Additionally, LAB strains have been explored for their probiotic 
potential and ability to produce bioactive compounds, further increasing 
their value in functional meat products (Imade et al., 2021).

GRAPHICAL ABSTRACT

Bioactive compounds produced by lactic acid bacteria and their roles in meat and meat-based products, highlighting consumer health benefits and 
current research gaps.
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2 General characteristics and selection 
process of lactic acid bacteria

LAB are microaerophilic organisms and prefer anaerobic 
environments for their growth. Most of the LAB strains prefer an 
acidic pH (Strafella et  al., 2020). More than 25 genera, including 
Schleiferilactobacillus, Lacticaseibacillus, Levilactobacillus, 
Agrilactobacillus, Furfurilactobacillus, Fructilactobacillus, 
Lactiplantibacillus, Ligilactibacillus, Paralactobacillus, Streptococcus, 
Carnobacterium, Enterococcus, Pediococcus, and Weissella, are 
considered as LAB (Da Costa et  al., 2019) (Table  1). The genus 
Lactobacillus was split into 25 genera (e.g., Lacticaseibacillus, 
Lactiplantibacillus, Levilactobacillus) in 2020 due to its considerable 
diversity. To avoid confusion, new standard abbreviations have been 
proposed for scientific use, while also allowing references to the 
“former Lactobacillus” when discussing older studies (Zheng et al., 
2020; Todorov et  al., 2023). LAB plays an important role in food 
fermentations. Fermentation occurs with the participation of homo 
and hetero-fermentative LAB. Homo-fermentation is a mechanism by 
which certain LAB convert disaccharides into nearly pure lactic acid. 
Another slightly different process is called hetero-fermentation, 
wherein lactic acid is not the sole by-product of lactose breakdown, 
but also produces ethyl alcohol, carbon dioxide, hydrogen peroxide, 
diacetyl, acetoin, and acetic aldehyde (Mandha et al., 2021). LAB are 
crucial as they produce a variety of metabolites with antimicrobial 
activity during the growth and fermentation process, such as lactic 
acid, acetic acid, hydrogen peroxide, low molecular weight compounds 
(diacetyl, fatty acids, reuterin, reutericyclin), antifungal substances 
(phenyl lactate, propionate, hydroxyphenyl lactate), and bacteriocins 
(Castellano et al., 2017). LABs are primarily found in environments 
rich in nutrients. They are a significant component of the microbial 
communities present in dairy products, such as milk, cheeses, and 
kefir, as well as in fish, meat, and vegetables. They are also a part of the 
natural microbiota of the gastrointestinal tract and the vagina of both 
humans and animals (Bengoa et al., 2019). LAB have been utilized as 
starters, adjuncts, and protective microorganisms in the production 
of fermented meats, vegetables, dairy products (such as yogurt and 
cheese), and fish products (Ashaolu, 2020; Ashaolu and Reale, 2020; 
Peerajan et al., 2016; Woraharn et al., 2016) (Table 2).

According to the European Food Safety Authority and the Food 
and Drug Administration (FDA), LABs are considered Generally 
Recognized as Safe (GRAS), which means they are safe for 
consumption by humans and animals. LAB could be obtained from 
various sources, including decomposing sites, dairy and other 

fermented food products, animal and human gut, mouth cavities, and 
agroecosystems (Raman et al., 2022). The commonly used LABs are 
Lactiplantibacillus, Lacticaseibacillus, Latilactobacillus, 
Limosilactobacillus, Lactococcus, Leuconostoc, Pediococcus, Weissella, 
and Periweissella (Ayivi et al., 2020).

The initial screening and selection process of LAB involves several 
key factors, including immunogenicity, phenotype, and genotype 
stability (including plasmid stability), carbohydrate and protein 
utilization patterns, production of antimicrobial substances, and the 
capacity to inhibit known pathogens, spoilage organisms, or both. 
LAB can be isolated from various sources; however, to be used for 
human use, it must be safe and isolated from the human microflora 
system (Bikila, 2015).

The process of selecting LAB involves a comprehensive evaluation 
from four main perspectives: safety, technology, functionality, and 
benefits. The main goal of safety aspects is to identify and describe the 
bacterial strain’s species, genus, and place of origin. Assessing the strain’s 
pathogenicity and infectivity, as well as its virulence factors (including 
metabolic activity, toxicity, and inherent features such as antibiotic 
resistance), is essential for ensuring consumer safety. Technological 
aspects examine the strain’s stability and performance during 
production and storage. Genetic stability, excellent viability throughout 
processing, and the addition of desirable sensory attributes to the 
finished product are all characteristics of ideal strains. Functional 
characteristics assess a strain’s ability to endure difficult gastrointestinal 
conditions, including exposure to bile acids, low pH, and gastric and 
pancreatic secretions. Benefits revolve around the strain’s ability to 
suppress dangerous microorganisms and alter the immune system 
(Gupta et al., 2018).

3 Bioactive compounds from lactic 
acid bacteria

A range of physical and chemical preservation techniques was 
employed to inhibit the pathogenic microbial growth and to increase 
the shelf life of meat products (Kaveh et al., 2023). However, most 
physical and chemical methods are associated with various drawbacks, 
including nutritional alterations and changes in the organoleptic 
properties of meat products. Moreover, the excessive consumption of 
these chemical preservatives causes carcinogenic effects in humans. 
Thus, the needs for bio-preservatives in the food industry possess 
significant importance and consumer interest to produce chemical-
free food products (Kaveh et al., 2023; Gómez et al., 2020). Among the 

TABLE 1  Commonly used lactic acid bacteria in meat preservation (Kaveh et al., 2023).

Genus Species

Lactobacillus Lactobacillus delbrueckii, Lactobacillus bulgaricus, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus lactis, Lactobacillus 

helveticus, Lactobacillus reuteri, Lactobacillus acidophilus, Lactobacillus curvatus, Lactobacillus sakei, Lactobacillus salivarius

Lactiplantibacillus Lactiplantibacillus pentosus, Lactiplantibacillus plantarum, Lactiplantibacillus brevis, Lactiplantibacillus casei

Lacticaseibacillus Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Lacticaseibacillus casei

Pediococcus Pediococcus acidilactici, Pediococcus pentosaceus, Pediococcus parvulus

Leuconostoc Leuconostoc mesenteroides, Leuconostoc citreum, Leuconostoc pseudomesenteroides, Leuconostoc carnosum

Latilactobacillus Leuconostoc sakei, Leuconostoc curvatus

Limosilactobacillus Limosilactobacillus fermentum, Limosilactobacillus reuteri
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TABLE 2  Lactic acid bacteria isolated from meat and fish products and their possible applications.

Name of the strains Study details Food type/
samples

Application/
Spectrum of 
action

References

Old name Updated

Lactobacillus sakei and 

Lactobacillus plantarum

Latilactobacillus sakei and 

Lactiplantibacillus plantarum

Strains were isolated from 

fermented meat and 

studied for autoinducer-2 

and LuxS properties

Chinese fermented 

meat

Important in the regulation 

of microbial succession in 

fermented meat

Lin et al. (2015)

Weissella hellenica BCC 

7239

Unchanged Strains were isolated from 

fermented pork sausage, 

and bacteriocin 

production was evaluated 

in vitro

Fermented pork 

sausage

Inhibits Pseudomonas 

aeruginosa, Salmonella 

enterica serovar 

Typhimurium, Aeromonas 

hydrophila, and Escherichia 

coli

Woraprayote et al. (2015)

Lactobacillus plantarum 

and Lactobacillus 

curvatus

Lactiplantibacillus plantarum 

and Latilactobacillus curvatus

Strains were isolated from 

fermented sausages, and 

bacteriocin production 

was evaluated in vitro

Fermented sausages 

and salami

Capable of controlling the 

growth of Listeria 

monocytogenes

Aids in the taste and flavor 

of fermented sausages. The 

strain has been considered 

as a starter culture

Casaburi et al. (2016)

Lactococcus lactis spp. 

Lactis and Lactobacillus 

sakei

Lactococcus lactis spp. Lactis 

and Latilactobacillus sakei

In vitro evaluation of 

anti-Leuconostoc 

mesenteroides activity

Group 1: 50 g of bacon + 

3 log CFU/g of 

Leuconostoc 

mesenteroides; Group 2: 

50 g of bacon + 3 log 

CFU/g of Leuconostoc 

mesenteroides and 

Lactococcus lactis spp. 

Lactis (1:1 ratio); 

Group 3: 50 g of bacon + 

3 log CFU/g of 

Leuconostoc mesenteroides 

and Latilactobacillus sakei 

(1:1 ratio). The samples 

were vacuum-packed and 

stored for 90 days at 

4 ± 2 °C, then studied

Cooked bacon It inhibits the growth of 

pathogenic 

microorganisms, such as 

Leuconostoc mesenteroides

Comi et al. (2016)

Pediococcus acidilactici 

KTU05, Pediococcus 

acidilactici KTU05-9, 

Lactobacillus sakei 

KTU05-6

Pediococcus acidilactici 

KTU05, Pediococcus 

acidilactici KTU05-9, 

Lactiplantibacillus sakei 

KTU05-6

Studied the effect of 

fermented potato tuber 

juice-based marination in 

pork; Meat and marinade 

ratio 1:1; stored in the 

refrigerator for 24 h

Pork Prevent meat discoloration 

and microbial spoilage, 

thus increasing the 

acceptability and shelf-life 

of meat products

Mozuriene et al. (2016)

Lactobacillus plantarum 

GS16, Lactobacillus 

paraplantarum GS54

Lactiplantibacillus plantarum 

GS16, Lactiplantibacillus 

paraplantarum GS54

Strains were isolated from 

ham and evaluated for 

growth, bacteriocin 

production, partial 

characterization, 

antibiotic resistance and 

virulence factors

Ham Antimicrobial activity 

against Gram-positive and 

Gram-negative bacteria

Anacarso et al. (2017)

(Continued)
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TABLE 2  (Continued)

Name of the strains Study details Food type/
samples

Application/
Spectrum of 
action

References

Old name Updated

Lactobacillus plantarum 

M1-UVs300

Lactiplantibacillus plantarum 

M1-UVs300

Purification of 

bacteriocin-M1-UVs300 

and characterization

Chinese fermented 

sausage

Antimicrobial activity 

against Gram-positive and 

Gram-negative bacteria

An et al. (2017)

Lactobacillus 

alimentarius FM-MM4

Companilactobacillus 

alimentarius FM-MM4

The strain produces 

Lactocin MM4 

(molecular mass 

1104.58 Da); it has 

thermostable and broad-

spectrum antimicrobial 

activity

Fermented meat

Product (Nanx Wudl)

Antimicrobial activity 

against Gram-positive and 

Gram-negative bacteria and 

Yeasts (Saccharomyces 

cerevisiae, Pichia sp., 

Candida albicans)

Hu et al. (2017)

Lactobacillus plantarum 

DY4-2

Lactiplantibacillus plantarum 

DY4-2

Bacteriocin was purified 

and characterized. 

Bacteriocin showed 

broad-spectrum 

antimicrobial activity

Fish Antimicrobial activity 

against Pseudomonas 

fluorescens, Pseudomonas 

aeruginosa, Vibrio harveyi, 

Bacillus cereus, Shewanella 

putrefaciens, Psychrobacter 

sp., Bacillus licheniformis, 

Listeria monocytogenes

Lv et al. (2018)

Lactobacillus reuteri or 

Lactobacillus plantarum

Limosilactobacillus reuteri or 

Lactiplantibacillus plantarum

Studied the antimicrobial 

activity, chemical and 

sensory changes in 

ground beef

Ground beef Antimicrobial activity 

against Listeria 

monocytogenes

Khalili Sadaghiani et al. 

(2019)

Lactobacillus sakei 

ST153

Latilactobacillus sakei ST153 Effect of modified 

atmosphere packaging on 

anti-Listeria activity and 

sensory attributes

cured smoked pork 

loin

Antimicrobial activity 

against Listeria spp.

Casquete et al. (2019)

Lactobacillus curvatus 

UFV-NPAC1

Latilactobacillus curvatus 

UFV-NPAC1

UFV-NPAC1 (106 CFU/g) 

was mixed with pork 

mixture and stored at 

25 °C for 2 h, then 

sausages were prepared 

and stored at 7 °C for 

10 days. The sausages 

were studied for their 

physicochemical 

properties

Fresh pork sausage Antimicrobial activity 

against Listeria 

monocytogenes

De Castilho et al. (2020)

Lactobacillus paracasei 

subsp. tolerans N2 and 

Lactobacillus casei 

subsp. casei TM1B

Lacticaseibacillus paracasei 

subsp. tolerans N2 and 

Lacticaseibacillus casei

Biosurfactant produced 

by the LB strains inhibits 

the microbes. 3 kg of 

meat soaked in 1 L of 

bacterial mix containing 

7 log CFU/ml of each 

strain for 1 h

Raw ground goat 

meat

Reduce the total aerobic 

microbial counts and are 

active against Escherichia 

coli MTCC 118 and 

Pseudomonas aeruginosa 

MTCC 1934. Stabilize the 

color of goat meat and 

prevent lipid peroxidation. 

Potent biopreservatives for 

goat meat

Mouafo et al. (2020a)

(Continued)
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key LAB species involved in the processing of meat products are 
Latilactobacillus sakei, Latilactobacillus curvatus, and 
Lactiplantibacillus plantarum (Parlindungan et al., 2021). LAB plays a 
significant role in meat safety and protection through the production 
of various bioactive compounds. The capacity of lactic acid bacteria to 
generate significant quantities of bioactive compounds during 
fermentation is well established. The most significant bioactive 
substances produced by LAB during fermentation are peptides, EPS, 
bacteriocins, vitamins, gamma-aminobutyric acid, some amylases, 
proteases, lipase enzymes, and lactic acid (Fitsum et  al., 2025; 
Anumudu et al., 2024). The health-promoting qualities of LAB make 
them useful microorganisms. Thus, LAB ensures the consumption of 
safe and nutritious food for all human beings (Perez and 
Ancuelo, 2023).

3.1 Bacteriocins

Active metabolic peptides known as bacteriocins are produced by 
the ribosome of specific LAB and non-lactic acid bacteria. Different 
LAB produce distinct bacteriocins, each with its own unique 
biochemical, structural, genetic, ecological, and metabolic properties 
(Balay et  al., 2017; Choeisoongnern et  al., 2020). The role of 
bacteriocins includes causing damage to the integrity of the target 
bacteria’s cells, impeding biological functions, and interfering with 
DNA or protein synthesis. Bacteriocin production is significantly 
influenced by several environmental parameters, including pH, 
incubation temperature, nutritional availability, and the composition 

of the growth medium (Kumariya et al., 2019). Generally, bacteriocins 
are positively charged molecules and are hydrophobic. Bacteriocins 
can interact with the negatively charged microbial membranes 
(phosphate groups) or the receptors present in the bacterial cell wall. 
Bacteriocins can target nucleic acid synthesis and protein synthesis in 
pathogenic bacteria and affect the balance of the cytoplasmic 
membrane. Furthermore, bacteriocins produce pores in the cell 
membranes of pathogenic bacteria, which ultimately affect the pH of 
the target cell and cause cellular material leakage (Kaveh et al., 2023). 
Bacteriocins typically display a narrow antimicrobial spectrum, often 
inhibiting microorganisms that are phylogenetically related (closely 
related species or genera) to the producing strain (Riley and Wertz, 
2002; Cotter et al., 2005). In addition, Sakacin Q is a bacteriocin that 
was produced by Latilactobacillus curvatus ACU-1 (formerly 
Lactobacillus curvatus) isolated from artisanal dry sausages and can 
inhibit Listeria monocytogenes on cooked meat products (Rivas et al., 
2014). Bacteriocins are classified into class I, class II, class III, and class 
IV bacteriocins (Table 3).

Bacteriocins exhibit strong activity against foodborne pathogens, 
such as Listeria monocytogenes, Clostridium spp., and Staphylococcus 
aureus, and have demonstrated stability across a range of pH values, 
temperatures, and storage conditions, thereby enhancing their 
technological applicability. Importantly, bacteriocinogenic LAB such 
as Latilactobacillus sakei (formerly Lactobacillus sakei) and 
Latilactobacillus curvatus (formerly Lactobacillus curvatus) have been 
widely isolated from fermented meat products and are recognized for 
producing sakacins and curvacins with potent anti-listerial activity, 
thus underscoring the potential of meat-derived strains in food 

TABLE 2  (Continued)

Name of the strains Study details Food type/
samples

Application/
Spectrum of 
action

References

Old name Updated

Lactobacillus sakei 

CTC494

Latilactobacillus sakei 

CTC494

Effect of CTC494 on 

Listeria monocytogenes 

during fermentation and 

ripening of chicken 

sausages

Minced chicken was 

mixed with 6 Log10 

CFU/g of Listeria (mixed 

for 75 Sec) and CTC494 

(mixed for 135 Sec), 

made sausage and 

assessed the 

Physicochemical 

characteristics of both 

strains

Chicken-based dry-

fermented sausages

Protect against Listeria 

monocytogenes during 

fermentation and ripening

Austrich-Comas et al. 

(2022)

Lactobacillus plantarum 

1-24-LJ

Lactiplantibacillus plantarum 

1-24-LJ

Strain was 1-24-LJ (7 log 

CFU/g) with or without 

lipase (50 U/g) in fish 

batter (Fish, 35% rice 

flour, and 3% salt) and 

studied for the 

physiochemical and 

microbial diversity at 

different durations

Chinese fermented 

fish product 

(Suanzhayu)

Reduces spoilage bacteria 

like Proteobacteria, 

Escherichia coli, Salmonella, 

and enhances product 

quality and reduces the 

fermentation time

Zhang et al. (2023)
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biopreservation. Bacteriocins can be  applied to meat products by 
adding them directly, incorporating them into antimicrobial 
packaging, or using bacteriocin-producing LAB as starter or protective 
cultures. Evidence suggests that bacteriocins not only inhibit spoilage 
and pathogenic microorganisms but also contribute positively to 
product shelf life and sensory quality. Nevertheless, limitations such 
as reduced efficacy against Gram-negative bacteria, possible 
inactivation by meat matrix components, and regulatory barriers must 
be  addressed. It has been recognized that bacteriocins should 
be integrated into a hurdle technology framework, complementing 
other preservation strategies to ensure microbial safety and respond 
to consumer demand for minimally processed, natural, and safe meat 
products (Da Costa et al., 2019; Fernandes et al., 2024).

3.1.1 Class I bacteriocins (lantibiotics)
This type of bacteriocin consists of one or two small peptides 

(<5 kDa). Further, it is a post-translational modified bacteriocin. 
Hence, it consists of unusual amino acids like lanthionine, 
β-methyllanthionine, and dehydrated amino acids, which facilitate the 
structural stability for heat, pH, and proteolytic resistance. 
Furthermore, it commonly inhibits foodborne pathogens and gram-
negative bacteria. Moreover, class I bacteriocins are again classified as 
Group Ia and Group Ib. Here, group Ia bacteriocins (nisin, epidermin, 
gallidermin) are positively charged peptides that form pores in the 
bacterial cell wall, thereby increasing the permeability in target 
bacteria, thus destroying the pathogens. Group Ia bacteriocins are 
screw-shaped, flexible, and amphipathic. Group Ib bacteriocins are 
negatively charged peptides that inhibit enzyme activity and kill the 
target bacteria. Examples of these bacteriocins are lacticin 481, 
cytolysin, and salivaricin, and they are globular-shaped and inflexible 
(Kaveh et al., 2023; Perez and Ancuelo, 2023; Lahiri et al., 2022a).

3.1.2 Class II bacteriocins (small non-lantibiotics)
Class II bacteriocins are small, stable peptides that are hydrophobic 

and resistant to heat. They typically consist of 30–60 amino acids and 
have a molecular weight of less than 10 kDa. These peptides exhibit an 
amphiphilic helical structure, which plays a crucial role in disrupting 
bacterial membranes, resulting in depolarization and ultimately 
leading to pathogen cell death. Since they lack lanthionine or 
methyllanthionine, they are classified as non-lantibiotics (Alvarez-
Sieiro et al., 2016). The unusual amino acids that are present in class 
I  bacteriocins are not present in class II bacteriocins. The post-
translational modification causes bisulfide bridge formation in some 
bacteriocins, for example, pediocin PA-1 and pediocin AcH. Like class 
I bacteriocins, class II bacteriocins are also heat-stable, <10 kDa-sized 

peptides that cause larger pores on the bacterial surface, thus 
increasing their ease of entry into the bacterial cells, destroying them. 
Further, it was divided into four subclasses. Group IIa bacteriocins are 
linearly structured and consist of bisulfide bridges, which can inhibit 
or kill Listeria sp. Hence, it is called an anti-listerial bacteriocin, which 
includes leucocin A, acidocin A, and pediocin PA-1. Group IIb 
bacteriocins are called two-peptide bacteriocins, which have 
antimicrobial activity, and include lactococcin G, lactococcin Q, and 
plantaricin NC8. Group IIc bacteriocins are leader peptide sequences 
containing one or two cysteine residues, cystibiotics and thiolbiotics, 
respectively, which are known for their antimicrobial activity. Group 
IId bacteriocins are linear, non-pediocin-like, single-peptide 
bacteriocins which include epidermicin NI01 and lactococcin A (Yang 
et al., 2014; Abdul Hakim et al., 2023).

3.1.3 Class III bacteriocins (large non-lantibiotics)
Class III bacteriocins, which exceed 30 kDa in size, are produced 

by Lactobacillus helveticus and are heat-labile. These bacteriocins, like 
those synthesized by other bacteria, must be secreted to engage with 
target cells and exert their antimicrobial properties (Wang et al., 2021). 
Furthermore, this group was divided into two subgroups, designated 
as group IIIa and IIIb. Group IIIa is a lytic bacteriocin like Lysostaphin, 
which can lyse the cell membrane and thus destroy the bacterial cell. 
Moreover, the group IIIb bacteriocins, like Enterolysin A, disrupt the 
cell wall and reduce intercellular ATP concentration, resulting in the 
death of bacteria (Raman et al., 2022; Xu J. et al., 2025).

3.1.4 Class IV bacteriocins (complex conjugates)
A fourth group was traditionally proposed for complex 

bacteriocins with lipid or carbohydrate moieties (lipoprotein or 
glycosylated conjugates). However, these are controversial, as many 
lack a clear demonstration of ribosomal peptide origin and consistent 
antimicrobial activity. Modern consensus generally excludes Class IV 
from the bacteriocin framework, treating Classes I  to III as the 
accepted groups. Class IV is best regarded as a deprecated or 
provisional category (Alvarez-Sieiro et al., 2016; Lahiri et al., 2022b; 
Solis-Balandra and Sanchez-Salas, 2024).

3.2 Enzymes

Enzymes are biocatalysts that are significantly involved in all 
anabolic and catabolic pathways, and LAB effectively produce some 
of these enzymes, including lactase, proteases, peptidases, fructanases, 
bile salt hydrolase, and phytases. Lactase, also called β-galactosidase 

TABLE 3  Comparison of bacteriocin classes.

Class Defining criteria Exemplars Antimicrobial activity Current status

I (lantibiotics) <5 kDa; Post-translationally 

modified; Unusual amino acids 

(lanthionine, methyllanthionine)

Nisin, epidermin, gallidermin Strong pore-forming; active against 

Gram+ bacteria

Accepted

II (small non-lantibiotics) <10 kDa; Heat-stable; Amphiphilic 

helices; Subclasses IIa–IId

Pediocin PA-1, leucocin A, 

plantaricin NC8

Potent, esp. anti-Listeria Accepted

III (large non-lantibiotics) >30 kDa; Heat-labile proteins Helveticin, enterolysin A Lytic, cell wall-degrading Accepted

IV (complex conjugates) Protein + lipid or carbohydrate 

moieties

Lipoprotein- or glyco-

conjugated peptides (rare)

Inconsistent; often poorly defined Controversial
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enzyme, used in the milk industry, can degrade lactose molecules into 
glucose and galactose. Lack of this enzyme in human beings causes a 
health issue called lactose intolerance. The lactase produced by LAB 
is considered an excellent solution for lactose indigestion. Various 
species like Lactobacillus delbrueckii subsp. bulgaricus and 
Streptococcus thermophilus can produce the highest concentration of 
lactase (Ayivi and Ibrahim, 2022). The proteolytic enzymes produced 
by LAB include proteinases, peptidases, and transport proteins. 
Proteinases are involved in the degradation of casein in milk products 
into peptides. Further, peptidases cleave the peptides into amino acids 
and smaller peptides. The transport protein transfers amino acids and 
peptides across the cytoplasmic membrane (Kieliszek et al., 2021). It 
has been reported that some LABs produce fructanases, which break 
down fructan into fructose and add sugar to bread (Murniece et al., 
2025). Similarly, Kusada et al. (2022) reported that bile salt hydrolase 
produced by LAB can hydrolyse glycine/taurine-conjugated bile salts 
produced by mammalian digestive tracts. The LAB-produced phytase 
breaks down phytate and releases myo-inositol, lesser forms of inositol 
phosphate, and solubilized forms of inorganic phosphate (Sharma 
et al., 2020). In addition to proteins, lipids, and glycogen in meat 
products, LAB degraded dietary compounds (Wang et al., 2021). Thus, 
LAB are involved in the production of various enzymes and play a 
crucial role in the digestion of various food products.

Enzymes play both endogenous and exogenous roles in meat 
processing. After slaughter, endogenous proteases such as calpains, 
cathepsins, and their regulators (e.g., calpastatin) gradually break 
down muscle proteins during aging or maturation, improving 
tenderness, juiciness, and flavor of the meat (Abril et al., 2023). To 
accelerate or control these changes, exogenous enzymes, particularly 
proteases from plant sources like papain, bromelain, ficin, actinidin, 
zingibain, and others, are applied to tougher or lower-quality meat 
cuts (Mohd Azmi et al., 2023; Abril et al., 2023; Fayaz et al., 2024). 
These proteolytic enzymes cleave structural proteins in myofibrils and 
connective tissue, reducing toughness and improving palatability 
(Mohd Azmi et  al., 2023; Fayaz et  al., 2024). Enzymes like 
transglutaminase are used to bind small meat pieces together, reducing 
waste and creating restructured products with better texture. 
Additionally, enzymatic control of glycolysis, lipolysis, and proteolysis 
during processing influences flavor development, color stability, and 
overall quality attributes. However, practical challenges such as 
enzyme stability, control of over-digestion (which can cause mushy 
texture), cost, and compatibility with other processing steps must 
be managed carefully (Mohd Azmi et al., 2023; Abril et al., 2023; Fayaz 
et al., 2024).

3.3 Gamma-aminobutyric acid

Gamma-aminobutyric acid (GABA), a neuroinhibitory amino 
acid, is naturally found in plants and mammals. GABA’s natural 
abundance in plants, foods, and mammalian tissues is generally low, 
necessitating chemical production or microorganism-based 
bioconversion (Wu and Li, 2018). LAB produce GABA via the 
glutamate decarboxylase (GAD) pathway, in which the enzyme GAD 
catalyzes the decarboxylation of L-glutamate (or its salt, e.g., 
monosodium glutamate) to yield GABA and CO₂. Many GABA-
producing LAB strains carry one or more gad genes (e.g., gadA, gadB) 
and often a glutamate/GABA antiporter (gadC) to export GABA out 

of the cell (Yogeswara et al., 2020; Lyu et al., 2018; Diez-Gutiérrez 
et al., 2022; Cataldo et al., 2024). The process of converting glutamate 
to GABA is not irreversible. There is data in the literature 
demonstrating the use of GABA as an energy source by 
microorganisms. GABA can enter the tricarboxylic acid cycle and 
be converted to glucose. Furthermore, its production by LAB does not 
occur solely through the action of GAD. It can also be  produced 
through the metabolism of putrescines (Cui et  al., 2020; Diez-
Gutiérrez et al., 2020).

The production of GABA by LAB is often associated with acid 
stress/acid tolerance mechanisms. Under low pH or acid challenge 
(such as during fermentation or in acidic environments), activation of 
the GAD system helps the cell consume intracellular protons (H+) 
through the decarboxylation reaction, thus contributing to 
maintaining intracellular pH homeostasis (Dhakal et al., 2012; Cui 
et al., 2020; Diez-Gutiérrez et al., 2022; Cataldo et al., 2024). In many 
LAB (e.g., Lactobacillus brevis), expression of the gad operon is 
upregulated at lower pH, linking GABA production to survival under 
acidic conditions (Lyu et al., 2018; Cataldo et al., 2024).

GABA is considered one of the bioactive compounds produced by 
LAB, which may be  beneficial to the user’s health. By enhancing 
oxygen delivery and blood flow, GABA can improve the metabolism 
of brain cells that regulate blood pressure, protein synthesis, hormone 
production, and fat burning (Alizadeh Behbahani et al., 2020). Since 
the food industry prohibits the use of chemically manufactured 
GABA, bioconversion employing food-grade LAB has emerged as a 
crucial technique for producing GABA or GABA-rich foods (sprouted 
or germinated grains and legumes, and fermented foods like kimchi, 
yoghurt and cheese, especially when fermented with GABA-producing 
LAB) (Lee and Paik, 2017). LAB produces GABA by utilizing the 
enzyme glutamate decarboxylase to decarboxylate L-glutamate in an 
anaerobic environment, while also utilizing protons (Woraharn et al., 
2014; Tang et al., 2023). Potential health benefits of GABA include 
lowering cholesterol, regulating blood pressure, having anti-
carcinogenic qualities, and preventing depression by encouraging 
relaxation and lowering anxiety. Lactobacillus namurensis (Reclassified 
as Levilactobacillus namurensis), Lactobacillus paracasei (Reclassified 
as Lacticaseibacillus paracasei) and Lactobacillus brevis (Reclassified 
as Levilactobacillus brevis) are examples of LAB species that have 
demonstrated the ability to produce GABA through glutamate 
decarboxylase (Alizadeh Behbahani et al., 2020).

3.4 Short-chain fatty acid

The human intestine lacks some of the carbohydrate digestive 
enzymes, which affects gut health. Generally, cellulose, xylans, 
resistant starch, inulin, and dietary fibers often remain undigested by 
the human intestine due to a lack of digestive enzymes. These 
compounds are denoted as undigested carbohydrates. LAB can 
ferment this kind of undigested carbohydrate into short-chain fatty 
acids (SCFAs), including butyric acid, propionic acid, and acetic acid. 
These SCFAs have therapeutic applications and play a crucial role in 
maintaining gut health. Acetic acid is essential for controlling 
intestinal inflammation and plays a role in minimizing the spread of 
pathogens. Similarly, butyric and propionic acid can improve insulin 
responsiveness and decrease the risk of diet-induced obesity. 
Furthermore, butyric acid also exhibits anticancer activity against 
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colon cancer (Pessione et al., 2015). Moreover, the formation of SCFAs 
in the gastrointestinal region creates an acidic environment, resulting 
in the depletion of growth of harmful bacteria and plays a vital role in 
diminishing the proliferation rate of harmful bacteria (LeBlanc et al., 
2017). It has been reported that Lactobacillus plantarum (Reclassified 
as Lactiplantibacillus plantarum), Lactobacillus pentosus (Reclassified 
as Lactiplantibacillus pentosus), and Leuconostoc mesenteroides are the 
strains capable of effectively producing SCFAs with notable 
antibacterial properties (Pessione et  al., 2015). Additionally, 
Lactiplantibacillus plantarum has been shown to degrade lipid 
compounds in meat, leading to the formation of SCFAs (Uppada 
et al., 2017).

3.5 Organic acids

LAB are known for their important role in fermentation, 
producing a variety of organic acids that are significant metabolic 
products (Von Wright and Axelsson, 2019; Chen et  al., 2017). 
Depending on the metabolic pathway, some metabolisms, such as 
sugar metabolism, can produce different types of organic acids, 
including lactic acid, acetic acid, butyric acid, and propionic acid. The 
primary result of the metabolic pathway is lactic acid, which is then 
separated into l-lactic acid and d-lactic acid according to the various 
arrangements of the chiral atom. Lactic acid is produced due to 
anaerobic conditions throughout the glycolysis pathway, contributing 
to the sour taste of fermented foods (Chen et al., 2017). These organic 
acids influence the taste, consistency, and shelf life of fermented foods 
while also promoting food safety by preventing the growth of 
pathogens and spoilage organisms. The primary anti-bacterial actions 
of these acids result from their disruption of the bacterial cytoplasmic 
membrane, which impairs active transport pathways and disrupts the 
membrane potential, ultimately inhibiting the growth of harmful 
microorganisms (Bangar et al., 2022). Lactic acid is essential to the 
fermentation of foods, including cheese, yogurt, pickles, and 
sauerkraut (Ayivi and Ibrahim, 2022). LAB produces it, specifically 
Lactobacillus (Reclassified as Lacticaseibacillus, Levilactobacillus, 
Ligilactobacillus, and Lactiplantibacillus) and Streptococcus species, 
which break down carbohydrates, including lactose in milk, through 
metabolic processes (Bangar et al., 2022).

3.6 Vitamins

Vitamins are micronutrients that are involved in human 
metabolism, but humans are unable to synthesize them. Hence, food 
materials are considered the sole source of vitamins in humans. Many 
LABs can produce various vitamins, such as vitamin B and vitamin 
C. During lactic acid fermentation, vitamins are produced by LABs, 
which play a vital role in the production of nutrient-fortified food 
products. Folic acid or vitamin B9 is significant for the biosynthesis of 
nucleotides, DNA, RNA, and proteins. It has been demonstrated that 
Lactococcus lactis and Streptococcus thermophilus are capable of 
synthesizing folic acid in the human gut, which serves as a precursor 
for nucleotide and nucleic acid biosynthesis (Sybesma et al., 2003). 
Many LABs possess riboflavin (vitamin B2) synthase genes such as 
ribG, ribB, ribA, and ribH within their operon, which catalyze the 
production of riboflavin using guanosine triphosphate and 

ribulose-5-phosphate as substrates. Furthermore, it has been noted 
that Lactiplantibacillus plantarum CRL 725 can produce riboflavin 
(Juarez del Valle et al., 2014). Additionally, Li et al. (2017) indicated 
that vitamin B12 can be  sourced from meat and meat-derived 
products (Bacon, sausage, ham, and other animal-source foods like 
milk and eggs).

Vitamin C is a water-soluble vitamin with high antioxidant 
potential, playing a crucial role in maintaining human health. During 
lactic acid fermentation, the LAB can produce Vitamin C (Quan et al., 
2022). LABs like Lactiplantibacillus plantarum, Limosilactobacillus 
fermentum, Lactobacillus acidophilus, and Bifidobacterium longum can 
produce vitamin C. Moreover, LAB can also synthesize vitamin K2 
(menaquinones) via the menaquinone-synthesis pathway. Lactococcus 
lactis has the potential to produce vitamin K2 using various carbon 
sources (fructose, trehalose, maltose, and mannitol). Considering the 
crucial role of LAB in the production of vitamins, it has also been used 
in recent years for therapeutic applications to reduce vitamin 
deficiency or inflammatory diseases (Liu et al., 2019).

3.7 Exopolysaccharides

Exopolysaccharides (EPS) are polysaccharides produced by 
microbes. They are expelled from the bacterial cell wall. LABs are the 
ones that create the most different types of EPS (Sanalibaba and 
Cakmak, 2016). For fermented foods to have their specific texture, 
viscosity, and probiotic qualities, EPS is essential. Due to their ability 
to retain water, these polymers are commonly used in the food 
industry as stabilizers and emulsifying agents (Singh and Saini, 2017). 
Conversely, EPS have been linked to the potential health advantages 
of their anti-inflammatory, antitumor, and anticancer properties. 
Numerous studies have demonstrated that EPS support gut health and 
encourage bacterial colonization by creating a protective matrix 
(Flemming, 2016). Weissella, Leuconostoc, Lactococcus, 
Fructilactobacillus, and Lactiplantibacillus plantarum are particularly 
capable of producing various types of EPS, depending on the strain. 
Environmental elements that affect EPS production include pH, 
temperature, time, and the LAB strain (Angelin and Kavitha, 2020).

Depending on the makeup of the sugar unit, these polymers can 
be  divided into homopolysaccharides (HoPS) and 
heteropolysaccharides (HePS). HePS are made up of various kinds of 
monosaccharides, while HoPS are polysaccharides made up of a 
single type of monosaccharide. The species of lactic acid bacteria that 
contribute to the broad range of uses in the food industry determine 
the sugar composition and chain length of the EPS (Korcz and Varga, 
2021). Numerous enzymes and regulatory proteins are involved in the 
intricate process of bacterial EPS biosynthesis. The biosynthesis of 
EPS can be  broadly divided into three stages: First, the carbon 
substrate is taken up. Subsequently, the polysaccharides undergo 
intracellular synthesis before being excreted from the cell. Sugar 
transfer into the cytoplasm, sugar-1P synthesis, polymerization of 
repetitive unit precursors, and EPS transport outside the cell are the 
first four major processes in the biosynthesis of EPS in LAB (Becker, 
2015). Among the key features of HoPS synthesis are the absence of 
active transportation phases in the synthetic process, the requirement 
for extracellular enzyme production, and the minimal energy 
expenditure. These extracellular enzymes are known as 
fructosyltransferases and glycosyltransferases. Glycansucrases are 
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another name for glycosyltransferases. Glucose is used by this 
enzyme. Another name for fructosyltransferase is fructansucrase. 
Moreover, this enzyme uses fructose. When HoPS is being 
synthesized, these sugars serve as the glycosyl donor (Juvonen 
et al., 2015).

Furthermore, the manufacture and secretion of HePS include 
several proteins and/or enzymes. The production of HePS depends on 
the sugar nucleotides. The two main functions of these sugar 
nucleotides, which are produced from sugar-1-phosphates, are (1) 
sugar activation (monosaccharide polymerization requires sugar 
activation), and (2) sugar interconversions (epimerization, 
decarboxylation, dehydrogenation, and so on). The biosynthesis of 
HePS is an energy-intensive process. This process involves several 
energy-consuming steps: (1) the conversion of sugar-to-sugar 
phosphate requires one ATP, (2) each nucleotide requires another, and 
(3) the phosphorylation of the isoprenoid C55 lipid carrier requires 
an additional ATP (Madhuri and Prabhakar, 2014).

3.8 Bioactive peptides

The proteases and peptidases produced by humans can release 
bioactive peptides from encrypted proteins, which are then absorbed 
by the human gut and other peripheral organs. The enzymatic activity 
of LAB significantly influences the release of peptides from proteins 
and thus increases the digestion in humans. However, LAB possesses 
a limited genome length, and they have restricted capabilities in 
synthesizing amino acids. Hence, LAB adopted a complex and 
sophisticated proteolytic system to convert the external protein into 
amino acids and small peptides. Generally, bioactive peptides have the 
following beneficial effects in humans, including antimicrobials, 
hypocholesterolemia, opioid antagonists, angiotensin-converting 
enzyme inhibitors, anti-thrombotic, immunomodulators, 
cytomodulators, and antioxidants (Perez and Ancuelo, 2023; Mazorra-
Manzano et al., 2020). As reported by Fan et al. (2019), Lactobacillus 
helveticus CICC6024 produces nearly 241 bioactive peptides under 
defined fermentation conditions. This corroborates the recent findings 
of Carneiro et al. (2024), indicating that LAB can synthesize bioactive 
peptides from meat and meat products.

4 LABs for the meat product 
preservation and safety

Human health and the economy were greatly affected by 
foodborne infections and intoxications. For the past several decades, 
various chemical preservatives have been employed in the food 
industry, which cause various toxic effects and diseases, including 
allergic reactions, heart disease, neurological problems, and cancer. 
Hence, to replace the chemical preservatives, biopreservatives like 
microorganism and their metabolites were used to make safe food for 
consumers. Further, worldwide consumers prefer products that do not 
contain chemical preservatives. Biopreservatives enhance the safety, 
quality, and shelf life of food items by inhibiting the growth of harmful 
microorganisms through the antagonistic activity of LAB, which is 
witnessed through the production of organic acids, hydrogen 
peroxide, diacetyl, bacteriocins, and other low-molecular-weight 
metabolites (Sharma et al., 2022).

Generally, LAB can eliminate various food spoilage-causing 
bacteria, such as Escherichia coli, Salmonella sp., and Listeria 
monocytogenes, which generally grow on the surface of meat products, 
thus spoiling their quality (Castellano and Vignolo, 2006). Specific 
spoilage organisms, such as Pseudomonas sp. Brochothrix 
thermosphacta, Enterobacteriaceae spp., Acinetobacter spp., Aeromonas 
spp., Alcaligenes spp., Moraxella spp., Flavobacterium spp., 
Staphylococcus spp., and Micrococcus spp. were found to grow 
predominantly on the meat surface. Thus, spoiling the quality of meat, 
including its color, texture, appearance, and flavor, makes the meat 
product undesirable or unfit for human consumption (Marcelli et al., 
2024). However, the usage of LAB can promptly reduce the load of 
food spoilage organisms, thus enhancing its shelf life (Sharma 
et al., 2022).

It was evident from the previous study that LABs 
(Lactiplantibacillus plantarum, Levilactobacillus brevis, and 
Leuconostoc mesenteroides) isolated from poultry meat can produce 
lactic acid, hydrogen peroxide, and diacetyl, thereby inhibiting the 
growth of various pathogenic organisms (Adesokan et  al., 2008). 
Lactiplantibacillus plantarum and Leuconostoc mesenteroides have 
antagonistic activity against Staphylococcus aureus, Pseudomonas 
aeruginosa, and Escherichia coli, thus helping to prevent meat spoilage. 
LAB produces lactic acid as a primary metabolite, which reduces the 
pH of the food product. Hence, in the acidic environment, the growth 
of foodborne microorganisms is inhibited by affecting their cell 
membrane and thus making the food product fit for human 
consumption (Lahiri et al., 2022a,b; García-Díez and Saraiva, 2021).

LAB produces hydrogen peroxide (H2O2) through the action of 
the enzyme flavoprotein oxidase in the presence of oxygen. Since LAB 
lack the catalase enzyme, H2O2 can accumulate in the environment, 
which can oxidize the lipid membranes and cellular proteins of 
pathogenic organisms, such as bacteria, yeasts, molds, and viruses 
(Sharma et al., 2022).

Diacetyl (2,3-butanodione) is a volatile organic compound 
produced by LAB through citrate fermentation and can inhibit the 
foodborne pathogenic organisms. Diacetyl produced by LAB can 
prevent the growth of gram-negative bacteria, yeasts, and molds than 
gram-positive bacteria by deactivating the key enzymes in the 
pathogenic microbes (Silva et al., 2023).

Lactococcus lactis subsp. lactis I23 and Lactococcus lactis subsp. 
lactis E91 resides in its ability to produce lactic acid and diacetyl and 
inhibit Brochothrix thermosphacta, a meat spoilage organism in fresh 
pork (Olaoye et al., 2015). Latilactobacillus curvatus CRL705 and its 
bacteriocin compounds, such as lactocin 705 and lactocin AL 705, 
when introduced into fresh meat, were found to inhibit the growth of 
Listeria innocua and Brochothrix thermosphacta in vacuum-packaged 
fresh meat at 2 °C (Castellano and Vignolo, 2006).

Meat and meat products are rich in protein, vital amino acids, 
minerals, and vitamin B groups, making them excellent sources of 
nutrients for people. Additionally, due to their optimal pH, 
nutritional elements, and high-water activity, they provide a 
suitable environment for the growth of a diverse range of 
microorganisms (Bohrer, 2017). The genera Brochothrix, 
Enterobacter, Acinetobacter, Moraxella, Pseudomonas, Leuconostoc, 
and Proteus are primary causes of meat deterioration; however, 
some of these bacteria, such as Enterobacter and Pseudomonas, also 
release biogenic amines (BAs) that may compromise food safety 
(Gao et al., 2022). Biogenic amines (BAs) are nitrogen-containing 
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compounds that are mainly generated through the decarboxylation 
of amino acids. While BAs play a crucial role in various biological 
functions, elevated levels can pose risks to human health. 
Significant amounts of BAs are commonly present in fish sauces 
and fermented sausages. Various chromatography techniques and 
chemosensors are employed to identify BAs in food products. 
Preventive strategies include the application of starter cultures, 
control of physical and environmental conditions, and the 
incorporation of polyphenols. To ensure food safety, it is essential 
to conduct regular monitoring, adhere to hygienic production 
methods, and utilize effective starter cultures (Sivamaruthi et al., 
2021). Additionally, harmful microbes such as Campylobacter 
jejuni, Salmonella spp., Yersinia enterocolitica, Bacillus cereus, 
Clostridium perfringens, Clostridium botulinum, Escherichia coli, 
and Listeria monocytogenes can contaminate meat and animal 
products (Favaro and Todorov, 2017). One of the primary issues 
facing the meat industry is the spoilage of fresh meat and meat 
products due to microbial contamination (Ashaolu et al., 2023). 
The meat industry employs several techniques to prevent 
microbiological growth and produce safe products with the desired 
quality and intended storage time. As a result, the most used 
methods include chemical approaches (such as the use of artificial 
preservatives) and physical methods (such as drying, freezing, heat 
treatment, packaging, and curing). However, chemical additives 
have several drawbacks, including altering the nutritional and 
organoleptic properties of food (Kaveh et  al., 2022; Radi 
et al., 2023).

In this regard, LAB have garnered greater interest than other 
bio-preservative microorganisms for a variety of reasons, including 
their ability to encapsulate via extrusion during the creation of the 
antimicrobial film and their generally recognized as safe 
classification, which allows the FDA to approve them as a 
preservative in certain foods (Radosavljević et al., 2022). Therefore, 
LAB is essential to the development of fermented meat products, 
which increase texture and flavor while also preserving the product 
and, ultimately, extending its shelf life. Fresh meat’s high buffering 
capacity and low carbohydrate content result in mild fermentation, 
without altering the organoleptic qualities of the food. LAB produces 
a variety of bioactive substances, including biosurfactants and 
bacteriocins, which are utilized to preserve meat products. 
Bacteriocins may inhibit the growth of spoilage or pathogenic 
microorganisms. LAB-derived bacteriocins have demonstrated 
strong antimicrobial effects across a range of meat products, 
significantly enhancing preservation and safety. In ready-to-eat pork 
ham, bacteriocin-like inhibitory substances from Pediococcus 
pentosaceus inhibit Listeria seeligeri by 1.74 log CFU/g and reduce 
weight loss (de Azevedo et al., 2020). Similarly, Bacillus sonorensis-
derived sonorensin effectively inhibited Listeria monocytogenes and 
Staphylococcus aureus in inoculated chicken meat (Chopra et al., 
2015). Vacuum-packaged beef frankfurters treated with semi-
purified bacteriocins from Latilactobacillus curvatus or 
Latilactobacillus sakei exhibited pathogen levels reduced to below 
the detectable limit (Castellano et al., 2018). In beef, bacteriocins 
from Lactobacillus crustorum MN047 (Reclassified as 
Companilactobacillus crustorum) significantly reduced the 
populations of Escherichia coli and Staphylococcus aureus by 4.3 and 
4.5 log CFU/ml, respectively (Lu et  al., 2020). Antimicrobial 
peptides, especially bacteriocins generated by probiotics, offer a 

promising therapeutic strategy for combating infectious diseases. 
LAB strains with probiotic potential were isolated from fermented 
foods and assessed for their ability to produce EPS, their 
susceptibility to antibiotics, tolerance to acid and bile, antibacterial 
properties, and their adhesion/cytotoxicity to gastric cell lines. Six 
LAB strains were chosen based on their high survival rates in the 
gastrointestinal tract, significant EPS production, low cytotoxicity, 
and strong adhesion to gastric cells. Notably, Weissella confusa 
CYLB30, Lactiplantibacillus plantarum CYLB47, and 
Limosilactobacillus fermentum CYLB55 demonstrated strong anti-
bacterial effects against multidrug-resistant strains of Escherichia 
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella 
enterica serovar choleraesuis, Enterococcus faecium, and 
Staphylococcus aureus (Thuy et al., 2024). These findings collectively 
demonstrate that bacteriocins from LAB offer potent, natural 
bio-preservatives that can significantly enhance the microbial safety 
and quality of various meat products.

Bio-surfactants are amphiphilic, biodegradable, and non-toxic 
substances produced as secondary metabolites by various microbes, 
including lactic acid bacteria (Jahan et  al., 2020). Food products, 
including meat products, can be effectively preserved due to their 
antibacterial properties. Through a variety of mechanisms, they 
demonstrate their antibacterial properties, including: (Abdul Hakim 
et  al., 2023) the inhibition of bio-film formation by lowering the 
bacterial interaction with the surface by changing the surface’s charge 
and wettability (Ashraf et al., 2019); (Abril et al., 2023) interference 
with the microorganisms’ regular function by inter-action with their 
intracellular components (Ines and Dhouha, 2015); (Adesokan et al., 
2008) destruction of the microorganisms’ cell walls and membranes 
(Hippolyte et al., 2018). Biosurfactants derived from Lacticaseibacillus 
paracasei and Lacticaseibacillus casei have demonstrated notable 
antimicrobial activity in meat preservation. In raw ground goat meat, 
these biosurfactants led to a significant reduction in total aerobic 
counts, including Escherichia coli MTCC 118 and Pseudomonas 
aeruginosa MTCC 1934 (Mouafo et al., 2020a, b). Similarly, in fresh 
beef, biosurfactants produced by Lactobacillus paracasei demonstrated 
complete inhibition of multiple spoilage and pathogenic bacteria, 
including Bacillus sp. BC1, Staphylococcus aureus STP1, Staphylococcus 
xylosus STP2 (Mouafo et al., 2020a, b). These findings underscore the 
potential of LAB-derived biosurfactants as effective natural 
antimicrobial agents for enhancing meat safety and extending shelf 
life. Figure 1 summarizes the linkage between LAB metabolites and 
practical effects in the meat industry. The heatmap (Figure 2) clearly 
shows how LAB metabolites reduce pathogens and spoilage organisms 
in different meats.

5 LAB as a quality enhancer of meat 
products

LABs have a significant advantage in the food fermentation and 
preservation process, enhancing the flavor, texture, aroma, digestible 
properties, and nutritional value of food products. The proteolytic and 
lipolytic effects of LAB convert protein and fat molecules into 
peptides, amino acids, and fatty acids, which enhance the flavor of 
food products. Hence, LAB paves a way for the development of 
preservation in the modern food biotechnology industries (Anumudu 
et al., 2024).
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5.1 Flavor development

LAB strains, such as Lacticaseibacillus, Limosilactobacillus, 
Leuconostoc, and Pediococcus, can ferment various food compounds 
using their secreted enzymes to produce flavor precursors with 
complex sensory profiles. Carbohydrate fermentation, fatty acid 

metabolism, and amino acid catabolism are some of the significant 
metabolic processes carried out by LAB, which enhance the 
organoleptic properties of meat products by increasing tenderness and 
flavor (Anumudu et al., 2024). It has been reported that Pediococcus 
acidilactici BP2 enhanced the flavor of beef jerky (Wen et al., 2021). 
The raw meat contains skeletal muscles, which consist of myogenic 

FIGURE 1

LAB metabolites with meat preservation processes and outcomes. Different process nodes influence the LAB metabolites, such as organic acids, 
hydrogen peroxide, bacteriocins, exopolysaccharides, biosurfactants, and nitric oxide. These metabolites target pathogens and spoilage organisms, 
nitrosyl-myoglobin stabilization, texture, biogenic amines, and oxidative reactions. Application of potent LAB could provide favorable outcomes, 
including pathogen reduction, color stability, texture improvement, decreased biogenic amine accumulation, and increased shelf-life of meat 
products.

FIGURE 2

Log reduction of microorganisms in different meat matrices following LAB-associated interventions. The heatmap illustrates changes in microbial 
populations (log₁₀ CFU reduction or increase) across various meat products. Microorganisms tested were Listeria spp., Escherichia coli, Staphylococcus 
aureus, Brochothrix species, and general spoilage flora. Negative values (green) represent microbial reductions, positive values (red) indicate increases, 
and near-zero values (orange) denote negligible changes. The data has been entered in Microsoft Excel, and a heatmap was created using ChatGPT.
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fibrils, sarcoplasmic proteins, and matrix proteins. Further, LAB 
hydrolyses skeletal muscle proteins into oligopeptides. Subsequently, 
small peptides and amino acids are produced from oligopeptides and 
are further converted into α-keto acids and alcohols, which impart 
fruity flavors. Usually, aldehydes, alcohols, and aromatic substances 
are some of the flavor enhancement compounds that are produced via 
oxidative deamination and decarboxylation of proteins. Albano et al. 
(2009) stated that the flavor of a fermented meat sausage (Alheira) 
depends upon the LAB, quality of meat, and the ripening process.

The statistical analysis conducted by Xu B. et al. (2025) identified 
47 volatile flavor compounds with sensory thresholds and 18 
significant key flavor compounds with relative odor value activity 
values ranging from the relative odor activity (ROAV) value of 1 ≤ to 
≤100  in sausage samples. These flavor compounds formed the 
distinctive flavor profile of Sichuan-style fermented sausages. The 
ROAV values for β-myrcene, caryophyllene, linalool, phenylethyl 
alcohol, 3-methyl-1-butanol, 1-octen-3-ol, 3-hydroxy-2-butanone, 
methyl isovalerate, methyl decanoate, 4-methoxy-6-(2-propenyl)-1,3-
benzodioxole, anethole, and acetic acid were found to be higher in the 
five types of sausages that were inoculated with the combined starter 
cultures when compared to those in control group A. The 
contributions of β-myrcene, linalool, and anethole to the development 
of sausage flavor compounds were significant, suggesting that a greater 
number of flavor compounds were generated through microbial 
metabolism. Furthermore, the key flavor compounds such as acetic 
acid, caryophyllene, linalool, phenylethyl alcohol, 1,8-cineole, and 
1-octen-3-ol in sausages inoculated with the combined starter culture 
F exhibited elevated ROAV values relative to the other compounds. It 
is hypothesized that Debaryomyces hansenii and Latilactobacillus 
curvatus present in the combined starter culture F facilitated the 
synthesis of key flavor compounds in Sichuan-style fermented 
sausages and enhanced the release of flavor compounds from spices.

5.2 Textural enhancement

LAB enhances the texture, sensory, and organoleptic qualities of 
meat products through various metabolic activities, including 
acidification, EPS production, and other enzymatic reactions. In meat 
and meat products, the protein and fatty acid compounds present in 
the muscle of meat undergo a gelation process due to the reduced pH 
caused by LAB, which enhances the disulfide bond formation in meat, 
thus increasing the chewiness of the meat (Anumudu et al., 2024). 
According to Smaoui et al. (2014), there was a reduction in hardness, 
springiness, and rigidity, increased adhesiveness, and chewiness in raw 
minced beef and chicken breast using BacTN635 (bacteriocin), 
extracted from Lactiplantibacillus plantarum sp. TN635. Similarly, Du 
et al. (2019) reported that LAB, such as Pediococcus pentosaceus and 
Staphylococcus xylosus, reduced the hardness of meat sausage.

5.3 Improvement of the color of the meat 
product

LABs are known to significantly enhance the coloration of meat 
products. For instance, Lactiplantibacillus plantarum has been 
demonstrated to reduce nitrite and nitrate to nitric oxide, which then 
reacts with myoglobin in sausages to form nitrosyl myoglobin, 

resulting in the characteristic pink color (Zhu et al., 2020). Similarly, 
Lactobacillus fermentum JCM1173 (Reclassified as Limosilactobacillus 
fermentum), Limosilactobacillus fermentum IFO3956, 
Lactiplantibacillus plantarum 8PA3, Lactiplantibacillus plantarum 
CMRC6, Latilactobacillus sakei CMRC15, and Lactiplantibacillus 
plantarum TN8 were identified as functionally active strains involved 
in the biochemical reduction of nitrate or nitrite to nitric oxide, 
thereby facilitating the formation of nitrosyl myoglobin and improving 
the color stability and appearance of meat products (Gou et al., 2019).

5.4 Enhancement of aroma

The amino acid and fatty acids were produced by proteolytic and 
lipolytic activity of LAB, which is further reduced to produce aroma-
improving compounds such as alcohols, aldehydes, ketones, 
hydrocarbons, acids, aromatic compounds, esters, and sulfur-
containing compounds. The free fatty acids are degraded into various 
compounds, including SCFAs (pungent and penetrating aroma) and 
secondary alcohols (fruity and fatty aroma). Whereas branched amino 
acids, including valine, isoleucine, and leucine, are decarboxylated to 
produce branched aldehydes, alcohols, and/or acids and cause malty 
and pungent aroma to meat. The aldehyde, alcohol, and acids from 
various amino acids, including phenylalanine, threonine, tryptophan, 
tyrosine, methionine, and cysteine, produce a fatty, tallow, malty, and 
fruity aroma to meat products (Flores, 2018).

6 Beneficial effects of lactic acid 
bacteria in meat products for 
consumer health

LABs are commonly used in food fermentation because they can 
preserve food. Nutritional and health advantages now influence 
consumer food preferences (Chaiyasut et  al., 2018a), leading to 
decisions that increasingly favor the sustainable use of natural 
ingredients over chemicals as preservatives. This shift in consumer 
preferences has heightened the importance of utilizing LAB in food 
processing (Asioli et al., 2017).

Meat fermentation is a complicated process from the 
perspective of its microbial ecology, where coagulase-negative 
staphylococci and LAB both play a role in the development of the 
product’s typical sensory qualities and its bio-preservation 
(Fraqueza, 2015). LAB can be  included in the non-starter 
microbiota in fermented products or employed as probiotics and/
or meat starter cultures, interacting with the product’s natural 
microbes. In both situations, their existence may benefit the results. 
Using starter cultures, which include probiotic bacteria with 
potential health benefits (Chaiyasut et al., 2018b; Chaiyasut et al., 
2018c; Kesika et  al., 2022; Sivamaruthi et  al., 2022), supports 
consumer acceptance and the stability and safety of the product. 
Several factors should be  considered when selecting LAB to 
produce fermented meats. Since they prevent the growth of 
pathogenic and deteriorating microorganisms, facilitate maturation, 
ensure microbial stability during storage, stabilize the product’s 
color, and improve its texture, they increase the safety and shelf life 
of the finished products. For this reason, the ability to acidify and 
grow at low pH values is desirable for potential starter cultures in 
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the meat industry and for preventing spoilage. Proteolytic activity 
is another desired quality that is crucial to the development of 
flavor during fermentation, as in the case of raw sausage 
fermentation. LAB can have a beneficial effect on the breakdown of 
proteins during meat fermentation. The flavor of the sausage 
depends on the ability to further transform the resultant peptides 
into volatile molecules (Todorov et al., 2017). Another advantageous 
feature of LAB is its antibacterial activity, as it inhibits the growth 
of microorganisms that cause spoilage and foodborne pathogens, 

which are crucial for maintaining product safety, shelf life, and 
quality (Zhang et al., 2021). Other advantageous characteristics to 
consider when screening LAB for use in fermented meat products 
are their capacity to break down biogenic amines, especially in 
smoked meat products, which contain amines, cholesterol, and 
carcinogens, as well as their ability to regulate lipid oxidation (Shao 
et al., 2021). The active players from LAB and their significant role 
in the improvement of meat products and their impact on 
consumers’ health have been showcased in Figure 3.

FIGURE 3

Bioactive metabolites produced by lactic acid bacteria (LAB) and their functional roles in meat products. LAB secrete a wide range of compounds 
including bacteriocins (Class I lantibiotics, Class II-IV non-lantibiotics), neurotransmitters (e.g., gamma-aminobutyric acid), enzymes (such as lactase, 
proteases, peptidases, fructanase, bile salt hydrolase, and phytase), short-chain fatty acids (butyric, propionic, and acetic acids), organic acids (lactic, 
acetic, butyric, and propionic acids), vitamins, polysaccharides (exopolysaccharides), and bioactive peptides. These metabolites collectively contribute 
to multiple technological and health-promoting effects in meat products, including protection against spoilage microbes and pathogens, extension of 
shelf-life, preservation, flavor and aroma development, textural enhancement, improvement of meat color, and provision of health benefits to 
consumers.
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7 Safety and regulatory frameworks

Even when a species is generally regarded as safe, individual 
strains may acquire antimicrobial resistance (AMR) genes, 
virulence factors, mobile genetic elements, or decarboxylase 
pathways that raise safety concerns in fermented meats. A 
defensible workflow, therefore, evaluates each production strain 
at the strain level using whole-genome sequencing (WGS), 
phenotypic assays, and regulatory frameworks (QPS/GRAS) 
[EFSA Panel on Additives and Products or Substances used in 
Animal Feed et al., 2018].

High-quality WGS can be used to confirm strain identity and 
genome integrity, including assessment of assembly quality, 
contamination, and taxonomic assignment. Raw sequence data 
were deposited, and reporting followed European Food Safety 
Authority (EFSA) requirements, which mandate disclosure of 
assembly metrics, accession numbers, and database versions for 
microorganisms intended for use in the food chain (European Food 
Safety Authority, 2024).

AMR can be  assessed using curated databases (CARD with 
RGI, ResFinder, and PointFinder), with all hits reported alongside 
cut-off values and database versions. The absence of acquired AMR 
determinants could be considered essential for acceptability in line 
with EFSA guidance. For any AMR-like signals, the genetic context 
can be  examined, including neighboring elements such as 
integrases, transposases, and origin of transfer sites, to determine 
whether they were chromosomal or plasmid-associated [Alcock 
et al., 2023; Alcock et al., 2020; Florensa et al., 2022; EFSA Panel on 
Additives and Products or Substances used in Animal Feed et al., 
2018; EFSA Panel on Additives and Products or Substances used in 
Animal Feed, 2012].

Virulence factors in the strain can be  screened against the 
Virulence Factor Database (VFDB), with all hits reported by 
identity and coverage and subsequently evaluated for biological 
plausibility within the genus (Liu et  al., 2022). Mobile genetic 
elements can be examined by identifying plasmid replicons and 
regions using PlasmidFinder and PLSDB, with annotation of 
integrative conjugative elements and prophages. Particular attention 
was given to co-localization of antimicrobial resistance or virulence 
genes on mobile elements, which was considered high risk. In cases 
of uncertainty, filter-mating assays were performed to verify the 
absence of horizontal transfer under food-relevant conditions 
(Carattoli et al., 2014).

The potential for biogenic amine (BA) formation can be assessed 
both genomically and phenotypically. Genomic screening targeted 
decarboxylase gene clusters, along with associated transporters and 
regulators. Phenotypically, strains would be tested to confirm the 
absence of BA production in meat matrices or defined media (EFSA 
Panel on Biological Hazards, 2011).

Antimicrobial susceptibility of the strain can be evaluated by 
determining minimum inhibitory concentrations (MICs) using 
standardized methods and comparing the results against EFSA-
established cut-off values. Concordance between genotypic 
predictions and phenotypic outcomes can be expected, and any 
phenotypic resistance exceeding cut-off thresholds required genetic 
justification or led to exclusion of the strain [EFSA Panel on 
Additives and Products or Substances used in Animal Feed et al., 
2018; EFSA Panel on Biological Hazards, 2011].

Additional safety and fitness characteristics relevant to meat 
applications can be  evaluated. For instance, acceptable profiles 
included γ-hemolysis only, with strains required to be negative for 
gelatinase, DNase, and genus-specific toxin activities. Spoilage 
potential was assessed through measurements of gas and H₂S 
production, detection of amine and aldehyde off-odors, and 
evaluation of proteolysis and lipolysis under target pH-salt-
temperature conditions, with only non-spoiling strains retained. 
Furthermore, phage susceptibility mapping and prophage induction 
assays were performed to minimize risks of fermentation failure 
and horizontal gene transfer [EFSA Panel on Additives and 
Products or Substances used in Animal Feed et al., 2018].

Genetic stability and batch consistency need to be monitored 
by periodically re-sequencing the master cell bank and production 
seed lots to confirm the absence of new mobile elements, AMR 
determinants, or virulence factor genes. Traceability was ensured 
by maintaining versioned database records for all comparative 
analyses over time (European Food Safety Authority, 2024).

The proper strain informative documentation aligned with 
regulatory frameworks, noting that EFSA’s Qualified Presumption 
of Safety (QPS) operates at the species or group level, with specific 
qualifications (e.g., for production purposes only or absence of 
toxigenic activity) are needed. However, QPS designation does not 
exempt strains from detailed safety evaluation, including 
assessments of AMR, toxigenic potential, and suitability for the 
intended use. Therefore, the most recent QPS updates need to 
be  consulted when selecting candidate species (EFSA Panel on 
Biological Hazards et al., 2024a; EFSA Panel on Biological Hazards 
et al., 2024b). In the U. S., GRAS status has been established for a 
specific microbial strain and its intended use in a food matrix, 
rather than assumed by species identity. A GRAS report typically 
includes strain characterization, safety assessments, history of use 
or toxicological evidence, and exposure estimates under 
intended conditions.

8 Research gap in the field

LABs play a crucial role in the meat industry, contributing to 
fermentation, preservation, and the enhancement of sensory 
attributes. They significantly contribute to food safety by inhibiting 
the growth of spoilage and pathogenic microorganisms through the 
production of antimicrobial compounds, including organic acids, 
bacteriocins, and hydrogen peroxide. However, despite their 
widespread use, several research gaps remain that require 
further exploration.

One major gap involves the strain-specific functionalities of 
LAB in meat products. While different LAB strains can influence 
texture, flavor, and preservation, their specific mechanisms and 
impacts are not fully understood. Identifying the best-performing 
strains for food applications would improve product quality and 
consistency. Another critical gap is related to the safety of LAB 
strains. Although many LAB species are considered safe for 
consumption, some may exhibit potential virulence properties, 
raising concerns about their long-term safety in food formulations.

For example, horizontal gene transfer (HGT) lets bacteria swap 
genes outside of parent-to-offspring inheritance and is a major 
driver of traits that threaten food safety. Foods can carry resistant 
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bacteria and resistance genes that originated in animals or 
processing environments and later reach people; multiple studies 
have reported this pathway and its risks for human infection and 
risk of hard-to-treat infections (Lyu et  al., 2018; Founou et  al., 
2016). Biofilms on food-contact surfaces are hotspots where 
bacteria easily swap plasmids, so hard-to-clean areas in processing 
plants and slaughterhouses can become long-term reservoirs of 
harmful genes (Van Meervenne et  al., 2014; Ban-Cucerzan 
et al., 2025).

Concrete harms include the rapid spread of plasmid-mediated 
colistin resistance (mcr-1) from food animals into retail meat and 
human infections (Liu et  al., 2016; Kuo et  al., 2016). In food 
processing, Listeria monocytogenes frequently carries mobile 
determinants that raise tolerance to sanitisers such as benzalkonium 
chloride, aiding long-term facility persistence and recurrent 
product contamination (Dutta et  al., 2013; Minarovičová et  al., 
2018; Daeschel et al., 2022). HGT by Shiga toxin-encoding phages 
can convert naive Escherichia coli into Shiga toxin-producing 
Escherichia coli, elevating virulence potential within the food chain 
and in the human gut (Khalil et al., 2016; Herold et al., 2004; Zuppi 
et  al., 2020). Together, these routes show how HGT amplifies 
antimicrobial resistance and virulence across food systems, 
increasing outbreak risk and narrowing therapeutic options. Thus, 
further studies are needed to assess potential health risks and 
establish regulatory guidelines that ensure consumer protection.

Additionally, optimizing the production of beneficial metabolites, 
such as bacteriocins, organic acids, and bioactive peptides, remains a 
challenge. While these compounds contribute to antimicrobial activity 
and improved product stability, their yield and effectiveness vary 
depending on environmental conditions and bacterial strain. More 
research is needed to enhance their production efficiency and stability 
in industrial applications. Understanding the interaction between LAB 
and other microorganisms in meat products is another research area 
that remains underexplored. The presence of LAB can influence the 
growth dynamics of other bacterial populations, impacting the overall 
microbial balance and safety of meat products. Investigating these 
interactions would enable manufacturers to control undesired microbial 
activity and enhance food quality. Despite the documented benefits of 
LAB in meat products, consumer acceptance remains a challenge, 
especially in regions unfamiliar with LAB-enhanced meat. Public 
perception, taste preferences, and concerns about food safety 
significantly influence purchasing decisions, necessitating targeted 
studies on consumer attitudes and educational initiatives to enhance 
acceptance. Regulatory frameworks surrounding the use of LAB in meat 
products also require deeper investigation. While LABs are widely 
accepted in fermented products such as yogurt and cheese, their 
application in meat is still evolving, and clear guidelines for their use, 
labeling, and health claims need to be established.

Addressing these research gaps through interdisciplinary 
studies that involve microbiology, food science, biotechnology, and 
consumer behavior will enhance the safe and effective use of LAB 
in the meat industry.

9 Conclusion

LABs have become essential players in modern food 
biotechnology, especially in meat processing and preservation. The 

broad application of LABs stems from their ability to enhance food 
safety, extend shelf life, improve sensory qualities, and support 
human health. As natural fermenters, LAB contribute to the 
production of fermented meat products by generating organic 
acids, peptides, and bacteriocins that inhibit the growth of spoilage 
and harmful microorganisms, thereby reducing reliance on 
synthetic preservatives. This aligns with the growing consumer 
demand for “clean label” and minimally processed foods.

In meat products, LAB provides both technological and nutritional 
benefits. From a technological standpoint, they promote product 
stability through acidification, preservation, and enzymatic activity, 
which collectively enhance flavor, texture, and color. Nutritionally, 
certain LAB strains offer probiotic benefits, including modulation of 
the gut microbiota, cholesterol reduction, and support for the immune 
system. Additionally, they produce functional compounds, such as 
GABA and EPS, further enhancing the health-promoting potential of 
LAB-fermented meat products. Despite their advantages, LABs face 
challenges that require further research. Their strain-specific behavior 
in different meat matrices, interactions with native microbiota, and 
adaptation to processing conditions need deeper exploration. While 
LABs are GRAS, some strains may carry undesirable traits, such as 
antibiotic resistance or virulence factors, making rigorous safety 
assessments crucial for their industrial use. Another hurdle is scaling 
up the production of LAB-derived bioactive compounds without 
compromising their effectiveness in industrial applications. Consumer 
awareness and regulatory clarity also play a significant role. Acceptance 
of LAB-based innovations in meat products varies across cultures and 
markets, influenced by concerns over microbial safety and a lack of 
familiarity with fermented meats. Clear labeling, well-supported health 
claims, and targeted educational efforts are necessary to improve 
market penetration and consumer trust.

In summary, LAB presents a sustainable and effective approach 
to meat preservation and enhancement. Through continued 
interdisciplinary research that addresses safety, functionality, and 
consumer perception, LABs have the potential to transform the 
meat industry by meeting technological demands and public health 
needs in a natural and environmentally friendly manner.
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