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trophic transmission

Aaron Bradshaw*

Society-Environment Research Group, Institute of Geography, Friedrich-Alexander-Universitat
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This minireview focuses on recent developments regarding mobile genetic
elements (MGEs) and horizontal gene transfer (HGT) in wastewater treatment
plants (WWTPs) and proximal environments. WWTPs are often discussed
as hotspots and bioreactors for the evolution of MGEs and ARGs and
their horizontal transfer. Firstly, the article reviews the effects of emerging
contaminants on HGT and MGEs with a specific focus on microplastics and
per- and polyfluoroalkyl substances (PFAS). Secondly, the review focuses on
how extreme weather and climate change can overwhelm WWTPs, increase the
input of diverse genetic elements, and alter the dynamics of HGT. Finally, the
trophic connections between the WWTP microbiota and external ecosystems
underscore the potential for wider transmission of MGEs. Here, the focus is
on transfer of MGEs to larger organisms in the vicinity of WWTPs. In sum, the
review focuses on emerging areas of research that refine our understanding of
the WWTP environment as a hotspot for HGT and dissemination of MGEs with
potentially deleterious implications for human and wider ecosystem health.
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1 Introduction

Horizontal genetic transfer (HGT) refers to the sharing of genetic material
between microorganisms (Soucy et al., 2015). HGT events are mediated via several
distinct mechanisms including conjugation, transduction, and transformation, and
via gene transfer agents including plasmids and phages. HGT is a key driver of
microbial genomic plasticity and is central to microbes’ ability to adapt to changing
and/or stressful environmental conditions (Arnold et al, 2022). Along with the
activity of transposons and integron/integrases which drive recombination events
within the genome, HGT is an important source of genetic innovation and novelty
in microorganisms (Carscadden et al., 2023). Increasingly complex and reticulated
genomic structures such as plasmids with multiple drug resistances (Mbanga et al,
2021) and large integron cassettes are often the end products of successive HGT
events (Ghaly et al, 2021). The transfer of MGEs is catalyzed by anthropogenic
pressures (Gillings, 2017; Groussin et al., 2021; Bradshaw, 2024a) and is particularly
intense within wastewater treatment plant (WWTP) environments. Due to their
unique function and position in relation anthropogenic activities, WWTPs and
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their surrounding environments can be seen, on the one hand, as
a rescaled microcosm (or model) of the wider socio-environmental
dynamics that characterize the Anthropocene (see Achmon et al.,
2018). On the other hand, attention to WWTPs can unearth
key dynamics of microbial evolution and interaction, particularly
HGT, as it adapts to an era of unprecedented environmental
change. These interrelated processes are two sides of the same coin
that foreground the entangled complexity of the WWTP and its
connections to wider environments.

This minireview summarizes recent research focusing on HGT
and MGEs in WWTPs. The aim is not to provide a systematic
overview of the variables influencing HGT in these environments
but to focus on areas that are currently emerging in the literature
and which represent important areas for future study. Specifically,
the focus is on the role of emerging contaminants, the impact
of environmental volatility, and on identifying HGT events to
the microbiomes of other ecosystems and species that live and
feed in and around WWTPs. These three areas correspond to
emerging hazards posed by WWTPs and their interfacing with an
increasingly chemically diverse human society and anthropogenic
climate change. They represent key sites for ongoing research and
are schematically represented in Figure 1.

2 Wastewater treatment plants and
horizontal gene transfer

Wastewater treatment plants (WWTPs) are unique ecological
environments that collect and treat the effluent from human
societies. Depending on the precise organization of the WWTP,
this can include municipal/domestic wastewater and/or more
specialized wastewater streams (hospital, agricultural, and/or
industrial) as well as stormwater runoff. The primary method of
wastewater treatment is the activated sludge process (AS) in which
microbial aerobic digestion is enrolled to reduce the biological
oxygen demand (BOD) of influent (McCabe and Eckenfelder, 1961)
allowing the treated water to be returned to watersheds (oceans
or rivers). The AS microbiome is a complex community that is
characterized by a set of core microorganisms (Saunders et al,
2016), dominated by denitrifying bacteria (Yu and Zhang, 2012)
and exhibits seasonal variation (Ju et al., 2014). In addition to the
core functions of nutrient removal, the AS microbiome contains
biodegradation genes targeted toward specific pollutants (e.g., Cai
etal, 2013; Fang et al,, 2013, 2018) although their function tends to
be variable (Douziech et al., 2018).

The WWTP environment exposes a highly dense and diverse
microbial community to various hard selection pressures including
antibiotics, heavy metals, and disinfectants, along with emerging
contaminants of concern (see below). This in turn promotes
bacterial evolution and the sharing of genetic material (Brown
et al., 2024; Fang et al., 2024). Because of the nature of these
selective agents and their effects on bacterial communities, WWTPs
are increasingly recognized as “hotspots” (Guo et al., 2017) that
foster the emergence and evolution of antimicrobial resistance
(AMR; see Bradshaw, 2024b). Firstly, the WWTP community
can itself harbor ARGs (on MGEs), thereby acting as an AMR
“reservoir” (Yoo et al., 2020; Yin et al., 2022; Zhang et al.,, 2022).
Secondly, the release of MGEs from WWTPs can promote the
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transfer of ARGs to downstream ecosystems and environments
(Sambaza and Naicker, 2023). These processes underscore the
framing of WWTPs as risky environments that both concentrate
and disperse various hazards.

Over the last century or so HGT has contributed to the
reprogramming of bacterial genetic and phenotypic identity on a
planetary scale (Gillings, 2017; Gillings and Paulsen, 2014). This
evolution is both tightly coupled to anthropogenic activities on
the one hand and tends to promote the emergence of drug-
resistant and pathogenic microbes, on the other. Further, MGEs
with origins that can be traced to single bacterial strains are now
observed dispersed throughout the global microbial population, a
phenomenon that emerges from the interaction between microbial
HGT and human infrastructures (Haraoui, 2022). Hence, although
MGEs and HGT events have been critical in evolutionary flexibility,
genomic innovation, and the evolution of complex life forms (Jain
et al, 2003; Daubin and Szoll6si, 2016), contemporary concerns
often focus on these processes as vectors for the dissemination
of antimicrobial resistance genes (ARGs) and the emergence of
novel pathogens (Emamalipour et al., 2020; Vos, 2020) in an era
of unprecedented socio-ecological connectivity.

3 Contaminants of emerging
concern in WWTPs and HGT events

A wide variety of emerging contaminants have been implicated
in the selection and evolution of ARGs and MGEs, and their
transmission. Many of these contaminants concentrate in WW'TPs,
including pharmaceuticals, personal care products, fungicides,
biocides, and herbicides (Feng et al., 2021; Alderton et al., 2021).
Disinfectants (Tan et al., 2021), heavy metals (Lin et al, 2019),
preservatives (Cen et al.,, 2020), and organic pollutants are also
implicated in the HGT of ARGs (Sharma et al, 2025) and in
the evolution of metabolic genes related to pollutant metabolism
and detoxification (Top and Springael, 2003; Miguel et al., 2020).
Here, the focus here is on the effect of two contaminants of
emerging concern on HGT and MGEs: microplastics and per- and
polyfluoroalkyl substances. These contaminants are discussed due
to the small but growing body of research elucidating their effects
and the need for further investigation.

3.1 Microplastics

Microplastics (MPs), small (<5 mm) plastic particles of
various polymer composition and structure, are emerging
contaminants of concern in wastewater streams and aquatic,
marine, estuarine and terrestrial ecosystems across the globe.
MPs act as a physical substrate for microbial biofilm formation
and have been demonstrated to facilitate HGT under various
experimental conditions (Arias-Andres et al., 2018; Liu et al,
2022). MPs of different polymer type have been associated with
increased prevalence of ARGs, MGEs, and HGT in mariculture
(Liu et al., 2025) estuarine (Zhou et al., 2024), and constructed
wetland (Zhao et al,, 2023) environments, to name a few. This
effect may be associated with the induction of oxidative stress,
ROS production, and the formation of a specific “plastisphere”
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Overview of relationships between emerging contaminants (ECs), climate change and transmission of mobile genetic elements (MGEs) with
wastewater treatment plant environments (WWTPs). ECs can select for increased rates of HGT and the abundance of MGEs. Strong weather events
can influence the input of MGEs into WWTPs. The dissemination of MGEs in WWTP effluent can promote transmission to downstream ecologies,

including larger organisms.

community that enriches MGE-harboring microorganisms
(Luo et al., 2023; Liu et al., 2025).

Microplastics are increasingly shed into waste streams and
produced in situ through the degradation of larger pieces of
plastic (Zhang et al., 2021). These particles are dispersed widely in
hydrological systems, bypass initial filtering in WWTPs, and may
be released in effluent (Ziajahromi et al., 2016; Mason et al., 20165
Edo et al, 2020). In addition to the environments noted above,
researchers have investigated the relationships between MPs and
MGEs, ARGs, and HGT events in WWTP systems. For instance,
Pham et al. (2021) observed that intI1 was enriched up to 4.5-
fold on microplastics incubated in a WWTP in the USA. From
a functional perspective, Feng et al. (2023) demonstrated that the
ARGs in MP biofilms can be horizontally transferred to free cells,
demonstrating the potential correlation between gene abundance
and functional effects.

Certain pollutants present in wastewater can be adsorbed onto
MP surfaces resulting in localized increases in concentration and
leading to bacterial stress responses, increased eDNA uptake, and
lateral sharing of genetic information (Shen et al., 2023; Wang
et al., 2023). For instance, Wang et al. (2021b) investigated the
interactions between MPs isolated from wastewater and different
pharmaceuticals. They hypothesized that the colocalization of
MPs with multiple pollutants may have synergistic effects on the
selection of MGEs. In agreement, their study demonstrated that
microorganisms cultured with MPs adsorbed with tetracycline,
triclosan, or ampicillin had significantly increased MGEs and ARGs
as compared to those cultured with pharmaceuticals alone. Their
findings further contribute to the model of MPs as hotspots for
the selection, concentration and the transfer of MGEs. On the
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other hand, however, Xu M. et al’s (2024) study suggested that
MPs effectively reduced ARGs and MGEs in anaerobic digestion
environments. Further, MPs were associated with a reduction in
genes functionally linked to HGT which was subsequently reduced
on MP surfaces. Different polymer types were linked to different
effects on MGEs, with polypropylene and polyethylene having a
greater effect than polyamide. The effect of MP polymeric identity
on HGT and the microbial community involved (e.g., aerobic vs.
anaerobic) are important areas for future research. WWTPs should
continue to be a key site for these studies (Junaid et al., 2022;
Syranidou and Kalogerakis, 2022).

3.2 Per- and polyfluoroalkyl substances

Per- and polyfluoroalkyl substances (PFAS) are a large family
(>4700 in commercial use; Wang et al., 2021a) of chemically related
compounds characterized by the presence of carbon-fluoride bonds
and environmental and biological stability. PFAS are ecotoxic,
bioaccumulative, and highly persistent in aquatic and terrestrial
environments (Brunn et al., 2023). Exposure to PFAS is associated
with changes to the function and structure of the human gut-
associated microbiome and various environmental microbiomes
(Sen et al., 2024; Beale et al., 2022; Laue et al., 2023). They are
contaminants of emerging concern and are linked to health issues
in humans and other species. PFAS also concentrate in WWTPs
where they are removed with varying degrees of efficiency (Ilieva
et al., 2024; Barisci and Suri, 2021).

A small number of studies have begun investigating the roles
of PFAS substances on HGT events. For instance, Liu et al. (2023)
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demonstrated that low levels of two PFAS chemicals,
perfluorooctanoic acid (PFOA), perfluorododecanoic acid

(PFDoA) and ammonium perfluoro (2-methyl-3-oxahexanoate)
(GenX) (at 0.01 and 0.1 mg/L) promoted the conjugative transfer
of plasmid RP4 between Escherichia coli. However, higher levels
(1.0 and 10 mg/L) inhibited transfer suggesting a non-linear dose
response (Xu Z. et al., 2024). Mechanistic studies demonstrated
that conjugative transfer was linked to oxidative stress, and higher
levels of PFAS reduced ATP thereby inhibiting transfer. Another
study demonstrated that PFOA can increase transmission of
plasmid-encoded ARGs by up to 3.5-fold, although this was to a
soil bacterial community (Yin L. et al., 2023).

Perfluorooctanoic acid also increased the risk of horizontal
ARG transmission in groundwater ecosystems by selecting for
denitrifying bacterial communities that harbor ARGs associated
with MGEs (Chen et al.,, 2023). On the other hand, Chen et al.
(2022) demonstrated that PFOA-induced microbial stress reduced
the expression of plasmid-mediated horizontally transmissible
ARGs (also in a groundwater model), demonstrating that the
effects of PFAS on HGT are complex and likely depend on
the microbial community involved and environmental factors.
Another study demonstrates that in water distribution systems,
PFAS and phthalate esters may act additively to increase MGE
levels in biofilms, an effect that was also dependent upon pipe
material (Yin H. et al, 2023). Furthermore, a recent study by
Wang et al. (2025) demonstrated that in the presence of the
quaternary ammonium compound diallyl dimethylammonium
chloride, PFOA, PFHxA, and PFBS all increased the level of
antimicrobial resistance genes in a nitrification community. This
increase was correlated with elevated MGEs, suggesting that PFAS
was involved in HGT in the community.

Collectively, these studies demonstrate that the effects of PFAS
on MGEs and HGT are complex and environment dependent.
A recent molecular dynamics and machine learning study by
Xiao et al. (2025) predicted that PFAS increase bacterial HGT, an
observation that was influenced by the electronegativity of PFAS
molecules. A synergistic effect on HGT was predicted in the co-
presence of PFAS and MPs. However, given the variability discussed
above, it is important to validate these observations experimentally
and with various microbial communities. Moreover, questions
remain as to how those results obtained in model systems with
controlled levels of PFAS might translate to the in situ activated
sludge process with variable and dynamic PFAS concentrations,
compositions, and distributions. Further research is also required
to assess how PFAS may interact with other pollutants, stressors,
and physical substrates in complex and potentially synergistic ways
to affect HGT in wastewater operations.

4 HGT events from WWTPs
associated with environmental
volatility

There are complex connections between anthropogenic climate
change and the selection of AMR and its transmission via
MGEs and HGT. Climate change may exacerbate AMR via
numerous mechanisms, including increased proximity between
humans and animals (Magnano San Lio et al, 2023) altered
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spatial range of vectors and pathogens, and increased usage of
antibiotics in humans and domesticated animals (Reverter et al.,
2020). Moreover, higher temperatures are directly associated with
increased rates of AMR (Meinen et al., 2023) although it has varying
effects on the spread of resistance (Bagra et al., 2024a). In the
Yellow river in China, for instance, ARG and MGE levels correlated
with temperature (Yu et al, 2023). Other studies demonstrate
that the spatial distribution (sediment or water) and mobilization
potential of ARGs via MGE:s differs depending on the time of year,
with more MGE:s in sediment during the Spring drought in Asian
and European contexts (Guo et al., 2023). In the context of this
review, the focus is on how climate change significantly impacts the
hydrological cycle and how this influences the resistome profile of
WWTPs and the spread of MGEs.

Zhou et al. (2022) identified a carbapenem-resistant Citrobacter
sedlakii strain isolated from aerosols sampled outside a WWTP
in China. Resistance was related to the presence of the blaNDM-
5 gene, which was located on the IncX3 plasmid (pCSNDM-5).
The plasmid could be transferred to the Escherichia coli recipient
J53, demonstrating a possible transmission pathway for the spread
of clinically relevant ABR and MGEs from WWTPs. Given
that WWTP bio-aerosol generation is related to environmental
conditions, including temperature, rainfall, and wind (Tian et al.,
2022), Zhou et al’s (2022) findings demonstrate the complex and
interconnected pathways of MGE transmission in anthropogenic
environments stemming from WWTPs. In this respect, Hou et al.
(2022) investigated the effects of a severe precipitation event on
the resistome of lagoon surface waters in China. Their study
demonstrated that heavy rain events were associated with the
promotion of HGT events by increasing the input of MGEs from
diverse urban sources, such as road and agricultural runoff as well
as WWTP eftluent. Indeed, MGE levels were highest immediately
following the storm, followed by a reduction to baseline levels that
was associated with environmental controls such as pumping and
floodgate opening. Urban stormwater often contains high levels of
MGE:s as well as selective pressures such as heavy metals, which
are transported to WWTPs in sediment from roads (Zuo et al,
2022). The effects of floods and monsoons on MGE-mediated
ARG dissemination is exacerbated in regions where wastewater
treatment is suboptimal and untreated effluent contaminates river
environments (Bagra et al., 2024D).

Collectively, these observations demonstrate the highly
dynamic nature of MGE dissemination and HGT events, and
highlight the temporal distribution of risk following extreme
weather events. However, MGE distribution is geographically
specific and dissemination depends on factors including host
phylogeny (Johansson et al, 2023), suggesting that potential
dissemination may be curbed by local ecology and climate.
Hurricanes (Davis et al., 2020) have been associated with altered
MGE profiles in watersheds, whilst a recent study has demonstrated
that following a mining-associated tsunami in Brazil, MGEs were
significantly increased in the disturbed river environment,
among them the highly mobile and promiscuous ARG blaOXA
(Suhadolnik et al., 2022). Less research has focused on the effects
of droughts on the abundance of MGEs and rates of HGTs in
WWTPs, but given that drought can significantly impact pollutant
load in WWTPs and receiving environments (Kock-Schulmeyer
et al., 2011) this is an important area for future study. Collectively,
these findings demonstrate that climatic conditions are significant
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variables in modulating the landscape of MGEs and HGT events
from WWTPs. As extreme weather events continue to increase
in the modern world, their effects on the quantity, distribution,
and transmission of MGEs and associated risks should become a
specific focal point of research.

5 Transmission of genes from
WWTPs to downstream organisms

The environment immediately surrounding WWTPs, and
particularly the receiving waters of discharged effluent are under
increased pressures. WWTPs exist in a gradient, along which the
impact of anthropogenic activities can be detected, often via an
increased prevalence of MGEs (Gillings et al., 2015) and ARGs.
From a One Health perspective (Larsson et al., 2023), it is important
to understand the connections between the MGEs discharged
from WWTPs and recipient ecosystems, including environmental
microbiomes, aquatic species, birds, and terrestrial organisms such
as insects. In turn, these organisms can act as vectors further
promoting the transmission of MGEs beyond the immediate
WWTP environment.

5.1 Transmission to microbiomes

In the first instance, studies demonstrate that microbiomes
downstream of WWTP effluent have altered community structure
and dynamics (Price et al., 2018). However, it is uncertain whether
these effects are related to selective chemicals acting on the
receiving population, the transmission of MGEs from incoming
effluent, or a combination of both. Using a nanopore approach,
a study by Wu et al. (2022) demonstrated that receiving seawater
contained a 10-fold enrichment of ARGs compared to clean
seawater. The resistome profile matched that of the WWTP and
was primarily due to the revival of microbes in the effluent that
bypassed disinfection. Their results further suggested that plasmids
and class I integrons were key players in the dissemination and
persistence of ARGs in receiving waters. In agreement, Zhang
et al. (2021) demonstrated that river microbiomes downstream
of sewage treatment plants contain increased resistome diversity,
due to invasion by resistance elements from WWTP effluents.
These studies collectively suggest that the impacts of WWTP on
HGT extend beyond the confines of the engineered ecosystem and
readily infiltrate neighboring microbial communities. However,
recent evidence suggests it is not only the treatment efficiency and
quality of the final effluent that contributes to resistome infiltration,
but also the background contamination of the river environment
(Ferreira et al., 2022). This indicates that multiple stressors interact
in complex ways to sculpt the mobilome of recipient ecosystems.

5.2 Transmission to larger organisms

The majority of studies investigating the effects of WWTP
effluent on the downstream ecosystem health have involved
taxonomic metagenomic studies. Such studies have demonstrated
effects on the microbiomes of fish (Restivo et al., 2021), birds
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(Marcelino et al, 2018), mussels (Millar et al., 2022a), and
insects (Millar et al., 2022b) living near WWTPs and exposed
to their effluent. A comparatively smaller number of studies,
however, have studied the presence and potential origins of mobile
genetic elements in downstream microbial biofilms and in host
microbiomes.

Insects are considered to act as vectors for the transmission
of ARBs and ARGs (Gwenzi et al,, 2021; Rawat et al., 2023).
The feeding behavior and environmental niches of specific insects
such as “filth flies” (Onwugamba et al., 2018) favors their contact
with enteric pathogens potentially containing ARGs. In terms
of HGT, events Doud et al. (2014) observed that house flies
(Musca domestica) isolated from WWTPs and neighboring urban
areas contain Enterococcus faecalis clones resistant to several
antibiotics. Resistance was horizontally transferable between
species as demonstrated by in vitro conjugation experiments.
Genetic experiments (PFGE) suggested that the isolates were
from an agricultural source, but higher resolution sequencing
studies would be necessary to investigate this hypothesis. Future
experiments should continue to use high resolution metagenomic
sequencing to trace the origins of AMR genes in insect species living
near WWTPs. On the other hand, Lee et al. (2023) demonstrated
that WWTP-originating ARGs were not enriched in amphipods
in receiving environments, thereby demonstrating the species and
ecosystem-dependence of HGT in the vicinity of WWTPs.

In terms of larger organisms, the microbiomes of Hemiculter
leucisculus living downstream of WWTPs demonstrated increased
co-occurence of MGEs and ARGs (Xue et al,, 2021), suggesting that
the MGEs from WWTP effluent infiltrated fish microbiota (Guan
et al,, 2022). Specifically, the findings suggested that plasmids were
key vectors for the transmission of ARGs along an anthropogenic
gradient from WWTP to pristine river environments. Gulls are
considered a key organism involved in the wide-range transmission
of ARGs between different species due to their intimate connections
across human and aquatic environments (Wyrsch et al., 2022; Lin
et al., 2020; Zeballos-Gross et al., 2021; Marcelino et al., 2018).
Indeed, gulls living in proximity to anthropogenic environments
hosted Escherichia coli and Klebsiella pneumoniae strains resistant
to clinically important antibiotics, with some determinants carried
on plasmids (Mukerji et al., 2023). Further, Woksepp et al. (2023)
detected carbapenemase-producing Enterobacterales (CPE) in
Swedish wastewater and gull feces. Four different carbapenemases
were identified (blaGES-5, blaIMI-3, blaOXA-181 and blaOXA-
244) which were carried on plasmids [IncP and IncFII(Yp)]. Those
MGE:s detected in the gull feces were strongly suggested to have
been acquired from the WWTP where the authors had observed
the birds feeding. These results are concerning, especially given that
certain carbapenemases and their MGEs were detected in gull feces
2 km from the WWTP.

6 Conclusion

This minireview has focused on three scales and domains of
HGT in and around WWTPs that are emerging in the scientific
literature. However, it is important to consider the inseparability
and connectivity between these processes. Researchers should
continue to analyze the role of specific factors, such as
micropollutants, in the dynamics of HGT but more integrated
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perspectives are also necessary, such as “One Health,” “Global
Health” or “Planetary Health” approaches (Horvat and Kovacevic,
2025; Ramsamy et al, 2022). WWTPs are themselves sites of
integration for municipal, industrial, and agricultural effluent,
microbial evolution, and increasingly volatile climate regimes. On
the one hand, the studies summarized here point to general trends
in which WWTPs act as catalysts for HGT and the selective
accumulation of MGEs. On the other hand, the growing research
also points to important differences that are site, context, and
microbial community-dependent. These elements of variability
underscore the need to understand bacterial dynamics on a case-by-
case basis, even as their effects reverberate through larger systems.
Thus, whilst an interconnected picture begins to link WWTPs and
HGT with novel and emerging contaminants, volatile weather, and
trophic links to wider ecosystems, future research is necessary to
explore these connections across specific environments and socio-
ecological systems.
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