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Introduction: Understanding molecular transmission patterns is critical for HIV 
prevention designed with key populations. This study aimed to characterize 
the molecular epidemiology, transmission networks, and underlying factors 
associated with HIV-1 transmission in Ningbo during 2018–2022.
Methods: We analyzed data from 1,409 newly diagnosed people living with 
HIV who had successful genotyping. A maximum likelihood phylogenetic tree 
was constructed, and transmission clusters were identified using 1.3% distance 
and 0.9 bootstrap values. Multivariate logistic regression was applied to identify 
factors associated with clustered, large clusters (≥10 nodes) and fast-growing 
clusters.
Results: Molecular analysis revealed 11 distinct HIV-1 subtypes and some unique 
recombinant forms (URFs), with CRF07_BC (41.6%) and CRF01_AE (33.2%) as the 
most prevalent. CRF07_BC consistently tended to form larger, more densely 
connected clusters, whereas CRF01_AE networks primarily exhibited sparse, 
fragmented distributions. Molecular transmission network analysis identified 9 
large clusters and 12 fast-growing clusters. HIV-1 subtypes were associated with 
the large clusters and fast-growing clusters. CRF07_BC formed larger clusters 
(aOR = 7.80, 95%CI: 4.70–13.49) and fast-growing clusters (aOR = 6.02, 95%CI: 
3.80–9.78) compared to CRF01_AE. Temporally, the molecular transmission 
networks (MTNs) expanded rapidly in 2020–2021.
Conclusion: This study elucidates the MTNs of HIV-1  in Ningbo, highlighting 
the role of subtype diversity and demographic traits in shaping transmission 
networks. Continuous monitoring of HIV-1 molecular subtypes among key 
populations may serve as feasible and focused prevention strategies to curb HIV 
transmission.
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1 Introduction

Despite significant global efforts to control the transmission of 
HIV-1, Acquired Immune Deficiency Syndrome (AIDS) remains a 
major global public health issue. At the end of 2024, an estimated 
40.8 million (37.0–45.6 million) people were living with HIV globally, 
including 1.4 million (1.1–1.8 million) children (0–14 years old) and 
39.4 million (35.7–44.0 million) adults (15 + years old) (UNAIDS, 
Global HIV, 2025). In China, as of Dec. 31, 2024, there were 1,355,017 
reported cases of people living with HIV, with 491,437 reported deaths 
(National Center for STD/AIDS Control, Chinese Center for Disease 
Control and Prevention, 2025). Over the past decade, the incidence of 
AIDS has shown a sustained upward trend across most regions of 
China, characterized by continuous spread from south to north and 
west to east, coupled with increasing disease intensity and a growing 
burden of illness (Wang et al., 2019). From 1990 to 2021, the incidence, 
mortality, and disability-adjusted life years (DALYs) of HIV increased 
in the general population, with age-standardized incidence, mortality, 
and DALY rates rising at average annual rates of 0.051, 0.056, and 
2.629, respectively (He et  al., 2025). These trends underscore the 
critical need for enhanced HIV prevention and control strategies to 
curb transmission, reduce incidence, and alleviate the escalating 
disease burden on affected populations.

On June 8, 2021, The Joint United Nations Program on HIV/AIDS 
(UNAIDS) put forward the “95–95-95 targets” (95% of all PLWH 
knowing their status, 95% of those diagnosed accessing treatment, and 
95% of those on treatment achieving viral suppression) to be achieved 
by 2025 (United Nations General Assembly, 2021). The “95–95-95” 
targets are not only the global action plan for the response to HIV but 
also the core indicators for measuring progress. Their significance lies 
in transforming AIDS from an “incurable epidemic” into a 
“controllable chronic disease” through systematic and multi-level 
prevention and control measures, and ultimately achieving the vision 
of ending the AIDS epidemic. Following this, WHO has rolled out a 
series of action plans and guidelines to advance these goals (World 
Health Organization, 2022). Globally, as of 2024, 87% (69–98%) of all 
PLWH knew their HIV status. Among those aware of their status, 89% 
(71–98%) were accessing treatment, and 94% (75–98%) of those on 
treatment achieved viral suppression (UNAIDS, Global HIV, 2025). 
In China, since implementing the “treat-all” strategy (initiating 
antiretroviral therapy (ART) regardless of CD4 cell count) in 2016, 
ART coverage has further improved (Bai et al., 2020). By the end of 
2022, China’s progress toward the “95-95-95 targets” stood at 84-93-
97% (Ye et al., 2024). While significant progress has been made in 
scaling up treatment coverage and improving treatment outcomes, a 
substantial gap persists in case detection compared to the global 
targets. Addressing this gap remains a critical challenge.

Molecular transmission networks (MTNs), constructed from HIV 
genetic sequence data, have emerged as critical tools for dissecting 
HIV-1 transmission dynamics. Initially formalized as a prevention 
strategy by the U. S. CDC in 2018 (Oster et al., 2018), MTNs were firstly 

adapted into China’s guidelines for monitoring and intervention by the 
National Center for AIDS/STD Control and Prevention in 2019 (China 
CDC, 2019). By reconstructing evolutionary and transmission-related 
associations among viral sequences, MTNs facilitate the identification 
of HIV transmission clusters and the delineation of ancestral-
contemporary infection relationships. Their applications have expanded 
beyond fundamental research, now encompassing early case detection 
of HIV infections, long-term surveillance of HIV drug resistance, and 
the design of precision-focused intervention strategies (Zhao et al., 2022; 
Han et al., 2020; Liu et al., 2020). Currently, MTNs play a pivotal role in 
the operational control of HIV epidemics: they assist in determining the 
timing and geographical locations of new HIV infections, quantifying 
HIV transmission velocity, and evaluating the efficacy of HIV prevention 
interventions. By integrating genetic sequence analysis with real-world 
patterns of HIV spread, MTNs provide evidence-based and actionable 
insights to inform strategies aimed at curbing the transmission of HIV.

Zhejiang Province, home to a population exceeding 60 million, 
reported 4,279 newly diagnosed HIV infections in 2022 alone (He 
et  al., 2025). Epidemiological data from 2018 indicate an HIV 
incidence rate of 1.67 per 10,000 population and an HIV testing 
positivity rate of 45.1 per 10,000 population in the province (Chen 
et al., 2021). These figures underscore the persistent challenges in 
controlling HIV transmission in Zhejiang, particularly given its status 
as a major economic hub with substantial population mobility. 
Zhejiang Province has conducted a series of studies leveraging MTNs 
to investigate multiple dimensions of HIV transmission, including 
network characteristics across distinct populations and regions, and 
the evaluation of HIV intervention efficacy. These research efforts have 
yielded evidence-based contributions to the regional control of HIV 
transmission (Chen et al., 2021; Dai et al., 2024; Chen et al., 2024). 
Ningbo, a coastal city in eastern Zhejiang Province, possesses the 
longest coastline within the province and is home to the Ningbo-
Zhoushan Port—one of the world’s largest cargo throughput ports, 
which has maintained this leading position for 16 consecutive years. 
With a permanent population of approximately 10 million (accounting 
for one-sixth of Zhejiang’s total population), Ningbo also grapples with 
a distinct HIV epidemic: the city recorded an HIV incidence rate of 
1.24 per 10,000 population in 2018 (Chen et al., 2021). In our previous 
work, we performed an analysis of the HIV molecular transmission 
network among men who have sex with men (MSM) in Ningbo and 
further explored drug resistance-associated HIV transmission patterns 
through complementary network-based studies (Hong et al., 2018; 
Hong et al., 2023; Shi et al., 2024). Building on these foundational 
investigations, the present study aims to comprehensively characterize 
the HIV molecular transmission network in Ningbo spanning the 
period 2018–2022. A specific focus will be placed on analyzing the 
influencing factors underlying the formation of large-scale 
transmission networks and the expansion of rapidly growing networks 
in this region. Findings from this work are expected to provide 
actionable insights for designing focused HIV intervention strategies.

2 Method

2.1 Study population and laboratory tests

This study enrolled all individuals aged ≥18 years who were newly 
diagnosed with HIV-1 infection in Ningbo from January 2018 to 

Abbreviations: URFs, Unique recombinant forms; MTNs, Molecular transmission 

networks; WHO, World Health Organization; DALYs, Disability-adjusted life years; 

ART, Antiretroviral therapy; PI, Protease inhibitors; NRTIs, Nucleoside reverse 

transcriptase inhibitors; NNRTIs, Non-nucleoside reverse transcriptase inhibitors; 

aOR, Adjusted odds ratio; CIs, Confidences intervals.
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December 2022 and had not initiated antiretroviral therapy (ART). 
Written informed consent was obtained from all participants prior to 
study inclusion. Blood samples were processed following standardized 
protocols, and the partial pol gene segment (HXB2: 2253–3,283) was 
sequenced using a previously validated protocol (Hong et al., 2023). 
Only sequences exceeding 1,000 base pairs in length were included for 
subsequent phylogenetic and molecular transmission 
network analyses.

2.2 Sequences analysis

Raw sequence reads were assembled and aligned using 
ChromasPro 1.6 (Technelysium Pty Ltd.), and the Gene Cutter online 
tool.1 Reads with <1,000 nucleotides in length or >1.5% ambiguous 
bases were excluded. Duplicate sequences were identified and 
removed using the online tool ElimDupes.2 To facilitate subtype 
classification and phylogenetic analysis, all remaining sequences were 
submitted to the LANL HIV Database (see text footnote 1, 
respectively). For each query sequence, the top 10 genetically similar 
reference sequences were downloaded from the database. These 
reference sequences, along with the query sequences, were then used 
to construct maximum likelihood (ML) phylogenetic trees using 
FastTree v2.1.10 under the GTR + G + I nucleotide substitution 
model. Local support values for clades were calculated via the 
Shimodaira–Hasegawa approximate likelihood ratio test (SH-aLRT) 
to assess phylogenetic robustness. The reference sequences cited in 
this study are provided in Supplementary Table S1.

Drug-resistance mutations were identified and scored using the 
Stanford HIVdb Program,3 following the 2009 WHO Surveillance 
Drug Resistance Mutations (SDRMs) list (Bennett et al., 2009). The 
database automatically assigns a resistance score to each detected 
mutation based on its impact on drug susceptibility, with scores 
stratified as: 0–9 (sensitive), 10–14 (potential low-level resistance), 
15–29 (low-level resistance), 30–59 (moderate resistance), and ≥60 
(high-level resistance). For each sample, the highest score across all 
detected mutations was selected as its representative resistance level. 
Samples with a total score >15 were classified as resistant, whereas 
those with scores ≤15 were deemed sensitive.

2.3 HIV-1 transmission network analysis

Potential transmission clusters were extracted from the phylogenetic 
tree using Cluster Picker v1.2.5, with inclusion criteria of bootstrap 
support values ≥90% and maximum pairwise genetic distance ≤1.3% 
nucleotide substitutions per site (Chen et al., 2024; Hong et al., 2023), 
detailed information is provided in Supplementary Figure S1. For all 
extracted sequences, Tamura-Nei 93 pairwise genetic distances were 
calculated using HyPhy 2.2.4, and clusters were required to contain at 
least two sequences. The transmission network was visualized using 
Cytoscape v3.7.0, where edges represent potential transmission 
relationships between connected subjects, and network degree (the 

1  Los Alamos National Laboratory, LANL; www.hiv.lanl.gov.

2  https://www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.html.

3  https://hivdb.stanford.edu.

number of links per sequence node) was used to quantify transmission 
propensity—higher degree values indicating a greater likelihood of viral 
transmission. To guide HIV intervention strategies, we  further 
characterized cluster size and growth dynamics: large clusters were 
defined as those containing ≥10 sequences, small clusters were defined 
as those containing 2 to 9 sequences, while fast-growing clusters were 
defined as exhibiting a ≥ 5-sequence increase in node count within a 
1-year sequence collection period (Yin et al., 2021; Wertheim et al., 
2018; Shi et  al., 2024). The baseline transmission network was 
constructed using samples collected during the first 2 years of the study.

2.4 Statistical analysis

Statistical analyses were conducted using R version 4.4.2. 
Continuous variables with non-normal distributions were 
summarized using descriptive statistics, including interquartile ranges 
(IQR) and medians, while categorical variables were described with 
frequencies and percentages. To identify factors associated with 
transmission within molecular clusters, large molecular clusters, and 
fast-growing clusters, univariate and multivariate logistic regression 
models were employed. Variables showing significance in univariate 
analysis (p < 0.2) were included in the multivariate model. All 
statistical tests were two-tailed, with a significance level set at p < 0.05.

3 Result

3.1 Study population

Between January 2018 and December 2022, we enrolled 1,518 
individuals newly diagnosed with HIV-1 infection. Of these, 1,409 
(92.8%) underwent successful HIV-1 genotyping and were included 
in subsequent MTNs analyses. Demographic characteristics revealed 
male predominance (85.0%), a median age of 40.6 years (interquartile 
range [IQR]: 28.2–53.5 years; mean ± SD: 41.9 ± 15.2 years), and 
95.7% self-identifying as Han Chinese. Marital status distribution 
showed 42.7% married and 37.4% single. The highest age proportion 
was in the 25–35 group (25.9%), followed by individuals aged 
>55 years (22.4%). Educational attainment was low, with only 23.0% 
holding a college degree or higher. Occupational distribution indicated 
service-sector employment as the primary occupation (43.8%). 
Transmission routes included heterosexual contact (53.7%), exceeding 
homosexual contact (45.9%). Discovery pathways were dominated by 
general outpatient clinics (22.0%), preoperative examinations (20.9%), 
and counseling/testing services (20.3%). At diagnosis, 37.8% of 
individuals had CD4 counts <200 cells/μL. Geographic distribution 
highlighted local residency (72.3%), with Ningbo’s Yinzhou (20.6%) 
and Haishu (19.0%) districts accounting for the highest proportions. 
Subtype distribution exhibited significant regional variation 
(p < 0.001; Supplementary Table S2).

3.2 Molecular epidemiology and drug 
resistance characteristics

We employed a 1,030-bp fragment of the partial pol gene to 
construct a ML phylogenetic tree (Supplementary Figure S2). A total 
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of 12 distinct HIV-1 genotypes were identified, with CRF07_BC 
(41.6%) and CRF01_AE (33.2%) being the predominant subtypes. The 
remaining genotypes included CRF08_BC (6.7%), CRF55_01B 
(5.7%), URF (4.6%), CRF85_BC (2.4%), B (2.3%), CRF57_BC (1.5%), 
C (0.8%), CRF59_01B (0.4%), CRF67_01B (0.4%), and 
CRF68_01B (0.2%).

According to the 2009 WHO SDRMs list, 7.9% (n = 111/1,409) 
of sequences exhibited SDRMs, including 14 NRTI-associated 
mutations, 15 NNRTI-associated mutations, and 2 PI-associated 
mutations (Supplementary Figure S3A). Notably, 17 antiretroviral 
drugs showed varying levels of resistance, with high-grade resistance 
detected against EFV (efavirenz), NVP (nevirapine), FTC 
(emtricitabine), and 3TC (lamivudine) (Supplementary Figure S3B). 
Subtype-specific resistance patterns were also observed (p = 0.015; 
Supplementary Table S2).

3.3 Characteristics of HIV-1 transmission 
networks

A total of 168 HIV-1 molecular transmission networks were 
identified, encompassing 692 individuals (49.1% of the 1,409 
successfully genotyped individuals) and 2,063 edges. Network sizes 
ranged from 2 to 139 nodes, with the majority (59.5%) comprising 
dyadic clusters (two nodes). Notably, 9 clusters contained ≥10 
sequences (Supplementary Figure S4A). Node connectivity exhibited 
marked heterogeneity: 36.6% of nodes (253/692) formed single 
linkages, 49.3% (341/692) engaged in 2–10 linkages, and 14.2% 
(98/692) demonstrated extensive connectivity (>20 linkages) 
(Supplementary Figure S4B). Under a 1.5% genetic distance threshold, 
30.0% of edges (618/2,063) exhibited minimal genetic divergence 
(<0.005), suggesting recent or ongoing transmission events 
(Supplementary Figure S4C).

Figure  1A illustrates the MTNs stratified by different HIV-1 
subtypes. CRF07_BC dominated cluster composition with 320 nodes 
forming 63 clusters, including 60 small clusters comprising 160 nodes. 
Similarly, CRF01_AE contributed 187 nodes across 62 clusters, with 
60 small clusters containing 166 nodes. CRF08_BC formed 9 clusters 
(49 nodes), 8 of which were small (21 nodes). CRF55_01B was 
distributed across 12 clusters (45 nodes), including 11 small clusters 
(27 nodes). The URF subtype comprised 5 clusters (31 nodes), 4 of 
which were small (17 nodes). CRF57_BC formed 4 clusters (16 
nodes), 3 of which were small (6 nodes). Remaining subtypes all 
formed small clusters: CRF85_BC (26 nodes/7 clusters), subtype B (8 
nodes/3 clusters), subtype C (7 nodes/2 clusters), and CRF59_01B (3 
nodes/1 cluster). The largest molecular cluster was CRF07_BC, which 
consisted of 126 males and 11 females, with the primary mode of 
transmission being homosexual transmission (60.9%), details showed 
in Table 1. Furthermore, the dominant drug resistance mutation in the 
largest MTNs was Q58E, whereas other resistance-associated 
mutations were either scattered across the network or confined to 
smaller clusters. The genotypic and age-specific drug resistance 
profiles of MTNs are characterized in Supplementary Figure S5. 
Analysis of individuals with potential transmission links.

Univariate and multivariate logistic regression models were used 
to compare sequences included in the transmission networks versus 
those not included. Results are presented in Figure  1; 
Supplementary Table S3. The multivariate analysis revealed that 

individuals aged >55 years were more likely to cluster compared with 
those aged ≤25 years [adjusted odds ratio (aOR) = 2.379, 95% 
confidence interval (CI) = 1.623–3.502, p < 0.001]. Compared with 
Han ethnic patients, those from other ethnic groups showed reduced 
odds of clustering (aOR = 0.494, 95% CI = 0.270–0.873, p = 0.018). 
Patients with CD4 counts >200 cells/μL exhibited higher odds of 
clustering than those with CD4 ≤ 200 cells/μL (aOR = 1.295, 95% 
CI = 1.023–1.641, p = 0.032). Temporally, cases diagnosed in 2020 
(aOR = 1.571, 95% CI = 1.055–2.349, p = 0.027) and 2021 
(aOR = 1.765, 95% CI = 1.208–2.589, p = 0.003) exhibited higher odds 
of being part of transmission clusters compared to 2018. In contrast, 
2022 showed no statistically significant difference in clustering odds 
relative to 2018 (aOR = 1.242, 95% CI = 0.856–1.809, p = 0.256). 
Regarding viral genotypes, CRF07_BC (aOR = 1.806, 95% CI = 1.395–
2.342, p < 0.001) and others (aOR = 1.577, 95% CI = 1.177–2.115, 
p = 0.002) showed stronger clustering tendencies than CRF01_AE.

3.4 Characterization of large clusters

Nine large clusters (≥10 nodes) were identified, comprising 251 
individuals (220 males and 31 females). Among these clusters, 
homosexual transmission (50.2%) and heterosexual transmission 
(49.4%) accounted for nearly equal proportions, with other routes 
contributing minimally (0.4%). A total of 12 transmitted drug 
resistance (TDR) cases were distributed across four large clusters. 
Within the nine large clusters, three were predominantly located in 
Xiangshan district (Table  1). Residents from Xiangshan exhibited 
significantly higher odds of clustering compared with Haishu district 
(aOR = 2.219, 95% CI = 1.086–4.594, p = 0.030). Conversely, Ninghai 
(aOR = 0.242, 95% CI = 0.064–0.736, p = 0.020), Yuyao (aOR = 0.395, 
95% CI = 0.195–0.778, p = 0.008), and Zhenhai (aOR = 0.307, 95% 
CI = 0.094–0.853, p = 0.033) showed reduced odds of clustering 
relative to Haishu. Regarding viral genotypes, individuals infected 
with CRF07_BC (aOR = 7.796, 95% CI = 4.699–13.486, p < 0.001) and 
others (aOR = 4.619, 95% CI = 2.613–8.417, p < 0.001) exhibited 
stronger clustering tendencies than those with CRF01_AE (Table 2). 
A summary of large cluster characteristics (Table  1) further 
highlighted that 3 out of 9 identified large clusters (encompassing 251 
individuals) were dominated by CRF07_BC, including the largest 
cluster in this study. Additionally, URFs constituted a large 
transmission network comprising 14 sequences, with infected 
individuals primarily residing in Beilun District, Ningbo City—an 
area adjacent to Ningbo-Zhoushan Port, one of China’s largest 
seaports (Table 3).

3.5 Characterization of fast-growing 
clusters

To elucidate temporal trends, annual HIV-1 transmission 
networks were reconstructed for each study year (Figure 2). During 
2020, four clusters emerged. By 2021, one cluster originating in 2020 
had expanded significantly in size, while two smaller clusters formed 
independently. In 2022, five new small clusters appeared, and the 
previously expanded cluster continued to grow. Multivariate analysis 
identified underlying factors associated with network expansion 
dynamics. Residents from Ninghai (aOR = 0.186, 95% 
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CI = 0.049–0.571, p = 0.006) and Yuyao (aOR = 0.372, 95% 
CI = 0.186–0.719, p = 0.004) exhibited reduced odds of clustering 
compared with Haishu residents. Drug-resistant individuals showed 
lower odds of involvement in rapid transmission networks 

(aOR = 0.451, 95% CI = 0.209–0.918, p = 0.034). Furthermore, 
infections with CRF07_BC (aOR = 6.016, 95% CI = 3.804–9.780, 
p < 0.001) and other subtypes (aOR = 4.176, 95% CI = 2.4889–7.155, 
p < 0.001) exhibited significantly stronger clustering propensities 

FIGURE 1

Molecular transmission network of people living with HIV in Ningbo, China (2018–2022). Clusters are ordered by size within each panel. Node shapes 
denote distinct transmission routes, and node colors represent participant characteristics, including HIV-1 genotypes and age groups. (A) corresponds 
to the subtype distribution of the network. (B) represents the age distribution of the network.
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compared with CRF01_AE. Detailed information is listed in 
Supplementary Table 3.

4 Discussion

This study systematically investigated the molecular epidemiology, 
transmission dynamics, and risk factors of HIV-1 among 1,409 newly 
diagnosed, genotyped individuals in Ningbo City from 2018 to 2022. 
Molecular transmission network analysis revealed 168 distinct clusters 
involving 692 individuals, with 59.5% being dyadic (two-node) 
clusters and 9 clusters containing ≥10 nodes. Molecular transmission 
network analysis identified 9 large clusters and 12 fast-growing 
clusters. Age and HIV-1 subtype were associated with in the large 
clusters and fast-growing clusters, highlighting their critical roles in 
shaping local HIV transmission patterns. These findings provide 
critical insights into the structure and underlying factors associated 
with HIV transmission networks, which are essential for focused 
prevention and control strategies in Ningbo.

Previously, we  analyzed molecular transmission networks in 
Ningbo from 2018 to 2021, revealing that the overall distribution of 
these networks remained relatively consistent over time. Specifically, 
CRF07_BC consistently tended to form larger, more densely 
connected clusters, whereas CRF01_AE networks primarily exhibited 
sparse, fragmented distributions. This aligns with nationwide trends 
in China, where CRF07_BC has shown increasing prevalence and 
CRF01_AE has declined in recent years (Li et al., 2016; Yin et al., 
2019). Factors associated with cluster formation also showed 
consistency: CRF07_BC demonstrated a higher propensity to drive 
network formation during that period. Building on this foundation, 

the current study distinguishes itself by focusing specifically on the 
formation and influencing factors of large clusters and fast-growing 
clusters. While prior research emphasized the need for surveillance 
and comprehensive interventions focused on key clusters to mitigate 
potential HIV-1 transmission risks, it did not explicitly define or 
characterize what constituted these “key clusters.” In contrast, our 
work explicitly identifies large and fast-growing clusters as key areas 
for focused prevention and confirms that their formation remains 
consistently driven by HIV subtypes. Notably, CRF07_BC-associated 
clusters involved the most demographically heterogeneous 
populations, a pattern consistent with observations from Fujian, 
Anhui, and Jiangsu provinces (Wang et al., 2023; Zheng et al., 2021; 
Li et al., 2024). Similarly, analysis of fast-growing clusters reinforced 
the link between HIV-1 subtype and cluster dynamics: CRF07_BC 
showed a pronounced association with rapid network expansion. 
Structural analyses revealed that CRF07_BC harbors specific 
mutations/deletions in the p6Gag protein (e.g., PTAPPE insertion 
and/or PIDKELY deletion), which may attenuate virulence while 
enhancing transmissibility. Moreover, CRF07_BC variants with 
reduced net charge in the V3 loop exclusively utilize the CCR5 
co-receptor and exhibit slower replication kinetics in primary target 
cells (Hu et al., 2022). These molecular features collectively suggest 
that CRF07_BC may possess superior fitness for initiating infections 
in key populations (Ge et  al., 2021). In recent years, China has 
witnessed a bidirectional upward trend in HIV-1 infections, with 
notable increases among both adolescents and older adults. Our 
study revealed that older age (>55 years) was associated with a 2.38-
fold higher likelihood of being included in MTNs compared to 
younger individuals—a pattern consistent with the national 
epidemiological trajectory (Ma et al., 2021; Cai et al., 2020). Similarly, 

TABLE 1  Characteristics of the large molecular transmission clusters.

Cluster 
number

Subtype Genetic 
distances 

Mean 
[Median, IQR]

Age Gender Transmission 
route

Drug 
resistance

Mutation 
site

District

1 CRF07_BC 0.001  

[0.008, 0.004–0.011]

A1(22), A2(37), 

A3(22), A4(28), 

A5(29)

M(127), 

F(11)

Hetero(54), Homo(84) R(8), S(130) Q58E(5)

M184V(2)

N83D(1)

Hiashu, 

Yinzhou

2 CRF08_BC 0.001  

[0.007, 0.004–0.009]

A1(3), A2(1), A3(3), 

A4(4), A5(17)

M(21), F(7) Hetero(23), Homo(5) S(28) Xiangshan

3 CRF55_01B 0.001  

[0.005, 0.004–0.009]

A1(2), A2(10), A3(4), 

A4(2)

M(18) Hetero(8), Homo(10) R(1), S(17) K65R(1)

V179D(1)

Cixi

4 URFs 0.007  

[0.007, 0.005–0.009]

A2(6), A3(5), A4(1), 

A5(2)

M(13), F(1) Hetero(3), Homo(11) S(14) Beilun

5 CRF07_BC 0.009  

[0.009, 0.007–0.011]

A1(5), A2(7) M(12) Hetero(1), Homo(10), 

Unknow(1)

S(12) Cixi

6 CRF01_AE 0.008  

[0.008, 0.005–0.010]

A1(2), A2(2), A3(3), 

A5(4)

M(10), F(1) Hetero(8), Homo(2) S(11) Yinzhou

7 CRF57_BC 0.009  

[0.010, 0.008–0.011]

A2(1), A4(3), A5(6) M(4), F(6) Hetero(9), Homo(1) S(10) Xiangshan, 

Haishu

8 CRF01_AE 0.002  

[0.005, 0.004–0.010]

A3(2), A4(2), A5(6) M(6), F(4) Hetero(10) R(1), S(9) K103N(1) Fenghua, 

Yinzhou

9 CRF07_BC 0.006  

[0.009, 0.007–0.011]

A1(1), A3(1), A4(1), 

A5(7)

M(9), F(1) Hetero(9), Homo(1) R(2), S(8) G73S(1)

K103N(1)

Xiangshan

A1: <=25 years, A2: 25–35 years, A3: 35–45 years, A4: 45–55 years, A5: >55 years; M: male, F: female. Hetero: heterosexual contact, Homo: homosexual contact; R: resistance, S: sensitive.
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TABLE 2  Factors influencing the inclusion of individuals into the large molecular transmission clusters.

Characteristic Clustered 
N = 692 (%)

Included in a large 
cluster (≥10 node) 

N = 251 (%)

Univariate analysis Multivariate analysis

OR (95% CI) OR (95% CI)

Gender

 � Male 580 (83.82) 220 (87.65) 1.000 (Reference) 1.000 (Reference)

 � Female 112 (16.18) 31 (12.35) 0.626 (0.401–0.979)* 0.670 (0.382–1.153)

Age (group)

 � <=25 89 (12.86) 35 (13.94) 1.000 (Reference)

 � 25–35 175 (25.29) 64 (25.50) 0.890 (0.526–1.504)

 � 35–45 119 (17.20) 40 (15.94) 0.781 (0.442–1.382)

 � 45–55 112 (16.18) 41 (16.33) 0.891 (0.502–1.581)

 � >55 197 (28.47) 71 (28.29) 0.869 (0.519–1.455)

Marital status

 � Single 247 (35.69) 99 (39.44) 1.000 (Reference)

 � Married 317 (45.81) 103 (41.04) 0.720 (0.509–1.017)

 � Divorce or death 128 (18.50) 49 (19.52) 0.927 (0.598–1.437)

Education level

 � Primary school or below 203 (29.34) 81 (32.27) 1.000 (Reference)

 � Junior high school 215 (31.07) 66 (26.29) 0.667 (0.446–0.990)*

 � Senior high school or secondary vocational school 122 (17.63) 40 (15.94) 0.735 (0.459–1.177)

 � Associate degree or above 152 (21.97) 64 (25.50) 1.095 (0.714–1.679)

Ethnic group

 � Han 671 (96.97) 245 (97.61) 1.000 (Reference)

 � Others 21 (3.03) 6 (2.39) 0.696 (0.266–1.816)

Affiliated Region

 � Haishu 122 (17.63) 51 (20.32) 1.000 (Reference) 1.000 (Reference)

 � Jiangbei 22 (3.18) 7 (2.79) 0.650 (0.247–1.708) 0.409 (0.132–1.147)

 � Beilun 62 (8.96) 21 (8.37) 0.713 (0.377–1.349) 0.604 (0.302–1.189)

 � Zhenhai 30 (4.34) 6 (2.39) 0.348 (0.133–0.913)* 0.307 (0.094–0.853)*

 � Yinzhou 153 (22.11) 62 (24.70) 0.949 (0.585–1.538) 1.106 (0.637–1.925)

 � Fenghua 38 (5.49) 12 (4.78) 0.643 (0.297–1.392) 0.648 (0.266–1.515)

 � Xiangshan 57 (8.24) 31 (12.35) 1.660 (0.881–3.127) 2.219 (1.086–4.594)*

 � Ninghai 23 (3.32) 4 (1.59) 0.293 (0.094–0.913)* 0.242 (0.064–0.736)*

 � Yuyao 78 (11.27) 18 (7.17) 0.418 (0.221–0.790)** 0.395 (0.195–0.778)**

 � Cixi 89 (12.86) 31 (12.35) 0.744 (0.423–1.310) 0.690 (0.369–1.280)

 � Others 18 (2.60) 8 (3.19) 1.114 (0.411–3.018) 1.249 (0.414–3.725)

Region Type

 � Local city 524 (75.72) 195 (77.69) 1.000 (Reference)

 � Other cities in this province 24 (3.47) 10 (3.98) 1.205 (0.525–2.765)

 � Other provinces 144 (20.81) 46 (18.33) 0.792 (0.535–1.173)

Transmission route

 � Heterosexual 302 (43.64) 124 (49.40) 1.000 (Reference) 1.000 (Reference)

 � Homosexual 387 (55.92) 126 (50.20) 0.693 (0.507–0.947)* 0.785 (0.530–1.160)

 � Others 3 (0.43) 1 (0.40) 0.718 (0.064–8.002) -

Drug resistance

 � Sensitive 644 (93.06) 239 (95.22) 1.000 (Reference) 1.000 (Reference)

(Continued)
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a molecular transmission network analysis of HIV-1  in Huzhou, 
Zhejiang Province (2017–2022) highlighted that older adults 
(≥50 years) play a critical role in  local network formation. This 
age-related disparity may be attributed to factors such as prolonged 
unprotected sexual encounters and a higher cumulative number of 
sexual partners among older individuals (Luo et al., 2019). However, 
our analysis revealed no age-related disparities in the formation of 
large clusters or fast-growing clusters. While prior research has 
established that distinct molecular transmission networks contribute 
disproportionately to HIV spread (Novitsky et al., 2023), we posit 
that the large clusters and fast-growing clusters prioritized for 
intervention in Ningbo should not be  constrained by age. Given 
limited HIV prevention resources, prioritizing networks with greater 
future impact is imperative.

Beyond this, CRF57_BC—first identified in Yunnan Province (Li 
et al., 2012; Wei et al., 2014)—was absent from subtype surveys in 
Zhejiang during 2012–2016 (Ding et al., 2022) but was first reported 
in the province’s 2021 surveillance data (Fan et al., 2025). Notably, our 
study revealed that CRF57_BC had already formed large transmission 
networks by 2018–2022, a rapid dissemination pattern that warrants 
attention. Additionally, URFs constituted a large transmission network 
in Beilun District, one of China’s major seaports. Given the region’s 
unique geographical location and high population mobility—factors 
known to facilitate viral recombination between diverse subtypes—
additional experimental validation is warranted to clarify 
these dynamics.

From a temporal perspective, our analysis showed that the 
number of sequences included in transmission networks in 2020 and 

TABLE 2  (Continued)

Characteristic Clustered 
N = 692 (%)

Included in a large 
cluster (≥10 node) 

N = 251 (%)

Univariate analysis Multivariate analysis

OR (95% CI) OR (95% CI)

 � Resistance 48 (6.94) 12 (4.78) 0.565(0.288–1.107) 0.487 (0.215–1.035)

HIV-1 genotypes

 � CRF01_AE 187 (27.02) 21 (8.37) 1.000 (Reference) 1.000 (Reference)

 � CRF07_BC 320 (46.24) 160 (63.75) 7.905 (4.775–13.086)*** 7.796 (4.699–13.486)***

 � Others 185 (26.73) 70 (27.89) 4.812 (2.797–8.278)*** 4.619 (2.613–8.417)***

Sample year

 � 2018 70 (10.12) 21 (8.37) 1.000 (Reference)

 � 2019 51 (7.37) 18 (7.17) 1.273 (0.590–2.746)

 � 2020 144 (20.81) 52 (20.72) 1.319 (0.714–2.437)

 � 2021 215 (31.07) 82 (32.67) 1.439 (0.805–2.571)

 � 2022 212 (30.64) 78 (31.08) 1.358 (0.759–2.432)

Occupation

 � Service sector 310 (44.80) 118 (47.01) 1.000 (Reference)

 � Worker 122 (17.63) 46 (18.33) 0.985 (0.639–1.517)

 � Former 156 (22.54) 53 (21.12) 0.837 (0.560–1.253)

 � Others 104 (15.03) 34 (13.55) 0.790 (0.494–1.264)

STD Status

 � Yes 149 (21.53) 51 (20.32) 1.000 (Reference)

 � No 468 (67.63) 169 (67.33) 1.086 (0.737–1.600)

 � Unknown 75 (10.84) 31 (12.35) 1.354 (0.765–2.396)

Detection Method

 � Counseling and testing 143 (20.66) 58 (23.11) 1.000 (Reference)

 � Physical examination 65 (9.39) 26 (10.36) 0.977 (0.537–1.777)

 � STD clinic 108 (15.61) 33 (13.15) 0.645 (0.380–1.094)

 � Focused survey 76 (10.98) 30 (11.95) 0.956 (0.541–1.687)

 � General outpatient clinic 151 (21.82) 60 (23.90) 0.966 (0.606–1.541)

 � Preoperative examination 149 (21.53) 44 (17.53) 0.614 (0.378–0.990)*

CD4 (cell/ul)

 � <200 243 (35.13) 71 (29.34) 1.000 (Reference) 1.000 (Reference)

 � ≥200 449 (64.87) 171 (70.66) 1.502 (1.071–2.107)* 1.324 (0.908–1.938)

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 3  Factors influencing the inclusion of individuals into the fast-growing molecular transmission clusters.

Characteristic Clustered N 
= 692a (%)

Fast-growing 
networks 

aN = 268 (%)

Univariate analysis Multivariate analysis

OR (95% CI) OR (95% CI)

Gender

 � Male 580 (83.82) 233 (86.94) 1.000 (Reference)

 � Female 112 (16.18) 35 (13.06) 0.677 (0.439–1.043)

Age (group)

 � <=25 89 (12.86) 36 (13.43) 1.000 (Reference)

 � 25–35 175 (25.29) 67 (25) 0.913 (0.542–1.539)

 � 35–45 119 (17.20) 41 (15.30) 0.774 (0.439–1.365)

 � 45–55 112 (16.18) 46 (17.16) 1.026 (0.582–1.808)

 � >55 197 (28.47) 78 (29.10) 0.965 (0.579–1.608)

Marital status

 � Single 247 (35.69) 103 (38.43) 1.000 (Reference) 1.000 (Reference)

 � Married 317 (45.81) 107 (39.93) 0.712 (0.505–1.005) 0.689 (0.471–1.008)

 � Divorce or death 128 (18.50) 58 (21.64) 1.158 (0.753–1.781) 1.454 (0.898–2.363)

Education level

 � Primary school or below 203 (29.34) 88 (32.84) 1.000 (Reference)

 � Junior high school 215 (31.07) 73 (27.24) 0.672 (0.452–0.990)*

 � Senior high school or secondary vocational school 122 (17.63) 41 (15.30) 0.661 (0.415–1.055)

 � Associate degree or above 152 (21.97) 66 (24.63) 1.003 (0.656–1.533)

Ethnic group

 � Han 671 (96.97) 262 (97.76) 1.000 (Reference)

 � Others 21 (3.03) 6 (2.24) 0.624 (0.239–1.630)

Affiliated Region

 � Haishu 122 (17.63) 53 (19.78) 1.000 (Reference) 1.000 (Reference)

 � Jiangbei 22 (3.18) 8 (2.99) 0.744 (0.291–1.904) 0.570 (0.205–1.506)

 � Beilun 62 (8.96) 23 (8.58) 0.768 (0.410–1.438) 0.641 (0.328–1.238)

 � Zhenhai 30 (4.34) 8 (2.99) 0.473 (0.195–1.147) 0.463 (0.172–1.161)

 � Yinzhou 153 (22.11) 70 (26.12) 1.098 (0.680–1.772) 1.168 (0.696–1.966)

 � Fenghua 38 (5.49) 12 (4.48) 0.601 (0.278–1.300) 0.550 (0.234–1.243)

 � Xiangshan 57 (8.24) 31 (11.57) 1.552 (0.825–2.921) 1.659 (0.837–3.314)

 � Ninghai 23 (3.32) 4 (1.49) 0.274 (0.088–0.854)* 0.186 (0.049–0.571)**

 � Yuyao 78 (11.27) 18 (6.72) 0.391 (0.207–0.738)** 0.372 (0.186–0.719)**

 � Cixi 89 (12.86) 31 (11.57) 0.696 (0.396–1.223) 0.642 (0.351–1.166)

 � Others 18 (2.60) 10 (3.73) 1.627 (0.601–4.407) 1.842 (0.633–5.549)

Region type

 � Local city 524 (75.72) 208 (77.61) 1.000 (Reference)

 � Other cities in this province 24 (3.47) 10 (3.73) 1.085 (0.473–2.489)

 � Other provinces 144 (20.81) 50 (18.66) 0.808 (0.550–1.188)

Transmission route

 � Homosexual 302 (43.64) 126 (47.01) 1.000 (Reference)

 � Heterosexual 387 (55.92) 141 (52.61) 0.801 (0.588–1.090)

 � Others 3 (0.43) 1 (0.37) 0.698 (0.063–7.786) –

Drug resistance

 � Sensitive 644 (93.06) 256 (95.52) 1.000 (Reference) 1.000 (Reference)

(Continued)
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2021 was 1.57-fold and 1.77-fold higher, respectively, than that in 
2018. However, no statistically significant difference was observed 
between 2022 and 2018. Visually, the MTNs expanded rapidly in 
2020–2021 but plateaued in 2022—a divergent trend compared to 
other regions in Zhejiang Province and nationally, where networks 
have continued to grow unchecked. Ningbo features a well-developed 
medical information infrastructure and has allocated substantial 
financial and human resources to HIV prevention and control efforts. 
In 2020, Ningbo conducted a cost-effectiveness prediction for HIV 
interventions focused on MSM, projecting that scaling up 
intervention coverage by 3.0-fold (with a 2.4-fold increase in funding) 
from the 2020 baseline could reduce cumulative new HIV infections 
by 7.9% and AIDS-related deaths by 1.7% between 2021 and 2030 
(Wang et  al., 2022). Guided by this evidence, Ningbo has since 

intensified its prevention efforts through evidence-based strategies, 
including enhanced public education, optimized testing networks, 
improved treatment services, and technological innovation. Notable 
initiatives include the development of a medical-police collaborative 
big data system for efficient HIV source tracing, the “4 + 1” intensive 
management program for key HIV cases, and a risk prediction and 
early warning system for HIV transmission. These innovations were 
showcased at the 2024 “Fast-Track Cities” network symposium on 
ending the AIDS epidemic, where Ningbo shared its progress with 
domestic and international experts (Ningbo CDC, 2024). Collectively, 
these measures could have been instrumental in curbing the spread 
of HIV-1 in Ningbo.

In this study, we found no statistically significant association 
between drug resistance status and either sequences entered the 

TABLE 3  (Continued)

Characteristic Clustered N 
= 692a (%)

Fast-growing 
networks 

aN = 268 (%)

Univariate analysis Multivariate analysis

OR (95% CI) OR (95% CI)

 � Resistance 48 (6.94) 12 (4.48) 0.505 (0.258–0.989)* 0.451 (0.209–0.918)*

HIV-1 genotypes

 � CRF01_AE 187 (27.02) 30 (11.19) 1.000 (Reference) 1.000 (Reference)

 � CRF07_BC 320 (46.24) 160 (59.70) 5.233 (3.344–8.190)*** 6.016 (3.804–9.780)***

 � Others 185 (26.73) 78 (29.10) 3.815 (2.343–6.212)*** 4.176 (2.488–7.155)***

Sample year

 � 2018 70 (10.12) 21 (7.84) 1.000 (Reference)

 � 2019 51 (7.37) 18 (6.72) 1.273 (0.590–2.746)

 � 2020 144 (20.81) 54 (20.15) 1.400 (0.759–2.583)

 � 2021 215 (31.07) 87 (32.46) 1.586 (0.889–2.830)

 � 2022 212 (30.64) 88 (32.84) 1.656 (0.927–2.956)

Occupation

 � Service sector 310 (44.80) 123 (45.90) 1.000 (Reference)

 � Worker 122 (17.63) 49 (18.28) 1.020 (0.665–1.565)

 � Former 156 (22.54) 60 (22.39) 0.950 (0.640–1.410)

 � Others 104 (15.03) 36 (13.43) 0.805 (0.506–1.280)

STD status

 � Yes 149 (21.53) 53 (19.78) 1.000 (Reference)

 � No 468 (67.63) 184 (68.66) 1.174 (0.800–1.722)

 � Unknown 75 (10.84) 31 (11.57) 1.276 (0.722–2.254)

Detection method

 � Counseling and testing 143 (20.66) 58 (21.64) 1.000 (Reference)

 � Physical examination 65 (9.39) 29 (10.82) 1.181 (0.653–2.134)

 � STD clinic 108 (15.61) 37 (13.81) 0.764 (0.455–1.283)

 � Focused survey 76 (10.98) 30 (11.19) 0.956 (0.541–1.687)

 � General outpatient clinic 151 (21.82) 65 (24.25) 1.108 (0.697–1.761)

 � Preoperative examination 149 (21.53) 49 (18.28) 0.718 (0.445–1.158)

CD4 (cell/ul)

 � <200 243 (35.13) 83 (31.01) 1.000 (Reference)

 � ≥200 449 (64.87) 185 (68.99) 1.347 (0.968–1.875)

a≥5 sequence increase in the number of network sequences within a 1-year sequence was defined as fast-growing networks. *p < 0.05; **p < 0.01; ***p < 0.001.
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transmission network or large clusters formed. However, sensitive 
sequences exhibited a significantly higher propensity to form fast-
growing networks compared to their resistant sequences. While 
some prior studies have emphasized that factors such as HIV-1 
subtype, antiretroviral treatment history, and transmission route 
critically influence drug resistance (Chen et al., 2023; Tan et al., 
2023; Lan et al., 2021), evidence linking drug resistance itself to 
transmission network formation remains scarce. This gap may 
be attributed to China’s relatively low overall drug resistance rate, 
which has thus far prevented the emergence of large-scale, drug-
resistant strain-dominated transmission networks. A study in 
Guangxi Province identified viral load (50–1,000 copies/mL) and 
immunological treatment failure as significant correlates of 
clustering (Chen et  al., 2021). In contrast, U. S.-based research 
demonstrated that antiretroviral therapy (ART) focused on people 

living with HIV effectively curbed secondary HIV-1 transmission 
(Little et al., 2014). Similarly, a nationwide study in China reported 
that large clusters in Shenyang were controlled through ART 
interventions (Liu et al., 2020). However, in our study, neither CD4 
count nor drug resistance factors yielded statistically significant 
associations with clustering. This observed discrepancy may 
be associated with Ningbo’s high ART coverage, which potentially 
saturates the preventive benefits derived from treatment-mediated 
viral suppression. Consistent with this hypothesis, a national HIV 
intervention prioritization analysis revealed that oral PrEP serves as 
an effective strategic intervention for MSM in regions with high ART 
coverage (e.g., Ningbo) under idealized scenarios (Zhang et  al., 
2024). MSM populations in cities like Beijing (Sun et al., 2023) and 
Nanjing (Chen et al., 2024) have shown high willingness to use PrEP; 
however, their actual adherence and usage rates remain extremely 

FIGURE 2

The temporal trends and Fast-growing clusters of HIV-1 transmission network in Ningbo (2018–2022).

https://doi.org/10.3389/fmicb.2025.1701408
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yin et al.� 10.3389/fmicb.2025.1701408

Frontiers in Microbiology 12 frontiersin.org

low (mostly <5%) (Du et al., 2025; Peng et al., 2022). Three key 
scenarios may contribute to drug resistance during PrEP use: 
initiating PrEP without prior HIV diagnosis or awareness of 
infection status, inconsistent adherence to PrEP medications, and 
resuming high-risk behaviors shortly after discontinuing PrEP while 
residual prophylactic drugs remain in the body. All of these scenarios 
can lead to the acquisition of drug-resistant HIV. Research has 
further shown that drug resistance is particularly prevalent among 
individuals who start PrEP during acute HIV infection without a 
confirmed diagnosis; however, widespread PrEP implementation 
with sustained high adherence does not significantly increase the 
transmission of resistant strains (Johnson et  al., 2021). To date, 
Ningbo has not implemented focused PrEP policies, and no local 
studies have investigated PrEP adoption. Only information on post-
exposure prophylaxis (PEP) clinics is publicly available on the 
Ningbo Center for Disease Control and Prevention (CDC) website. 
We therefore hypothesize that PrEP usage in Ningbo is minimal, and 
its potential confounding effect on our drug resistance findings is 
likely negligible.

This study has several limitations that should 
be  acknowledged. First, the analysis was restricted to newly 
diagnosed people living with HIV with successful genotype data, 
potentially introducing selection bias by excluding cases with 
poor-quality or unsequenced samples. This may constrain the 
generalizability of findings to the broader community of people 
living with HIV in Ningbo, particularly among individuals with 
undiagnosed or unsequenced infections. Second, the study 
focused on a 5-year period (2018–2022), which may not capture 
long-term trends or the impact of very recent intervention 
adjustments (e.g., post-2022 policy changes). Third, while 
molecular transmission networks were constructed using genetic 
sequence data, the analysis did not integrate detailed behavioral 
or socioeconomic factors (e.g., sexual partner dynamics, 
socioeconomic status) that may influence transmission patterns, 
potentially overlooking factors associated with cluster formation. 
Fourth, the evaluation of intervention effectiveness relied on 
observational data, which may be  confounded by concurrent 
public health initiatives or regional disparities in service access, 
making causal inferences challenging. Finally, the findings are 
specific to Ningbo’s unique epidemiological and geographic 
context (e.g., port-related population mobility), limiting direct 
extrapolation to other cities or regions with distinct demographic, 
behavioral, or structural features. Future studies should address 
these gaps by expanding sample diversity, incorporating 
longitudinal behavioral data, and exploring external validity 
through multi-region comparisons.

5 Conclusion

This study systematically characterized the molecular 
transmission dynamics of HIV-1 in Ningbo City from 2018 to 2022. 
Key findings revealed that the CRF07_BC subtype exhibited a 
significant propensity to form large transmission clusters and 
rapidly expanding transmission clusters; adults aged ≥55 years 
played a critical role in the formation of local transmission 
networks. Continuous monitoring of HIV-1 molecular subtypes 
may inform feasible and focused prevention strategies to curb 
HIV transmission.
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