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Morchella sextelata cultivation
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Morchella, a highly nutritious edible fungus, has been successfully cultivated
through artificial means. However, as cultivation areas have expanded, declining
yield have emerged more prominently. Soil physicochemical characteristics and
microbial communities were critical to production on cultivating morels. In this
study, our results reveals that cultivation significantly alters soil properties and
microbial communities in a soil type-dependent manner. In sandy soil, pH and key
nutrients (total nitrogen, total phosphorus, available phosphorus) increased, while
potassium and calcium levels decreased. Microbial diversity decreased in sandy
soil but increased in paddy soil, with the overall community structure in sandy
soil being more drastically reshaped. Metagenomic profiling identified distinct
differential taxa and functional shifts, showing that sandy soil exhibited greater
enrichment of microbial genes, including soil-borne diseases. These findings
demonstrate that M. sextelata cultivation induces considerable and contrasting
changes in soil nutrient profiles and microbiome composition, with sandy soil being
more susceptible to microbial restructuring and potential pathogen enrichment.

KEYWORDS

morel (Morchella sextelata), soil, physicochemical property, metagenomics, microbial
community

1 Introduction

Morels (Morchella spp.) are edible fungi highly valued for their exceptional nutritional
content and distinctive flavor, offering considerable economic and research significance (Deng
etal,, 2021). Widely used in culinary and medicinal applications, morels are recognized for
their unique aroma, rich nutrient profile, and high levels of essential amino acids and organic
compounds (Wu et al., 2021). Morel cultivation relies on exogenous nutrition bag (ENB)
technology to supply nutrients for developing mature morel fruiting bodies, which is the
critical step for large-scale morel cultivation (Liu et al., 2023a; Xie G. et al., 2024). In Sichuan
Province, the scale of artificial morel cultivation has steadily expanded, resulting in increased
income for local growers (Xu et al., 2022). However, this rapid growth has also introduced
several challenges now affecting production, including disease outbreaks and continuous
cropping obstacles (Guo et al., 2016; He et al., 2017).

Recent studies suggest that shifts in soil nutrient availability and microbial community
composition are major contributors to declining yield (Xu et al., 2024). It reported that nutrient
accumulation following morel cultivation can lead to reduced yields (Tan et al., 2019).
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Nitrogen (N) and phosphorus (P) accumulation and potassium (K)
loss are identified as the main factors responsible for the yield decline
in continuous cropping. Additionally, Morchella, acting as an invasive
species, substantially decreases both the richness and evenness of soil
fungal communities during cultivation. Continuous cropping also
lead to an increased dominance of specific fungal taxa, like Mortierella,
Solicoccozyma, Humicola and Trichocladium, which increased soil
nutrients to inhibit differentiation (Tan et al., 2021a; Wei-Ye et al.,
2022; Zhang et al., 2023).

However, the selection of suitable soil still largely depends on growers’
production experience due to the limited availability of scientific
guidance. In field, sandy soil are the common soil types for morel
cultivation. Recently, rice-morel rotation has emerged as an efficient
agricultural model increasingly promoted in southern China. This system
seeks to maximize the use of dormant winter rice fields, thereby
improving land utilization and increasing farmers’ income. Studies have
also shown that rice-morel rotation combined with a 10% nitrogen
reduction holds strong potential for enhancing overall nitrogen use
efficiency and improving rice growth performance (Song et al., 2025).
Additional research suggests that this rotation system contributes to
improved soil health (Duan et al., 2023). Therefore, rice-morel rotation
warrants further in-depth investigation and broader application.

In this study, we investigated changes in soil physicochemical
properties and microbial communities in both sandy and paddy soils
before and after morel cultivation, with the goal of identifying suitable
soil environments for optimal growth. This research aims to provide
theoretical guidance for improving morel cultivation practices and
advancing the rotational cropping system of rice and morel.

2 Materials and methods
2.1 Soil samples collection

Soil samples were collected in March 2024 from Meishan, Sichuan,
China, where morels (Morchella sextelata) were cultivated either in
sandy soil or paddy soil previously used for rice cultivation.
We collected soil samples after the morel harvest. The “before morel
cultivation” soil samples were obtained from an uncultivated area
within the same designated plot. The sandy soil, which defined as soil
characterized by a high sand content and properties of being loose and
well-aerated, was used for morel cultivation for the first time. While
the paddy soil, which defined as soil characterized by a heavy, clay-
rich texture and high water retention capacity, had grown rice before
but was also newly used for morels—neither field experienced
continuous cropping. Paddy soil before or after addition of with
M. sextelata was abbreviated as RCK and RTM, respectively. Sandy soil
before or after addition of with M. sextelata was abbreviated as SCK
and STM, respectively (Table 1).

Cultivation followed a standardized technical protocol (Liu et al.,
2023b). Rhizosphere soil samples were collected using the five-point
sampling method. At each point, soil cores were taken from three
depths (0, 5, and 10 cm), and three replicates were obtained per depth
to form a composite sample. Fifteen soil cores were taken and
thoroughly mixed to form a single composite sample. This composite
was then divided into five replicates for analysis. Each replicate was
further split into two portions: one portion was air-dried in the shade
for physicochemical analysis, while the other was flash-frozen in
liquid nitrogen and stored at —80 °C for metagenomic sequencing.
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TABLE 1 Sample abbreviations and descriptions used in this study.

Sample abbreviation Sample description

CK Soil before addition of with M. sextelata
™ Soil after adding M. sextelata

RCK Paddy soil before addition of with M. sextelata
RTM Paddy soil after adding M. sextelata

SCK Sandy soil before addition of with M. sextelata
STM Sandy soil after adding M. sextelata

2.2 Soil physicochemical property analysis

Soil physicochemical properties were measured in accordance
with established standards (Wei-Ye et al., 2022). The following
methods were used: pH value (NY/T 1121.2-2006); total nitrogen
(NY/T 53-1987); total potassium (LY/T 1234-2018); available
potassium (NY/T 889-2004); total phosphorus (LY/T 1232-2015);
available phosphorus (NY/T 1121.7-2014); total calcium
(HJ781-2016); and exchangeable calcium (NY/T 1121.13-2016).
A t-test was results of soil

applied to analyze the

physicochemical properties.

2.3 DNA extraction and sequencing

According to previously described methods, total genomic DNA was
extracted from soil samples using the CTAB method (Tanase et al., 2015).
The DNA was randomly fragmented into ~350 bp segments using a
Covaris ultrasonic disruptor. Library construction involved end repair,
A-tailing, adapter ligation, purification, and PCR amplification. After
quality assessment, the libraries were subjected to paired-end 150 bp
(PE150) sequencing.

2.4 Metagenomic analysis

We used Fastp to filter raw sequencing data and obtain clean reads
for gene prediction and abundance analysis. Assembly was performed
using Bowtie2 (Karlsson et al., 2013). Open reading frames were
predicted with MetaGeneMark, and redundant sequences were removed
using the cluster database at high identity with tolerance (CD-HIT) (Li
and Godzik, 2006; Mende et al., 2012; Li et al., 2014). Clean reads were
then aligned to the nonredundant gene catalog using Bowtie2 (Qin et al.,
2010). Based on gene abundance in the catalog, we conducted basic
statistical analysis, core-pan gene analysis, and correlation analysis and
generated Venn diagrams of gene numbers. For taxonomic annotation,
unigenes were aligned to the Micro_NR database using DIAMOND. This
database includes bacterial, fungal, archaeal, and viral sequences
extracted from the National Center for Biotechnology Information
nonredundant (NR) database (Buchfink et al., 2015).

2.5 Alpha and beta diversity analysis

Alpha diversity indices, including Shannon and Simpson, were
calculated using quantitative insights into microbial ecology (Caporaso
etal., 2010). Based on lowest common ancestor annotation and the gene
abundance table, we determined the taxonomic abundance for each
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sample along with the corresponding gene abundance tables (Feng et al.,
2015). We then generated a relative abundance overview and an
abundance clustering heatmap, followed by dimensionality reduction
analyses using PCA and nonmetric multidimensional scaling (NMDS)
(Le Chatelier et al., 2013; Stewart et al., 2014).

2.6 Functional analysis

MetaGenomeSeq was used to perform permutation tests
between groups at each taxonomic level, generating corresponding
p-values. LEfSe analysis was conducted using LEfSe software, with
the default linear discriminant analysis (LDA) score threshold set
to 4 (Le Chatelier et al., 2013). DIAMOND software was used to
align unigenes against the KEGG, CAZy and PHI databases for

10.3389/fmicb.2025.1700246

functional annotation (Cantarel et al., 2009; Kanehisa et al., 2017;
Urban et al., 2025).

3 Results

3.1 Physicochemical property analysis of
Morchella sextelata-cultivation soil

To examine the differences between paddy and sandy soils,
we collected samples before and after M. sextelata cultivation.
Based on soil physicochemical property standards, we measured
soil pH and nutrient content. Results indicated pH, total nitrogen
(N), total phosphorus (P), and available phosphorus significantly
increased about 1.9, 47.7, 3.6 and 139%, respectively (Figure 1).
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Physicochemical properties of sandy soil. (A) Morel fructification of the sandy soil used in this study. Measurement of (B) pH, (C) total nitrogen, (D) total
potassium, (E) available potassium, (F) total phosphorus, (G) available phosphorus, (H) total calcium, and (I) exchangeable calcium in sandy soil. Data
were analyzed using Student’s t-test: **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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However, total potassium (K), available K, total calcium (Ca), and
exchangeable Ca showed significant decreases in sandy soil about
5.8, 50.8, 9.9 and 17.6%, respectively. In paddy soil, the pH is
significantly evaluated about 12.1%, and total Ca and available K
levels dropped substantially about 3.8 and 78%, respectively
(Figure 2). Additionally, no significant changes (p > 0.05) were
observed in the other nutrients in paddy and sandy soil. Overall,
these findings suggest that M. sextelata cultivation led to
considerable alterations in the nutrient profile of sandy soil.

10.3389/fmicb.2025.1700246

3.2 Functional analysis of soil microbiome
composition

To further investigate the differences between paddy and sandy
soils, we performed metagenomic sequencing to analyze soil
microbiome composition. Metagenomic sequencing of the
12 samples yielded 165.78 GB of high-quality data
(Supplementary Table S1), enabling a comprehensive profiling of the

soil

microbial communities. Taxonomic annotation identified a vast

were analyzed using Student's t-test; *p < 0.05 and ***p < 0.0001.
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FIGURE 2

Physicochemical properties of paddy soil. (A) Morel fructification of paddy soil used in this study. Measurement of (B) pH, (C) total nitrogen, (D) total
potassium, (E) available potassium, (F) total phosphorus, (G) available phosphorus, (H) total calcium, and (I) exchangeable calcium in paddy soil. Data
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31,737
(Supplementary Table S2), with bacteria constituting the dominant

diversity — across four  kingdoms to species
domain. Notably, the relative abundance of bacteria was further
enhanced following M. sextelata inoculation (Figure 3A). In contrast,
the abundances of viruses and archaea exhibited opposite responses
to cultivation, decreasing in paddy soil but increasing in sandy soil. At
the phylum level, the most abundant bacterial lineages in the
cultivated soils included Verrucomicrobiota, Nitrospirota, Candidatus
Rokuibacteriota, Myxococcota, Chloroflexota, Gemmatimonadota,
Bacteroidota, Acidobacteriota, Actinomycetota, and Pseudomonadota
(Figure 3B).

To pinpoint specific taxa driving the differences between soil types
and cultivation states, we performed MetaGenomeSeq analysis. This
revealed distinct differential taxa, Methanomicrobia, Ignavibacteria,
Syntrophobacteria, and Bacteroidia were significantly decreased in paddy
soil, while Candidatus Deferrimicrobia was increased (Figures 3C-G).

Conversely, Betaproteobacteria, Gammaproteobacteria, Nitrospiria, and

10.3389/fmicb.2025.1700246

Sphingobacteriia were enriched in sandy soil, while Thermoplasmata was
depleted (Figures 3H-L). With the exception of the archaeal classes
Methanomicrobia and Thermoplasmata, all these differentially abundant
taxa belonged to bacteria. Taken together, beyond confirming the
fundamental compositional divergence between paddy and sandy soils,
our metagenomic findings illuminate how M. sextelata cultivation exerts
contrasting effects on the soil microbiota. These effects are evident in the
opposing trajectories of bacterial, archaeal, and viral abundances, and are
further defined by the enrichment or depletion of distinct bacterial
classes with putative roles in nutrient cycling.

3.3 Soil microbial community diversity of
alpha diversity and LEfSe analysis

To analyze the microbial community diversity in M. sextelata-
cultivated soils, we performed alpha diversity analysis on the soil
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FIGURE 3

Analysis of soil microbiome composition in different plant soils of Morchella sextelata. Relative abundance of the top 10 most abundant soil microbiota
in paddy and sandy soils at the (A) kingdom and (B) phylum levels. Variation in the top five most abundant microbial classes analyzed using
metagenome sequencing (MetaGenomeSeq) during M. sextelata cultivation in (C—G) paddy soil and (H-L) sandy soil.
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FIGURE 4
Variation in soil microbiome composition between paddy soil and sandy soil during Morchella sextelata cultivation. (A,B) Alpha diversity of the
microbial community based on Shannon's index and Simpson'’s index. Data were analyzed using one-way analysis of variance (ANOVA);
*p < 0.05. (C,D) Principal component analysis (PCA) and nonmetric multidimensional scaling (NMDS) of the microbial community at the class
level.

samples. Our results showed that microbial alpha diversity
differed
(Figures 4A,B). Shannon’s and Simpson’s index values were higher

significantly between paddy and sandy soils
in RTM than RCK, indicating an increase in the species diversity
and evenness of the microbial community in paddy soil after
M. sextelata cultivation. In contrast, Shannon’s and Simpson’s
index values were lower in STM compared to SCK, suggesting a
decrease in microbial diversity in sandy soil following cultivation.
Principal coordinates analysis and nonmetric multidimensional
scaling (NMDS) analyses further corroborated these differences
(Figures 4C,D) (Supplementary Tables S3, S4). The analysis
revealed that the RCK and RTM in paddy soil clustered closely
together, indicating that cultivation did not induce drastic
changes in the overall structure of its microbial community. In
stark contrast, the SCK and STM in sandy soil exhibited clear
separation, demonstrating that cultivation significantly reshaped
the microbial community structure in this soil type. In summary,
the impact of M. sextelata cultivation on the soil microbial
community was highly dependent on the soil type.

To identify taxa with significant differences between paddy
and sandy soils, we conducted LEfSe (Linear discriminant
analysis Effect Size) analysis. The results revealed 14 biomarkers
enriched in paddy soil, with Acidobacteriota and Pseudolabrys

Frontiers in Microbiology

being the most abundant (Figure 5A). In contrast, 22 biomarkers
were identified in sandy soil, with Betaproteobacteria and
Actinomycetota showing the highest abundance (Figure 5B). The
greater number of discriminant taxa in sandy soil suggests that
the microbial community structure in this soil type was more
distinctly altered or exhibited stronger specific responses
compared to that in paddy soil.

3.4 Functional analysis of in Morchella
sextelata-cultivation soil microbial gene

To explore the biological functions of soil microbial genes,
we conducted functional annotation using MetaGeneMark, the
CAZy database, KEGG orthology, and the PHI database. Our results
showed that sandy soil contained more microbial genes than paddy
soil, with most genes enriched in glycoside hydrolases and glycosyl
transferases, indicating that the carbohydrate metabolic pathways of
soil microbes are highly active during morel cultivation
(Figures 6A,B). Further functional analysis revealed that microbial
genes in sandy soil were more enriched in pathways related to
metabolism,

human diseases, organismal systems, genetic

information processing, cellular processes, and environmental

frontiersin.org
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FIGURE 5

Linear discriminant analysis effect size (LEfSe) of key microbial
biomarkers at the species level in paddy and sandy soils. (A) Paddy
soil and (B) sandy soil. Only microbial taxa with a linear discriminant
analysis (LDA) score >3 are shown.

information processing (Figure 6C). In contrast, the enrichment
patterns in paddy soil showed the opposite trend. Additionally,
PHI-based analysis showed that, except for Mycobacterium
tuberculosis, the top 10 pathogens increased in abundance in sandy
soil following M. sextelata cultivation, while they decreased in paddy
soil (Figure 6D) (Supplementary Tables S5, S6). These findings
suggest that M. sextelata cultivation may pose a higher disease risk
in sandy soil.

4 Discussion

In this study, we conducted a comparative analysis of two common
M. sextelata cultivation soils—paddy soil and sandy soil by assessing
their physicochemical properties and microbial communities. The
results highlight the distinct advantages and limitations of each soil
type, offering a theoretical basis for optimizing Morchella
cultivation practices.

Although ENB are essential in Morchella cultivation, soil
remains the primary growth substrate, and its physicochemical
properties closely associated to yield—particularly in relation to
continuous cropping obstacles (Liu et al., 2018; Yuan et al., 2021).
Consistent with previous studies, nitrogen and phosphorus levels
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increased in sandy soil following morel cultivation (Tan et al., 2019;
Tan et al., 2021b). As a saprophytic fungus, Morchella naturally
enriches soil organic carbon, nitrogen, and phosphorus during its
growth. Paradoxically, such nutrient accumulation may inhibit
primordia initiation and fruiting body development, thereby
adversely affecting yield. In contrast, paddy soil showed no
significant nutrient buildup, with nitrogen and phosphorus levels
remaining stable, suggesting its potential in mitigating nutrient-
related cultivation challenges (Figures 1, 2).

Unlike nitrogen and phosphorus, potassium plays a vital role
in Morchella production, serving as a key nutrient for mycelial
growth and primordia formation (Li et al., 2017). This is supported
by the common practice of amending soil with potassium-rich
plant ash to enhance yield, a strategy corroborated by the
significant potassium depletion observed during cultivation in this
study (Liu et al., 2023a). Additionally, trace elements such as Fe,
Zn, and Mn, along with their compounds, may also affect yield
outcomes (Liu et al.,, 2017). A notable limitation of this study,
however, is the lack of investigation into the presence of these
elements in both paddy and sandy soils.

There is a direct shaping influence of soil’s physicochemical
properties on its microbial community structure. As an edible
fungus, Morchella cultivation is often associated with a noticeable
decline in overall soil microbial diversity (Tan et al., 2021a). In our
study, we observed divergent trends between the two soil types. In
paddy soil, total microbial diversity increased slightly after
cultivation. In contrast, sandy soil exhibited a significant decline in
overall microbial diversity (Figures 4A,B). This pattern in paddy soil
aligns with previous reports of substantial reductions in bacterial
diversity following Morchella cultivation (Orlofsky et al., 20215 Yu
et al.,, 2022). However, a distinct phenomenon was identified in
sandy soil: while total microbial diversity declined, the specific
component of bacterial diversity increased markedly. This increase
was driven by a significant rise in specific bacterial taxa (e.g.,
Betaproteobacteria and Gammaproteobacteria), likely due to elevated
nutrient concentrations after cultivation (Figures 3H,K) (Falkowski
et al., 2008). Notably, the rapid proliferation of such copiotroph
bacteria may disrupt the ecological balance of microbial networks
by competitively excluding other functional groups, thereby
potentially  exacerbating the instability of the soil
micro-ecosystem.

Previous studies have shown that acidic metabolites produced
during Morchella growth led to an increase in soil pH, which
paradoxically reduces the substrate’s, thereby raising the risk of disease
during cultivation (Li et al., 2023; Yin et al., 2025). Metagenomic
analysis of PHI-database also revealed a significant reduction in
disease-related genes in paddy soil, while a sharp increase was
observed in sandy soil (Figure 6). In morel cultivation, many
pathogens were enriched in soil with the continuous cropping.
Fusarium, which has more species in sandy soil than paddy soil,
caused many rots disease in field (Supplemental Table S7) (Masaphy,
2022; Zhu et al., 2023; Xie J. et al., 2024). Moreover, after morel
cultivation, many crop diseases pathogen reduced in paddy soil,
indicating that Morchella cultivation in paddy soil can effectively
alleviate continuous cropping obstacles. Therefore, paddy soil for
morel cultivation could reduce the accumulation and occurrence
of diseases.
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Functional analysis of soil microbiome genes. (A) Venn diagram of soil microbial gene profiles. (B) Functional annotation based on the Carbohydrate-
Active enZymes (CAZy). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of soil microbial genes. (D) Pathogenicity analysis
of the soil microbiome based on the Pathogen—Host Interactions (PHI) database.
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